1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/device.h> 15 #include <linux/interrupt.h> 16 #include <linux/sysctl.h> 17 #include <linux/slab.h> 18 #include <linux/acpi.h> 19 #include <linux/completion.h> 20 #include <linux/hyperv.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/clockchips.h> 23 #include <linux/cpu.h> 24 #include <linux/sched/task_stack.h> 25 26 #include <asm/mshyperv.h> 27 #include <linux/notifier.h> 28 #include <linux/ptrace.h> 29 #include <linux/screen_info.h> 30 #include <linux/kdebug.h> 31 #include <linux/efi.h> 32 #include <linux/random.h> 33 #include <clocksource/hyperv_timer.h> 34 #include "hyperv_vmbus.h" 35 36 struct vmbus_dynid { 37 struct list_head node; 38 struct hv_vmbus_device_id id; 39 }; 40 41 static struct acpi_device *hv_acpi_dev; 42 43 static struct completion probe_event; 44 45 static int hyperv_cpuhp_online; 46 47 static void *hv_panic_page; 48 49 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 50 void *args) 51 { 52 struct pt_regs *regs; 53 54 regs = current_pt_regs(); 55 56 hyperv_report_panic(regs, val); 57 return NOTIFY_DONE; 58 } 59 60 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 61 void *args) 62 { 63 struct die_args *die = (struct die_args *)args; 64 struct pt_regs *regs = die->regs; 65 66 hyperv_report_panic(regs, val); 67 return NOTIFY_DONE; 68 } 69 70 static struct notifier_block hyperv_die_block = { 71 .notifier_call = hyperv_die_event, 72 }; 73 static struct notifier_block hyperv_panic_block = { 74 .notifier_call = hyperv_panic_event, 75 }; 76 77 static const char *fb_mmio_name = "fb_range"; 78 static struct resource *fb_mmio; 79 static struct resource *hyperv_mmio; 80 static DEFINE_SEMAPHORE(hyperv_mmio_lock); 81 82 static int vmbus_exists(void) 83 { 84 if (hv_acpi_dev == NULL) 85 return -ENODEV; 86 87 return 0; 88 } 89 90 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2) 91 static void print_alias_name(struct hv_device *hv_dev, char *alias_name) 92 { 93 int i; 94 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2) 95 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]); 96 } 97 98 static u8 channel_monitor_group(const struct vmbus_channel *channel) 99 { 100 return (u8)channel->offermsg.monitorid / 32; 101 } 102 103 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 104 { 105 return (u8)channel->offermsg.monitorid % 32; 106 } 107 108 static u32 channel_pending(const struct vmbus_channel *channel, 109 const struct hv_monitor_page *monitor_page) 110 { 111 u8 monitor_group = channel_monitor_group(channel); 112 113 return monitor_page->trigger_group[monitor_group].pending; 114 } 115 116 static u32 channel_latency(const struct vmbus_channel *channel, 117 const struct hv_monitor_page *monitor_page) 118 { 119 u8 monitor_group = channel_monitor_group(channel); 120 u8 monitor_offset = channel_monitor_offset(channel); 121 122 return monitor_page->latency[monitor_group][monitor_offset]; 123 } 124 125 static u32 channel_conn_id(struct vmbus_channel *channel, 126 struct hv_monitor_page *monitor_page) 127 { 128 u8 monitor_group = channel_monitor_group(channel); 129 u8 monitor_offset = channel_monitor_offset(channel); 130 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 131 } 132 133 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 134 char *buf) 135 { 136 struct hv_device *hv_dev = device_to_hv_device(dev); 137 138 if (!hv_dev->channel) 139 return -ENODEV; 140 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 141 } 142 static DEVICE_ATTR_RO(id); 143 144 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 145 char *buf) 146 { 147 struct hv_device *hv_dev = device_to_hv_device(dev); 148 149 if (!hv_dev->channel) 150 return -ENODEV; 151 return sprintf(buf, "%d\n", hv_dev->channel->state); 152 } 153 static DEVICE_ATTR_RO(state); 154 155 static ssize_t monitor_id_show(struct device *dev, 156 struct device_attribute *dev_attr, char *buf) 157 { 158 struct hv_device *hv_dev = device_to_hv_device(dev); 159 160 if (!hv_dev->channel) 161 return -ENODEV; 162 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 163 } 164 static DEVICE_ATTR_RO(monitor_id); 165 166 static ssize_t class_id_show(struct device *dev, 167 struct device_attribute *dev_attr, char *buf) 168 { 169 struct hv_device *hv_dev = device_to_hv_device(dev); 170 171 if (!hv_dev->channel) 172 return -ENODEV; 173 return sprintf(buf, "{%pUl}\n", 174 hv_dev->channel->offermsg.offer.if_type.b); 175 } 176 static DEVICE_ATTR_RO(class_id); 177 178 static ssize_t device_id_show(struct device *dev, 179 struct device_attribute *dev_attr, char *buf) 180 { 181 struct hv_device *hv_dev = device_to_hv_device(dev); 182 183 if (!hv_dev->channel) 184 return -ENODEV; 185 return sprintf(buf, "{%pUl}\n", 186 hv_dev->channel->offermsg.offer.if_instance.b); 187 } 188 static DEVICE_ATTR_RO(device_id); 189 190 static ssize_t modalias_show(struct device *dev, 191 struct device_attribute *dev_attr, char *buf) 192 { 193 struct hv_device *hv_dev = device_to_hv_device(dev); 194 char alias_name[VMBUS_ALIAS_LEN + 1]; 195 196 print_alias_name(hv_dev, alias_name); 197 return sprintf(buf, "vmbus:%s\n", alias_name); 198 } 199 static DEVICE_ATTR_RO(modalias); 200 201 #ifdef CONFIG_NUMA 202 static ssize_t numa_node_show(struct device *dev, 203 struct device_attribute *attr, char *buf) 204 { 205 struct hv_device *hv_dev = device_to_hv_device(dev); 206 207 if (!hv_dev->channel) 208 return -ENODEV; 209 210 return sprintf(buf, "%d\n", hv_dev->channel->numa_node); 211 } 212 static DEVICE_ATTR_RO(numa_node); 213 #endif 214 215 static ssize_t server_monitor_pending_show(struct device *dev, 216 struct device_attribute *dev_attr, 217 char *buf) 218 { 219 struct hv_device *hv_dev = device_to_hv_device(dev); 220 221 if (!hv_dev->channel) 222 return -ENODEV; 223 return sprintf(buf, "%d\n", 224 channel_pending(hv_dev->channel, 225 vmbus_connection.monitor_pages[0])); 226 } 227 static DEVICE_ATTR_RO(server_monitor_pending); 228 229 static ssize_t client_monitor_pending_show(struct device *dev, 230 struct device_attribute *dev_attr, 231 char *buf) 232 { 233 struct hv_device *hv_dev = device_to_hv_device(dev); 234 235 if (!hv_dev->channel) 236 return -ENODEV; 237 return sprintf(buf, "%d\n", 238 channel_pending(hv_dev->channel, 239 vmbus_connection.monitor_pages[1])); 240 } 241 static DEVICE_ATTR_RO(client_monitor_pending); 242 243 static ssize_t server_monitor_latency_show(struct device *dev, 244 struct device_attribute *dev_attr, 245 char *buf) 246 { 247 struct hv_device *hv_dev = device_to_hv_device(dev); 248 249 if (!hv_dev->channel) 250 return -ENODEV; 251 return sprintf(buf, "%d\n", 252 channel_latency(hv_dev->channel, 253 vmbus_connection.monitor_pages[0])); 254 } 255 static DEVICE_ATTR_RO(server_monitor_latency); 256 257 static ssize_t client_monitor_latency_show(struct device *dev, 258 struct device_attribute *dev_attr, 259 char *buf) 260 { 261 struct hv_device *hv_dev = device_to_hv_device(dev); 262 263 if (!hv_dev->channel) 264 return -ENODEV; 265 return sprintf(buf, "%d\n", 266 channel_latency(hv_dev->channel, 267 vmbus_connection.monitor_pages[1])); 268 } 269 static DEVICE_ATTR_RO(client_monitor_latency); 270 271 static ssize_t server_monitor_conn_id_show(struct device *dev, 272 struct device_attribute *dev_attr, 273 char *buf) 274 { 275 struct hv_device *hv_dev = device_to_hv_device(dev); 276 277 if (!hv_dev->channel) 278 return -ENODEV; 279 return sprintf(buf, "%d\n", 280 channel_conn_id(hv_dev->channel, 281 vmbus_connection.monitor_pages[0])); 282 } 283 static DEVICE_ATTR_RO(server_monitor_conn_id); 284 285 static ssize_t client_monitor_conn_id_show(struct device *dev, 286 struct device_attribute *dev_attr, 287 char *buf) 288 { 289 struct hv_device *hv_dev = device_to_hv_device(dev); 290 291 if (!hv_dev->channel) 292 return -ENODEV; 293 return sprintf(buf, "%d\n", 294 channel_conn_id(hv_dev->channel, 295 vmbus_connection.monitor_pages[1])); 296 } 297 static DEVICE_ATTR_RO(client_monitor_conn_id); 298 299 static ssize_t out_intr_mask_show(struct device *dev, 300 struct device_attribute *dev_attr, char *buf) 301 { 302 struct hv_device *hv_dev = device_to_hv_device(dev); 303 struct hv_ring_buffer_debug_info outbound; 304 int ret; 305 306 if (!hv_dev->channel) 307 return -ENODEV; 308 309 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 310 &outbound); 311 if (ret < 0) 312 return ret; 313 314 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 315 } 316 static DEVICE_ATTR_RO(out_intr_mask); 317 318 static ssize_t out_read_index_show(struct device *dev, 319 struct device_attribute *dev_attr, char *buf) 320 { 321 struct hv_device *hv_dev = device_to_hv_device(dev); 322 struct hv_ring_buffer_debug_info outbound; 323 int ret; 324 325 if (!hv_dev->channel) 326 return -ENODEV; 327 328 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 329 &outbound); 330 if (ret < 0) 331 return ret; 332 return sprintf(buf, "%d\n", outbound.current_read_index); 333 } 334 static DEVICE_ATTR_RO(out_read_index); 335 336 static ssize_t out_write_index_show(struct device *dev, 337 struct device_attribute *dev_attr, 338 char *buf) 339 { 340 struct hv_device *hv_dev = device_to_hv_device(dev); 341 struct hv_ring_buffer_debug_info outbound; 342 int ret; 343 344 if (!hv_dev->channel) 345 return -ENODEV; 346 347 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 348 &outbound); 349 if (ret < 0) 350 return ret; 351 return sprintf(buf, "%d\n", outbound.current_write_index); 352 } 353 static DEVICE_ATTR_RO(out_write_index); 354 355 static ssize_t out_read_bytes_avail_show(struct device *dev, 356 struct device_attribute *dev_attr, 357 char *buf) 358 { 359 struct hv_device *hv_dev = device_to_hv_device(dev); 360 struct hv_ring_buffer_debug_info outbound; 361 int ret; 362 363 if (!hv_dev->channel) 364 return -ENODEV; 365 366 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 367 &outbound); 368 if (ret < 0) 369 return ret; 370 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 371 } 372 static DEVICE_ATTR_RO(out_read_bytes_avail); 373 374 static ssize_t out_write_bytes_avail_show(struct device *dev, 375 struct device_attribute *dev_attr, 376 char *buf) 377 { 378 struct hv_device *hv_dev = device_to_hv_device(dev); 379 struct hv_ring_buffer_debug_info outbound; 380 int ret; 381 382 if (!hv_dev->channel) 383 return -ENODEV; 384 385 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 386 &outbound); 387 if (ret < 0) 388 return ret; 389 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 390 } 391 static DEVICE_ATTR_RO(out_write_bytes_avail); 392 393 static ssize_t in_intr_mask_show(struct device *dev, 394 struct device_attribute *dev_attr, char *buf) 395 { 396 struct hv_device *hv_dev = device_to_hv_device(dev); 397 struct hv_ring_buffer_debug_info inbound; 398 int ret; 399 400 if (!hv_dev->channel) 401 return -ENODEV; 402 403 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 404 if (ret < 0) 405 return ret; 406 407 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 408 } 409 static DEVICE_ATTR_RO(in_intr_mask); 410 411 static ssize_t in_read_index_show(struct device *dev, 412 struct device_attribute *dev_attr, char *buf) 413 { 414 struct hv_device *hv_dev = device_to_hv_device(dev); 415 struct hv_ring_buffer_debug_info inbound; 416 int ret; 417 418 if (!hv_dev->channel) 419 return -ENODEV; 420 421 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 422 if (ret < 0) 423 return ret; 424 425 return sprintf(buf, "%d\n", inbound.current_read_index); 426 } 427 static DEVICE_ATTR_RO(in_read_index); 428 429 static ssize_t in_write_index_show(struct device *dev, 430 struct device_attribute *dev_attr, char *buf) 431 { 432 struct hv_device *hv_dev = device_to_hv_device(dev); 433 struct hv_ring_buffer_debug_info inbound; 434 int ret; 435 436 if (!hv_dev->channel) 437 return -ENODEV; 438 439 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 440 if (ret < 0) 441 return ret; 442 443 return sprintf(buf, "%d\n", inbound.current_write_index); 444 } 445 static DEVICE_ATTR_RO(in_write_index); 446 447 static ssize_t in_read_bytes_avail_show(struct device *dev, 448 struct device_attribute *dev_attr, 449 char *buf) 450 { 451 struct hv_device *hv_dev = device_to_hv_device(dev); 452 struct hv_ring_buffer_debug_info inbound; 453 int ret; 454 455 if (!hv_dev->channel) 456 return -ENODEV; 457 458 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 459 if (ret < 0) 460 return ret; 461 462 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 463 } 464 static DEVICE_ATTR_RO(in_read_bytes_avail); 465 466 static ssize_t in_write_bytes_avail_show(struct device *dev, 467 struct device_attribute *dev_attr, 468 char *buf) 469 { 470 struct hv_device *hv_dev = device_to_hv_device(dev); 471 struct hv_ring_buffer_debug_info inbound; 472 int ret; 473 474 if (!hv_dev->channel) 475 return -ENODEV; 476 477 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 478 if (ret < 0) 479 return ret; 480 481 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 482 } 483 static DEVICE_ATTR_RO(in_write_bytes_avail); 484 485 static ssize_t channel_vp_mapping_show(struct device *dev, 486 struct device_attribute *dev_attr, 487 char *buf) 488 { 489 struct hv_device *hv_dev = device_to_hv_device(dev); 490 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 491 unsigned long flags; 492 int buf_size = PAGE_SIZE, n_written, tot_written; 493 struct list_head *cur; 494 495 if (!channel) 496 return -ENODEV; 497 498 tot_written = snprintf(buf, buf_size, "%u:%u\n", 499 channel->offermsg.child_relid, channel->target_cpu); 500 501 spin_lock_irqsave(&channel->lock, flags); 502 503 list_for_each(cur, &channel->sc_list) { 504 if (tot_written >= buf_size - 1) 505 break; 506 507 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 508 n_written = scnprintf(buf + tot_written, 509 buf_size - tot_written, 510 "%u:%u\n", 511 cur_sc->offermsg.child_relid, 512 cur_sc->target_cpu); 513 tot_written += n_written; 514 } 515 516 spin_unlock_irqrestore(&channel->lock, flags); 517 518 return tot_written; 519 } 520 static DEVICE_ATTR_RO(channel_vp_mapping); 521 522 static ssize_t vendor_show(struct device *dev, 523 struct device_attribute *dev_attr, 524 char *buf) 525 { 526 struct hv_device *hv_dev = device_to_hv_device(dev); 527 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 528 } 529 static DEVICE_ATTR_RO(vendor); 530 531 static ssize_t device_show(struct device *dev, 532 struct device_attribute *dev_attr, 533 char *buf) 534 { 535 struct hv_device *hv_dev = device_to_hv_device(dev); 536 return sprintf(buf, "0x%x\n", hv_dev->device_id); 537 } 538 static DEVICE_ATTR_RO(device); 539 540 static ssize_t driver_override_store(struct device *dev, 541 struct device_attribute *attr, 542 const char *buf, size_t count) 543 { 544 struct hv_device *hv_dev = device_to_hv_device(dev); 545 char *driver_override, *old, *cp; 546 547 /* We need to keep extra room for a newline */ 548 if (count >= (PAGE_SIZE - 1)) 549 return -EINVAL; 550 551 driver_override = kstrndup(buf, count, GFP_KERNEL); 552 if (!driver_override) 553 return -ENOMEM; 554 555 cp = strchr(driver_override, '\n'); 556 if (cp) 557 *cp = '\0'; 558 559 device_lock(dev); 560 old = hv_dev->driver_override; 561 if (strlen(driver_override)) { 562 hv_dev->driver_override = driver_override; 563 } else { 564 kfree(driver_override); 565 hv_dev->driver_override = NULL; 566 } 567 device_unlock(dev); 568 569 kfree(old); 570 571 return count; 572 } 573 574 static ssize_t driver_override_show(struct device *dev, 575 struct device_attribute *attr, char *buf) 576 { 577 struct hv_device *hv_dev = device_to_hv_device(dev); 578 ssize_t len; 579 580 device_lock(dev); 581 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override); 582 device_unlock(dev); 583 584 return len; 585 } 586 static DEVICE_ATTR_RW(driver_override); 587 588 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 589 static struct attribute *vmbus_dev_attrs[] = { 590 &dev_attr_id.attr, 591 &dev_attr_state.attr, 592 &dev_attr_monitor_id.attr, 593 &dev_attr_class_id.attr, 594 &dev_attr_device_id.attr, 595 &dev_attr_modalias.attr, 596 #ifdef CONFIG_NUMA 597 &dev_attr_numa_node.attr, 598 #endif 599 &dev_attr_server_monitor_pending.attr, 600 &dev_attr_client_monitor_pending.attr, 601 &dev_attr_server_monitor_latency.attr, 602 &dev_attr_client_monitor_latency.attr, 603 &dev_attr_server_monitor_conn_id.attr, 604 &dev_attr_client_monitor_conn_id.attr, 605 &dev_attr_out_intr_mask.attr, 606 &dev_attr_out_read_index.attr, 607 &dev_attr_out_write_index.attr, 608 &dev_attr_out_read_bytes_avail.attr, 609 &dev_attr_out_write_bytes_avail.attr, 610 &dev_attr_in_intr_mask.attr, 611 &dev_attr_in_read_index.attr, 612 &dev_attr_in_write_index.attr, 613 &dev_attr_in_read_bytes_avail.attr, 614 &dev_attr_in_write_bytes_avail.attr, 615 &dev_attr_channel_vp_mapping.attr, 616 &dev_attr_vendor.attr, 617 &dev_attr_device.attr, 618 &dev_attr_driver_override.attr, 619 NULL, 620 }; 621 622 /* 623 * Device-level attribute_group callback function. Returns the permission for 624 * each attribute, and returns 0 if an attribute is not visible. 625 */ 626 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj, 627 struct attribute *attr, int idx) 628 { 629 struct device *dev = kobj_to_dev(kobj); 630 const struct hv_device *hv_dev = device_to_hv_device(dev); 631 632 /* Hide the monitor attributes if the monitor mechanism is not used. */ 633 if (!hv_dev->channel->offermsg.monitor_allocated && 634 (attr == &dev_attr_monitor_id.attr || 635 attr == &dev_attr_server_monitor_pending.attr || 636 attr == &dev_attr_client_monitor_pending.attr || 637 attr == &dev_attr_server_monitor_latency.attr || 638 attr == &dev_attr_client_monitor_latency.attr || 639 attr == &dev_attr_server_monitor_conn_id.attr || 640 attr == &dev_attr_client_monitor_conn_id.attr)) 641 return 0; 642 643 return attr->mode; 644 } 645 646 static const struct attribute_group vmbus_dev_group = { 647 .attrs = vmbus_dev_attrs, 648 .is_visible = vmbus_dev_attr_is_visible 649 }; 650 __ATTRIBUTE_GROUPS(vmbus_dev); 651 652 /* 653 * vmbus_uevent - add uevent for our device 654 * 655 * This routine is invoked when a device is added or removed on the vmbus to 656 * generate a uevent to udev in the userspace. The udev will then look at its 657 * rule and the uevent generated here to load the appropriate driver 658 * 659 * The alias string will be of the form vmbus:guid where guid is the string 660 * representation of the device guid (each byte of the guid will be 661 * represented with two hex characters. 662 */ 663 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 664 { 665 struct hv_device *dev = device_to_hv_device(device); 666 int ret; 667 char alias_name[VMBUS_ALIAS_LEN + 1]; 668 669 print_alias_name(dev, alias_name); 670 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name); 671 return ret; 672 } 673 674 static const struct hv_vmbus_device_id * 675 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid) 676 { 677 if (id == NULL) 678 return NULL; /* empty device table */ 679 680 for (; !guid_is_null(&id->guid); id++) 681 if (guid_equal(&id->guid, guid)) 682 return id; 683 684 return NULL; 685 } 686 687 static const struct hv_vmbus_device_id * 688 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid) 689 { 690 const struct hv_vmbus_device_id *id = NULL; 691 struct vmbus_dynid *dynid; 692 693 spin_lock(&drv->dynids.lock); 694 list_for_each_entry(dynid, &drv->dynids.list, node) { 695 if (guid_equal(&dynid->id.guid, guid)) { 696 id = &dynid->id; 697 break; 698 } 699 } 700 spin_unlock(&drv->dynids.lock); 701 702 return id; 703 } 704 705 static const struct hv_vmbus_device_id vmbus_device_null; 706 707 /* 708 * Return a matching hv_vmbus_device_id pointer. 709 * If there is no match, return NULL. 710 */ 711 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 712 struct hv_device *dev) 713 { 714 const guid_t *guid = &dev->dev_type; 715 const struct hv_vmbus_device_id *id; 716 717 /* When driver_override is set, only bind to the matching driver */ 718 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 719 return NULL; 720 721 /* Look at the dynamic ids first, before the static ones */ 722 id = hv_vmbus_dynid_match(drv, guid); 723 if (!id) 724 id = hv_vmbus_dev_match(drv->id_table, guid); 725 726 /* driver_override will always match, send a dummy id */ 727 if (!id && dev->driver_override) 728 id = &vmbus_device_null; 729 730 return id; 731 } 732 733 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 734 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid) 735 { 736 struct vmbus_dynid *dynid; 737 738 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 739 if (!dynid) 740 return -ENOMEM; 741 742 dynid->id.guid = *guid; 743 744 spin_lock(&drv->dynids.lock); 745 list_add_tail(&dynid->node, &drv->dynids.list); 746 spin_unlock(&drv->dynids.lock); 747 748 return driver_attach(&drv->driver); 749 } 750 751 static void vmbus_free_dynids(struct hv_driver *drv) 752 { 753 struct vmbus_dynid *dynid, *n; 754 755 spin_lock(&drv->dynids.lock); 756 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 757 list_del(&dynid->node); 758 kfree(dynid); 759 } 760 spin_unlock(&drv->dynids.lock); 761 } 762 763 /* 764 * store_new_id - sysfs frontend to vmbus_add_dynid() 765 * 766 * Allow GUIDs to be added to an existing driver via sysfs. 767 */ 768 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 769 size_t count) 770 { 771 struct hv_driver *drv = drv_to_hv_drv(driver); 772 guid_t guid; 773 ssize_t retval; 774 775 retval = guid_parse(buf, &guid); 776 if (retval) 777 return retval; 778 779 if (hv_vmbus_dynid_match(drv, &guid)) 780 return -EEXIST; 781 782 retval = vmbus_add_dynid(drv, &guid); 783 if (retval) 784 return retval; 785 return count; 786 } 787 static DRIVER_ATTR_WO(new_id); 788 789 /* 790 * store_remove_id - remove a PCI device ID from this driver 791 * 792 * Removes a dynamic pci device ID to this driver. 793 */ 794 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 795 size_t count) 796 { 797 struct hv_driver *drv = drv_to_hv_drv(driver); 798 struct vmbus_dynid *dynid, *n; 799 guid_t guid; 800 ssize_t retval; 801 802 retval = guid_parse(buf, &guid); 803 if (retval) 804 return retval; 805 806 retval = -ENODEV; 807 spin_lock(&drv->dynids.lock); 808 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 809 struct hv_vmbus_device_id *id = &dynid->id; 810 811 if (guid_equal(&id->guid, &guid)) { 812 list_del(&dynid->node); 813 kfree(dynid); 814 retval = count; 815 break; 816 } 817 } 818 spin_unlock(&drv->dynids.lock); 819 820 return retval; 821 } 822 static DRIVER_ATTR_WO(remove_id); 823 824 static struct attribute *vmbus_drv_attrs[] = { 825 &driver_attr_new_id.attr, 826 &driver_attr_remove_id.attr, 827 NULL, 828 }; 829 ATTRIBUTE_GROUPS(vmbus_drv); 830 831 832 /* 833 * vmbus_match - Attempt to match the specified device to the specified driver 834 */ 835 static int vmbus_match(struct device *device, struct device_driver *driver) 836 { 837 struct hv_driver *drv = drv_to_hv_drv(driver); 838 struct hv_device *hv_dev = device_to_hv_device(device); 839 840 /* The hv_sock driver handles all hv_sock offers. */ 841 if (is_hvsock_channel(hv_dev->channel)) 842 return drv->hvsock; 843 844 if (hv_vmbus_get_id(drv, hv_dev)) 845 return 1; 846 847 return 0; 848 } 849 850 /* 851 * vmbus_probe - Add the new vmbus's child device 852 */ 853 static int vmbus_probe(struct device *child_device) 854 { 855 int ret = 0; 856 struct hv_driver *drv = 857 drv_to_hv_drv(child_device->driver); 858 struct hv_device *dev = device_to_hv_device(child_device); 859 const struct hv_vmbus_device_id *dev_id; 860 861 dev_id = hv_vmbus_get_id(drv, dev); 862 if (drv->probe) { 863 ret = drv->probe(dev, dev_id); 864 if (ret != 0) 865 pr_err("probe failed for device %s (%d)\n", 866 dev_name(child_device), ret); 867 868 } else { 869 pr_err("probe not set for driver %s\n", 870 dev_name(child_device)); 871 ret = -ENODEV; 872 } 873 return ret; 874 } 875 876 /* 877 * vmbus_remove - Remove a vmbus device 878 */ 879 static int vmbus_remove(struct device *child_device) 880 { 881 struct hv_driver *drv; 882 struct hv_device *dev = device_to_hv_device(child_device); 883 884 if (child_device->driver) { 885 drv = drv_to_hv_drv(child_device->driver); 886 if (drv->remove) 887 drv->remove(dev); 888 } 889 890 return 0; 891 } 892 893 894 /* 895 * vmbus_shutdown - Shutdown a vmbus device 896 */ 897 static void vmbus_shutdown(struct device *child_device) 898 { 899 struct hv_driver *drv; 900 struct hv_device *dev = device_to_hv_device(child_device); 901 902 903 /* The device may not be attached yet */ 904 if (!child_device->driver) 905 return; 906 907 drv = drv_to_hv_drv(child_device->driver); 908 909 if (drv->shutdown) 910 drv->shutdown(dev); 911 } 912 913 914 /* 915 * vmbus_device_release - Final callback release of the vmbus child device 916 */ 917 static void vmbus_device_release(struct device *device) 918 { 919 struct hv_device *hv_dev = device_to_hv_device(device); 920 struct vmbus_channel *channel = hv_dev->channel; 921 922 mutex_lock(&vmbus_connection.channel_mutex); 923 hv_process_channel_removal(channel); 924 mutex_unlock(&vmbus_connection.channel_mutex); 925 kfree(hv_dev); 926 } 927 928 /* The one and only one */ 929 static struct bus_type hv_bus = { 930 .name = "vmbus", 931 .match = vmbus_match, 932 .shutdown = vmbus_shutdown, 933 .remove = vmbus_remove, 934 .probe = vmbus_probe, 935 .uevent = vmbus_uevent, 936 .dev_groups = vmbus_dev_groups, 937 .drv_groups = vmbus_drv_groups, 938 }; 939 940 struct onmessage_work_context { 941 struct work_struct work; 942 struct hv_message msg; 943 }; 944 945 static void vmbus_onmessage_work(struct work_struct *work) 946 { 947 struct onmessage_work_context *ctx; 948 949 /* Do not process messages if we're in DISCONNECTED state */ 950 if (vmbus_connection.conn_state == DISCONNECTED) 951 return; 952 953 ctx = container_of(work, struct onmessage_work_context, 954 work); 955 vmbus_onmessage(&ctx->msg); 956 kfree(ctx); 957 } 958 959 void vmbus_on_msg_dpc(unsigned long data) 960 { 961 struct hv_per_cpu_context *hv_cpu = (void *)data; 962 void *page_addr = hv_cpu->synic_message_page; 963 struct hv_message *msg = (struct hv_message *)page_addr + 964 VMBUS_MESSAGE_SINT; 965 struct vmbus_channel_message_header *hdr; 966 const struct vmbus_channel_message_table_entry *entry; 967 struct onmessage_work_context *ctx; 968 u32 message_type = msg->header.message_type; 969 970 if (message_type == HVMSG_NONE) 971 /* no msg */ 972 return; 973 974 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 975 976 trace_vmbus_on_msg_dpc(hdr); 977 978 if (hdr->msgtype >= CHANNELMSG_COUNT) { 979 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype); 980 goto msg_handled; 981 } 982 983 entry = &channel_message_table[hdr->msgtype]; 984 if (entry->handler_type == VMHT_BLOCKING) { 985 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 986 if (ctx == NULL) 987 return; 988 989 INIT_WORK(&ctx->work, vmbus_onmessage_work); 990 memcpy(&ctx->msg, msg, sizeof(*msg)); 991 992 /* 993 * The host can generate a rescind message while we 994 * may still be handling the original offer. We deal with 995 * this condition by ensuring the processing is done on the 996 * same CPU. 997 */ 998 switch (hdr->msgtype) { 999 case CHANNELMSG_RESCIND_CHANNELOFFER: 1000 /* 1001 * If we are handling the rescind message; 1002 * schedule the work on the global work queue. 1003 */ 1004 schedule_work_on(vmbus_connection.connect_cpu, 1005 &ctx->work); 1006 break; 1007 1008 case CHANNELMSG_OFFERCHANNEL: 1009 atomic_inc(&vmbus_connection.offer_in_progress); 1010 queue_work_on(vmbus_connection.connect_cpu, 1011 vmbus_connection.work_queue, 1012 &ctx->work); 1013 break; 1014 1015 default: 1016 queue_work(vmbus_connection.work_queue, &ctx->work); 1017 } 1018 } else 1019 entry->message_handler(hdr); 1020 1021 msg_handled: 1022 vmbus_signal_eom(msg, message_type); 1023 } 1024 1025 1026 /* 1027 * Direct callback for channels using other deferred processing 1028 */ 1029 static void vmbus_channel_isr(struct vmbus_channel *channel) 1030 { 1031 void (*callback_fn)(void *); 1032 1033 callback_fn = READ_ONCE(channel->onchannel_callback); 1034 if (likely(callback_fn != NULL)) 1035 (*callback_fn)(channel->channel_callback_context); 1036 } 1037 1038 /* 1039 * Schedule all channels with events pending 1040 */ 1041 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 1042 { 1043 unsigned long *recv_int_page; 1044 u32 maxbits, relid; 1045 1046 if (vmbus_proto_version < VERSION_WIN8) { 1047 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 1048 recv_int_page = vmbus_connection.recv_int_page; 1049 } else { 1050 /* 1051 * When the host is win8 and beyond, the event page 1052 * can be directly checked to get the id of the channel 1053 * that has the interrupt pending. 1054 */ 1055 void *page_addr = hv_cpu->synic_event_page; 1056 union hv_synic_event_flags *event 1057 = (union hv_synic_event_flags *)page_addr + 1058 VMBUS_MESSAGE_SINT; 1059 1060 maxbits = HV_EVENT_FLAGS_COUNT; 1061 recv_int_page = event->flags; 1062 } 1063 1064 if (unlikely(!recv_int_page)) 1065 return; 1066 1067 for_each_set_bit(relid, recv_int_page, maxbits) { 1068 struct vmbus_channel *channel; 1069 1070 if (!sync_test_and_clear_bit(relid, recv_int_page)) 1071 continue; 1072 1073 /* Special case - vmbus channel protocol msg */ 1074 if (relid == 0) 1075 continue; 1076 1077 rcu_read_lock(); 1078 1079 /* Find channel based on relid */ 1080 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) { 1081 if (channel->offermsg.child_relid != relid) 1082 continue; 1083 1084 if (channel->rescind) 1085 continue; 1086 1087 trace_vmbus_chan_sched(channel); 1088 1089 ++channel->interrupts; 1090 1091 switch (channel->callback_mode) { 1092 case HV_CALL_ISR: 1093 vmbus_channel_isr(channel); 1094 break; 1095 1096 case HV_CALL_BATCHED: 1097 hv_begin_read(&channel->inbound); 1098 /* fallthrough */ 1099 case HV_CALL_DIRECT: 1100 tasklet_schedule(&channel->callback_event); 1101 } 1102 } 1103 1104 rcu_read_unlock(); 1105 } 1106 } 1107 1108 static void vmbus_isr(void) 1109 { 1110 struct hv_per_cpu_context *hv_cpu 1111 = this_cpu_ptr(hv_context.cpu_context); 1112 void *page_addr = hv_cpu->synic_event_page; 1113 struct hv_message *msg; 1114 union hv_synic_event_flags *event; 1115 bool handled = false; 1116 1117 if (unlikely(page_addr == NULL)) 1118 return; 1119 1120 event = (union hv_synic_event_flags *)page_addr + 1121 VMBUS_MESSAGE_SINT; 1122 /* 1123 * Check for events before checking for messages. This is the order 1124 * in which events and messages are checked in Windows guests on 1125 * Hyper-V, and the Windows team suggested we do the same. 1126 */ 1127 1128 if ((vmbus_proto_version == VERSION_WS2008) || 1129 (vmbus_proto_version == VERSION_WIN7)) { 1130 1131 /* Since we are a child, we only need to check bit 0 */ 1132 if (sync_test_and_clear_bit(0, event->flags)) 1133 handled = true; 1134 } else { 1135 /* 1136 * Our host is win8 or above. The signaling mechanism 1137 * has changed and we can directly look at the event page. 1138 * If bit n is set then we have an interrup on the channel 1139 * whose id is n. 1140 */ 1141 handled = true; 1142 } 1143 1144 if (handled) 1145 vmbus_chan_sched(hv_cpu); 1146 1147 page_addr = hv_cpu->synic_message_page; 1148 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1149 1150 /* Check if there are actual msgs to be processed */ 1151 if (msg->header.message_type != HVMSG_NONE) { 1152 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) { 1153 hv_stimer0_isr(); 1154 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 1155 } else 1156 tasklet_schedule(&hv_cpu->msg_dpc); 1157 } 1158 1159 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0); 1160 } 1161 1162 /* 1163 * Boolean to control whether to report panic messages over Hyper-V. 1164 * 1165 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg 1166 */ 1167 static int sysctl_record_panic_msg = 1; 1168 1169 /* 1170 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg 1171 * buffer and call into Hyper-V to transfer the data. 1172 */ 1173 static void hv_kmsg_dump(struct kmsg_dumper *dumper, 1174 enum kmsg_dump_reason reason) 1175 { 1176 size_t bytes_written; 1177 phys_addr_t panic_pa; 1178 1179 /* We are only interested in panics. */ 1180 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg)) 1181 return; 1182 1183 panic_pa = virt_to_phys(hv_panic_page); 1184 1185 /* 1186 * Write dump contents to the page. No need to synchronize; panic should 1187 * be single-threaded. 1188 */ 1189 kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE, 1190 &bytes_written); 1191 if (bytes_written) 1192 hyperv_report_panic_msg(panic_pa, bytes_written); 1193 } 1194 1195 static struct kmsg_dumper hv_kmsg_dumper = { 1196 .dump = hv_kmsg_dump, 1197 }; 1198 1199 static struct ctl_table_header *hv_ctl_table_hdr; 1200 1201 /* 1202 * sysctl option to allow the user to control whether kmsg data should be 1203 * reported to Hyper-V on panic. 1204 */ 1205 static struct ctl_table hv_ctl_table[] = { 1206 { 1207 .procname = "hyperv_record_panic_msg", 1208 .data = &sysctl_record_panic_msg, 1209 .maxlen = sizeof(int), 1210 .mode = 0644, 1211 .proc_handler = proc_dointvec_minmax, 1212 .extra1 = SYSCTL_ZERO, 1213 .extra2 = SYSCTL_ONE 1214 }, 1215 {} 1216 }; 1217 1218 static struct ctl_table hv_root_table[] = { 1219 { 1220 .procname = "kernel", 1221 .mode = 0555, 1222 .child = hv_ctl_table 1223 }, 1224 {} 1225 }; 1226 1227 /* 1228 * vmbus_bus_init -Main vmbus driver initialization routine. 1229 * 1230 * Here, we 1231 * - initialize the vmbus driver context 1232 * - invoke the vmbus hv main init routine 1233 * - retrieve the channel offers 1234 */ 1235 static int vmbus_bus_init(void) 1236 { 1237 int ret; 1238 1239 /* Hypervisor initialization...setup hypercall page..etc */ 1240 ret = hv_init(); 1241 if (ret != 0) { 1242 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1243 return ret; 1244 } 1245 1246 ret = bus_register(&hv_bus); 1247 if (ret) 1248 return ret; 1249 1250 hv_setup_vmbus_irq(vmbus_isr); 1251 1252 ret = hv_synic_alloc(); 1253 if (ret) 1254 goto err_alloc; 1255 1256 ret = hv_stimer_alloc(VMBUS_MESSAGE_SINT); 1257 if (ret < 0) 1258 goto err_alloc; 1259 1260 /* 1261 * Initialize the per-cpu interrupt state and stimer state. 1262 * Then connect to the host. 1263 */ 1264 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1265 hv_synic_init, hv_synic_cleanup); 1266 if (ret < 0) 1267 goto err_cpuhp; 1268 hyperv_cpuhp_online = ret; 1269 1270 ret = vmbus_connect(); 1271 if (ret) 1272 goto err_connect; 1273 1274 /* 1275 * Only register if the crash MSRs are available 1276 */ 1277 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1278 u64 hyperv_crash_ctl; 1279 /* 1280 * Sysctl registration is not fatal, since by default 1281 * reporting is enabled. 1282 */ 1283 hv_ctl_table_hdr = register_sysctl_table(hv_root_table); 1284 if (!hv_ctl_table_hdr) 1285 pr_err("Hyper-V: sysctl table register error"); 1286 1287 /* 1288 * Register for panic kmsg callback only if the right 1289 * capability is supported by the hypervisor. 1290 */ 1291 hv_get_crash_ctl(hyperv_crash_ctl); 1292 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) { 1293 hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL); 1294 if (hv_panic_page) { 1295 ret = kmsg_dump_register(&hv_kmsg_dumper); 1296 if (ret) 1297 pr_err("Hyper-V: kmsg dump register " 1298 "error 0x%x\n", ret); 1299 } else 1300 pr_err("Hyper-V: panic message page memory " 1301 "allocation failed"); 1302 } 1303 1304 register_die_notifier(&hyperv_die_block); 1305 atomic_notifier_chain_register(&panic_notifier_list, 1306 &hyperv_panic_block); 1307 } 1308 1309 vmbus_request_offers(); 1310 1311 return 0; 1312 1313 err_connect: 1314 cpuhp_remove_state(hyperv_cpuhp_online); 1315 err_cpuhp: 1316 hv_stimer_free(); 1317 err_alloc: 1318 hv_synic_free(); 1319 hv_remove_vmbus_irq(); 1320 1321 bus_unregister(&hv_bus); 1322 free_page((unsigned long)hv_panic_page); 1323 unregister_sysctl_table(hv_ctl_table_hdr); 1324 hv_ctl_table_hdr = NULL; 1325 return ret; 1326 } 1327 1328 /** 1329 * __vmbus_child_driver_register() - Register a vmbus's driver 1330 * @hv_driver: Pointer to driver structure you want to register 1331 * @owner: owner module of the drv 1332 * @mod_name: module name string 1333 * 1334 * Registers the given driver with Linux through the 'driver_register()' call 1335 * and sets up the hyper-v vmbus handling for this driver. 1336 * It will return the state of the 'driver_register()' call. 1337 * 1338 */ 1339 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1340 { 1341 int ret; 1342 1343 pr_info("registering driver %s\n", hv_driver->name); 1344 1345 ret = vmbus_exists(); 1346 if (ret < 0) 1347 return ret; 1348 1349 hv_driver->driver.name = hv_driver->name; 1350 hv_driver->driver.owner = owner; 1351 hv_driver->driver.mod_name = mod_name; 1352 hv_driver->driver.bus = &hv_bus; 1353 1354 spin_lock_init(&hv_driver->dynids.lock); 1355 INIT_LIST_HEAD(&hv_driver->dynids.list); 1356 1357 ret = driver_register(&hv_driver->driver); 1358 1359 return ret; 1360 } 1361 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1362 1363 /** 1364 * vmbus_driver_unregister() - Unregister a vmbus's driver 1365 * @hv_driver: Pointer to driver structure you want to 1366 * un-register 1367 * 1368 * Un-register the given driver that was previous registered with a call to 1369 * vmbus_driver_register() 1370 */ 1371 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1372 { 1373 pr_info("unregistering driver %s\n", hv_driver->name); 1374 1375 if (!vmbus_exists()) { 1376 driver_unregister(&hv_driver->driver); 1377 vmbus_free_dynids(hv_driver); 1378 } 1379 } 1380 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1381 1382 1383 /* 1384 * Called when last reference to channel is gone. 1385 */ 1386 static void vmbus_chan_release(struct kobject *kobj) 1387 { 1388 struct vmbus_channel *channel 1389 = container_of(kobj, struct vmbus_channel, kobj); 1390 1391 kfree_rcu(channel, rcu); 1392 } 1393 1394 struct vmbus_chan_attribute { 1395 struct attribute attr; 1396 ssize_t (*show)(struct vmbus_channel *chan, char *buf); 1397 ssize_t (*store)(struct vmbus_channel *chan, 1398 const char *buf, size_t count); 1399 }; 1400 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1401 struct vmbus_chan_attribute chan_attr_##_name \ 1402 = __ATTR(_name, _mode, _show, _store) 1403 #define VMBUS_CHAN_ATTR_RW(_name) \ 1404 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1405 #define VMBUS_CHAN_ATTR_RO(_name) \ 1406 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1407 #define VMBUS_CHAN_ATTR_WO(_name) \ 1408 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1409 1410 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1411 struct attribute *attr, char *buf) 1412 { 1413 const struct vmbus_chan_attribute *attribute 1414 = container_of(attr, struct vmbus_chan_attribute, attr); 1415 struct vmbus_channel *chan 1416 = container_of(kobj, struct vmbus_channel, kobj); 1417 1418 if (!attribute->show) 1419 return -EIO; 1420 1421 return attribute->show(chan, buf); 1422 } 1423 1424 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1425 .show = vmbus_chan_attr_show, 1426 }; 1427 1428 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf) 1429 { 1430 struct hv_ring_buffer_info *rbi = &channel->outbound; 1431 ssize_t ret; 1432 1433 mutex_lock(&rbi->ring_buffer_mutex); 1434 if (!rbi->ring_buffer) { 1435 mutex_unlock(&rbi->ring_buffer_mutex); 1436 return -EINVAL; 1437 } 1438 1439 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1440 mutex_unlock(&rbi->ring_buffer_mutex); 1441 return ret; 1442 } 1443 static VMBUS_CHAN_ATTR_RO(out_mask); 1444 1445 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf) 1446 { 1447 struct hv_ring_buffer_info *rbi = &channel->inbound; 1448 ssize_t ret; 1449 1450 mutex_lock(&rbi->ring_buffer_mutex); 1451 if (!rbi->ring_buffer) { 1452 mutex_unlock(&rbi->ring_buffer_mutex); 1453 return -EINVAL; 1454 } 1455 1456 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1457 mutex_unlock(&rbi->ring_buffer_mutex); 1458 return ret; 1459 } 1460 static VMBUS_CHAN_ATTR_RO(in_mask); 1461 1462 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf) 1463 { 1464 struct hv_ring_buffer_info *rbi = &channel->inbound; 1465 ssize_t ret; 1466 1467 mutex_lock(&rbi->ring_buffer_mutex); 1468 if (!rbi->ring_buffer) { 1469 mutex_unlock(&rbi->ring_buffer_mutex); 1470 return -EINVAL; 1471 } 1472 1473 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1474 mutex_unlock(&rbi->ring_buffer_mutex); 1475 return ret; 1476 } 1477 static VMBUS_CHAN_ATTR_RO(read_avail); 1478 1479 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf) 1480 { 1481 struct hv_ring_buffer_info *rbi = &channel->outbound; 1482 ssize_t ret; 1483 1484 mutex_lock(&rbi->ring_buffer_mutex); 1485 if (!rbi->ring_buffer) { 1486 mutex_unlock(&rbi->ring_buffer_mutex); 1487 return -EINVAL; 1488 } 1489 1490 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1491 mutex_unlock(&rbi->ring_buffer_mutex); 1492 return ret; 1493 } 1494 static VMBUS_CHAN_ATTR_RO(write_avail); 1495 1496 static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf) 1497 { 1498 return sprintf(buf, "%u\n", channel->target_cpu); 1499 } 1500 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL); 1501 1502 static ssize_t channel_pending_show(struct vmbus_channel *channel, 1503 char *buf) 1504 { 1505 return sprintf(buf, "%d\n", 1506 channel_pending(channel, 1507 vmbus_connection.monitor_pages[1])); 1508 } 1509 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL); 1510 1511 static ssize_t channel_latency_show(struct vmbus_channel *channel, 1512 char *buf) 1513 { 1514 return sprintf(buf, "%d\n", 1515 channel_latency(channel, 1516 vmbus_connection.monitor_pages[1])); 1517 } 1518 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL); 1519 1520 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf) 1521 { 1522 return sprintf(buf, "%llu\n", channel->interrupts); 1523 } 1524 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL); 1525 1526 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf) 1527 { 1528 return sprintf(buf, "%llu\n", channel->sig_events); 1529 } 1530 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL); 1531 1532 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel, 1533 char *buf) 1534 { 1535 return sprintf(buf, "%llu\n", 1536 (unsigned long long)channel->intr_in_full); 1537 } 1538 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL); 1539 1540 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel, 1541 char *buf) 1542 { 1543 return sprintf(buf, "%llu\n", 1544 (unsigned long long)channel->intr_out_empty); 1545 } 1546 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL); 1547 1548 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel, 1549 char *buf) 1550 { 1551 return sprintf(buf, "%llu\n", 1552 (unsigned long long)channel->out_full_first); 1553 } 1554 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL); 1555 1556 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel, 1557 char *buf) 1558 { 1559 return sprintf(buf, "%llu\n", 1560 (unsigned long long)channel->out_full_total); 1561 } 1562 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL); 1563 1564 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel, 1565 char *buf) 1566 { 1567 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1568 } 1569 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL); 1570 1571 static ssize_t subchannel_id_show(struct vmbus_channel *channel, 1572 char *buf) 1573 { 1574 return sprintf(buf, "%u\n", 1575 channel->offermsg.offer.sub_channel_index); 1576 } 1577 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1578 1579 static struct attribute *vmbus_chan_attrs[] = { 1580 &chan_attr_out_mask.attr, 1581 &chan_attr_in_mask.attr, 1582 &chan_attr_read_avail.attr, 1583 &chan_attr_write_avail.attr, 1584 &chan_attr_cpu.attr, 1585 &chan_attr_pending.attr, 1586 &chan_attr_latency.attr, 1587 &chan_attr_interrupts.attr, 1588 &chan_attr_events.attr, 1589 &chan_attr_intr_in_full.attr, 1590 &chan_attr_intr_out_empty.attr, 1591 &chan_attr_out_full_first.attr, 1592 &chan_attr_out_full_total.attr, 1593 &chan_attr_monitor_id.attr, 1594 &chan_attr_subchannel_id.attr, 1595 NULL 1596 }; 1597 1598 /* 1599 * Channel-level attribute_group callback function. Returns the permission for 1600 * each attribute, and returns 0 if an attribute is not visible. 1601 */ 1602 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj, 1603 struct attribute *attr, int idx) 1604 { 1605 const struct vmbus_channel *channel = 1606 container_of(kobj, struct vmbus_channel, kobj); 1607 1608 /* Hide the monitor attributes if the monitor mechanism is not used. */ 1609 if (!channel->offermsg.monitor_allocated && 1610 (attr == &chan_attr_pending.attr || 1611 attr == &chan_attr_latency.attr || 1612 attr == &chan_attr_monitor_id.attr)) 1613 return 0; 1614 1615 return attr->mode; 1616 } 1617 1618 static struct attribute_group vmbus_chan_group = { 1619 .attrs = vmbus_chan_attrs, 1620 .is_visible = vmbus_chan_attr_is_visible 1621 }; 1622 1623 static struct kobj_type vmbus_chan_ktype = { 1624 .sysfs_ops = &vmbus_chan_sysfs_ops, 1625 .release = vmbus_chan_release, 1626 }; 1627 1628 /* 1629 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 1630 */ 1631 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 1632 { 1633 const struct device *device = &dev->device; 1634 struct kobject *kobj = &channel->kobj; 1635 u32 relid = channel->offermsg.child_relid; 1636 int ret; 1637 1638 kobj->kset = dev->channels_kset; 1639 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 1640 "%u", relid); 1641 if (ret) 1642 return ret; 1643 1644 ret = sysfs_create_group(kobj, &vmbus_chan_group); 1645 1646 if (ret) { 1647 /* 1648 * The calling functions' error handling paths will cleanup the 1649 * empty channel directory. 1650 */ 1651 dev_err(device, "Unable to set up channel sysfs files\n"); 1652 return ret; 1653 } 1654 1655 kobject_uevent(kobj, KOBJ_ADD); 1656 1657 return 0; 1658 } 1659 1660 /* 1661 * vmbus_remove_channel_attr_group - remove the channel's attribute group 1662 */ 1663 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel) 1664 { 1665 sysfs_remove_group(&channel->kobj, &vmbus_chan_group); 1666 } 1667 1668 /* 1669 * vmbus_device_create - Creates and registers a new child device 1670 * on the vmbus. 1671 */ 1672 struct hv_device *vmbus_device_create(const guid_t *type, 1673 const guid_t *instance, 1674 struct vmbus_channel *channel) 1675 { 1676 struct hv_device *child_device_obj; 1677 1678 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 1679 if (!child_device_obj) { 1680 pr_err("Unable to allocate device object for child device\n"); 1681 return NULL; 1682 } 1683 1684 child_device_obj->channel = channel; 1685 guid_copy(&child_device_obj->dev_type, type); 1686 guid_copy(&child_device_obj->dev_instance, instance); 1687 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 1688 1689 return child_device_obj; 1690 } 1691 1692 /* 1693 * vmbus_device_register - Register the child device 1694 */ 1695 int vmbus_device_register(struct hv_device *child_device_obj) 1696 { 1697 struct kobject *kobj = &child_device_obj->device.kobj; 1698 int ret; 1699 1700 dev_set_name(&child_device_obj->device, "%pUl", 1701 child_device_obj->channel->offermsg.offer.if_instance.b); 1702 1703 child_device_obj->device.bus = &hv_bus; 1704 child_device_obj->device.parent = &hv_acpi_dev->dev; 1705 child_device_obj->device.release = vmbus_device_release; 1706 1707 /* 1708 * Register with the LDM. This will kick off the driver/device 1709 * binding...which will eventually call vmbus_match() and vmbus_probe() 1710 */ 1711 ret = device_register(&child_device_obj->device); 1712 if (ret) { 1713 pr_err("Unable to register child device\n"); 1714 return ret; 1715 } 1716 1717 child_device_obj->channels_kset = kset_create_and_add("channels", 1718 NULL, kobj); 1719 if (!child_device_obj->channels_kset) { 1720 ret = -ENOMEM; 1721 goto err_dev_unregister; 1722 } 1723 1724 ret = vmbus_add_channel_kobj(child_device_obj, 1725 child_device_obj->channel); 1726 if (ret) { 1727 pr_err("Unable to register primary channeln"); 1728 goto err_kset_unregister; 1729 } 1730 1731 return 0; 1732 1733 err_kset_unregister: 1734 kset_unregister(child_device_obj->channels_kset); 1735 1736 err_dev_unregister: 1737 device_unregister(&child_device_obj->device); 1738 return ret; 1739 } 1740 1741 /* 1742 * vmbus_device_unregister - Remove the specified child device 1743 * from the vmbus. 1744 */ 1745 void vmbus_device_unregister(struct hv_device *device_obj) 1746 { 1747 pr_debug("child device %s unregistered\n", 1748 dev_name(&device_obj->device)); 1749 1750 kset_unregister(device_obj->channels_kset); 1751 1752 /* 1753 * Kick off the process of unregistering the device. 1754 * This will call vmbus_remove() and eventually vmbus_device_release() 1755 */ 1756 device_unregister(&device_obj->device); 1757 } 1758 1759 1760 /* 1761 * VMBUS is an acpi enumerated device. Get the information we 1762 * need from DSDT. 1763 */ 1764 #define VTPM_BASE_ADDRESS 0xfed40000 1765 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 1766 { 1767 resource_size_t start = 0; 1768 resource_size_t end = 0; 1769 struct resource *new_res; 1770 struct resource **old_res = &hyperv_mmio; 1771 struct resource **prev_res = NULL; 1772 1773 switch (res->type) { 1774 1775 /* 1776 * "Address" descriptors are for bus windows. Ignore 1777 * "memory" descriptors, which are for registers on 1778 * devices. 1779 */ 1780 case ACPI_RESOURCE_TYPE_ADDRESS32: 1781 start = res->data.address32.address.minimum; 1782 end = res->data.address32.address.maximum; 1783 break; 1784 1785 case ACPI_RESOURCE_TYPE_ADDRESS64: 1786 start = res->data.address64.address.minimum; 1787 end = res->data.address64.address.maximum; 1788 break; 1789 1790 default: 1791 /* Unused resource type */ 1792 return AE_OK; 1793 1794 } 1795 /* 1796 * Ignore ranges that are below 1MB, as they're not 1797 * necessary or useful here. 1798 */ 1799 if (end < 0x100000) 1800 return AE_OK; 1801 1802 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 1803 if (!new_res) 1804 return AE_NO_MEMORY; 1805 1806 /* If this range overlaps the virtual TPM, truncate it. */ 1807 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 1808 end = VTPM_BASE_ADDRESS; 1809 1810 new_res->name = "hyperv mmio"; 1811 new_res->flags = IORESOURCE_MEM; 1812 new_res->start = start; 1813 new_res->end = end; 1814 1815 /* 1816 * If two ranges are adjacent, merge them. 1817 */ 1818 do { 1819 if (!*old_res) { 1820 *old_res = new_res; 1821 break; 1822 } 1823 1824 if (((*old_res)->end + 1) == new_res->start) { 1825 (*old_res)->end = new_res->end; 1826 kfree(new_res); 1827 break; 1828 } 1829 1830 if ((*old_res)->start == new_res->end + 1) { 1831 (*old_res)->start = new_res->start; 1832 kfree(new_res); 1833 break; 1834 } 1835 1836 if ((*old_res)->start > new_res->end) { 1837 new_res->sibling = *old_res; 1838 if (prev_res) 1839 (*prev_res)->sibling = new_res; 1840 *old_res = new_res; 1841 break; 1842 } 1843 1844 prev_res = old_res; 1845 old_res = &(*old_res)->sibling; 1846 1847 } while (1); 1848 1849 return AE_OK; 1850 } 1851 1852 static int vmbus_acpi_remove(struct acpi_device *device) 1853 { 1854 struct resource *cur_res; 1855 struct resource *next_res; 1856 1857 if (hyperv_mmio) { 1858 if (fb_mmio) { 1859 __release_region(hyperv_mmio, fb_mmio->start, 1860 resource_size(fb_mmio)); 1861 fb_mmio = NULL; 1862 } 1863 1864 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 1865 next_res = cur_res->sibling; 1866 kfree(cur_res); 1867 } 1868 } 1869 1870 return 0; 1871 } 1872 1873 static void vmbus_reserve_fb(void) 1874 { 1875 int size; 1876 /* 1877 * Make a claim for the frame buffer in the resource tree under the 1878 * first node, which will be the one below 4GB. The length seems to 1879 * be underreported, particularly in a Generation 1 VM. So start out 1880 * reserving a larger area and make it smaller until it succeeds. 1881 */ 1882 1883 if (screen_info.lfb_base) { 1884 if (efi_enabled(EFI_BOOT)) 1885 size = max_t(__u32, screen_info.lfb_size, 0x800000); 1886 else 1887 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 1888 1889 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 1890 fb_mmio = __request_region(hyperv_mmio, 1891 screen_info.lfb_base, size, 1892 fb_mmio_name, 0); 1893 } 1894 } 1895 } 1896 1897 /** 1898 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 1899 * @new: If successful, supplied a pointer to the 1900 * allocated MMIO space. 1901 * @device_obj: Identifies the caller 1902 * @min: Minimum guest physical address of the 1903 * allocation 1904 * @max: Maximum guest physical address 1905 * @size: Size of the range to be allocated 1906 * @align: Alignment of the range to be allocated 1907 * @fb_overlap_ok: Whether this allocation can be allowed 1908 * to overlap the video frame buffer. 1909 * 1910 * This function walks the resources granted to VMBus by the 1911 * _CRS object in the ACPI namespace underneath the parent 1912 * "bridge" whether that's a root PCI bus in the Generation 1 1913 * case or a Module Device in the Generation 2 case. It then 1914 * attempts to allocate from the global MMIO pool in a way that 1915 * matches the constraints supplied in these parameters and by 1916 * that _CRS. 1917 * 1918 * Return: 0 on success, -errno on failure 1919 */ 1920 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1921 resource_size_t min, resource_size_t max, 1922 resource_size_t size, resource_size_t align, 1923 bool fb_overlap_ok) 1924 { 1925 struct resource *iter, *shadow; 1926 resource_size_t range_min, range_max, start; 1927 const char *dev_n = dev_name(&device_obj->device); 1928 int retval; 1929 1930 retval = -ENXIO; 1931 down(&hyperv_mmio_lock); 1932 1933 /* 1934 * If overlaps with frame buffers are allowed, then first attempt to 1935 * make the allocation from within the reserved region. Because it 1936 * is already reserved, no shadow allocation is necessary. 1937 */ 1938 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 1939 !(max < fb_mmio->start)) { 1940 1941 range_min = fb_mmio->start; 1942 range_max = fb_mmio->end; 1943 start = (range_min + align - 1) & ~(align - 1); 1944 for (; start + size - 1 <= range_max; start += align) { 1945 *new = request_mem_region_exclusive(start, size, dev_n); 1946 if (*new) { 1947 retval = 0; 1948 goto exit; 1949 } 1950 } 1951 } 1952 1953 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1954 if ((iter->start >= max) || (iter->end <= min)) 1955 continue; 1956 1957 range_min = iter->start; 1958 range_max = iter->end; 1959 start = (range_min + align - 1) & ~(align - 1); 1960 for (; start + size - 1 <= range_max; start += align) { 1961 shadow = __request_region(iter, start, size, NULL, 1962 IORESOURCE_BUSY); 1963 if (!shadow) 1964 continue; 1965 1966 *new = request_mem_region_exclusive(start, size, dev_n); 1967 if (*new) { 1968 shadow->name = (char *)*new; 1969 retval = 0; 1970 goto exit; 1971 } 1972 1973 __release_region(iter, start, size); 1974 } 1975 } 1976 1977 exit: 1978 up(&hyperv_mmio_lock); 1979 return retval; 1980 } 1981 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 1982 1983 /** 1984 * vmbus_free_mmio() - Free a memory-mapped I/O range. 1985 * @start: Base address of region to release. 1986 * @size: Size of the range to be allocated 1987 * 1988 * This function releases anything requested by 1989 * vmbus_mmio_allocate(). 1990 */ 1991 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 1992 { 1993 struct resource *iter; 1994 1995 down(&hyperv_mmio_lock); 1996 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1997 if ((iter->start >= start + size) || (iter->end <= start)) 1998 continue; 1999 2000 __release_region(iter, start, size); 2001 } 2002 release_mem_region(start, size); 2003 up(&hyperv_mmio_lock); 2004 2005 } 2006 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 2007 2008 static int vmbus_acpi_add(struct acpi_device *device) 2009 { 2010 acpi_status result; 2011 int ret_val = -ENODEV; 2012 struct acpi_device *ancestor; 2013 2014 hv_acpi_dev = device; 2015 2016 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 2017 vmbus_walk_resources, NULL); 2018 2019 if (ACPI_FAILURE(result)) 2020 goto acpi_walk_err; 2021 /* 2022 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 2023 * firmware) is the VMOD that has the mmio ranges. Get that. 2024 */ 2025 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 2026 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 2027 vmbus_walk_resources, NULL); 2028 2029 if (ACPI_FAILURE(result)) 2030 continue; 2031 if (hyperv_mmio) { 2032 vmbus_reserve_fb(); 2033 break; 2034 } 2035 } 2036 ret_val = 0; 2037 2038 acpi_walk_err: 2039 complete(&probe_event); 2040 if (ret_val) 2041 vmbus_acpi_remove(device); 2042 return ret_val; 2043 } 2044 2045 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 2046 {"VMBUS", 0}, 2047 {"VMBus", 0}, 2048 {"", 0}, 2049 }; 2050 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 2051 2052 static struct acpi_driver vmbus_acpi_driver = { 2053 .name = "vmbus", 2054 .ids = vmbus_acpi_device_ids, 2055 .ops = { 2056 .add = vmbus_acpi_add, 2057 .remove = vmbus_acpi_remove, 2058 }, 2059 }; 2060 2061 static void hv_kexec_handler(void) 2062 { 2063 hv_stimer_global_cleanup(); 2064 vmbus_initiate_unload(false); 2065 vmbus_connection.conn_state = DISCONNECTED; 2066 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 2067 mb(); 2068 cpuhp_remove_state(hyperv_cpuhp_online); 2069 hyperv_cleanup(); 2070 }; 2071 2072 static void hv_crash_handler(struct pt_regs *regs) 2073 { 2074 int cpu; 2075 2076 vmbus_initiate_unload(true); 2077 /* 2078 * In crash handler we can't schedule synic cleanup for all CPUs, 2079 * doing the cleanup for current CPU only. This should be sufficient 2080 * for kdump. 2081 */ 2082 vmbus_connection.conn_state = DISCONNECTED; 2083 cpu = smp_processor_id(); 2084 hv_stimer_cleanup(cpu); 2085 hv_synic_cleanup(cpu); 2086 hyperv_cleanup(); 2087 }; 2088 2089 static int __init hv_acpi_init(void) 2090 { 2091 int ret, t; 2092 2093 if (!hv_is_hyperv_initialized()) 2094 return -ENODEV; 2095 2096 init_completion(&probe_event); 2097 2098 /* 2099 * Get ACPI resources first. 2100 */ 2101 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 2102 2103 if (ret) 2104 return ret; 2105 2106 t = wait_for_completion_timeout(&probe_event, 5*HZ); 2107 if (t == 0) { 2108 ret = -ETIMEDOUT; 2109 goto cleanup; 2110 } 2111 2112 ret = vmbus_bus_init(); 2113 if (ret) 2114 goto cleanup; 2115 2116 hv_setup_kexec_handler(hv_kexec_handler); 2117 hv_setup_crash_handler(hv_crash_handler); 2118 2119 return 0; 2120 2121 cleanup: 2122 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2123 hv_acpi_dev = NULL; 2124 return ret; 2125 } 2126 2127 static void __exit vmbus_exit(void) 2128 { 2129 int cpu; 2130 2131 hv_remove_kexec_handler(); 2132 hv_remove_crash_handler(); 2133 vmbus_connection.conn_state = DISCONNECTED; 2134 hv_stimer_global_cleanup(); 2135 vmbus_disconnect(); 2136 hv_remove_vmbus_irq(); 2137 for_each_online_cpu(cpu) { 2138 struct hv_per_cpu_context *hv_cpu 2139 = per_cpu_ptr(hv_context.cpu_context, cpu); 2140 2141 tasklet_kill(&hv_cpu->msg_dpc); 2142 } 2143 vmbus_free_channels(); 2144 2145 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 2146 kmsg_dump_unregister(&hv_kmsg_dumper); 2147 unregister_die_notifier(&hyperv_die_block); 2148 atomic_notifier_chain_unregister(&panic_notifier_list, 2149 &hyperv_panic_block); 2150 } 2151 2152 free_page((unsigned long)hv_panic_page); 2153 unregister_sysctl_table(hv_ctl_table_hdr); 2154 hv_ctl_table_hdr = NULL; 2155 bus_unregister(&hv_bus); 2156 2157 cpuhp_remove_state(hyperv_cpuhp_online); 2158 hv_synic_free(); 2159 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2160 } 2161 2162 2163 MODULE_LICENSE("GPL"); 2164 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver"); 2165 2166 subsys_initcall(hv_acpi_init); 2167 module_exit(vmbus_exit); 2168