1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/device.h> 15 #include <linux/interrupt.h> 16 #include <linux/sysctl.h> 17 #include <linux/slab.h> 18 #include <linux/acpi.h> 19 #include <linux/completion.h> 20 #include <linux/hyperv.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/clockchips.h> 23 #include <linux/cpu.h> 24 #include <linux/sched/task_stack.h> 25 26 #include <linux/delay.h> 27 #include <linux/notifier.h> 28 #include <linux/panic_notifier.h> 29 #include <linux/ptrace.h> 30 #include <linux/screen_info.h> 31 #include <linux/kdebug.h> 32 #include <linux/efi.h> 33 #include <linux/random.h> 34 #include <linux/kernel.h> 35 #include <linux/syscore_ops.h> 36 #include <linux/dma-map-ops.h> 37 #include <clocksource/hyperv_timer.h> 38 #include "hyperv_vmbus.h" 39 40 struct vmbus_dynid { 41 struct list_head node; 42 struct hv_vmbus_device_id id; 43 }; 44 45 static struct acpi_device *hv_acpi_dev; 46 47 static struct completion probe_event; 48 49 static int hyperv_cpuhp_online; 50 51 static void *hv_panic_page; 52 53 static long __percpu *vmbus_evt; 54 55 /* Values parsed from ACPI DSDT */ 56 int vmbus_irq; 57 int vmbus_interrupt; 58 59 /* 60 * Boolean to control whether to report panic messages over Hyper-V. 61 * 62 * It can be set via /proc/sys/kernel/hyperv_record_panic_msg 63 */ 64 static int sysctl_record_panic_msg = 1; 65 66 static int hyperv_report_reg(void) 67 { 68 return !sysctl_record_panic_msg || !hv_panic_page; 69 } 70 71 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 72 void *args) 73 { 74 struct pt_regs *regs; 75 76 vmbus_initiate_unload(true); 77 78 /* 79 * Hyper-V should be notified only once about a panic. If we will be 80 * doing hv_kmsg_dump() with kmsg data later, don't do the notification 81 * here. 82 */ 83 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE 84 && hyperv_report_reg()) { 85 regs = current_pt_regs(); 86 hyperv_report_panic(regs, val, false); 87 } 88 return NOTIFY_DONE; 89 } 90 91 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 92 void *args) 93 { 94 struct die_args *die = args; 95 struct pt_regs *regs = die->regs; 96 97 /* Don't notify Hyper-V if the die event is other than oops */ 98 if (val != DIE_OOPS) 99 return NOTIFY_DONE; 100 101 /* 102 * Hyper-V should be notified only once about a panic. If we will be 103 * doing hv_kmsg_dump() with kmsg data later, don't do the notification 104 * here. 105 */ 106 if (hyperv_report_reg()) 107 hyperv_report_panic(regs, val, true); 108 return NOTIFY_DONE; 109 } 110 111 static struct notifier_block hyperv_die_block = { 112 .notifier_call = hyperv_die_event, 113 }; 114 static struct notifier_block hyperv_panic_block = { 115 .notifier_call = hyperv_panic_event, 116 }; 117 118 static const char *fb_mmio_name = "fb_range"; 119 static struct resource *fb_mmio; 120 static struct resource *hyperv_mmio; 121 static DEFINE_MUTEX(hyperv_mmio_lock); 122 123 static int vmbus_exists(void) 124 { 125 if (hv_acpi_dev == NULL) 126 return -ENODEV; 127 128 return 0; 129 } 130 131 static u8 channel_monitor_group(const struct vmbus_channel *channel) 132 { 133 return (u8)channel->offermsg.monitorid / 32; 134 } 135 136 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 137 { 138 return (u8)channel->offermsg.monitorid % 32; 139 } 140 141 static u32 channel_pending(const struct vmbus_channel *channel, 142 const struct hv_monitor_page *monitor_page) 143 { 144 u8 monitor_group = channel_monitor_group(channel); 145 146 return monitor_page->trigger_group[monitor_group].pending; 147 } 148 149 static u32 channel_latency(const struct vmbus_channel *channel, 150 const struct hv_monitor_page *monitor_page) 151 { 152 u8 monitor_group = channel_monitor_group(channel); 153 u8 monitor_offset = channel_monitor_offset(channel); 154 155 return monitor_page->latency[monitor_group][monitor_offset]; 156 } 157 158 static u32 channel_conn_id(struct vmbus_channel *channel, 159 struct hv_monitor_page *monitor_page) 160 { 161 u8 monitor_group = channel_monitor_group(channel); 162 u8 monitor_offset = channel_monitor_offset(channel); 163 164 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 165 } 166 167 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 168 char *buf) 169 { 170 struct hv_device *hv_dev = device_to_hv_device(dev); 171 172 if (!hv_dev->channel) 173 return -ENODEV; 174 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 175 } 176 static DEVICE_ATTR_RO(id); 177 178 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 179 char *buf) 180 { 181 struct hv_device *hv_dev = device_to_hv_device(dev); 182 183 if (!hv_dev->channel) 184 return -ENODEV; 185 return sprintf(buf, "%d\n", hv_dev->channel->state); 186 } 187 static DEVICE_ATTR_RO(state); 188 189 static ssize_t monitor_id_show(struct device *dev, 190 struct device_attribute *dev_attr, char *buf) 191 { 192 struct hv_device *hv_dev = device_to_hv_device(dev); 193 194 if (!hv_dev->channel) 195 return -ENODEV; 196 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 197 } 198 static DEVICE_ATTR_RO(monitor_id); 199 200 static ssize_t class_id_show(struct device *dev, 201 struct device_attribute *dev_attr, char *buf) 202 { 203 struct hv_device *hv_dev = device_to_hv_device(dev); 204 205 if (!hv_dev->channel) 206 return -ENODEV; 207 return sprintf(buf, "{%pUl}\n", 208 &hv_dev->channel->offermsg.offer.if_type); 209 } 210 static DEVICE_ATTR_RO(class_id); 211 212 static ssize_t device_id_show(struct device *dev, 213 struct device_attribute *dev_attr, char *buf) 214 { 215 struct hv_device *hv_dev = device_to_hv_device(dev); 216 217 if (!hv_dev->channel) 218 return -ENODEV; 219 return sprintf(buf, "{%pUl}\n", 220 &hv_dev->channel->offermsg.offer.if_instance); 221 } 222 static DEVICE_ATTR_RO(device_id); 223 224 static ssize_t modalias_show(struct device *dev, 225 struct device_attribute *dev_attr, char *buf) 226 { 227 struct hv_device *hv_dev = device_to_hv_device(dev); 228 229 return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type); 230 } 231 static DEVICE_ATTR_RO(modalias); 232 233 #ifdef CONFIG_NUMA 234 static ssize_t numa_node_show(struct device *dev, 235 struct device_attribute *attr, char *buf) 236 { 237 struct hv_device *hv_dev = device_to_hv_device(dev); 238 239 if (!hv_dev->channel) 240 return -ENODEV; 241 242 return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu)); 243 } 244 static DEVICE_ATTR_RO(numa_node); 245 #endif 246 247 static ssize_t server_monitor_pending_show(struct device *dev, 248 struct device_attribute *dev_attr, 249 char *buf) 250 { 251 struct hv_device *hv_dev = device_to_hv_device(dev); 252 253 if (!hv_dev->channel) 254 return -ENODEV; 255 return sprintf(buf, "%d\n", 256 channel_pending(hv_dev->channel, 257 vmbus_connection.monitor_pages[0])); 258 } 259 static DEVICE_ATTR_RO(server_monitor_pending); 260 261 static ssize_t client_monitor_pending_show(struct device *dev, 262 struct device_attribute *dev_attr, 263 char *buf) 264 { 265 struct hv_device *hv_dev = device_to_hv_device(dev); 266 267 if (!hv_dev->channel) 268 return -ENODEV; 269 return sprintf(buf, "%d\n", 270 channel_pending(hv_dev->channel, 271 vmbus_connection.monitor_pages[1])); 272 } 273 static DEVICE_ATTR_RO(client_monitor_pending); 274 275 static ssize_t server_monitor_latency_show(struct device *dev, 276 struct device_attribute *dev_attr, 277 char *buf) 278 { 279 struct hv_device *hv_dev = device_to_hv_device(dev); 280 281 if (!hv_dev->channel) 282 return -ENODEV; 283 return sprintf(buf, "%d\n", 284 channel_latency(hv_dev->channel, 285 vmbus_connection.monitor_pages[0])); 286 } 287 static DEVICE_ATTR_RO(server_monitor_latency); 288 289 static ssize_t client_monitor_latency_show(struct device *dev, 290 struct device_attribute *dev_attr, 291 char *buf) 292 { 293 struct hv_device *hv_dev = device_to_hv_device(dev); 294 295 if (!hv_dev->channel) 296 return -ENODEV; 297 return sprintf(buf, "%d\n", 298 channel_latency(hv_dev->channel, 299 vmbus_connection.monitor_pages[1])); 300 } 301 static DEVICE_ATTR_RO(client_monitor_latency); 302 303 static ssize_t server_monitor_conn_id_show(struct device *dev, 304 struct device_attribute *dev_attr, 305 char *buf) 306 { 307 struct hv_device *hv_dev = device_to_hv_device(dev); 308 309 if (!hv_dev->channel) 310 return -ENODEV; 311 return sprintf(buf, "%d\n", 312 channel_conn_id(hv_dev->channel, 313 vmbus_connection.monitor_pages[0])); 314 } 315 static DEVICE_ATTR_RO(server_monitor_conn_id); 316 317 static ssize_t client_monitor_conn_id_show(struct device *dev, 318 struct device_attribute *dev_attr, 319 char *buf) 320 { 321 struct hv_device *hv_dev = device_to_hv_device(dev); 322 323 if (!hv_dev->channel) 324 return -ENODEV; 325 return sprintf(buf, "%d\n", 326 channel_conn_id(hv_dev->channel, 327 vmbus_connection.monitor_pages[1])); 328 } 329 static DEVICE_ATTR_RO(client_monitor_conn_id); 330 331 static ssize_t out_intr_mask_show(struct device *dev, 332 struct device_attribute *dev_attr, char *buf) 333 { 334 struct hv_device *hv_dev = device_to_hv_device(dev); 335 struct hv_ring_buffer_debug_info outbound; 336 int ret; 337 338 if (!hv_dev->channel) 339 return -ENODEV; 340 341 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 342 &outbound); 343 if (ret < 0) 344 return ret; 345 346 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 347 } 348 static DEVICE_ATTR_RO(out_intr_mask); 349 350 static ssize_t out_read_index_show(struct device *dev, 351 struct device_attribute *dev_attr, char *buf) 352 { 353 struct hv_device *hv_dev = device_to_hv_device(dev); 354 struct hv_ring_buffer_debug_info outbound; 355 int ret; 356 357 if (!hv_dev->channel) 358 return -ENODEV; 359 360 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 361 &outbound); 362 if (ret < 0) 363 return ret; 364 return sprintf(buf, "%d\n", outbound.current_read_index); 365 } 366 static DEVICE_ATTR_RO(out_read_index); 367 368 static ssize_t out_write_index_show(struct device *dev, 369 struct device_attribute *dev_attr, 370 char *buf) 371 { 372 struct hv_device *hv_dev = device_to_hv_device(dev); 373 struct hv_ring_buffer_debug_info outbound; 374 int ret; 375 376 if (!hv_dev->channel) 377 return -ENODEV; 378 379 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 380 &outbound); 381 if (ret < 0) 382 return ret; 383 return sprintf(buf, "%d\n", outbound.current_write_index); 384 } 385 static DEVICE_ATTR_RO(out_write_index); 386 387 static ssize_t out_read_bytes_avail_show(struct device *dev, 388 struct device_attribute *dev_attr, 389 char *buf) 390 { 391 struct hv_device *hv_dev = device_to_hv_device(dev); 392 struct hv_ring_buffer_debug_info outbound; 393 int ret; 394 395 if (!hv_dev->channel) 396 return -ENODEV; 397 398 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 399 &outbound); 400 if (ret < 0) 401 return ret; 402 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 403 } 404 static DEVICE_ATTR_RO(out_read_bytes_avail); 405 406 static ssize_t out_write_bytes_avail_show(struct device *dev, 407 struct device_attribute *dev_attr, 408 char *buf) 409 { 410 struct hv_device *hv_dev = device_to_hv_device(dev); 411 struct hv_ring_buffer_debug_info outbound; 412 int ret; 413 414 if (!hv_dev->channel) 415 return -ENODEV; 416 417 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 418 &outbound); 419 if (ret < 0) 420 return ret; 421 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 422 } 423 static DEVICE_ATTR_RO(out_write_bytes_avail); 424 425 static ssize_t in_intr_mask_show(struct device *dev, 426 struct device_attribute *dev_attr, char *buf) 427 { 428 struct hv_device *hv_dev = device_to_hv_device(dev); 429 struct hv_ring_buffer_debug_info inbound; 430 int ret; 431 432 if (!hv_dev->channel) 433 return -ENODEV; 434 435 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 436 if (ret < 0) 437 return ret; 438 439 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 440 } 441 static DEVICE_ATTR_RO(in_intr_mask); 442 443 static ssize_t in_read_index_show(struct device *dev, 444 struct device_attribute *dev_attr, char *buf) 445 { 446 struct hv_device *hv_dev = device_to_hv_device(dev); 447 struct hv_ring_buffer_debug_info inbound; 448 int ret; 449 450 if (!hv_dev->channel) 451 return -ENODEV; 452 453 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 454 if (ret < 0) 455 return ret; 456 457 return sprintf(buf, "%d\n", inbound.current_read_index); 458 } 459 static DEVICE_ATTR_RO(in_read_index); 460 461 static ssize_t in_write_index_show(struct device *dev, 462 struct device_attribute *dev_attr, char *buf) 463 { 464 struct hv_device *hv_dev = device_to_hv_device(dev); 465 struct hv_ring_buffer_debug_info inbound; 466 int ret; 467 468 if (!hv_dev->channel) 469 return -ENODEV; 470 471 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 472 if (ret < 0) 473 return ret; 474 475 return sprintf(buf, "%d\n", inbound.current_write_index); 476 } 477 static DEVICE_ATTR_RO(in_write_index); 478 479 static ssize_t in_read_bytes_avail_show(struct device *dev, 480 struct device_attribute *dev_attr, 481 char *buf) 482 { 483 struct hv_device *hv_dev = device_to_hv_device(dev); 484 struct hv_ring_buffer_debug_info inbound; 485 int ret; 486 487 if (!hv_dev->channel) 488 return -ENODEV; 489 490 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 491 if (ret < 0) 492 return ret; 493 494 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 495 } 496 static DEVICE_ATTR_RO(in_read_bytes_avail); 497 498 static ssize_t in_write_bytes_avail_show(struct device *dev, 499 struct device_attribute *dev_attr, 500 char *buf) 501 { 502 struct hv_device *hv_dev = device_to_hv_device(dev); 503 struct hv_ring_buffer_debug_info inbound; 504 int ret; 505 506 if (!hv_dev->channel) 507 return -ENODEV; 508 509 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 510 if (ret < 0) 511 return ret; 512 513 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 514 } 515 static DEVICE_ATTR_RO(in_write_bytes_avail); 516 517 static ssize_t channel_vp_mapping_show(struct device *dev, 518 struct device_attribute *dev_attr, 519 char *buf) 520 { 521 struct hv_device *hv_dev = device_to_hv_device(dev); 522 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 523 int buf_size = PAGE_SIZE, n_written, tot_written; 524 struct list_head *cur; 525 526 if (!channel) 527 return -ENODEV; 528 529 mutex_lock(&vmbus_connection.channel_mutex); 530 531 tot_written = snprintf(buf, buf_size, "%u:%u\n", 532 channel->offermsg.child_relid, channel->target_cpu); 533 534 list_for_each(cur, &channel->sc_list) { 535 if (tot_written >= buf_size - 1) 536 break; 537 538 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 539 n_written = scnprintf(buf + tot_written, 540 buf_size - tot_written, 541 "%u:%u\n", 542 cur_sc->offermsg.child_relid, 543 cur_sc->target_cpu); 544 tot_written += n_written; 545 } 546 547 mutex_unlock(&vmbus_connection.channel_mutex); 548 549 return tot_written; 550 } 551 static DEVICE_ATTR_RO(channel_vp_mapping); 552 553 static ssize_t vendor_show(struct device *dev, 554 struct device_attribute *dev_attr, 555 char *buf) 556 { 557 struct hv_device *hv_dev = device_to_hv_device(dev); 558 559 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 560 } 561 static DEVICE_ATTR_RO(vendor); 562 563 static ssize_t device_show(struct device *dev, 564 struct device_attribute *dev_attr, 565 char *buf) 566 { 567 struct hv_device *hv_dev = device_to_hv_device(dev); 568 569 return sprintf(buf, "0x%x\n", hv_dev->device_id); 570 } 571 static DEVICE_ATTR_RO(device); 572 573 static ssize_t driver_override_store(struct device *dev, 574 struct device_attribute *attr, 575 const char *buf, size_t count) 576 { 577 struct hv_device *hv_dev = device_to_hv_device(dev); 578 char *driver_override, *old, *cp; 579 580 /* We need to keep extra room for a newline */ 581 if (count >= (PAGE_SIZE - 1)) 582 return -EINVAL; 583 584 driver_override = kstrndup(buf, count, GFP_KERNEL); 585 if (!driver_override) 586 return -ENOMEM; 587 588 cp = strchr(driver_override, '\n'); 589 if (cp) 590 *cp = '\0'; 591 592 device_lock(dev); 593 old = hv_dev->driver_override; 594 if (strlen(driver_override)) { 595 hv_dev->driver_override = driver_override; 596 } else { 597 kfree(driver_override); 598 hv_dev->driver_override = NULL; 599 } 600 device_unlock(dev); 601 602 kfree(old); 603 604 return count; 605 } 606 607 static ssize_t driver_override_show(struct device *dev, 608 struct device_attribute *attr, char *buf) 609 { 610 struct hv_device *hv_dev = device_to_hv_device(dev); 611 ssize_t len; 612 613 device_lock(dev); 614 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override); 615 device_unlock(dev); 616 617 return len; 618 } 619 static DEVICE_ATTR_RW(driver_override); 620 621 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 622 static struct attribute *vmbus_dev_attrs[] = { 623 &dev_attr_id.attr, 624 &dev_attr_state.attr, 625 &dev_attr_monitor_id.attr, 626 &dev_attr_class_id.attr, 627 &dev_attr_device_id.attr, 628 &dev_attr_modalias.attr, 629 #ifdef CONFIG_NUMA 630 &dev_attr_numa_node.attr, 631 #endif 632 &dev_attr_server_monitor_pending.attr, 633 &dev_attr_client_monitor_pending.attr, 634 &dev_attr_server_monitor_latency.attr, 635 &dev_attr_client_monitor_latency.attr, 636 &dev_attr_server_monitor_conn_id.attr, 637 &dev_attr_client_monitor_conn_id.attr, 638 &dev_attr_out_intr_mask.attr, 639 &dev_attr_out_read_index.attr, 640 &dev_attr_out_write_index.attr, 641 &dev_attr_out_read_bytes_avail.attr, 642 &dev_attr_out_write_bytes_avail.attr, 643 &dev_attr_in_intr_mask.attr, 644 &dev_attr_in_read_index.attr, 645 &dev_attr_in_write_index.attr, 646 &dev_attr_in_read_bytes_avail.attr, 647 &dev_attr_in_write_bytes_avail.attr, 648 &dev_attr_channel_vp_mapping.attr, 649 &dev_attr_vendor.attr, 650 &dev_attr_device.attr, 651 &dev_attr_driver_override.attr, 652 NULL, 653 }; 654 655 /* 656 * Device-level attribute_group callback function. Returns the permission for 657 * each attribute, and returns 0 if an attribute is not visible. 658 */ 659 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj, 660 struct attribute *attr, int idx) 661 { 662 struct device *dev = kobj_to_dev(kobj); 663 const struct hv_device *hv_dev = device_to_hv_device(dev); 664 665 /* Hide the monitor attributes if the monitor mechanism is not used. */ 666 if (!hv_dev->channel->offermsg.monitor_allocated && 667 (attr == &dev_attr_monitor_id.attr || 668 attr == &dev_attr_server_monitor_pending.attr || 669 attr == &dev_attr_client_monitor_pending.attr || 670 attr == &dev_attr_server_monitor_latency.attr || 671 attr == &dev_attr_client_monitor_latency.attr || 672 attr == &dev_attr_server_monitor_conn_id.attr || 673 attr == &dev_attr_client_monitor_conn_id.attr)) 674 return 0; 675 676 return attr->mode; 677 } 678 679 static const struct attribute_group vmbus_dev_group = { 680 .attrs = vmbus_dev_attrs, 681 .is_visible = vmbus_dev_attr_is_visible 682 }; 683 __ATTRIBUTE_GROUPS(vmbus_dev); 684 685 /* Set up the attribute for /sys/bus/vmbus/hibernation */ 686 static ssize_t hibernation_show(struct bus_type *bus, char *buf) 687 { 688 return sprintf(buf, "%d\n", !!hv_is_hibernation_supported()); 689 } 690 691 static BUS_ATTR_RO(hibernation); 692 693 static struct attribute *vmbus_bus_attrs[] = { 694 &bus_attr_hibernation.attr, 695 NULL, 696 }; 697 static const struct attribute_group vmbus_bus_group = { 698 .attrs = vmbus_bus_attrs, 699 }; 700 __ATTRIBUTE_GROUPS(vmbus_bus); 701 702 /* 703 * vmbus_uevent - add uevent for our device 704 * 705 * This routine is invoked when a device is added or removed on the vmbus to 706 * generate a uevent to udev in the userspace. The udev will then look at its 707 * rule and the uevent generated here to load the appropriate driver 708 * 709 * The alias string will be of the form vmbus:guid where guid is the string 710 * representation of the device guid (each byte of the guid will be 711 * represented with two hex characters. 712 */ 713 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 714 { 715 struct hv_device *dev = device_to_hv_device(device); 716 const char *format = "MODALIAS=vmbus:%*phN"; 717 718 return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type); 719 } 720 721 static const struct hv_vmbus_device_id * 722 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid) 723 { 724 if (id == NULL) 725 return NULL; /* empty device table */ 726 727 for (; !guid_is_null(&id->guid); id++) 728 if (guid_equal(&id->guid, guid)) 729 return id; 730 731 return NULL; 732 } 733 734 static const struct hv_vmbus_device_id * 735 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid) 736 { 737 const struct hv_vmbus_device_id *id = NULL; 738 struct vmbus_dynid *dynid; 739 740 spin_lock(&drv->dynids.lock); 741 list_for_each_entry(dynid, &drv->dynids.list, node) { 742 if (guid_equal(&dynid->id.guid, guid)) { 743 id = &dynid->id; 744 break; 745 } 746 } 747 spin_unlock(&drv->dynids.lock); 748 749 return id; 750 } 751 752 static const struct hv_vmbus_device_id vmbus_device_null; 753 754 /* 755 * Return a matching hv_vmbus_device_id pointer. 756 * If there is no match, return NULL. 757 */ 758 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 759 struct hv_device *dev) 760 { 761 const guid_t *guid = &dev->dev_type; 762 const struct hv_vmbus_device_id *id; 763 764 /* When driver_override is set, only bind to the matching driver */ 765 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 766 return NULL; 767 768 /* Look at the dynamic ids first, before the static ones */ 769 id = hv_vmbus_dynid_match(drv, guid); 770 if (!id) 771 id = hv_vmbus_dev_match(drv->id_table, guid); 772 773 /* driver_override will always match, send a dummy id */ 774 if (!id && dev->driver_override) 775 id = &vmbus_device_null; 776 777 return id; 778 } 779 780 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 781 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid) 782 { 783 struct vmbus_dynid *dynid; 784 785 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 786 if (!dynid) 787 return -ENOMEM; 788 789 dynid->id.guid = *guid; 790 791 spin_lock(&drv->dynids.lock); 792 list_add_tail(&dynid->node, &drv->dynids.list); 793 spin_unlock(&drv->dynids.lock); 794 795 return driver_attach(&drv->driver); 796 } 797 798 static void vmbus_free_dynids(struct hv_driver *drv) 799 { 800 struct vmbus_dynid *dynid, *n; 801 802 spin_lock(&drv->dynids.lock); 803 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 804 list_del(&dynid->node); 805 kfree(dynid); 806 } 807 spin_unlock(&drv->dynids.lock); 808 } 809 810 /* 811 * store_new_id - sysfs frontend to vmbus_add_dynid() 812 * 813 * Allow GUIDs to be added to an existing driver via sysfs. 814 */ 815 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 816 size_t count) 817 { 818 struct hv_driver *drv = drv_to_hv_drv(driver); 819 guid_t guid; 820 ssize_t retval; 821 822 retval = guid_parse(buf, &guid); 823 if (retval) 824 return retval; 825 826 if (hv_vmbus_dynid_match(drv, &guid)) 827 return -EEXIST; 828 829 retval = vmbus_add_dynid(drv, &guid); 830 if (retval) 831 return retval; 832 return count; 833 } 834 static DRIVER_ATTR_WO(new_id); 835 836 /* 837 * store_remove_id - remove a PCI device ID from this driver 838 * 839 * Removes a dynamic pci device ID to this driver. 840 */ 841 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 842 size_t count) 843 { 844 struct hv_driver *drv = drv_to_hv_drv(driver); 845 struct vmbus_dynid *dynid, *n; 846 guid_t guid; 847 ssize_t retval; 848 849 retval = guid_parse(buf, &guid); 850 if (retval) 851 return retval; 852 853 retval = -ENODEV; 854 spin_lock(&drv->dynids.lock); 855 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 856 struct hv_vmbus_device_id *id = &dynid->id; 857 858 if (guid_equal(&id->guid, &guid)) { 859 list_del(&dynid->node); 860 kfree(dynid); 861 retval = count; 862 break; 863 } 864 } 865 spin_unlock(&drv->dynids.lock); 866 867 return retval; 868 } 869 static DRIVER_ATTR_WO(remove_id); 870 871 static struct attribute *vmbus_drv_attrs[] = { 872 &driver_attr_new_id.attr, 873 &driver_attr_remove_id.attr, 874 NULL, 875 }; 876 ATTRIBUTE_GROUPS(vmbus_drv); 877 878 879 /* 880 * vmbus_match - Attempt to match the specified device to the specified driver 881 */ 882 static int vmbus_match(struct device *device, struct device_driver *driver) 883 { 884 struct hv_driver *drv = drv_to_hv_drv(driver); 885 struct hv_device *hv_dev = device_to_hv_device(device); 886 887 /* The hv_sock driver handles all hv_sock offers. */ 888 if (is_hvsock_channel(hv_dev->channel)) 889 return drv->hvsock; 890 891 if (hv_vmbus_get_id(drv, hv_dev)) 892 return 1; 893 894 return 0; 895 } 896 897 /* 898 * vmbus_probe - Add the new vmbus's child device 899 */ 900 static int vmbus_probe(struct device *child_device) 901 { 902 int ret = 0; 903 struct hv_driver *drv = 904 drv_to_hv_drv(child_device->driver); 905 struct hv_device *dev = device_to_hv_device(child_device); 906 const struct hv_vmbus_device_id *dev_id; 907 908 dev_id = hv_vmbus_get_id(drv, dev); 909 if (drv->probe) { 910 ret = drv->probe(dev, dev_id); 911 if (ret != 0) 912 pr_err("probe failed for device %s (%d)\n", 913 dev_name(child_device), ret); 914 915 } else { 916 pr_err("probe not set for driver %s\n", 917 dev_name(child_device)); 918 ret = -ENODEV; 919 } 920 return ret; 921 } 922 923 /* 924 * vmbus_dma_configure -- Configure DMA coherence for VMbus device 925 */ 926 static int vmbus_dma_configure(struct device *child_device) 927 { 928 /* 929 * On ARM64, propagate the DMA coherence setting from the top level 930 * VMbus ACPI device to the child VMbus device being added here. 931 * On x86/x64 coherence is assumed and these calls have no effect. 932 */ 933 hv_setup_dma_ops(child_device, 934 device_get_dma_attr(&hv_acpi_dev->dev) == DEV_DMA_COHERENT); 935 return 0; 936 } 937 938 /* 939 * vmbus_remove - Remove a vmbus device 940 */ 941 static void vmbus_remove(struct device *child_device) 942 { 943 struct hv_driver *drv; 944 struct hv_device *dev = device_to_hv_device(child_device); 945 946 if (child_device->driver) { 947 drv = drv_to_hv_drv(child_device->driver); 948 if (drv->remove) 949 drv->remove(dev); 950 } 951 } 952 953 /* 954 * vmbus_shutdown - Shutdown a vmbus device 955 */ 956 static void vmbus_shutdown(struct device *child_device) 957 { 958 struct hv_driver *drv; 959 struct hv_device *dev = device_to_hv_device(child_device); 960 961 962 /* The device may not be attached yet */ 963 if (!child_device->driver) 964 return; 965 966 drv = drv_to_hv_drv(child_device->driver); 967 968 if (drv->shutdown) 969 drv->shutdown(dev); 970 } 971 972 #ifdef CONFIG_PM_SLEEP 973 /* 974 * vmbus_suspend - Suspend a vmbus device 975 */ 976 static int vmbus_suspend(struct device *child_device) 977 { 978 struct hv_driver *drv; 979 struct hv_device *dev = device_to_hv_device(child_device); 980 981 /* The device may not be attached yet */ 982 if (!child_device->driver) 983 return 0; 984 985 drv = drv_to_hv_drv(child_device->driver); 986 if (!drv->suspend) 987 return -EOPNOTSUPP; 988 989 return drv->suspend(dev); 990 } 991 992 /* 993 * vmbus_resume - Resume a vmbus device 994 */ 995 static int vmbus_resume(struct device *child_device) 996 { 997 struct hv_driver *drv; 998 struct hv_device *dev = device_to_hv_device(child_device); 999 1000 /* The device may not be attached yet */ 1001 if (!child_device->driver) 1002 return 0; 1003 1004 drv = drv_to_hv_drv(child_device->driver); 1005 if (!drv->resume) 1006 return -EOPNOTSUPP; 1007 1008 return drv->resume(dev); 1009 } 1010 #else 1011 #define vmbus_suspend NULL 1012 #define vmbus_resume NULL 1013 #endif /* CONFIG_PM_SLEEP */ 1014 1015 /* 1016 * vmbus_device_release - Final callback release of the vmbus child device 1017 */ 1018 static void vmbus_device_release(struct device *device) 1019 { 1020 struct hv_device *hv_dev = device_to_hv_device(device); 1021 struct vmbus_channel *channel = hv_dev->channel; 1022 1023 hv_debug_rm_dev_dir(hv_dev); 1024 1025 mutex_lock(&vmbus_connection.channel_mutex); 1026 hv_process_channel_removal(channel); 1027 mutex_unlock(&vmbus_connection.channel_mutex); 1028 kfree(hv_dev); 1029 } 1030 1031 /* 1032 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm. 1033 * 1034 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we 1035 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there 1036 * is no way to wake up a Generation-2 VM. 1037 * 1038 * The other 4 ops are for hibernation. 1039 */ 1040 1041 static const struct dev_pm_ops vmbus_pm = { 1042 .suspend_noirq = NULL, 1043 .resume_noirq = NULL, 1044 .freeze_noirq = vmbus_suspend, 1045 .thaw_noirq = vmbus_resume, 1046 .poweroff_noirq = vmbus_suspend, 1047 .restore_noirq = vmbus_resume, 1048 }; 1049 1050 /* The one and only one */ 1051 static struct bus_type hv_bus = { 1052 .name = "vmbus", 1053 .match = vmbus_match, 1054 .shutdown = vmbus_shutdown, 1055 .remove = vmbus_remove, 1056 .probe = vmbus_probe, 1057 .uevent = vmbus_uevent, 1058 .dma_configure = vmbus_dma_configure, 1059 .dev_groups = vmbus_dev_groups, 1060 .drv_groups = vmbus_drv_groups, 1061 .bus_groups = vmbus_bus_groups, 1062 .pm = &vmbus_pm, 1063 }; 1064 1065 struct onmessage_work_context { 1066 struct work_struct work; 1067 struct { 1068 struct hv_message_header header; 1069 u8 payload[]; 1070 } msg; 1071 }; 1072 1073 static void vmbus_onmessage_work(struct work_struct *work) 1074 { 1075 struct onmessage_work_context *ctx; 1076 1077 /* Do not process messages if we're in DISCONNECTED state */ 1078 if (vmbus_connection.conn_state == DISCONNECTED) 1079 return; 1080 1081 ctx = container_of(work, struct onmessage_work_context, 1082 work); 1083 vmbus_onmessage((struct vmbus_channel_message_header *) 1084 &ctx->msg.payload); 1085 kfree(ctx); 1086 } 1087 1088 void vmbus_on_msg_dpc(unsigned long data) 1089 { 1090 struct hv_per_cpu_context *hv_cpu = (void *)data; 1091 void *page_addr = hv_cpu->synic_message_page; 1092 struct hv_message msg_copy, *msg = (struct hv_message *)page_addr + 1093 VMBUS_MESSAGE_SINT; 1094 struct vmbus_channel_message_header *hdr; 1095 enum vmbus_channel_message_type msgtype; 1096 const struct vmbus_channel_message_table_entry *entry; 1097 struct onmessage_work_context *ctx; 1098 __u8 payload_size; 1099 u32 message_type; 1100 1101 /* 1102 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as 1103 * it is being used in 'struct vmbus_channel_message_header' definition 1104 * which is supposed to match hypervisor ABI. 1105 */ 1106 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32)); 1107 1108 /* 1109 * Since the message is in memory shared with the host, an erroneous or 1110 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc() 1111 * or individual message handlers are executing; to prevent this, copy 1112 * the message into private memory. 1113 */ 1114 memcpy(&msg_copy, msg, sizeof(struct hv_message)); 1115 1116 message_type = msg_copy.header.message_type; 1117 if (message_type == HVMSG_NONE) 1118 /* no msg */ 1119 return; 1120 1121 hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload; 1122 msgtype = hdr->msgtype; 1123 1124 trace_vmbus_on_msg_dpc(hdr); 1125 1126 if (msgtype >= CHANNELMSG_COUNT) { 1127 WARN_ONCE(1, "unknown msgtype=%d\n", msgtype); 1128 goto msg_handled; 1129 } 1130 1131 payload_size = msg_copy.header.payload_size; 1132 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) { 1133 WARN_ONCE(1, "payload size is too large (%d)\n", payload_size); 1134 goto msg_handled; 1135 } 1136 1137 entry = &channel_message_table[msgtype]; 1138 1139 if (!entry->message_handler) 1140 goto msg_handled; 1141 1142 if (payload_size < entry->min_payload_len) { 1143 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size); 1144 goto msg_handled; 1145 } 1146 1147 if (entry->handler_type == VMHT_BLOCKING) { 1148 ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC); 1149 if (ctx == NULL) 1150 return; 1151 1152 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1153 memcpy(&ctx->msg, &msg_copy, sizeof(msg->header) + payload_size); 1154 1155 /* 1156 * The host can generate a rescind message while we 1157 * may still be handling the original offer. We deal with 1158 * this condition by relying on the synchronization provided 1159 * by offer_in_progress and by channel_mutex. See also the 1160 * inline comments in vmbus_onoffer_rescind(). 1161 */ 1162 switch (msgtype) { 1163 case CHANNELMSG_RESCIND_CHANNELOFFER: 1164 /* 1165 * If we are handling the rescind message; 1166 * schedule the work on the global work queue. 1167 * 1168 * The OFFER message and the RESCIND message should 1169 * not be handled by the same serialized work queue, 1170 * because the OFFER handler may call vmbus_open(), 1171 * which tries to open the channel by sending an 1172 * OPEN_CHANNEL message to the host and waits for 1173 * the host's response; however, if the host has 1174 * rescinded the channel before it receives the 1175 * OPEN_CHANNEL message, the host just silently 1176 * ignores the OPEN_CHANNEL message; as a result, 1177 * the guest's OFFER handler hangs for ever, if we 1178 * handle the RESCIND message in the same serialized 1179 * work queue: the RESCIND handler can not start to 1180 * run before the OFFER handler finishes. 1181 */ 1182 schedule_work(&ctx->work); 1183 break; 1184 1185 case CHANNELMSG_OFFERCHANNEL: 1186 /* 1187 * The host sends the offer message of a given channel 1188 * before sending the rescind message of the same 1189 * channel. These messages are sent to the guest's 1190 * connect CPU; the guest then starts processing them 1191 * in the tasklet handler on this CPU: 1192 * 1193 * VMBUS_CONNECT_CPU 1194 * 1195 * [vmbus_on_msg_dpc()] 1196 * atomic_inc() // CHANNELMSG_OFFERCHANNEL 1197 * queue_work() 1198 * ... 1199 * [vmbus_on_msg_dpc()] 1200 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER 1201 * 1202 * We rely on the memory-ordering properties of the 1203 * queue_work() and schedule_work() primitives, which 1204 * guarantee that the atomic increment will be visible 1205 * to the CPUs which will execute the offer & rescind 1206 * works by the time these works will start execution. 1207 */ 1208 atomic_inc(&vmbus_connection.offer_in_progress); 1209 fallthrough; 1210 1211 default: 1212 queue_work(vmbus_connection.work_queue, &ctx->work); 1213 } 1214 } else 1215 entry->message_handler(hdr); 1216 1217 msg_handled: 1218 vmbus_signal_eom(msg, message_type); 1219 } 1220 1221 #ifdef CONFIG_PM_SLEEP 1222 /* 1223 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for 1224 * hibernation, because hv_sock connections can not persist across hibernation. 1225 */ 1226 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel) 1227 { 1228 struct onmessage_work_context *ctx; 1229 struct vmbus_channel_rescind_offer *rescind; 1230 1231 WARN_ON(!is_hvsock_channel(channel)); 1232 1233 /* 1234 * Allocation size is small and the allocation should really not fail, 1235 * otherwise the state of the hv_sock connections ends up in limbo. 1236 */ 1237 ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind), 1238 GFP_KERNEL | __GFP_NOFAIL); 1239 1240 /* 1241 * So far, these are not really used by Linux. Just set them to the 1242 * reasonable values conforming to the definitions of the fields. 1243 */ 1244 ctx->msg.header.message_type = 1; 1245 ctx->msg.header.payload_size = sizeof(*rescind); 1246 1247 /* These values are actually used by Linux. */ 1248 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload; 1249 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER; 1250 rescind->child_relid = channel->offermsg.child_relid; 1251 1252 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1253 1254 queue_work(vmbus_connection.work_queue, &ctx->work); 1255 } 1256 #endif /* CONFIG_PM_SLEEP */ 1257 1258 /* 1259 * Schedule all channels with events pending 1260 */ 1261 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 1262 { 1263 unsigned long *recv_int_page; 1264 u32 maxbits, relid; 1265 1266 /* 1267 * The event page can be directly checked to get the id of 1268 * the channel that has the interrupt pending. 1269 */ 1270 void *page_addr = hv_cpu->synic_event_page; 1271 union hv_synic_event_flags *event 1272 = (union hv_synic_event_flags *)page_addr + 1273 VMBUS_MESSAGE_SINT; 1274 1275 maxbits = HV_EVENT_FLAGS_COUNT; 1276 recv_int_page = event->flags; 1277 1278 if (unlikely(!recv_int_page)) 1279 return; 1280 1281 for_each_set_bit(relid, recv_int_page, maxbits) { 1282 void (*callback_fn)(void *context); 1283 struct vmbus_channel *channel; 1284 1285 if (!sync_test_and_clear_bit(relid, recv_int_page)) 1286 continue; 1287 1288 /* Special case - vmbus channel protocol msg */ 1289 if (relid == 0) 1290 continue; 1291 1292 /* 1293 * Pairs with the kfree_rcu() in vmbus_chan_release(). 1294 * Guarantees that the channel data structure doesn't 1295 * get freed while the channel pointer below is being 1296 * dereferenced. 1297 */ 1298 rcu_read_lock(); 1299 1300 /* Find channel based on relid */ 1301 channel = relid2channel(relid); 1302 if (channel == NULL) 1303 goto sched_unlock_rcu; 1304 1305 if (channel->rescind) 1306 goto sched_unlock_rcu; 1307 1308 /* 1309 * Make sure that the ring buffer data structure doesn't get 1310 * freed while we dereference the ring buffer pointer. Test 1311 * for the channel's onchannel_callback being NULL within a 1312 * sched_lock critical section. See also the inline comments 1313 * in vmbus_reset_channel_cb(). 1314 */ 1315 spin_lock(&channel->sched_lock); 1316 1317 callback_fn = channel->onchannel_callback; 1318 if (unlikely(callback_fn == NULL)) 1319 goto sched_unlock; 1320 1321 trace_vmbus_chan_sched(channel); 1322 1323 ++channel->interrupts; 1324 1325 switch (channel->callback_mode) { 1326 case HV_CALL_ISR: 1327 (*callback_fn)(channel->channel_callback_context); 1328 break; 1329 1330 case HV_CALL_BATCHED: 1331 hv_begin_read(&channel->inbound); 1332 fallthrough; 1333 case HV_CALL_DIRECT: 1334 tasklet_schedule(&channel->callback_event); 1335 } 1336 1337 sched_unlock: 1338 spin_unlock(&channel->sched_lock); 1339 sched_unlock_rcu: 1340 rcu_read_unlock(); 1341 } 1342 } 1343 1344 static void vmbus_isr(void) 1345 { 1346 struct hv_per_cpu_context *hv_cpu 1347 = this_cpu_ptr(hv_context.cpu_context); 1348 void *page_addr; 1349 struct hv_message *msg; 1350 1351 vmbus_chan_sched(hv_cpu); 1352 1353 page_addr = hv_cpu->synic_message_page; 1354 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1355 1356 /* Check if there are actual msgs to be processed */ 1357 if (msg->header.message_type != HVMSG_NONE) { 1358 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) { 1359 hv_stimer0_isr(); 1360 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 1361 } else 1362 tasklet_schedule(&hv_cpu->msg_dpc); 1363 } 1364 1365 add_interrupt_randomness(vmbus_interrupt); 1366 } 1367 1368 static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id) 1369 { 1370 vmbus_isr(); 1371 return IRQ_HANDLED; 1372 } 1373 1374 /* 1375 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg 1376 * buffer and call into Hyper-V to transfer the data. 1377 */ 1378 static void hv_kmsg_dump(struct kmsg_dumper *dumper, 1379 enum kmsg_dump_reason reason) 1380 { 1381 struct kmsg_dump_iter iter; 1382 size_t bytes_written; 1383 1384 /* We are only interested in panics. */ 1385 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg)) 1386 return; 1387 1388 /* 1389 * Write dump contents to the page. No need to synchronize; panic should 1390 * be single-threaded. 1391 */ 1392 kmsg_dump_rewind(&iter); 1393 kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE, 1394 &bytes_written); 1395 if (!bytes_written) 1396 return; 1397 /* 1398 * P3 to contain the physical address of the panic page & P4 to 1399 * contain the size of the panic data in that page. Rest of the 1400 * registers are no-op when the NOTIFY_MSG flag is set. 1401 */ 1402 hv_set_register(HV_REGISTER_CRASH_P0, 0); 1403 hv_set_register(HV_REGISTER_CRASH_P1, 0); 1404 hv_set_register(HV_REGISTER_CRASH_P2, 0); 1405 hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page)); 1406 hv_set_register(HV_REGISTER_CRASH_P4, bytes_written); 1407 1408 /* 1409 * Let Hyper-V know there is crash data available along with 1410 * the panic message. 1411 */ 1412 hv_set_register(HV_REGISTER_CRASH_CTL, 1413 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG)); 1414 } 1415 1416 static struct kmsg_dumper hv_kmsg_dumper = { 1417 .dump = hv_kmsg_dump, 1418 }; 1419 1420 static void hv_kmsg_dump_register(void) 1421 { 1422 int ret; 1423 1424 hv_panic_page = hv_alloc_hyperv_zeroed_page(); 1425 if (!hv_panic_page) { 1426 pr_err("Hyper-V: panic message page memory allocation failed\n"); 1427 return; 1428 } 1429 1430 ret = kmsg_dump_register(&hv_kmsg_dumper); 1431 if (ret) { 1432 pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret); 1433 hv_free_hyperv_page((unsigned long)hv_panic_page); 1434 hv_panic_page = NULL; 1435 } 1436 } 1437 1438 static struct ctl_table_header *hv_ctl_table_hdr; 1439 1440 /* 1441 * sysctl option to allow the user to control whether kmsg data should be 1442 * reported to Hyper-V on panic. 1443 */ 1444 static struct ctl_table hv_ctl_table[] = { 1445 { 1446 .procname = "hyperv_record_panic_msg", 1447 .data = &sysctl_record_panic_msg, 1448 .maxlen = sizeof(int), 1449 .mode = 0644, 1450 .proc_handler = proc_dointvec_minmax, 1451 .extra1 = SYSCTL_ZERO, 1452 .extra2 = SYSCTL_ONE 1453 }, 1454 {} 1455 }; 1456 1457 static struct ctl_table hv_root_table[] = { 1458 { 1459 .procname = "kernel", 1460 .mode = 0555, 1461 .child = hv_ctl_table 1462 }, 1463 {} 1464 }; 1465 1466 /* 1467 * vmbus_bus_init -Main vmbus driver initialization routine. 1468 * 1469 * Here, we 1470 * - initialize the vmbus driver context 1471 * - invoke the vmbus hv main init routine 1472 * - retrieve the channel offers 1473 */ 1474 static int vmbus_bus_init(void) 1475 { 1476 int ret; 1477 1478 ret = hv_init(); 1479 if (ret != 0) { 1480 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1481 return ret; 1482 } 1483 1484 ret = bus_register(&hv_bus); 1485 if (ret) 1486 return ret; 1487 1488 /* 1489 * VMbus interrupts are best modeled as per-cpu interrupts. If 1490 * on an architecture with support for per-cpu IRQs (e.g. ARM64), 1491 * allocate a per-cpu IRQ using standard Linux kernel functionality. 1492 * If not on such an architecture (e.g., x86/x64), then rely on 1493 * code in the arch-specific portion of the code tree to connect 1494 * the VMbus interrupt handler. 1495 */ 1496 1497 if (vmbus_irq == -1) { 1498 hv_setup_vmbus_handler(vmbus_isr); 1499 } else { 1500 vmbus_evt = alloc_percpu(long); 1501 ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr, 1502 "Hyper-V VMbus", vmbus_evt); 1503 if (ret) { 1504 pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d", 1505 vmbus_irq, ret); 1506 free_percpu(vmbus_evt); 1507 goto err_setup; 1508 } 1509 } 1510 1511 ret = hv_synic_alloc(); 1512 if (ret) 1513 goto err_alloc; 1514 1515 /* 1516 * Initialize the per-cpu interrupt state and stimer state. 1517 * Then connect to the host. 1518 */ 1519 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1520 hv_synic_init, hv_synic_cleanup); 1521 if (ret < 0) 1522 goto err_cpuhp; 1523 hyperv_cpuhp_online = ret; 1524 1525 ret = vmbus_connect(); 1526 if (ret) 1527 goto err_connect; 1528 1529 if (hv_is_isolation_supported()) 1530 sysctl_record_panic_msg = 0; 1531 1532 /* 1533 * Only register if the crash MSRs are available 1534 */ 1535 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1536 u64 hyperv_crash_ctl; 1537 /* 1538 * Panic message recording (sysctl_record_panic_msg) 1539 * is enabled by default in non-isolated guests and 1540 * disabled by default in isolated guests; the panic 1541 * message recording won't be available in isolated 1542 * guests should the following registration fail. 1543 */ 1544 hv_ctl_table_hdr = register_sysctl_table(hv_root_table); 1545 if (!hv_ctl_table_hdr) 1546 pr_err("Hyper-V: sysctl table register error"); 1547 1548 /* 1549 * Register for panic kmsg callback only if the right 1550 * capability is supported by the hypervisor. 1551 */ 1552 hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL); 1553 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) 1554 hv_kmsg_dump_register(); 1555 1556 register_die_notifier(&hyperv_die_block); 1557 } 1558 1559 /* 1560 * Always register the panic notifier because we need to unload 1561 * the VMbus channel connection to prevent any VMbus 1562 * activity after the VM panics. 1563 */ 1564 atomic_notifier_chain_register(&panic_notifier_list, 1565 &hyperv_panic_block); 1566 1567 vmbus_request_offers(); 1568 1569 return 0; 1570 1571 err_connect: 1572 cpuhp_remove_state(hyperv_cpuhp_online); 1573 err_cpuhp: 1574 hv_synic_free(); 1575 err_alloc: 1576 if (vmbus_irq == -1) { 1577 hv_remove_vmbus_handler(); 1578 } else { 1579 free_percpu_irq(vmbus_irq, vmbus_evt); 1580 free_percpu(vmbus_evt); 1581 } 1582 err_setup: 1583 bus_unregister(&hv_bus); 1584 unregister_sysctl_table(hv_ctl_table_hdr); 1585 hv_ctl_table_hdr = NULL; 1586 return ret; 1587 } 1588 1589 /** 1590 * __vmbus_child_driver_register() - Register a vmbus's driver 1591 * @hv_driver: Pointer to driver structure you want to register 1592 * @owner: owner module of the drv 1593 * @mod_name: module name string 1594 * 1595 * Registers the given driver with Linux through the 'driver_register()' call 1596 * and sets up the hyper-v vmbus handling for this driver. 1597 * It will return the state of the 'driver_register()' call. 1598 * 1599 */ 1600 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1601 { 1602 int ret; 1603 1604 pr_info("registering driver %s\n", hv_driver->name); 1605 1606 ret = vmbus_exists(); 1607 if (ret < 0) 1608 return ret; 1609 1610 hv_driver->driver.name = hv_driver->name; 1611 hv_driver->driver.owner = owner; 1612 hv_driver->driver.mod_name = mod_name; 1613 hv_driver->driver.bus = &hv_bus; 1614 1615 spin_lock_init(&hv_driver->dynids.lock); 1616 INIT_LIST_HEAD(&hv_driver->dynids.list); 1617 1618 ret = driver_register(&hv_driver->driver); 1619 1620 return ret; 1621 } 1622 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1623 1624 /** 1625 * vmbus_driver_unregister() - Unregister a vmbus's driver 1626 * @hv_driver: Pointer to driver structure you want to 1627 * un-register 1628 * 1629 * Un-register the given driver that was previous registered with a call to 1630 * vmbus_driver_register() 1631 */ 1632 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1633 { 1634 pr_info("unregistering driver %s\n", hv_driver->name); 1635 1636 if (!vmbus_exists()) { 1637 driver_unregister(&hv_driver->driver); 1638 vmbus_free_dynids(hv_driver); 1639 } 1640 } 1641 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1642 1643 1644 /* 1645 * Called when last reference to channel is gone. 1646 */ 1647 static void vmbus_chan_release(struct kobject *kobj) 1648 { 1649 struct vmbus_channel *channel 1650 = container_of(kobj, struct vmbus_channel, kobj); 1651 1652 kfree_rcu(channel, rcu); 1653 } 1654 1655 struct vmbus_chan_attribute { 1656 struct attribute attr; 1657 ssize_t (*show)(struct vmbus_channel *chan, char *buf); 1658 ssize_t (*store)(struct vmbus_channel *chan, 1659 const char *buf, size_t count); 1660 }; 1661 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1662 struct vmbus_chan_attribute chan_attr_##_name \ 1663 = __ATTR(_name, _mode, _show, _store) 1664 #define VMBUS_CHAN_ATTR_RW(_name) \ 1665 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1666 #define VMBUS_CHAN_ATTR_RO(_name) \ 1667 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1668 #define VMBUS_CHAN_ATTR_WO(_name) \ 1669 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1670 1671 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1672 struct attribute *attr, char *buf) 1673 { 1674 const struct vmbus_chan_attribute *attribute 1675 = container_of(attr, struct vmbus_chan_attribute, attr); 1676 struct vmbus_channel *chan 1677 = container_of(kobj, struct vmbus_channel, kobj); 1678 1679 if (!attribute->show) 1680 return -EIO; 1681 1682 return attribute->show(chan, buf); 1683 } 1684 1685 static ssize_t vmbus_chan_attr_store(struct kobject *kobj, 1686 struct attribute *attr, const char *buf, 1687 size_t count) 1688 { 1689 const struct vmbus_chan_attribute *attribute 1690 = container_of(attr, struct vmbus_chan_attribute, attr); 1691 struct vmbus_channel *chan 1692 = container_of(kobj, struct vmbus_channel, kobj); 1693 1694 if (!attribute->store) 1695 return -EIO; 1696 1697 return attribute->store(chan, buf, count); 1698 } 1699 1700 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1701 .show = vmbus_chan_attr_show, 1702 .store = vmbus_chan_attr_store, 1703 }; 1704 1705 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf) 1706 { 1707 struct hv_ring_buffer_info *rbi = &channel->outbound; 1708 ssize_t ret; 1709 1710 mutex_lock(&rbi->ring_buffer_mutex); 1711 if (!rbi->ring_buffer) { 1712 mutex_unlock(&rbi->ring_buffer_mutex); 1713 return -EINVAL; 1714 } 1715 1716 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1717 mutex_unlock(&rbi->ring_buffer_mutex); 1718 return ret; 1719 } 1720 static VMBUS_CHAN_ATTR_RO(out_mask); 1721 1722 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf) 1723 { 1724 struct hv_ring_buffer_info *rbi = &channel->inbound; 1725 ssize_t ret; 1726 1727 mutex_lock(&rbi->ring_buffer_mutex); 1728 if (!rbi->ring_buffer) { 1729 mutex_unlock(&rbi->ring_buffer_mutex); 1730 return -EINVAL; 1731 } 1732 1733 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1734 mutex_unlock(&rbi->ring_buffer_mutex); 1735 return ret; 1736 } 1737 static VMBUS_CHAN_ATTR_RO(in_mask); 1738 1739 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf) 1740 { 1741 struct hv_ring_buffer_info *rbi = &channel->inbound; 1742 ssize_t ret; 1743 1744 mutex_lock(&rbi->ring_buffer_mutex); 1745 if (!rbi->ring_buffer) { 1746 mutex_unlock(&rbi->ring_buffer_mutex); 1747 return -EINVAL; 1748 } 1749 1750 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1751 mutex_unlock(&rbi->ring_buffer_mutex); 1752 return ret; 1753 } 1754 static VMBUS_CHAN_ATTR_RO(read_avail); 1755 1756 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf) 1757 { 1758 struct hv_ring_buffer_info *rbi = &channel->outbound; 1759 ssize_t ret; 1760 1761 mutex_lock(&rbi->ring_buffer_mutex); 1762 if (!rbi->ring_buffer) { 1763 mutex_unlock(&rbi->ring_buffer_mutex); 1764 return -EINVAL; 1765 } 1766 1767 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1768 mutex_unlock(&rbi->ring_buffer_mutex); 1769 return ret; 1770 } 1771 static VMBUS_CHAN_ATTR_RO(write_avail); 1772 1773 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf) 1774 { 1775 return sprintf(buf, "%u\n", channel->target_cpu); 1776 } 1777 static ssize_t target_cpu_store(struct vmbus_channel *channel, 1778 const char *buf, size_t count) 1779 { 1780 u32 target_cpu, origin_cpu; 1781 ssize_t ret = count; 1782 1783 if (vmbus_proto_version < VERSION_WIN10_V4_1) 1784 return -EIO; 1785 1786 if (sscanf(buf, "%uu", &target_cpu) != 1) 1787 return -EIO; 1788 1789 /* Validate target_cpu for the cpumask_test_cpu() operation below. */ 1790 if (target_cpu >= nr_cpumask_bits) 1791 return -EINVAL; 1792 1793 /* No CPUs should come up or down during this. */ 1794 cpus_read_lock(); 1795 1796 if (!cpu_online(target_cpu)) { 1797 cpus_read_unlock(); 1798 return -EINVAL; 1799 } 1800 1801 /* 1802 * Synchronizes target_cpu_store() and channel closure: 1803 * 1804 * { Initially: state = CHANNEL_OPENED } 1805 * 1806 * CPU1 CPU2 1807 * 1808 * [target_cpu_store()] [vmbus_disconnect_ring()] 1809 * 1810 * LOCK channel_mutex LOCK channel_mutex 1811 * LOAD r1 = state LOAD r2 = state 1812 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED) 1813 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN 1814 * [...] SEND CLOSECHANNEL 1815 * UNLOCK channel_mutex UNLOCK channel_mutex 1816 * 1817 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes 1818 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND 1819 * 1820 * Note. The host processes the channel messages "sequentially", in 1821 * the order in which they are received on a per-partition basis. 1822 */ 1823 mutex_lock(&vmbus_connection.channel_mutex); 1824 1825 /* 1826 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels; 1827 * avoid sending the message and fail here for such channels. 1828 */ 1829 if (channel->state != CHANNEL_OPENED_STATE) { 1830 ret = -EIO; 1831 goto cpu_store_unlock; 1832 } 1833 1834 origin_cpu = channel->target_cpu; 1835 if (target_cpu == origin_cpu) 1836 goto cpu_store_unlock; 1837 1838 if (vmbus_send_modifychannel(channel, 1839 hv_cpu_number_to_vp_number(target_cpu))) { 1840 ret = -EIO; 1841 goto cpu_store_unlock; 1842 } 1843 1844 /* 1845 * For version before VERSION_WIN10_V5_3, the following warning holds: 1846 * 1847 * Warning. At this point, there is *no* guarantee that the host will 1848 * have successfully processed the vmbus_send_modifychannel() request. 1849 * See the header comment of vmbus_send_modifychannel() for more info. 1850 * 1851 * Lags in the processing of the above vmbus_send_modifychannel() can 1852 * result in missed interrupts if the "old" target CPU is taken offline 1853 * before Hyper-V starts sending interrupts to the "new" target CPU. 1854 * But apart from this offlining scenario, the code tolerates such 1855 * lags. It will function correctly even if a channel interrupt comes 1856 * in on a CPU that is different from the channel target_cpu value. 1857 */ 1858 1859 channel->target_cpu = target_cpu; 1860 1861 /* See init_vp_index(). */ 1862 if (hv_is_perf_channel(channel)) 1863 hv_update_allocated_cpus(origin_cpu, target_cpu); 1864 1865 /* Currently set only for storvsc channels. */ 1866 if (channel->change_target_cpu_callback) { 1867 (*channel->change_target_cpu_callback)(channel, 1868 origin_cpu, target_cpu); 1869 } 1870 1871 cpu_store_unlock: 1872 mutex_unlock(&vmbus_connection.channel_mutex); 1873 cpus_read_unlock(); 1874 return ret; 1875 } 1876 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store); 1877 1878 static ssize_t channel_pending_show(struct vmbus_channel *channel, 1879 char *buf) 1880 { 1881 return sprintf(buf, "%d\n", 1882 channel_pending(channel, 1883 vmbus_connection.monitor_pages[1])); 1884 } 1885 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL); 1886 1887 static ssize_t channel_latency_show(struct vmbus_channel *channel, 1888 char *buf) 1889 { 1890 return sprintf(buf, "%d\n", 1891 channel_latency(channel, 1892 vmbus_connection.monitor_pages[1])); 1893 } 1894 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL); 1895 1896 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf) 1897 { 1898 return sprintf(buf, "%llu\n", channel->interrupts); 1899 } 1900 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL); 1901 1902 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf) 1903 { 1904 return sprintf(buf, "%llu\n", channel->sig_events); 1905 } 1906 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL); 1907 1908 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel, 1909 char *buf) 1910 { 1911 return sprintf(buf, "%llu\n", 1912 (unsigned long long)channel->intr_in_full); 1913 } 1914 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL); 1915 1916 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel, 1917 char *buf) 1918 { 1919 return sprintf(buf, "%llu\n", 1920 (unsigned long long)channel->intr_out_empty); 1921 } 1922 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL); 1923 1924 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel, 1925 char *buf) 1926 { 1927 return sprintf(buf, "%llu\n", 1928 (unsigned long long)channel->out_full_first); 1929 } 1930 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL); 1931 1932 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel, 1933 char *buf) 1934 { 1935 return sprintf(buf, "%llu\n", 1936 (unsigned long long)channel->out_full_total); 1937 } 1938 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL); 1939 1940 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel, 1941 char *buf) 1942 { 1943 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1944 } 1945 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL); 1946 1947 static ssize_t subchannel_id_show(struct vmbus_channel *channel, 1948 char *buf) 1949 { 1950 return sprintf(buf, "%u\n", 1951 channel->offermsg.offer.sub_channel_index); 1952 } 1953 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1954 1955 static struct attribute *vmbus_chan_attrs[] = { 1956 &chan_attr_out_mask.attr, 1957 &chan_attr_in_mask.attr, 1958 &chan_attr_read_avail.attr, 1959 &chan_attr_write_avail.attr, 1960 &chan_attr_cpu.attr, 1961 &chan_attr_pending.attr, 1962 &chan_attr_latency.attr, 1963 &chan_attr_interrupts.attr, 1964 &chan_attr_events.attr, 1965 &chan_attr_intr_in_full.attr, 1966 &chan_attr_intr_out_empty.attr, 1967 &chan_attr_out_full_first.attr, 1968 &chan_attr_out_full_total.attr, 1969 &chan_attr_monitor_id.attr, 1970 &chan_attr_subchannel_id.attr, 1971 NULL 1972 }; 1973 1974 /* 1975 * Channel-level attribute_group callback function. Returns the permission for 1976 * each attribute, and returns 0 if an attribute is not visible. 1977 */ 1978 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj, 1979 struct attribute *attr, int idx) 1980 { 1981 const struct vmbus_channel *channel = 1982 container_of(kobj, struct vmbus_channel, kobj); 1983 1984 /* Hide the monitor attributes if the monitor mechanism is not used. */ 1985 if (!channel->offermsg.monitor_allocated && 1986 (attr == &chan_attr_pending.attr || 1987 attr == &chan_attr_latency.attr || 1988 attr == &chan_attr_monitor_id.attr)) 1989 return 0; 1990 1991 return attr->mode; 1992 } 1993 1994 static struct attribute_group vmbus_chan_group = { 1995 .attrs = vmbus_chan_attrs, 1996 .is_visible = vmbus_chan_attr_is_visible 1997 }; 1998 1999 static struct kobj_type vmbus_chan_ktype = { 2000 .sysfs_ops = &vmbus_chan_sysfs_ops, 2001 .release = vmbus_chan_release, 2002 }; 2003 2004 /* 2005 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 2006 */ 2007 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 2008 { 2009 const struct device *device = &dev->device; 2010 struct kobject *kobj = &channel->kobj; 2011 u32 relid = channel->offermsg.child_relid; 2012 int ret; 2013 2014 kobj->kset = dev->channels_kset; 2015 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 2016 "%u", relid); 2017 if (ret) { 2018 kobject_put(kobj); 2019 return ret; 2020 } 2021 2022 ret = sysfs_create_group(kobj, &vmbus_chan_group); 2023 2024 if (ret) { 2025 /* 2026 * The calling functions' error handling paths will cleanup the 2027 * empty channel directory. 2028 */ 2029 kobject_put(kobj); 2030 dev_err(device, "Unable to set up channel sysfs files\n"); 2031 return ret; 2032 } 2033 2034 kobject_uevent(kobj, KOBJ_ADD); 2035 2036 return 0; 2037 } 2038 2039 /* 2040 * vmbus_remove_channel_attr_group - remove the channel's attribute group 2041 */ 2042 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel) 2043 { 2044 sysfs_remove_group(&channel->kobj, &vmbus_chan_group); 2045 } 2046 2047 /* 2048 * vmbus_device_create - Creates and registers a new child device 2049 * on the vmbus. 2050 */ 2051 struct hv_device *vmbus_device_create(const guid_t *type, 2052 const guid_t *instance, 2053 struct vmbus_channel *channel) 2054 { 2055 struct hv_device *child_device_obj; 2056 2057 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 2058 if (!child_device_obj) { 2059 pr_err("Unable to allocate device object for child device\n"); 2060 return NULL; 2061 } 2062 2063 child_device_obj->channel = channel; 2064 guid_copy(&child_device_obj->dev_type, type); 2065 guid_copy(&child_device_obj->dev_instance, instance); 2066 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 2067 2068 return child_device_obj; 2069 } 2070 2071 /* 2072 * vmbus_device_register - Register the child device 2073 */ 2074 int vmbus_device_register(struct hv_device *child_device_obj) 2075 { 2076 struct kobject *kobj = &child_device_obj->device.kobj; 2077 int ret; 2078 2079 dev_set_name(&child_device_obj->device, "%pUl", 2080 &child_device_obj->channel->offermsg.offer.if_instance); 2081 2082 child_device_obj->device.bus = &hv_bus; 2083 child_device_obj->device.parent = &hv_acpi_dev->dev; 2084 child_device_obj->device.release = vmbus_device_release; 2085 2086 child_device_obj->device.dma_parms = &child_device_obj->dma_parms; 2087 child_device_obj->device.dma_mask = &child_device_obj->dma_mask; 2088 dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64)); 2089 2090 /* 2091 * Register with the LDM. This will kick off the driver/device 2092 * binding...which will eventually call vmbus_match() and vmbus_probe() 2093 */ 2094 ret = device_register(&child_device_obj->device); 2095 if (ret) { 2096 pr_err("Unable to register child device\n"); 2097 return ret; 2098 } 2099 2100 child_device_obj->channels_kset = kset_create_and_add("channels", 2101 NULL, kobj); 2102 if (!child_device_obj->channels_kset) { 2103 ret = -ENOMEM; 2104 goto err_dev_unregister; 2105 } 2106 2107 ret = vmbus_add_channel_kobj(child_device_obj, 2108 child_device_obj->channel); 2109 if (ret) { 2110 pr_err("Unable to register primary channeln"); 2111 goto err_kset_unregister; 2112 } 2113 hv_debug_add_dev_dir(child_device_obj); 2114 2115 return 0; 2116 2117 err_kset_unregister: 2118 kset_unregister(child_device_obj->channels_kset); 2119 2120 err_dev_unregister: 2121 device_unregister(&child_device_obj->device); 2122 return ret; 2123 } 2124 2125 /* 2126 * vmbus_device_unregister - Remove the specified child device 2127 * from the vmbus. 2128 */ 2129 void vmbus_device_unregister(struct hv_device *device_obj) 2130 { 2131 pr_debug("child device %s unregistered\n", 2132 dev_name(&device_obj->device)); 2133 2134 kset_unregister(device_obj->channels_kset); 2135 2136 /* 2137 * Kick off the process of unregistering the device. 2138 * This will call vmbus_remove() and eventually vmbus_device_release() 2139 */ 2140 device_unregister(&device_obj->device); 2141 } 2142 2143 2144 /* 2145 * VMBUS is an acpi enumerated device. Get the information we 2146 * need from DSDT. 2147 */ 2148 #define VTPM_BASE_ADDRESS 0xfed40000 2149 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 2150 { 2151 resource_size_t start = 0; 2152 resource_size_t end = 0; 2153 struct resource *new_res; 2154 struct resource **old_res = &hyperv_mmio; 2155 struct resource **prev_res = NULL; 2156 struct resource r; 2157 2158 switch (res->type) { 2159 2160 /* 2161 * "Address" descriptors are for bus windows. Ignore 2162 * "memory" descriptors, which are for registers on 2163 * devices. 2164 */ 2165 case ACPI_RESOURCE_TYPE_ADDRESS32: 2166 start = res->data.address32.address.minimum; 2167 end = res->data.address32.address.maximum; 2168 break; 2169 2170 case ACPI_RESOURCE_TYPE_ADDRESS64: 2171 start = res->data.address64.address.minimum; 2172 end = res->data.address64.address.maximum; 2173 break; 2174 2175 /* 2176 * The IRQ information is needed only on ARM64, which Hyper-V 2177 * sets up in the extended format. IRQ information is present 2178 * on x86/x64 in the non-extended format but it is not used by 2179 * Linux. So don't bother checking for the non-extended format. 2180 */ 2181 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 2182 if (!acpi_dev_resource_interrupt(res, 0, &r)) { 2183 pr_err("Unable to parse Hyper-V ACPI interrupt\n"); 2184 return AE_ERROR; 2185 } 2186 /* ARM64 INTID for VMbus */ 2187 vmbus_interrupt = res->data.extended_irq.interrupts[0]; 2188 /* Linux IRQ number */ 2189 vmbus_irq = r.start; 2190 return AE_OK; 2191 2192 default: 2193 /* Unused resource type */ 2194 return AE_OK; 2195 2196 } 2197 /* 2198 * Ignore ranges that are below 1MB, as they're not 2199 * necessary or useful here. 2200 */ 2201 if (end < 0x100000) 2202 return AE_OK; 2203 2204 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 2205 if (!new_res) 2206 return AE_NO_MEMORY; 2207 2208 /* If this range overlaps the virtual TPM, truncate it. */ 2209 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 2210 end = VTPM_BASE_ADDRESS; 2211 2212 new_res->name = "hyperv mmio"; 2213 new_res->flags = IORESOURCE_MEM; 2214 new_res->start = start; 2215 new_res->end = end; 2216 2217 /* 2218 * If two ranges are adjacent, merge them. 2219 */ 2220 do { 2221 if (!*old_res) { 2222 *old_res = new_res; 2223 break; 2224 } 2225 2226 if (((*old_res)->end + 1) == new_res->start) { 2227 (*old_res)->end = new_res->end; 2228 kfree(new_res); 2229 break; 2230 } 2231 2232 if ((*old_res)->start == new_res->end + 1) { 2233 (*old_res)->start = new_res->start; 2234 kfree(new_res); 2235 break; 2236 } 2237 2238 if ((*old_res)->start > new_res->end) { 2239 new_res->sibling = *old_res; 2240 if (prev_res) 2241 (*prev_res)->sibling = new_res; 2242 *old_res = new_res; 2243 break; 2244 } 2245 2246 prev_res = old_res; 2247 old_res = &(*old_res)->sibling; 2248 2249 } while (1); 2250 2251 return AE_OK; 2252 } 2253 2254 static int vmbus_acpi_remove(struct acpi_device *device) 2255 { 2256 struct resource *cur_res; 2257 struct resource *next_res; 2258 2259 if (hyperv_mmio) { 2260 if (fb_mmio) { 2261 __release_region(hyperv_mmio, fb_mmio->start, 2262 resource_size(fb_mmio)); 2263 fb_mmio = NULL; 2264 } 2265 2266 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 2267 next_res = cur_res->sibling; 2268 kfree(cur_res); 2269 } 2270 } 2271 2272 return 0; 2273 } 2274 2275 static void vmbus_reserve_fb(void) 2276 { 2277 int size; 2278 /* 2279 * Make a claim for the frame buffer in the resource tree under the 2280 * first node, which will be the one below 4GB. The length seems to 2281 * be underreported, particularly in a Generation 1 VM. So start out 2282 * reserving a larger area and make it smaller until it succeeds. 2283 */ 2284 2285 if (screen_info.lfb_base) { 2286 if (efi_enabled(EFI_BOOT)) 2287 size = max_t(__u32, screen_info.lfb_size, 0x800000); 2288 else 2289 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 2290 2291 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 2292 fb_mmio = __request_region(hyperv_mmio, 2293 screen_info.lfb_base, size, 2294 fb_mmio_name, 0); 2295 } 2296 } 2297 } 2298 2299 /** 2300 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 2301 * @new: If successful, supplied a pointer to the 2302 * allocated MMIO space. 2303 * @device_obj: Identifies the caller 2304 * @min: Minimum guest physical address of the 2305 * allocation 2306 * @max: Maximum guest physical address 2307 * @size: Size of the range to be allocated 2308 * @align: Alignment of the range to be allocated 2309 * @fb_overlap_ok: Whether this allocation can be allowed 2310 * to overlap the video frame buffer. 2311 * 2312 * This function walks the resources granted to VMBus by the 2313 * _CRS object in the ACPI namespace underneath the parent 2314 * "bridge" whether that's a root PCI bus in the Generation 1 2315 * case or a Module Device in the Generation 2 case. It then 2316 * attempts to allocate from the global MMIO pool in a way that 2317 * matches the constraints supplied in these parameters and by 2318 * that _CRS. 2319 * 2320 * Return: 0 on success, -errno on failure 2321 */ 2322 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 2323 resource_size_t min, resource_size_t max, 2324 resource_size_t size, resource_size_t align, 2325 bool fb_overlap_ok) 2326 { 2327 struct resource *iter, *shadow; 2328 resource_size_t range_min, range_max, start; 2329 const char *dev_n = dev_name(&device_obj->device); 2330 int retval; 2331 2332 retval = -ENXIO; 2333 mutex_lock(&hyperv_mmio_lock); 2334 2335 /* 2336 * If overlaps with frame buffers are allowed, then first attempt to 2337 * make the allocation from within the reserved region. Because it 2338 * is already reserved, no shadow allocation is necessary. 2339 */ 2340 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 2341 !(max < fb_mmio->start)) { 2342 2343 range_min = fb_mmio->start; 2344 range_max = fb_mmio->end; 2345 start = (range_min + align - 1) & ~(align - 1); 2346 for (; start + size - 1 <= range_max; start += align) { 2347 *new = request_mem_region_exclusive(start, size, dev_n); 2348 if (*new) { 2349 retval = 0; 2350 goto exit; 2351 } 2352 } 2353 } 2354 2355 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2356 if ((iter->start >= max) || (iter->end <= min)) 2357 continue; 2358 2359 range_min = iter->start; 2360 range_max = iter->end; 2361 start = (range_min + align - 1) & ~(align - 1); 2362 for (; start + size - 1 <= range_max; start += align) { 2363 shadow = __request_region(iter, start, size, NULL, 2364 IORESOURCE_BUSY); 2365 if (!shadow) 2366 continue; 2367 2368 *new = request_mem_region_exclusive(start, size, dev_n); 2369 if (*new) { 2370 shadow->name = (char *)*new; 2371 retval = 0; 2372 goto exit; 2373 } 2374 2375 __release_region(iter, start, size); 2376 } 2377 } 2378 2379 exit: 2380 mutex_unlock(&hyperv_mmio_lock); 2381 return retval; 2382 } 2383 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 2384 2385 /** 2386 * vmbus_free_mmio() - Free a memory-mapped I/O range. 2387 * @start: Base address of region to release. 2388 * @size: Size of the range to be allocated 2389 * 2390 * This function releases anything requested by 2391 * vmbus_mmio_allocate(). 2392 */ 2393 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 2394 { 2395 struct resource *iter; 2396 2397 mutex_lock(&hyperv_mmio_lock); 2398 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2399 if ((iter->start >= start + size) || (iter->end <= start)) 2400 continue; 2401 2402 __release_region(iter, start, size); 2403 } 2404 release_mem_region(start, size); 2405 mutex_unlock(&hyperv_mmio_lock); 2406 2407 } 2408 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 2409 2410 static int vmbus_acpi_add(struct acpi_device *device) 2411 { 2412 acpi_status result; 2413 int ret_val = -ENODEV; 2414 struct acpi_device *ancestor; 2415 2416 hv_acpi_dev = device; 2417 2418 /* 2419 * Older versions of Hyper-V for ARM64 fail to include the _CCA 2420 * method on the top level VMbus device in the DSDT. But devices 2421 * are hardware coherent in all current Hyper-V use cases, so fix 2422 * up the ACPI device to behave as if _CCA is present and indicates 2423 * hardware coherence. 2424 */ 2425 ACPI_COMPANION_SET(&device->dev, device); 2426 if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) && 2427 device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) { 2428 pr_info("No ACPI _CCA found; assuming coherent device I/O\n"); 2429 device->flags.cca_seen = true; 2430 device->flags.coherent_dma = true; 2431 } 2432 2433 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 2434 vmbus_walk_resources, NULL); 2435 2436 if (ACPI_FAILURE(result)) 2437 goto acpi_walk_err; 2438 /* 2439 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 2440 * firmware) is the VMOD that has the mmio ranges. Get that. 2441 */ 2442 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 2443 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 2444 vmbus_walk_resources, NULL); 2445 2446 if (ACPI_FAILURE(result)) 2447 continue; 2448 if (hyperv_mmio) { 2449 vmbus_reserve_fb(); 2450 break; 2451 } 2452 } 2453 ret_val = 0; 2454 2455 acpi_walk_err: 2456 complete(&probe_event); 2457 if (ret_val) 2458 vmbus_acpi_remove(device); 2459 return ret_val; 2460 } 2461 2462 #ifdef CONFIG_PM_SLEEP 2463 static int vmbus_bus_suspend(struct device *dev) 2464 { 2465 struct vmbus_channel *channel, *sc; 2466 2467 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) { 2468 /* 2469 * We wait here until the completion of any channel 2470 * offers that are currently in progress. 2471 */ 2472 usleep_range(1000, 2000); 2473 } 2474 2475 mutex_lock(&vmbus_connection.channel_mutex); 2476 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2477 if (!is_hvsock_channel(channel)) 2478 continue; 2479 2480 vmbus_force_channel_rescinded(channel); 2481 } 2482 mutex_unlock(&vmbus_connection.channel_mutex); 2483 2484 /* 2485 * Wait until all the sub-channels and hv_sock channels have been 2486 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise 2487 * they would conflict with the new sub-channels that will be created 2488 * in the resume path. hv_sock channels should also be destroyed, but 2489 * a hv_sock channel of an established hv_sock connection can not be 2490 * really destroyed since it may still be referenced by the userspace 2491 * application, so we just force the hv_sock channel to be rescinded 2492 * by vmbus_force_channel_rescinded(), and the userspace application 2493 * will thoroughly destroy the channel after hibernation. 2494 * 2495 * Note: the counter nr_chan_close_on_suspend may never go above 0 if 2496 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM. 2497 */ 2498 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0) 2499 wait_for_completion(&vmbus_connection.ready_for_suspend_event); 2500 2501 if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) { 2502 pr_err("Can not suspend due to a previous failed resuming\n"); 2503 return -EBUSY; 2504 } 2505 2506 mutex_lock(&vmbus_connection.channel_mutex); 2507 2508 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2509 /* 2510 * Remove the channel from the array of channels and invalidate 2511 * the channel's relid. Upon resume, vmbus_onoffer() will fix 2512 * up the relid (and other fields, if necessary) and add the 2513 * channel back to the array. 2514 */ 2515 vmbus_channel_unmap_relid(channel); 2516 channel->offermsg.child_relid = INVALID_RELID; 2517 2518 if (is_hvsock_channel(channel)) { 2519 if (!channel->rescind) { 2520 pr_err("hv_sock channel not rescinded!\n"); 2521 WARN_ON_ONCE(1); 2522 } 2523 continue; 2524 } 2525 2526 list_for_each_entry(sc, &channel->sc_list, sc_list) { 2527 pr_err("Sub-channel not deleted!\n"); 2528 WARN_ON_ONCE(1); 2529 } 2530 2531 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume); 2532 } 2533 2534 mutex_unlock(&vmbus_connection.channel_mutex); 2535 2536 vmbus_initiate_unload(false); 2537 2538 /* Reset the event for the next resume. */ 2539 reinit_completion(&vmbus_connection.ready_for_resume_event); 2540 2541 return 0; 2542 } 2543 2544 static int vmbus_bus_resume(struct device *dev) 2545 { 2546 struct vmbus_channel_msginfo *msginfo; 2547 size_t msgsize; 2548 int ret; 2549 2550 /* 2551 * We only use the 'vmbus_proto_version', which was in use before 2552 * hibernation, to re-negotiate with the host. 2553 */ 2554 if (!vmbus_proto_version) { 2555 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version); 2556 return -EINVAL; 2557 } 2558 2559 msgsize = sizeof(*msginfo) + 2560 sizeof(struct vmbus_channel_initiate_contact); 2561 2562 msginfo = kzalloc(msgsize, GFP_KERNEL); 2563 2564 if (msginfo == NULL) 2565 return -ENOMEM; 2566 2567 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version); 2568 2569 kfree(msginfo); 2570 2571 if (ret != 0) 2572 return ret; 2573 2574 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0); 2575 2576 vmbus_request_offers(); 2577 2578 if (wait_for_completion_timeout( 2579 &vmbus_connection.ready_for_resume_event, 10 * HZ) == 0) 2580 pr_err("Some vmbus device is missing after suspending?\n"); 2581 2582 /* Reset the event for the next suspend. */ 2583 reinit_completion(&vmbus_connection.ready_for_suspend_event); 2584 2585 return 0; 2586 } 2587 #else 2588 #define vmbus_bus_suspend NULL 2589 #define vmbus_bus_resume NULL 2590 #endif /* CONFIG_PM_SLEEP */ 2591 2592 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 2593 {"VMBUS", 0}, 2594 {"VMBus", 0}, 2595 {"", 0}, 2596 }; 2597 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 2598 2599 /* 2600 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with 2601 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in 2602 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see 2603 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() -> 2604 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's 2605 * resume callback must also run via the "noirq" ops. 2606 * 2607 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment 2608 * earlier in this file before vmbus_pm. 2609 */ 2610 2611 static const struct dev_pm_ops vmbus_bus_pm = { 2612 .suspend_noirq = NULL, 2613 .resume_noirq = NULL, 2614 .freeze_noirq = vmbus_bus_suspend, 2615 .thaw_noirq = vmbus_bus_resume, 2616 .poweroff_noirq = vmbus_bus_suspend, 2617 .restore_noirq = vmbus_bus_resume 2618 }; 2619 2620 static struct acpi_driver vmbus_acpi_driver = { 2621 .name = "vmbus", 2622 .ids = vmbus_acpi_device_ids, 2623 .ops = { 2624 .add = vmbus_acpi_add, 2625 .remove = vmbus_acpi_remove, 2626 }, 2627 .drv.pm = &vmbus_bus_pm, 2628 }; 2629 2630 static void hv_kexec_handler(void) 2631 { 2632 hv_stimer_global_cleanup(); 2633 vmbus_initiate_unload(false); 2634 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 2635 mb(); 2636 cpuhp_remove_state(hyperv_cpuhp_online); 2637 }; 2638 2639 static void hv_crash_handler(struct pt_regs *regs) 2640 { 2641 int cpu; 2642 2643 vmbus_initiate_unload(true); 2644 /* 2645 * In crash handler we can't schedule synic cleanup for all CPUs, 2646 * doing the cleanup for current CPU only. This should be sufficient 2647 * for kdump. 2648 */ 2649 cpu = smp_processor_id(); 2650 hv_stimer_cleanup(cpu); 2651 hv_synic_disable_regs(cpu); 2652 }; 2653 2654 static int hv_synic_suspend(void) 2655 { 2656 /* 2657 * When we reach here, all the non-boot CPUs have been offlined. 2658 * If we're in a legacy configuration where stimer Direct Mode is 2659 * not enabled, the stimers on the non-boot CPUs have been unbound 2660 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() -> 2661 * hv_stimer_cleanup() -> clockevents_unbind_device(). 2662 * 2663 * hv_synic_suspend() only runs on CPU0 with interrupts disabled. 2664 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because: 2665 * 1) it's unnecessary as interrupts remain disabled between 2666 * syscore_suspend() and syscore_resume(): see create_image() and 2667 * resume_target_kernel() 2668 * 2) the stimer on CPU0 is automatically disabled later by 2669 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ... 2670 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown() 2671 * 3) a warning would be triggered if we call 2672 * clockevents_unbind_device(), which may sleep, in an 2673 * interrupts-disabled context. 2674 */ 2675 2676 hv_synic_disable_regs(0); 2677 2678 return 0; 2679 } 2680 2681 static void hv_synic_resume(void) 2682 { 2683 hv_synic_enable_regs(0); 2684 2685 /* 2686 * Note: we don't need to call hv_stimer_init(0), because the timer 2687 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is 2688 * automatically re-enabled in timekeeping_resume(). 2689 */ 2690 } 2691 2692 /* The callbacks run only on CPU0, with irqs_disabled. */ 2693 static struct syscore_ops hv_synic_syscore_ops = { 2694 .suspend = hv_synic_suspend, 2695 .resume = hv_synic_resume, 2696 }; 2697 2698 static int __init hv_acpi_init(void) 2699 { 2700 int ret, t; 2701 2702 if (!hv_is_hyperv_initialized()) 2703 return -ENODEV; 2704 2705 if (hv_root_partition) 2706 return 0; 2707 2708 init_completion(&probe_event); 2709 2710 /* 2711 * Get ACPI resources first. 2712 */ 2713 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 2714 2715 if (ret) 2716 return ret; 2717 2718 t = wait_for_completion_timeout(&probe_event, 5*HZ); 2719 if (t == 0) { 2720 ret = -ETIMEDOUT; 2721 goto cleanup; 2722 } 2723 2724 /* 2725 * If we're on an architecture with a hardcoded hypervisor 2726 * vector (i.e. x86/x64), override the VMbus interrupt found 2727 * in the ACPI tables. Ensure vmbus_irq is not set since the 2728 * normal Linux IRQ mechanism is not used in this case. 2729 */ 2730 #ifdef HYPERVISOR_CALLBACK_VECTOR 2731 vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR; 2732 vmbus_irq = -1; 2733 #endif 2734 2735 hv_debug_init(); 2736 2737 ret = vmbus_bus_init(); 2738 if (ret) 2739 goto cleanup; 2740 2741 hv_setup_kexec_handler(hv_kexec_handler); 2742 hv_setup_crash_handler(hv_crash_handler); 2743 2744 register_syscore_ops(&hv_synic_syscore_ops); 2745 2746 return 0; 2747 2748 cleanup: 2749 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2750 hv_acpi_dev = NULL; 2751 return ret; 2752 } 2753 2754 static void __exit vmbus_exit(void) 2755 { 2756 int cpu; 2757 2758 unregister_syscore_ops(&hv_synic_syscore_ops); 2759 2760 hv_remove_kexec_handler(); 2761 hv_remove_crash_handler(); 2762 vmbus_connection.conn_state = DISCONNECTED; 2763 hv_stimer_global_cleanup(); 2764 vmbus_disconnect(); 2765 if (vmbus_irq == -1) { 2766 hv_remove_vmbus_handler(); 2767 } else { 2768 free_percpu_irq(vmbus_irq, vmbus_evt); 2769 free_percpu(vmbus_evt); 2770 } 2771 for_each_online_cpu(cpu) { 2772 struct hv_per_cpu_context *hv_cpu 2773 = per_cpu_ptr(hv_context.cpu_context, cpu); 2774 2775 tasklet_kill(&hv_cpu->msg_dpc); 2776 } 2777 hv_debug_rm_all_dir(); 2778 2779 vmbus_free_channels(); 2780 kfree(vmbus_connection.channels); 2781 2782 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 2783 kmsg_dump_unregister(&hv_kmsg_dumper); 2784 unregister_die_notifier(&hyperv_die_block); 2785 } 2786 2787 /* 2788 * The panic notifier is always registered, hence we should 2789 * also unconditionally unregister it here as well. 2790 */ 2791 atomic_notifier_chain_unregister(&panic_notifier_list, 2792 &hyperv_panic_block); 2793 2794 free_page((unsigned long)hv_panic_page); 2795 unregister_sysctl_table(hv_ctl_table_hdr); 2796 hv_ctl_table_hdr = NULL; 2797 bus_unregister(&hv_bus); 2798 2799 cpuhp_remove_state(hyperv_cpuhp_online); 2800 hv_synic_free(); 2801 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2802 } 2803 2804 2805 MODULE_LICENSE("GPL"); 2806 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver"); 2807 2808 subsys_initcall(hv_acpi_init); 2809 module_exit(vmbus_exit); 2810