1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/device.h> 15 #include <linux/interrupt.h> 16 #include <linux/sysctl.h> 17 #include <linux/slab.h> 18 #include <linux/acpi.h> 19 #include <linux/completion.h> 20 #include <linux/hyperv.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/clockchips.h> 23 #include <linux/cpu.h> 24 #include <linux/sched/task_stack.h> 25 26 #include <asm/mshyperv.h> 27 #include <linux/delay.h> 28 #include <linux/notifier.h> 29 #include <linux/ptrace.h> 30 #include <linux/screen_info.h> 31 #include <linux/kdebug.h> 32 #include <linux/efi.h> 33 #include <linux/random.h> 34 #include <linux/syscore_ops.h> 35 #include <clocksource/hyperv_timer.h> 36 #include "hyperv_vmbus.h" 37 38 struct vmbus_dynid { 39 struct list_head node; 40 struct hv_vmbus_device_id id; 41 }; 42 43 static struct acpi_device *hv_acpi_dev; 44 45 static struct completion probe_event; 46 47 static int hyperv_cpuhp_online; 48 49 static void *hv_panic_page; 50 51 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 52 void *args) 53 { 54 struct pt_regs *regs; 55 56 regs = current_pt_regs(); 57 58 hyperv_report_panic(regs, val); 59 return NOTIFY_DONE; 60 } 61 62 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 63 void *args) 64 { 65 struct die_args *die = (struct die_args *)args; 66 struct pt_regs *regs = die->regs; 67 68 hyperv_report_panic(regs, val); 69 return NOTIFY_DONE; 70 } 71 72 static struct notifier_block hyperv_die_block = { 73 .notifier_call = hyperv_die_event, 74 }; 75 static struct notifier_block hyperv_panic_block = { 76 .notifier_call = hyperv_panic_event, 77 }; 78 79 static const char *fb_mmio_name = "fb_range"; 80 static struct resource *fb_mmio; 81 static struct resource *hyperv_mmio; 82 static DEFINE_SEMAPHORE(hyperv_mmio_lock); 83 84 static int vmbus_exists(void) 85 { 86 if (hv_acpi_dev == NULL) 87 return -ENODEV; 88 89 return 0; 90 } 91 92 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2) 93 static void print_alias_name(struct hv_device *hv_dev, char *alias_name) 94 { 95 int i; 96 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2) 97 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]); 98 } 99 100 static u8 channel_monitor_group(const struct vmbus_channel *channel) 101 { 102 return (u8)channel->offermsg.monitorid / 32; 103 } 104 105 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 106 { 107 return (u8)channel->offermsg.monitorid % 32; 108 } 109 110 static u32 channel_pending(const struct vmbus_channel *channel, 111 const struct hv_monitor_page *monitor_page) 112 { 113 u8 monitor_group = channel_monitor_group(channel); 114 115 return monitor_page->trigger_group[monitor_group].pending; 116 } 117 118 static u32 channel_latency(const struct vmbus_channel *channel, 119 const struct hv_monitor_page *monitor_page) 120 { 121 u8 monitor_group = channel_monitor_group(channel); 122 u8 monitor_offset = channel_monitor_offset(channel); 123 124 return monitor_page->latency[monitor_group][monitor_offset]; 125 } 126 127 static u32 channel_conn_id(struct vmbus_channel *channel, 128 struct hv_monitor_page *monitor_page) 129 { 130 u8 monitor_group = channel_monitor_group(channel); 131 u8 monitor_offset = channel_monitor_offset(channel); 132 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 133 } 134 135 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 136 char *buf) 137 { 138 struct hv_device *hv_dev = device_to_hv_device(dev); 139 140 if (!hv_dev->channel) 141 return -ENODEV; 142 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 143 } 144 static DEVICE_ATTR_RO(id); 145 146 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 147 char *buf) 148 { 149 struct hv_device *hv_dev = device_to_hv_device(dev); 150 151 if (!hv_dev->channel) 152 return -ENODEV; 153 return sprintf(buf, "%d\n", hv_dev->channel->state); 154 } 155 static DEVICE_ATTR_RO(state); 156 157 static ssize_t monitor_id_show(struct device *dev, 158 struct device_attribute *dev_attr, char *buf) 159 { 160 struct hv_device *hv_dev = device_to_hv_device(dev); 161 162 if (!hv_dev->channel) 163 return -ENODEV; 164 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 165 } 166 static DEVICE_ATTR_RO(monitor_id); 167 168 static ssize_t class_id_show(struct device *dev, 169 struct device_attribute *dev_attr, char *buf) 170 { 171 struct hv_device *hv_dev = device_to_hv_device(dev); 172 173 if (!hv_dev->channel) 174 return -ENODEV; 175 return sprintf(buf, "{%pUl}\n", 176 hv_dev->channel->offermsg.offer.if_type.b); 177 } 178 static DEVICE_ATTR_RO(class_id); 179 180 static ssize_t device_id_show(struct device *dev, 181 struct device_attribute *dev_attr, char *buf) 182 { 183 struct hv_device *hv_dev = device_to_hv_device(dev); 184 185 if (!hv_dev->channel) 186 return -ENODEV; 187 return sprintf(buf, "{%pUl}\n", 188 hv_dev->channel->offermsg.offer.if_instance.b); 189 } 190 static DEVICE_ATTR_RO(device_id); 191 192 static ssize_t modalias_show(struct device *dev, 193 struct device_attribute *dev_attr, char *buf) 194 { 195 struct hv_device *hv_dev = device_to_hv_device(dev); 196 char alias_name[VMBUS_ALIAS_LEN + 1]; 197 198 print_alias_name(hv_dev, alias_name); 199 return sprintf(buf, "vmbus:%s\n", alias_name); 200 } 201 static DEVICE_ATTR_RO(modalias); 202 203 #ifdef CONFIG_NUMA 204 static ssize_t numa_node_show(struct device *dev, 205 struct device_attribute *attr, char *buf) 206 { 207 struct hv_device *hv_dev = device_to_hv_device(dev); 208 209 if (!hv_dev->channel) 210 return -ENODEV; 211 212 return sprintf(buf, "%d\n", hv_dev->channel->numa_node); 213 } 214 static DEVICE_ATTR_RO(numa_node); 215 #endif 216 217 static ssize_t server_monitor_pending_show(struct device *dev, 218 struct device_attribute *dev_attr, 219 char *buf) 220 { 221 struct hv_device *hv_dev = device_to_hv_device(dev); 222 223 if (!hv_dev->channel) 224 return -ENODEV; 225 return sprintf(buf, "%d\n", 226 channel_pending(hv_dev->channel, 227 vmbus_connection.monitor_pages[0])); 228 } 229 static DEVICE_ATTR_RO(server_monitor_pending); 230 231 static ssize_t client_monitor_pending_show(struct device *dev, 232 struct device_attribute *dev_attr, 233 char *buf) 234 { 235 struct hv_device *hv_dev = device_to_hv_device(dev); 236 237 if (!hv_dev->channel) 238 return -ENODEV; 239 return sprintf(buf, "%d\n", 240 channel_pending(hv_dev->channel, 241 vmbus_connection.monitor_pages[1])); 242 } 243 static DEVICE_ATTR_RO(client_monitor_pending); 244 245 static ssize_t server_monitor_latency_show(struct device *dev, 246 struct device_attribute *dev_attr, 247 char *buf) 248 { 249 struct hv_device *hv_dev = device_to_hv_device(dev); 250 251 if (!hv_dev->channel) 252 return -ENODEV; 253 return sprintf(buf, "%d\n", 254 channel_latency(hv_dev->channel, 255 vmbus_connection.monitor_pages[0])); 256 } 257 static DEVICE_ATTR_RO(server_monitor_latency); 258 259 static ssize_t client_monitor_latency_show(struct device *dev, 260 struct device_attribute *dev_attr, 261 char *buf) 262 { 263 struct hv_device *hv_dev = device_to_hv_device(dev); 264 265 if (!hv_dev->channel) 266 return -ENODEV; 267 return sprintf(buf, "%d\n", 268 channel_latency(hv_dev->channel, 269 vmbus_connection.monitor_pages[1])); 270 } 271 static DEVICE_ATTR_RO(client_monitor_latency); 272 273 static ssize_t server_monitor_conn_id_show(struct device *dev, 274 struct device_attribute *dev_attr, 275 char *buf) 276 { 277 struct hv_device *hv_dev = device_to_hv_device(dev); 278 279 if (!hv_dev->channel) 280 return -ENODEV; 281 return sprintf(buf, "%d\n", 282 channel_conn_id(hv_dev->channel, 283 vmbus_connection.monitor_pages[0])); 284 } 285 static DEVICE_ATTR_RO(server_monitor_conn_id); 286 287 static ssize_t client_monitor_conn_id_show(struct device *dev, 288 struct device_attribute *dev_attr, 289 char *buf) 290 { 291 struct hv_device *hv_dev = device_to_hv_device(dev); 292 293 if (!hv_dev->channel) 294 return -ENODEV; 295 return sprintf(buf, "%d\n", 296 channel_conn_id(hv_dev->channel, 297 vmbus_connection.monitor_pages[1])); 298 } 299 static DEVICE_ATTR_RO(client_monitor_conn_id); 300 301 static ssize_t out_intr_mask_show(struct device *dev, 302 struct device_attribute *dev_attr, char *buf) 303 { 304 struct hv_device *hv_dev = device_to_hv_device(dev); 305 struct hv_ring_buffer_debug_info outbound; 306 int ret; 307 308 if (!hv_dev->channel) 309 return -ENODEV; 310 311 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 312 &outbound); 313 if (ret < 0) 314 return ret; 315 316 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 317 } 318 static DEVICE_ATTR_RO(out_intr_mask); 319 320 static ssize_t out_read_index_show(struct device *dev, 321 struct device_attribute *dev_attr, char *buf) 322 { 323 struct hv_device *hv_dev = device_to_hv_device(dev); 324 struct hv_ring_buffer_debug_info outbound; 325 int ret; 326 327 if (!hv_dev->channel) 328 return -ENODEV; 329 330 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 331 &outbound); 332 if (ret < 0) 333 return ret; 334 return sprintf(buf, "%d\n", outbound.current_read_index); 335 } 336 static DEVICE_ATTR_RO(out_read_index); 337 338 static ssize_t out_write_index_show(struct device *dev, 339 struct device_attribute *dev_attr, 340 char *buf) 341 { 342 struct hv_device *hv_dev = device_to_hv_device(dev); 343 struct hv_ring_buffer_debug_info outbound; 344 int ret; 345 346 if (!hv_dev->channel) 347 return -ENODEV; 348 349 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 350 &outbound); 351 if (ret < 0) 352 return ret; 353 return sprintf(buf, "%d\n", outbound.current_write_index); 354 } 355 static DEVICE_ATTR_RO(out_write_index); 356 357 static ssize_t out_read_bytes_avail_show(struct device *dev, 358 struct device_attribute *dev_attr, 359 char *buf) 360 { 361 struct hv_device *hv_dev = device_to_hv_device(dev); 362 struct hv_ring_buffer_debug_info outbound; 363 int ret; 364 365 if (!hv_dev->channel) 366 return -ENODEV; 367 368 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 369 &outbound); 370 if (ret < 0) 371 return ret; 372 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 373 } 374 static DEVICE_ATTR_RO(out_read_bytes_avail); 375 376 static ssize_t out_write_bytes_avail_show(struct device *dev, 377 struct device_attribute *dev_attr, 378 char *buf) 379 { 380 struct hv_device *hv_dev = device_to_hv_device(dev); 381 struct hv_ring_buffer_debug_info outbound; 382 int ret; 383 384 if (!hv_dev->channel) 385 return -ENODEV; 386 387 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 388 &outbound); 389 if (ret < 0) 390 return ret; 391 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 392 } 393 static DEVICE_ATTR_RO(out_write_bytes_avail); 394 395 static ssize_t in_intr_mask_show(struct device *dev, 396 struct device_attribute *dev_attr, char *buf) 397 { 398 struct hv_device *hv_dev = device_to_hv_device(dev); 399 struct hv_ring_buffer_debug_info inbound; 400 int ret; 401 402 if (!hv_dev->channel) 403 return -ENODEV; 404 405 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 406 if (ret < 0) 407 return ret; 408 409 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 410 } 411 static DEVICE_ATTR_RO(in_intr_mask); 412 413 static ssize_t in_read_index_show(struct device *dev, 414 struct device_attribute *dev_attr, char *buf) 415 { 416 struct hv_device *hv_dev = device_to_hv_device(dev); 417 struct hv_ring_buffer_debug_info inbound; 418 int ret; 419 420 if (!hv_dev->channel) 421 return -ENODEV; 422 423 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 424 if (ret < 0) 425 return ret; 426 427 return sprintf(buf, "%d\n", inbound.current_read_index); 428 } 429 static DEVICE_ATTR_RO(in_read_index); 430 431 static ssize_t in_write_index_show(struct device *dev, 432 struct device_attribute *dev_attr, char *buf) 433 { 434 struct hv_device *hv_dev = device_to_hv_device(dev); 435 struct hv_ring_buffer_debug_info inbound; 436 int ret; 437 438 if (!hv_dev->channel) 439 return -ENODEV; 440 441 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 442 if (ret < 0) 443 return ret; 444 445 return sprintf(buf, "%d\n", inbound.current_write_index); 446 } 447 static DEVICE_ATTR_RO(in_write_index); 448 449 static ssize_t in_read_bytes_avail_show(struct device *dev, 450 struct device_attribute *dev_attr, 451 char *buf) 452 { 453 struct hv_device *hv_dev = device_to_hv_device(dev); 454 struct hv_ring_buffer_debug_info inbound; 455 int ret; 456 457 if (!hv_dev->channel) 458 return -ENODEV; 459 460 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 461 if (ret < 0) 462 return ret; 463 464 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 465 } 466 static DEVICE_ATTR_RO(in_read_bytes_avail); 467 468 static ssize_t in_write_bytes_avail_show(struct device *dev, 469 struct device_attribute *dev_attr, 470 char *buf) 471 { 472 struct hv_device *hv_dev = device_to_hv_device(dev); 473 struct hv_ring_buffer_debug_info inbound; 474 int ret; 475 476 if (!hv_dev->channel) 477 return -ENODEV; 478 479 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 480 if (ret < 0) 481 return ret; 482 483 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 484 } 485 static DEVICE_ATTR_RO(in_write_bytes_avail); 486 487 static ssize_t channel_vp_mapping_show(struct device *dev, 488 struct device_attribute *dev_attr, 489 char *buf) 490 { 491 struct hv_device *hv_dev = device_to_hv_device(dev); 492 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 493 unsigned long flags; 494 int buf_size = PAGE_SIZE, n_written, tot_written; 495 struct list_head *cur; 496 497 if (!channel) 498 return -ENODEV; 499 500 tot_written = snprintf(buf, buf_size, "%u:%u\n", 501 channel->offermsg.child_relid, channel->target_cpu); 502 503 spin_lock_irqsave(&channel->lock, flags); 504 505 list_for_each(cur, &channel->sc_list) { 506 if (tot_written >= buf_size - 1) 507 break; 508 509 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 510 n_written = scnprintf(buf + tot_written, 511 buf_size - tot_written, 512 "%u:%u\n", 513 cur_sc->offermsg.child_relid, 514 cur_sc->target_cpu); 515 tot_written += n_written; 516 } 517 518 spin_unlock_irqrestore(&channel->lock, flags); 519 520 return tot_written; 521 } 522 static DEVICE_ATTR_RO(channel_vp_mapping); 523 524 static ssize_t vendor_show(struct device *dev, 525 struct device_attribute *dev_attr, 526 char *buf) 527 { 528 struct hv_device *hv_dev = device_to_hv_device(dev); 529 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 530 } 531 static DEVICE_ATTR_RO(vendor); 532 533 static ssize_t device_show(struct device *dev, 534 struct device_attribute *dev_attr, 535 char *buf) 536 { 537 struct hv_device *hv_dev = device_to_hv_device(dev); 538 return sprintf(buf, "0x%x\n", hv_dev->device_id); 539 } 540 static DEVICE_ATTR_RO(device); 541 542 static ssize_t driver_override_store(struct device *dev, 543 struct device_attribute *attr, 544 const char *buf, size_t count) 545 { 546 struct hv_device *hv_dev = device_to_hv_device(dev); 547 char *driver_override, *old, *cp; 548 549 /* We need to keep extra room for a newline */ 550 if (count >= (PAGE_SIZE - 1)) 551 return -EINVAL; 552 553 driver_override = kstrndup(buf, count, GFP_KERNEL); 554 if (!driver_override) 555 return -ENOMEM; 556 557 cp = strchr(driver_override, '\n'); 558 if (cp) 559 *cp = '\0'; 560 561 device_lock(dev); 562 old = hv_dev->driver_override; 563 if (strlen(driver_override)) { 564 hv_dev->driver_override = driver_override; 565 } else { 566 kfree(driver_override); 567 hv_dev->driver_override = NULL; 568 } 569 device_unlock(dev); 570 571 kfree(old); 572 573 return count; 574 } 575 576 static ssize_t driver_override_show(struct device *dev, 577 struct device_attribute *attr, char *buf) 578 { 579 struct hv_device *hv_dev = device_to_hv_device(dev); 580 ssize_t len; 581 582 device_lock(dev); 583 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override); 584 device_unlock(dev); 585 586 return len; 587 } 588 static DEVICE_ATTR_RW(driver_override); 589 590 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 591 static struct attribute *vmbus_dev_attrs[] = { 592 &dev_attr_id.attr, 593 &dev_attr_state.attr, 594 &dev_attr_monitor_id.attr, 595 &dev_attr_class_id.attr, 596 &dev_attr_device_id.attr, 597 &dev_attr_modalias.attr, 598 #ifdef CONFIG_NUMA 599 &dev_attr_numa_node.attr, 600 #endif 601 &dev_attr_server_monitor_pending.attr, 602 &dev_attr_client_monitor_pending.attr, 603 &dev_attr_server_monitor_latency.attr, 604 &dev_attr_client_monitor_latency.attr, 605 &dev_attr_server_monitor_conn_id.attr, 606 &dev_attr_client_monitor_conn_id.attr, 607 &dev_attr_out_intr_mask.attr, 608 &dev_attr_out_read_index.attr, 609 &dev_attr_out_write_index.attr, 610 &dev_attr_out_read_bytes_avail.attr, 611 &dev_attr_out_write_bytes_avail.attr, 612 &dev_attr_in_intr_mask.attr, 613 &dev_attr_in_read_index.attr, 614 &dev_attr_in_write_index.attr, 615 &dev_attr_in_read_bytes_avail.attr, 616 &dev_attr_in_write_bytes_avail.attr, 617 &dev_attr_channel_vp_mapping.attr, 618 &dev_attr_vendor.attr, 619 &dev_attr_device.attr, 620 &dev_attr_driver_override.attr, 621 NULL, 622 }; 623 624 /* 625 * Device-level attribute_group callback function. Returns the permission for 626 * each attribute, and returns 0 if an attribute is not visible. 627 */ 628 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj, 629 struct attribute *attr, int idx) 630 { 631 struct device *dev = kobj_to_dev(kobj); 632 const struct hv_device *hv_dev = device_to_hv_device(dev); 633 634 /* Hide the monitor attributes if the monitor mechanism is not used. */ 635 if (!hv_dev->channel->offermsg.monitor_allocated && 636 (attr == &dev_attr_monitor_id.attr || 637 attr == &dev_attr_server_monitor_pending.attr || 638 attr == &dev_attr_client_monitor_pending.attr || 639 attr == &dev_attr_server_monitor_latency.attr || 640 attr == &dev_attr_client_monitor_latency.attr || 641 attr == &dev_attr_server_monitor_conn_id.attr || 642 attr == &dev_attr_client_monitor_conn_id.attr)) 643 return 0; 644 645 return attr->mode; 646 } 647 648 static const struct attribute_group vmbus_dev_group = { 649 .attrs = vmbus_dev_attrs, 650 .is_visible = vmbus_dev_attr_is_visible 651 }; 652 __ATTRIBUTE_GROUPS(vmbus_dev); 653 654 /* 655 * vmbus_uevent - add uevent for our device 656 * 657 * This routine is invoked when a device is added or removed on the vmbus to 658 * generate a uevent to udev in the userspace. The udev will then look at its 659 * rule and the uevent generated here to load the appropriate driver 660 * 661 * The alias string will be of the form vmbus:guid where guid is the string 662 * representation of the device guid (each byte of the guid will be 663 * represented with two hex characters. 664 */ 665 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 666 { 667 struct hv_device *dev = device_to_hv_device(device); 668 int ret; 669 char alias_name[VMBUS_ALIAS_LEN + 1]; 670 671 print_alias_name(dev, alias_name); 672 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name); 673 return ret; 674 } 675 676 static const struct hv_vmbus_device_id * 677 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid) 678 { 679 if (id == NULL) 680 return NULL; /* empty device table */ 681 682 for (; !guid_is_null(&id->guid); id++) 683 if (guid_equal(&id->guid, guid)) 684 return id; 685 686 return NULL; 687 } 688 689 static const struct hv_vmbus_device_id * 690 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid) 691 { 692 const struct hv_vmbus_device_id *id = NULL; 693 struct vmbus_dynid *dynid; 694 695 spin_lock(&drv->dynids.lock); 696 list_for_each_entry(dynid, &drv->dynids.list, node) { 697 if (guid_equal(&dynid->id.guid, guid)) { 698 id = &dynid->id; 699 break; 700 } 701 } 702 spin_unlock(&drv->dynids.lock); 703 704 return id; 705 } 706 707 static const struct hv_vmbus_device_id vmbus_device_null; 708 709 /* 710 * Return a matching hv_vmbus_device_id pointer. 711 * If there is no match, return NULL. 712 */ 713 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 714 struct hv_device *dev) 715 { 716 const guid_t *guid = &dev->dev_type; 717 const struct hv_vmbus_device_id *id; 718 719 /* When driver_override is set, only bind to the matching driver */ 720 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 721 return NULL; 722 723 /* Look at the dynamic ids first, before the static ones */ 724 id = hv_vmbus_dynid_match(drv, guid); 725 if (!id) 726 id = hv_vmbus_dev_match(drv->id_table, guid); 727 728 /* driver_override will always match, send a dummy id */ 729 if (!id && dev->driver_override) 730 id = &vmbus_device_null; 731 732 return id; 733 } 734 735 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 736 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid) 737 { 738 struct vmbus_dynid *dynid; 739 740 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 741 if (!dynid) 742 return -ENOMEM; 743 744 dynid->id.guid = *guid; 745 746 spin_lock(&drv->dynids.lock); 747 list_add_tail(&dynid->node, &drv->dynids.list); 748 spin_unlock(&drv->dynids.lock); 749 750 return driver_attach(&drv->driver); 751 } 752 753 static void vmbus_free_dynids(struct hv_driver *drv) 754 { 755 struct vmbus_dynid *dynid, *n; 756 757 spin_lock(&drv->dynids.lock); 758 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 759 list_del(&dynid->node); 760 kfree(dynid); 761 } 762 spin_unlock(&drv->dynids.lock); 763 } 764 765 /* 766 * store_new_id - sysfs frontend to vmbus_add_dynid() 767 * 768 * Allow GUIDs to be added to an existing driver via sysfs. 769 */ 770 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 771 size_t count) 772 { 773 struct hv_driver *drv = drv_to_hv_drv(driver); 774 guid_t guid; 775 ssize_t retval; 776 777 retval = guid_parse(buf, &guid); 778 if (retval) 779 return retval; 780 781 if (hv_vmbus_dynid_match(drv, &guid)) 782 return -EEXIST; 783 784 retval = vmbus_add_dynid(drv, &guid); 785 if (retval) 786 return retval; 787 return count; 788 } 789 static DRIVER_ATTR_WO(new_id); 790 791 /* 792 * store_remove_id - remove a PCI device ID from this driver 793 * 794 * Removes a dynamic pci device ID to this driver. 795 */ 796 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 797 size_t count) 798 { 799 struct hv_driver *drv = drv_to_hv_drv(driver); 800 struct vmbus_dynid *dynid, *n; 801 guid_t guid; 802 ssize_t retval; 803 804 retval = guid_parse(buf, &guid); 805 if (retval) 806 return retval; 807 808 retval = -ENODEV; 809 spin_lock(&drv->dynids.lock); 810 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 811 struct hv_vmbus_device_id *id = &dynid->id; 812 813 if (guid_equal(&id->guid, &guid)) { 814 list_del(&dynid->node); 815 kfree(dynid); 816 retval = count; 817 break; 818 } 819 } 820 spin_unlock(&drv->dynids.lock); 821 822 return retval; 823 } 824 static DRIVER_ATTR_WO(remove_id); 825 826 static struct attribute *vmbus_drv_attrs[] = { 827 &driver_attr_new_id.attr, 828 &driver_attr_remove_id.attr, 829 NULL, 830 }; 831 ATTRIBUTE_GROUPS(vmbus_drv); 832 833 834 /* 835 * vmbus_match - Attempt to match the specified device to the specified driver 836 */ 837 static int vmbus_match(struct device *device, struct device_driver *driver) 838 { 839 struct hv_driver *drv = drv_to_hv_drv(driver); 840 struct hv_device *hv_dev = device_to_hv_device(device); 841 842 /* The hv_sock driver handles all hv_sock offers. */ 843 if (is_hvsock_channel(hv_dev->channel)) 844 return drv->hvsock; 845 846 if (hv_vmbus_get_id(drv, hv_dev)) 847 return 1; 848 849 return 0; 850 } 851 852 /* 853 * vmbus_probe - Add the new vmbus's child device 854 */ 855 static int vmbus_probe(struct device *child_device) 856 { 857 int ret = 0; 858 struct hv_driver *drv = 859 drv_to_hv_drv(child_device->driver); 860 struct hv_device *dev = device_to_hv_device(child_device); 861 const struct hv_vmbus_device_id *dev_id; 862 863 dev_id = hv_vmbus_get_id(drv, dev); 864 if (drv->probe) { 865 ret = drv->probe(dev, dev_id); 866 if (ret != 0) 867 pr_err("probe failed for device %s (%d)\n", 868 dev_name(child_device), ret); 869 870 } else { 871 pr_err("probe not set for driver %s\n", 872 dev_name(child_device)); 873 ret = -ENODEV; 874 } 875 return ret; 876 } 877 878 /* 879 * vmbus_remove - Remove a vmbus device 880 */ 881 static int vmbus_remove(struct device *child_device) 882 { 883 struct hv_driver *drv; 884 struct hv_device *dev = device_to_hv_device(child_device); 885 886 if (child_device->driver) { 887 drv = drv_to_hv_drv(child_device->driver); 888 if (drv->remove) 889 drv->remove(dev); 890 } 891 892 return 0; 893 } 894 895 896 /* 897 * vmbus_shutdown - Shutdown a vmbus device 898 */ 899 static void vmbus_shutdown(struct device *child_device) 900 { 901 struct hv_driver *drv; 902 struct hv_device *dev = device_to_hv_device(child_device); 903 904 905 /* The device may not be attached yet */ 906 if (!child_device->driver) 907 return; 908 909 drv = drv_to_hv_drv(child_device->driver); 910 911 if (drv->shutdown) 912 drv->shutdown(dev); 913 } 914 915 /* 916 * vmbus_suspend - Suspend a vmbus device 917 */ 918 static int vmbus_suspend(struct device *child_device) 919 { 920 struct hv_driver *drv; 921 struct hv_device *dev = device_to_hv_device(child_device); 922 923 /* The device may not be attached yet */ 924 if (!child_device->driver) 925 return 0; 926 927 drv = drv_to_hv_drv(child_device->driver); 928 if (!drv->suspend) 929 return -EOPNOTSUPP; 930 931 return drv->suspend(dev); 932 } 933 934 /* 935 * vmbus_resume - Resume a vmbus device 936 */ 937 static int vmbus_resume(struct device *child_device) 938 { 939 struct hv_driver *drv; 940 struct hv_device *dev = device_to_hv_device(child_device); 941 942 /* The device may not be attached yet */ 943 if (!child_device->driver) 944 return 0; 945 946 drv = drv_to_hv_drv(child_device->driver); 947 if (!drv->resume) 948 return -EOPNOTSUPP; 949 950 return drv->resume(dev); 951 } 952 953 /* 954 * vmbus_device_release - Final callback release of the vmbus child device 955 */ 956 static void vmbus_device_release(struct device *device) 957 { 958 struct hv_device *hv_dev = device_to_hv_device(device); 959 struct vmbus_channel *channel = hv_dev->channel; 960 961 mutex_lock(&vmbus_connection.channel_mutex); 962 hv_process_channel_removal(channel); 963 mutex_unlock(&vmbus_connection.channel_mutex); 964 kfree(hv_dev); 965 } 966 967 /* 968 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than 969 * SET_SYSTEM_SLEEP_PM_OPS: see the comment before vmbus_bus_pm. 970 */ 971 static const struct dev_pm_ops vmbus_pm = { 972 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_suspend, vmbus_resume) 973 }; 974 975 /* The one and only one */ 976 static struct bus_type hv_bus = { 977 .name = "vmbus", 978 .match = vmbus_match, 979 .shutdown = vmbus_shutdown, 980 .remove = vmbus_remove, 981 .probe = vmbus_probe, 982 .uevent = vmbus_uevent, 983 .dev_groups = vmbus_dev_groups, 984 .drv_groups = vmbus_drv_groups, 985 .pm = &vmbus_pm, 986 }; 987 988 struct onmessage_work_context { 989 struct work_struct work; 990 struct hv_message msg; 991 }; 992 993 static void vmbus_onmessage_work(struct work_struct *work) 994 { 995 struct onmessage_work_context *ctx; 996 997 /* Do not process messages if we're in DISCONNECTED state */ 998 if (vmbus_connection.conn_state == DISCONNECTED) 999 return; 1000 1001 ctx = container_of(work, struct onmessage_work_context, 1002 work); 1003 vmbus_onmessage(&ctx->msg); 1004 kfree(ctx); 1005 } 1006 1007 void vmbus_on_msg_dpc(unsigned long data) 1008 { 1009 struct hv_per_cpu_context *hv_cpu = (void *)data; 1010 void *page_addr = hv_cpu->synic_message_page; 1011 struct hv_message *msg = (struct hv_message *)page_addr + 1012 VMBUS_MESSAGE_SINT; 1013 struct vmbus_channel_message_header *hdr; 1014 const struct vmbus_channel_message_table_entry *entry; 1015 struct onmessage_work_context *ctx; 1016 u32 message_type = msg->header.message_type; 1017 1018 if (message_type == HVMSG_NONE) 1019 /* no msg */ 1020 return; 1021 1022 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 1023 1024 trace_vmbus_on_msg_dpc(hdr); 1025 1026 if (hdr->msgtype >= CHANNELMSG_COUNT) { 1027 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype); 1028 goto msg_handled; 1029 } 1030 1031 entry = &channel_message_table[hdr->msgtype]; 1032 if (entry->handler_type == VMHT_BLOCKING) { 1033 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 1034 if (ctx == NULL) 1035 return; 1036 1037 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1038 memcpy(&ctx->msg, msg, sizeof(*msg)); 1039 1040 /* 1041 * The host can generate a rescind message while we 1042 * may still be handling the original offer. We deal with 1043 * this condition by ensuring the processing is done on the 1044 * same CPU. 1045 */ 1046 switch (hdr->msgtype) { 1047 case CHANNELMSG_RESCIND_CHANNELOFFER: 1048 /* 1049 * If we are handling the rescind message; 1050 * schedule the work on the global work queue. 1051 */ 1052 schedule_work_on(vmbus_connection.connect_cpu, 1053 &ctx->work); 1054 break; 1055 1056 case CHANNELMSG_OFFERCHANNEL: 1057 atomic_inc(&vmbus_connection.offer_in_progress); 1058 queue_work_on(vmbus_connection.connect_cpu, 1059 vmbus_connection.work_queue, 1060 &ctx->work); 1061 break; 1062 1063 default: 1064 queue_work(vmbus_connection.work_queue, &ctx->work); 1065 } 1066 } else 1067 entry->message_handler(hdr); 1068 1069 msg_handled: 1070 vmbus_signal_eom(msg, message_type); 1071 } 1072 1073 /* 1074 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for 1075 * hibernation, because hv_sock connections can not persist across hibernation. 1076 */ 1077 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel) 1078 { 1079 struct onmessage_work_context *ctx; 1080 struct vmbus_channel_rescind_offer *rescind; 1081 1082 WARN_ON(!is_hvsock_channel(channel)); 1083 1084 /* 1085 * sizeof(*ctx) is small and the allocation should really not fail, 1086 * otherwise the state of the hv_sock connections ends up in limbo. 1087 */ 1088 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL); 1089 1090 /* 1091 * So far, these are not really used by Linux. Just set them to the 1092 * reasonable values conforming to the definitions of the fields. 1093 */ 1094 ctx->msg.header.message_type = 1; 1095 ctx->msg.header.payload_size = sizeof(*rescind); 1096 1097 /* These values are actually used by Linux. */ 1098 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.u.payload; 1099 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER; 1100 rescind->child_relid = channel->offermsg.child_relid; 1101 1102 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1103 1104 queue_work_on(vmbus_connection.connect_cpu, 1105 vmbus_connection.work_queue, 1106 &ctx->work); 1107 } 1108 1109 /* 1110 * Direct callback for channels using other deferred processing 1111 */ 1112 static void vmbus_channel_isr(struct vmbus_channel *channel) 1113 { 1114 void (*callback_fn)(void *); 1115 1116 callback_fn = READ_ONCE(channel->onchannel_callback); 1117 if (likely(callback_fn != NULL)) 1118 (*callback_fn)(channel->channel_callback_context); 1119 } 1120 1121 /* 1122 * Schedule all channels with events pending 1123 */ 1124 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 1125 { 1126 unsigned long *recv_int_page; 1127 u32 maxbits, relid; 1128 1129 if (vmbus_proto_version < VERSION_WIN8) { 1130 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 1131 recv_int_page = vmbus_connection.recv_int_page; 1132 } else { 1133 /* 1134 * When the host is win8 and beyond, the event page 1135 * can be directly checked to get the id of the channel 1136 * that has the interrupt pending. 1137 */ 1138 void *page_addr = hv_cpu->synic_event_page; 1139 union hv_synic_event_flags *event 1140 = (union hv_synic_event_flags *)page_addr + 1141 VMBUS_MESSAGE_SINT; 1142 1143 maxbits = HV_EVENT_FLAGS_COUNT; 1144 recv_int_page = event->flags; 1145 } 1146 1147 if (unlikely(!recv_int_page)) 1148 return; 1149 1150 for_each_set_bit(relid, recv_int_page, maxbits) { 1151 struct vmbus_channel *channel; 1152 1153 if (!sync_test_and_clear_bit(relid, recv_int_page)) 1154 continue; 1155 1156 /* Special case - vmbus channel protocol msg */ 1157 if (relid == 0) 1158 continue; 1159 1160 rcu_read_lock(); 1161 1162 /* Find channel based on relid */ 1163 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) { 1164 if (channel->offermsg.child_relid != relid) 1165 continue; 1166 1167 if (channel->rescind) 1168 continue; 1169 1170 trace_vmbus_chan_sched(channel); 1171 1172 ++channel->interrupts; 1173 1174 switch (channel->callback_mode) { 1175 case HV_CALL_ISR: 1176 vmbus_channel_isr(channel); 1177 break; 1178 1179 case HV_CALL_BATCHED: 1180 hv_begin_read(&channel->inbound); 1181 /* fallthrough */ 1182 case HV_CALL_DIRECT: 1183 tasklet_schedule(&channel->callback_event); 1184 } 1185 } 1186 1187 rcu_read_unlock(); 1188 } 1189 } 1190 1191 static void vmbus_isr(void) 1192 { 1193 struct hv_per_cpu_context *hv_cpu 1194 = this_cpu_ptr(hv_context.cpu_context); 1195 void *page_addr = hv_cpu->synic_event_page; 1196 struct hv_message *msg; 1197 union hv_synic_event_flags *event; 1198 bool handled = false; 1199 1200 if (unlikely(page_addr == NULL)) 1201 return; 1202 1203 event = (union hv_synic_event_flags *)page_addr + 1204 VMBUS_MESSAGE_SINT; 1205 /* 1206 * Check for events before checking for messages. This is the order 1207 * in which events and messages are checked in Windows guests on 1208 * Hyper-V, and the Windows team suggested we do the same. 1209 */ 1210 1211 if ((vmbus_proto_version == VERSION_WS2008) || 1212 (vmbus_proto_version == VERSION_WIN7)) { 1213 1214 /* Since we are a child, we only need to check bit 0 */ 1215 if (sync_test_and_clear_bit(0, event->flags)) 1216 handled = true; 1217 } else { 1218 /* 1219 * Our host is win8 or above. The signaling mechanism 1220 * has changed and we can directly look at the event page. 1221 * If bit n is set then we have an interrup on the channel 1222 * whose id is n. 1223 */ 1224 handled = true; 1225 } 1226 1227 if (handled) 1228 vmbus_chan_sched(hv_cpu); 1229 1230 page_addr = hv_cpu->synic_message_page; 1231 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1232 1233 /* Check if there are actual msgs to be processed */ 1234 if (msg->header.message_type != HVMSG_NONE) { 1235 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) { 1236 hv_stimer0_isr(); 1237 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 1238 } else 1239 tasklet_schedule(&hv_cpu->msg_dpc); 1240 } 1241 1242 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0); 1243 } 1244 1245 /* 1246 * Boolean to control whether to report panic messages over Hyper-V. 1247 * 1248 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg 1249 */ 1250 static int sysctl_record_panic_msg = 1; 1251 1252 /* 1253 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg 1254 * buffer and call into Hyper-V to transfer the data. 1255 */ 1256 static void hv_kmsg_dump(struct kmsg_dumper *dumper, 1257 enum kmsg_dump_reason reason) 1258 { 1259 size_t bytes_written; 1260 phys_addr_t panic_pa; 1261 1262 /* We are only interested in panics. */ 1263 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg)) 1264 return; 1265 1266 panic_pa = virt_to_phys(hv_panic_page); 1267 1268 /* 1269 * Write dump contents to the page. No need to synchronize; panic should 1270 * be single-threaded. 1271 */ 1272 kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE, 1273 &bytes_written); 1274 if (bytes_written) 1275 hyperv_report_panic_msg(panic_pa, bytes_written); 1276 } 1277 1278 static struct kmsg_dumper hv_kmsg_dumper = { 1279 .dump = hv_kmsg_dump, 1280 }; 1281 1282 static struct ctl_table_header *hv_ctl_table_hdr; 1283 1284 /* 1285 * sysctl option to allow the user to control whether kmsg data should be 1286 * reported to Hyper-V on panic. 1287 */ 1288 static struct ctl_table hv_ctl_table[] = { 1289 { 1290 .procname = "hyperv_record_panic_msg", 1291 .data = &sysctl_record_panic_msg, 1292 .maxlen = sizeof(int), 1293 .mode = 0644, 1294 .proc_handler = proc_dointvec_minmax, 1295 .extra1 = SYSCTL_ZERO, 1296 .extra2 = SYSCTL_ONE 1297 }, 1298 {} 1299 }; 1300 1301 static struct ctl_table hv_root_table[] = { 1302 { 1303 .procname = "kernel", 1304 .mode = 0555, 1305 .child = hv_ctl_table 1306 }, 1307 {} 1308 }; 1309 1310 /* 1311 * vmbus_bus_init -Main vmbus driver initialization routine. 1312 * 1313 * Here, we 1314 * - initialize the vmbus driver context 1315 * - invoke the vmbus hv main init routine 1316 * - retrieve the channel offers 1317 */ 1318 static int vmbus_bus_init(void) 1319 { 1320 int ret; 1321 1322 /* Hypervisor initialization...setup hypercall page..etc */ 1323 ret = hv_init(); 1324 if (ret != 0) { 1325 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1326 return ret; 1327 } 1328 1329 ret = bus_register(&hv_bus); 1330 if (ret) 1331 return ret; 1332 1333 hv_setup_vmbus_irq(vmbus_isr); 1334 1335 ret = hv_synic_alloc(); 1336 if (ret) 1337 goto err_alloc; 1338 1339 ret = hv_stimer_alloc(VMBUS_MESSAGE_SINT); 1340 if (ret < 0) 1341 goto err_alloc; 1342 1343 /* 1344 * Initialize the per-cpu interrupt state and stimer state. 1345 * Then connect to the host. 1346 */ 1347 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1348 hv_synic_init, hv_synic_cleanup); 1349 if (ret < 0) 1350 goto err_cpuhp; 1351 hyperv_cpuhp_online = ret; 1352 1353 ret = vmbus_connect(); 1354 if (ret) 1355 goto err_connect; 1356 1357 /* 1358 * Only register if the crash MSRs are available 1359 */ 1360 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1361 u64 hyperv_crash_ctl; 1362 /* 1363 * Sysctl registration is not fatal, since by default 1364 * reporting is enabled. 1365 */ 1366 hv_ctl_table_hdr = register_sysctl_table(hv_root_table); 1367 if (!hv_ctl_table_hdr) 1368 pr_err("Hyper-V: sysctl table register error"); 1369 1370 /* 1371 * Register for panic kmsg callback only if the right 1372 * capability is supported by the hypervisor. 1373 */ 1374 hv_get_crash_ctl(hyperv_crash_ctl); 1375 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) { 1376 hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL); 1377 if (hv_panic_page) { 1378 ret = kmsg_dump_register(&hv_kmsg_dumper); 1379 if (ret) 1380 pr_err("Hyper-V: kmsg dump register " 1381 "error 0x%x\n", ret); 1382 } else 1383 pr_err("Hyper-V: panic message page memory " 1384 "allocation failed"); 1385 } 1386 1387 register_die_notifier(&hyperv_die_block); 1388 atomic_notifier_chain_register(&panic_notifier_list, 1389 &hyperv_panic_block); 1390 } 1391 1392 vmbus_request_offers(); 1393 1394 return 0; 1395 1396 err_connect: 1397 cpuhp_remove_state(hyperv_cpuhp_online); 1398 err_cpuhp: 1399 hv_stimer_free(); 1400 err_alloc: 1401 hv_synic_free(); 1402 hv_remove_vmbus_irq(); 1403 1404 bus_unregister(&hv_bus); 1405 free_page((unsigned long)hv_panic_page); 1406 unregister_sysctl_table(hv_ctl_table_hdr); 1407 hv_ctl_table_hdr = NULL; 1408 return ret; 1409 } 1410 1411 /** 1412 * __vmbus_child_driver_register() - Register a vmbus's driver 1413 * @hv_driver: Pointer to driver structure you want to register 1414 * @owner: owner module of the drv 1415 * @mod_name: module name string 1416 * 1417 * Registers the given driver with Linux through the 'driver_register()' call 1418 * and sets up the hyper-v vmbus handling for this driver. 1419 * It will return the state of the 'driver_register()' call. 1420 * 1421 */ 1422 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1423 { 1424 int ret; 1425 1426 pr_info("registering driver %s\n", hv_driver->name); 1427 1428 ret = vmbus_exists(); 1429 if (ret < 0) 1430 return ret; 1431 1432 hv_driver->driver.name = hv_driver->name; 1433 hv_driver->driver.owner = owner; 1434 hv_driver->driver.mod_name = mod_name; 1435 hv_driver->driver.bus = &hv_bus; 1436 1437 spin_lock_init(&hv_driver->dynids.lock); 1438 INIT_LIST_HEAD(&hv_driver->dynids.list); 1439 1440 ret = driver_register(&hv_driver->driver); 1441 1442 return ret; 1443 } 1444 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1445 1446 /** 1447 * vmbus_driver_unregister() - Unregister a vmbus's driver 1448 * @hv_driver: Pointer to driver structure you want to 1449 * un-register 1450 * 1451 * Un-register the given driver that was previous registered with a call to 1452 * vmbus_driver_register() 1453 */ 1454 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1455 { 1456 pr_info("unregistering driver %s\n", hv_driver->name); 1457 1458 if (!vmbus_exists()) { 1459 driver_unregister(&hv_driver->driver); 1460 vmbus_free_dynids(hv_driver); 1461 } 1462 } 1463 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1464 1465 1466 /* 1467 * Called when last reference to channel is gone. 1468 */ 1469 static void vmbus_chan_release(struct kobject *kobj) 1470 { 1471 struct vmbus_channel *channel 1472 = container_of(kobj, struct vmbus_channel, kobj); 1473 1474 kfree_rcu(channel, rcu); 1475 } 1476 1477 struct vmbus_chan_attribute { 1478 struct attribute attr; 1479 ssize_t (*show)(struct vmbus_channel *chan, char *buf); 1480 ssize_t (*store)(struct vmbus_channel *chan, 1481 const char *buf, size_t count); 1482 }; 1483 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1484 struct vmbus_chan_attribute chan_attr_##_name \ 1485 = __ATTR(_name, _mode, _show, _store) 1486 #define VMBUS_CHAN_ATTR_RW(_name) \ 1487 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1488 #define VMBUS_CHAN_ATTR_RO(_name) \ 1489 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1490 #define VMBUS_CHAN_ATTR_WO(_name) \ 1491 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1492 1493 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1494 struct attribute *attr, char *buf) 1495 { 1496 const struct vmbus_chan_attribute *attribute 1497 = container_of(attr, struct vmbus_chan_attribute, attr); 1498 struct vmbus_channel *chan 1499 = container_of(kobj, struct vmbus_channel, kobj); 1500 1501 if (!attribute->show) 1502 return -EIO; 1503 1504 return attribute->show(chan, buf); 1505 } 1506 1507 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1508 .show = vmbus_chan_attr_show, 1509 }; 1510 1511 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf) 1512 { 1513 struct hv_ring_buffer_info *rbi = &channel->outbound; 1514 ssize_t ret; 1515 1516 mutex_lock(&rbi->ring_buffer_mutex); 1517 if (!rbi->ring_buffer) { 1518 mutex_unlock(&rbi->ring_buffer_mutex); 1519 return -EINVAL; 1520 } 1521 1522 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1523 mutex_unlock(&rbi->ring_buffer_mutex); 1524 return ret; 1525 } 1526 static VMBUS_CHAN_ATTR_RO(out_mask); 1527 1528 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf) 1529 { 1530 struct hv_ring_buffer_info *rbi = &channel->inbound; 1531 ssize_t ret; 1532 1533 mutex_lock(&rbi->ring_buffer_mutex); 1534 if (!rbi->ring_buffer) { 1535 mutex_unlock(&rbi->ring_buffer_mutex); 1536 return -EINVAL; 1537 } 1538 1539 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1540 mutex_unlock(&rbi->ring_buffer_mutex); 1541 return ret; 1542 } 1543 static VMBUS_CHAN_ATTR_RO(in_mask); 1544 1545 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf) 1546 { 1547 struct hv_ring_buffer_info *rbi = &channel->inbound; 1548 ssize_t ret; 1549 1550 mutex_lock(&rbi->ring_buffer_mutex); 1551 if (!rbi->ring_buffer) { 1552 mutex_unlock(&rbi->ring_buffer_mutex); 1553 return -EINVAL; 1554 } 1555 1556 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1557 mutex_unlock(&rbi->ring_buffer_mutex); 1558 return ret; 1559 } 1560 static VMBUS_CHAN_ATTR_RO(read_avail); 1561 1562 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf) 1563 { 1564 struct hv_ring_buffer_info *rbi = &channel->outbound; 1565 ssize_t ret; 1566 1567 mutex_lock(&rbi->ring_buffer_mutex); 1568 if (!rbi->ring_buffer) { 1569 mutex_unlock(&rbi->ring_buffer_mutex); 1570 return -EINVAL; 1571 } 1572 1573 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1574 mutex_unlock(&rbi->ring_buffer_mutex); 1575 return ret; 1576 } 1577 static VMBUS_CHAN_ATTR_RO(write_avail); 1578 1579 static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf) 1580 { 1581 return sprintf(buf, "%u\n", channel->target_cpu); 1582 } 1583 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL); 1584 1585 static ssize_t channel_pending_show(struct vmbus_channel *channel, 1586 char *buf) 1587 { 1588 return sprintf(buf, "%d\n", 1589 channel_pending(channel, 1590 vmbus_connection.monitor_pages[1])); 1591 } 1592 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL); 1593 1594 static ssize_t channel_latency_show(struct vmbus_channel *channel, 1595 char *buf) 1596 { 1597 return sprintf(buf, "%d\n", 1598 channel_latency(channel, 1599 vmbus_connection.monitor_pages[1])); 1600 } 1601 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL); 1602 1603 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf) 1604 { 1605 return sprintf(buf, "%llu\n", channel->interrupts); 1606 } 1607 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL); 1608 1609 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf) 1610 { 1611 return sprintf(buf, "%llu\n", channel->sig_events); 1612 } 1613 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL); 1614 1615 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel, 1616 char *buf) 1617 { 1618 return sprintf(buf, "%llu\n", 1619 (unsigned long long)channel->intr_in_full); 1620 } 1621 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL); 1622 1623 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel, 1624 char *buf) 1625 { 1626 return sprintf(buf, "%llu\n", 1627 (unsigned long long)channel->intr_out_empty); 1628 } 1629 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL); 1630 1631 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel, 1632 char *buf) 1633 { 1634 return sprintf(buf, "%llu\n", 1635 (unsigned long long)channel->out_full_first); 1636 } 1637 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL); 1638 1639 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel, 1640 char *buf) 1641 { 1642 return sprintf(buf, "%llu\n", 1643 (unsigned long long)channel->out_full_total); 1644 } 1645 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL); 1646 1647 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel, 1648 char *buf) 1649 { 1650 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1651 } 1652 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL); 1653 1654 static ssize_t subchannel_id_show(struct vmbus_channel *channel, 1655 char *buf) 1656 { 1657 return sprintf(buf, "%u\n", 1658 channel->offermsg.offer.sub_channel_index); 1659 } 1660 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1661 1662 static struct attribute *vmbus_chan_attrs[] = { 1663 &chan_attr_out_mask.attr, 1664 &chan_attr_in_mask.attr, 1665 &chan_attr_read_avail.attr, 1666 &chan_attr_write_avail.attr, 1667 &chan_attr_cpu.attr, 1668 &chan_attr_pending.attr, 1669 &chan_attr_latency.attr, 1670 &chan_attr_interrupts.attr, 1671 &chan_attr_events.attr, 1672 &chan_attr_intr_in_full.attr, 1673 &chan_attr_intr_out_empty.attr, 1674 &chan_attr_out_full_first.attr, 1675 &chan_attr_out_full_total.attr, 1676 &chan_attr_monitor_id.attr, 1677 &chan_attr_subchannel_id.attr, 1678 NULL 1679 }; 1680 1681 /* 1682 * Channel-level attribute_group callback function. Returns the permission for 1683 * each attribute, and returns 0 if an attribute is not visible. 1684 */ 1685 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj, 1686 struct attribute *attr, int idx) 1687 { 1688 const struct vmbus_channel *channel = 1689 container_of(kobj, struct vmbus_channel, kobj); 1690 1691 /* Hide the monitor attributes if the monitor mechanism is not used. */ 1692 if (!channel->offermsg.monitor_allocated && 1693 (attr == &chan_attr_pending.attr || 1694 attr == &chan_attr_latency.attr || 1695 attr == &chan_attr_monitor_id.attr)) 1696 return 0; 1697 1698 return attr->mode; 1699 } 1700 1701 static struct attribute_group vmbus_chan_group = { 1702 .attrs = vmbus_chan_attrs, 1703 .is_visible = vmbus_chan_attr_is_visible 1704 }; 1705 1706 static struct kobj_type vmbus_chan_ktype = { 1707 .sysfs_ops = &vmbus_chan_sysfs_ops, 1708 .release = vmbus_chan_release, 1709 }; 1710 1711 /* 1712 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 1713 */ 1714 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 1715 { 1716 const struct device *device = &dev->device; 1717 struct kobject *kobj = &channel->kobj; 1718 u32 relid = channel->offermsg.child_relid; 1719 int ret; 1720 1721 kobj->kset = dev->channels_kset; 1722 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 1723 "%u", relid); 1724 if (ret) 1725 return ret; 1726 1727 ret = sysfs_create_group(kobj, &vmbus_chan_group); 1728 1729 if (ret) { 1730 /* 1731 * The calling functions' error handling paths will cleanup the 1732 * empty channel directory. 1733 */ 1734 dev_err(device, "Unable to set up channel sysfs files\n"); 1735 return ret; 1736 } 1737 1738 kobject_uevent(kobj, KOBJ_ADD); 1739 1740 return 0; 1741 } 1742 1743 /* 1744 * vmbus_remove_channel_attr_group - remove the channel's attribute group 1745 */ 1746 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel) 1747 { 1748 sysfs_remove_group(&channel->kobj, &vmbus_chan_group); 1749 } 1750 1751 /* 1752 * vmbus_device_create - Creates and registers a new child device 1753 * on the vmbus. 1754 */ 1755 struct hv_device *vmbus_device_create(const guid_t *type, 1756 const guid_t *instance, 1757 struct vmbus_channel *channel) 1758 { 1759 struct hv_device *child_device_obj; 1760 1761 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 1762 if (!child_device_obj) { 1763 pr_err("Unable to allocate device object for child device\n"); 1764 return NULL; 1765 } 1766 1767 child_device_obj->channel = channel; 1768 guid_copy(&child_device_obj->dev_type, type); 1769 guid_copy(&child_device_obj->dev_instance, instance); 1770 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 1771 1772 return child_device_obj; 1773 } 1774 1775 /* 1776 * vmbus_device_register - Register the child device 1777 */ 1778 int vmbus_device_register(struct hv_device *child_device_obj) 1779 { 1780 struct kobject *kobj = &child_device_obj->device.kobj; 1781 int ret; 1782 1783 dev_set_name(&child_device_obj->device, "%pUl", 1784 child_device_obj->channel->offermsg.offer.if_instance.b); 1785 1786 child_device_obj->device.bus = &hv_bus; 1787 child_device_obj->device.parent = &hv_acpi_dev->dev; 1788 child_device_obj->device.release = vmbus_device_release; 1789 1790 /* 1791 * Register with the LDM. This will kick off the driver/device 1792 * binding...which will eventually call vmbus_match() and vmbus_probe() 1793 */ 1794 ret = device_register(&child_device_obj->device); 1795 if (ret) { 1796 pr_err("Unable to register child device\n"); 1797 return ret; 1798 } 1799 1800 child_device_obj->channels_kset = kset_create_and_add("channels", 1801 NULL, kobj); 1802 if (!child_device_obj->channels_kset) { 1803 ret = -ENOMEM; 1804 goto err_dev_unregister; 1805 } 1806 1807 ret = vmbus_add_channel_kobj(child_device_obj, 1808 child_device_obj->channel); 1809 if (ret) { 1810 pr_err("Unable to register primary channeln"); 1811 goto err_kset_unregister; 1812 } 1813 1814 return 0; 1815 1816 err_kset_unregister: 1817 kset_unregister(child_device_obj->channels_kset); 1818 1819 err_dev_unregister: 1820 device_unregister(&child_device_obj->device); 1821 return ret; 1822 } 1823 1824 /* 1825 * vmbus_device_unregister - Remove the specified child device 1826 * from the vmbus. 1827 */ 1828 void vmbus_device_unregister(struct hv_device *device_obj) 1829 { 1830 pr_debug("child device %s unregistered\n", 1831 dev_name(&device_obj->device)); 1832 1833 kset_unregister(device_obj->channels_kset); 1834 1835 /* 1836 * Kick off the process of unregistering the device. 1837 * This will call vmbus_remove() and eventually vmbus_device_release() 1838 */ 1839 device_unregister(&device_obj->device); 1840 } 1841 1842 1843 /* 1844 * VMBUS is an acpi enumerated device. Get the information we 1845 * need from DSDT. 1846 */ 1847 #define VTPM_BASE_ADDRESS 0xfed40000 1848 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 1849 { 1850 resource_size_t start = 0; 1851 resource_size_t end = 0; 1852 struct resource *new_res; 1853 struct resource **old_res = &hyperv_mmio; 1854 struct resource **prev_res = NULL; 1855 1856 switch (res->type) { 1857 1858 /* 1859 * "Address" descriptors are for bus windows. Ignore 1860 * "memory" descriptors, which are for registers on 1861 * devices. 1862 */ 1863 case ACPI_RESOURCE_TYPE_ADDRESS32: 1864 start = res->data.address32.address.minimum; 1865 end = res->data.address32.address.maximum; 1866 break; 1867 1868 case ACPI_RESOURCE_TYPE_ADDRESS64: 1869 start = res->data.address64.address.minimum; 1870 end = res->data.address64.address.maximum; 1871 break; 1872 1873 default: 1874 /* Unused resource type */ 1875 return AE_OK; 1876 1877 } 1878 /* 1879 * Ignore ranges that are below 1MB, as they're not 1880 * necessary or useful here. 1881 */ 1882 if (end < 0x100000) 1883 return AE_OK; 1884 1885 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 1886 if (!new_res) 1887 return AE_NO_MEMORY; 1888 1889 /* If this range overlaps the virtual TPM, truncate it. */ 1890 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 1891 end = VTPM_BASE_ADDRESS; 1892 1893 new_res->name = "hyperv mmio"; 1894 new_res->flags = IORESOURCE_MEM; 1895 new_res->start = start; 1896 new_res->end = end; 1897 1898 /* 1899 * If two ranges are adjacent, merge them. 1900 */ 1901 do { 1902 if (!*old_res) { 1903 *old_res = new_res; 1904 break; 1905 } 1906 1907 if (((*old_res)->end + 1) == new_res->start) { 1908 (*old_res)->end = new_res->end; 1909 kfree(new_res); 1910 break; 1911 } 1912 1913 if ((*old_res)->start == new_res->end + 1) { 1914 (*old_res)->start = new_res->start; 1915 kfree(new_res); 1916 break; 1917 } 1918 1919 if ((*old_res)->start > new_res->end) { 1920 new_res->sibling = *old_res; 1921 if (prev_res) 1922 (*prev_res)->sibling = new_res; 1923 *old_res = new_res; 1924 break; 1925 } 1926 1927 prev_res = old_res; 1928 old_res = &(*old_res)->sibling; 1929 1930 } while (1); 1931 1932 return AE_OK; 1933 } 1934 1935 static int vmbus_acpi_remove(struct acpi_device *device) 1936 { 1937 struct resource *cur_res; 1938 struct resource *next_res; 1939 1940 if (hyperv_mmio) { 1941 if (fb_mmio) { 1942 __release_region(hyperv_mmio, fb_mmio->start, 1943 resource_size(fb_mmio)); 1944 fb_mmio = NULL; 1945 } 1946 1947 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 1948 next_res = cur_res->sibling; 1949 kfree(cur_res); 1950 } 1951 } 1952 1953 return 0; 1954 } 1955 1956 static void vmbus_reserve_fb(void) 1957 { 1958 int size; 1959 /* 1960 * Make a claim for the frame buffer in the resource tree under the 1961 * first node, which will be the one below 4GB. The length seems to 1962 * be underreported, particularly in a Generation 1 VM. So start out 1963 * reserving a larger area and make it smaller until it succeeds. 1964 */ 1965 1966 if (screen_info.lfb_base) { 1967 if (efi_enabled(EFI_BOOT)) 1968 size = max_t(__u32, screen_info.lfb_size, 0x800000); 1969 else 1970 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 1971 1972 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 1973 fb_mmio = __request_region(hyperv_mmio, 1974 screen_info.lfb_base, size, 1975 fb_mmio_name, 0); 1976 } 1977 } 1978 } 1979 1980 /** 1981 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 1982 * @new: If successful, supplied a pointer to the 1983 * allocated MMIO space. 1984 * @device_obj: Identifies the caller 1985 * @min: Minimum guest physical address of the 1986 * allocation 1987 * @max: Maximum guest physical address 1988 * @size: Size of the range to be allocated 1989 * @align: Alignment of the range to be allocated 1990 * @fb_overlap_ok: Whether this allocation can be allowed 1991 * to overlap the video frame buffer. 1992 * 1993 * This function walks the resources granted to VMBus by the 1994 * _CRS object in the ACPI namespace underneath the parent 1995 * "bridge" whether that's a root PCI bus in the Generation 1 1996 * case or a Module Device in the Generation 2 case. It then 1997 * attempts to allocate from the global MMIO pool in a way that 1998 * matches the constraints supplied in these parameters and by 1999 * that _CRS. 2000 * 2001 * Return: 0 on success, -errno on failure 2002 */ 2003 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 2004 resource_size_t min, resource_size_t max, 2005 resource_size_t size, resource_size_t align, 2006 bool fb_overlap_ok) 2007 { 2008 struct resource *iter, *shadow; 2009 resource_size_t range_min, range_max, start; 2010 const char *dev_n = dev_name(&device_obj->device); 2011 int retval; 2012 2013 retval = -ENXIO; 2014 down(&hyperv_mmio_lock); 2015 2016 /* 2017 * If overlaps with frame buffers are allowed, then first attempt to 2018 * make the allocation from within the reserved region. Because it 2019 * is already reserved, no shadow allocation is necessary. 2020 */ 2021 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 2022 !(max < fb_mmio->start)) { 2023 2024 range_min = fb_mmio->start; 2025 range_max = fb_mmio->end; 2026 start = (range_min + align - 1) & ~(align - 1); 2027 for (; start + size - 1 <= range_max; start += align) { 2028 *new = request_mem_region_exclusive(start, size, dev_n); 2029 if (*new) { 2030 retval = 0; 2031 goto exit; 2032 } 2033 } 2034 } 2035 2036 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2037 if ((iter->start >= max) || (iter->end <= min)) 2038 continue; 2039 2040 range_min = iter->start; 2041 range_max = iter->end; 2042 start = (range_min + align - 1) & ~(align - 1); 2043 for (; start + size - 1 <= range_max; start += align) { 2044 shadow = __request_region(iter, start, size, NULL, 2045 IORESOURCE_BUSY); 2046 if (!shadow) 2047 continue; 2048 2049 *new = request_mem_region_exclusive(start, size, dev_n); 2050 if (*new) { 2051 shadow->name = (char *)*new; 2052 retval = 0; 2053 goto exit; 2054 } 2055 2056 __release_region(iter, start, size); 2057 } 2058 } 2059 2060 exit: 2061 up(&hyperv_mmio_lock); 2062 return retval; 2063 } 2064 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 2065 2066 /** 2067 * vmbus_free_mmio() - Free a memory-mapped I/O range. 2068 * @start: Base address of region to release. 2069 * @size: Size of the range to be allocated 2070 * 2071 * This function releases anything requested by 2072 * vmbus_mmio_allocate(). 2073 */ 2074 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 2075 { 2076 struct resource *iter; 2077 2078 down(&hyperv_mmio_lock); 2079 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2080 if ((iter->start >= start + size) || (iter->end <= start)) 2081 continue; 2082 2083 __release_region(iter, start, size); 2084 } 2085 release_mem_region(start, size); 2086 up(&hyperv_mmio_lock); 2087 2088 } 2089 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 2090 2091 static int vmbus_acpi_add(struct acpi_device *device) 2092 { 2093 acpi_status result; 2094 int ret_val = -ENODEV; 2095 struct acpi_device *ancestor; 2096 2097 hv_acpi_dev = device; 2098 2099 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 2100 vmbus_walk_resources, NULL); 2101 2102 if (ACPI_FAILURE(result)) 2103 goto acpi_walk_err; 2104 /* 2105 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 2106 * firmware) is the VMOD that has the mmio ranges. Get that. 2107 */ 2108 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 2109 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 2110 vmbus_walk_resources, NULL); 2111 2112 if (ACPI_FAILURE(result)) 2113 continue; 2114 if (hyperv_mmio) { 2115 vmbus_reserve_fb(); 2116 break; 2117 } 2118 } 2119 ret_val = 0; 2120 2121 acpi_walk_err: 2122 complete(&probe_event); 2123 if (ret_val) 2124 vmbus_acpi_remove(device); 2125 return ret_val; 2126 } 2127 2128 static int vmbus_bus_suspend(struct device *dev) 2129 { 2130 struct vmbus_channel *channel, *sc; 2131 unsigned long flags; 2132 2133 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) { 2134 /* 2135 * We wait here until the completion of any channel 2136 * offers that are currently in progress. 2137 */ 2138 msleep(1); 2139 } 2140 2141 mutex_lock(&vmbus_connection.channel_mutex); 2142 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2143 if (!is_hvsock_channel(channel)) 2144 continue; 2145 2146 vmbus_force_channel_rescinded(channel); 2147 } 2148 mutex_unlock(&vmbus_connection.channel_mutex); 2149 2150 /* 2151 * Wait until all the sub-channels and hv_sock channels have been 2152 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise 2153 * they would conflict with the new sub-channels that will be created 2154 * in the resume path. hv_sock channels should also be destroyed, but 2155 * a hv_sock channel of an established hv_sock connection can not be 2156 * really destroyed since it may still be referenced by the userspace 2157 * application, so we just force the hv_sock channel to be rescinded 2158 * by vmbus_force_channel_rescinded(), and the userspace application 2159 * will thoroughly destroy the channel after hibernation. 2160 * 2161 * Note: the counter nr_chan_close_on_suspend may never go above 0 if 2162 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM. 2163 */ 2164 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0) 2165 wait_for_completion(&vmbus_connection.ready_for_suspend_event); 2166 2167 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0); 2168 2169 mutex_lock(&vmbus_connection.channel_mutex); 2170 2171 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2172 /* 2173 * Invalidate the field. Upon resume, vmbus_onoffer() will fix 2174 * up the field, and the other fields (if necessary). 2175 */ 2176 channel->offermsg.child_relid = INVALID_RELID; 2177 2178 if (is_hvsock_channel(channel)) { 2179 if (!channel->rescind) { 2180 pr_err("hv_sock channel not rescinded!\n"); 2181 WARN_ON_ONCE(1); 2182 } 2183 continue; 2184 } 2185 2186 spin_lock_irqsave(&channel->lock, flags); 2187 list_for_each_entry(sc, &channel->sc_list, sc_list) { 2188 pr_err("Sub-channel not deleted!\n"); 2189 WARN_ON_ONCE(1); 2190 } 2191 spin_unlock_irqrestore(&channel->lock, flags); 2192 2193 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume); 2194 } 2195 2196 mutex_unlock(&vmbus_connection.channel_mutex); 2197 2198 vmbus_initiate_unload(false); 2199 2200 vmbus_connection.conn_state = DISCONNECTED; 2201 2202 /* Reset the event for the next resume. */ 2203 reinit_completion(&vmbus_connection.ready_for_resume_event); 2204 2205 return 0; 2206 } 2207 2208 static int vmbus_bus_resume(struct device *dev) 2209 { 2210 struct vmbus_channel_msginfo *msginfo; 2211 size_t msgsize; 2212 int ret; 2213 2214 /* 2215 * We only use the 'vmbus_proto_version', which was in use before 2216 * hibernation, to re-negotiate with the host. 2217 */ 2218 if (vmbus_proto_version == VERSION_INVAL || 2219 vmbus_proto_version == 0) { 2220 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version); 2221 return -EINVAL; 2222 } 2223 2224 msgsize = sizeof(*msginfo) + 2225 sizeof(struct vmbus_channel_initiate_contact); 2226 2227 msginfo = kzalloc(msgsize, GFP_KERNEL); 2228 2229 if (msginfo == NULL) 2230 return -ENOMEM; 2231 2232 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version); 2233 2234 kfree(msginfo); 2235 2236 if (ret != 0) 2237 return ret; 2238 2239 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0); 2240 2241 vmbus_request_offers(); 2242 2243 wait_for_completion(&vmbus_connection.ready_for_resume_event); 2244 2245 /* Reset the event for the next suspend. */ 2246 reinit_completion(&vmbus_connection.ready_for_suspend_event); 2247 2248 return 0; 2249 } 2250 2251 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 2252 {"VMBUS", 0}, 2253 {"VMBus", 0}, 2254 {"", 0}, 2255 }; 2256 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 2257 2258 /* 2259 * Note: we must use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS rather than 2260 * SET_SYSTEM_SLEEP_PM_OPS, otherwise NIC SR-IOV can not work, because the 2261 * "pci_dev_pm_ops" uses the "noirq" callbacks: in the resume path, the 2262 * pci "noirq" restore callback runs before "non-noirq" callbacks (see 2263 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() -> 2264 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's 2265 * resume callback must also run via the "noirq" callbacks. 2266 */ 2267 static const struct dev_pm_ops vmbus_bus_pm = { 2268 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(vmbus_bus_suspend, vmbus_bus_resume) 2269 }; 2270 2271 static struct acpi_driver vmbus_acpi_driver = { 2272 .name = "vmbus", 2273 .ids = vmbus_acpi_device_ids, 2274 .ops = { 2275 .add = vmbus_acpi_add, 2276 .remove = vmbus_acpi_remove, 2277 }, 2278 .drv.pm = &vmbus_bus_pm, 2279 }; 2280 2281 static void hv_kexec_handler(void) 2282 { 2283 hv_stimer_global_cleanup(); 2284 vmbus_initiate_unload(false); 2285 vmbus_connection.conn_state = DISCONNECTED; 2286 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 2287 mb(); 2288 cpuhp_remove_state(hyperv_cpuhp_online); 2289 hyperv_cleanup(); 2290 }; 2291 2292 static void hv_crash_handler(struct pt_regs *regs) 2293 { 2294 int cpu; 2295 2296 vmbus_initiate_unload(true); 2297 /* 2298 * In crash handler we can't schedule synic cleanup for all CPUs, 2299 * doing the cleanup for current CPU only. This should be sufficient 2300 * for kdump. 2301 */ 2302 vmbus_connection.conn_state = DISCONNECTED; 2303 cpu = smp_processor_id(); 2304 hv_stimer_cleanup(cpu); 2305 hv_synic_cleanup(cpu); 2306 hyperv_cleanup(); 2307 }; 2308 2309 static int hv_synic_suspend(void) 2310 { 2311 /* 2312 * When we reach here, all the non-boot CPUs have been offlined, and 2313 * the stimers on them have been unbound in hv_synic_cleanup() -> 2314 * hv_stimer_cleanup() -> clockevents_unbind_device(). 2315 * 2316 * hv_synic_suspend() only runs on CPU0 with interrupts disabled. Here 2317 * we do not unbind the stimer on CPU0 because: 1) it's unnecessary 2318 * because the interrupts remain disabled between syscore_suspend() 2319 * and syscore_resume(): see create_image() and resume_target_kernel(); 2320 * 2) the stimer on CPU0 is automatically disabled later by 2321 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ... 2322 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown(); 3) a warning 2323 * would be triggered if we call clockevents_unbind_device(), which 2324 * may sleep, in an interrupts-disabled context. So, we intentionally 2325 * don't call hv_stimer_cleanup(0) here. 2326 */ 2327 2328 hv_synic_disable_regs(0); 2329 2330 return 0; 2331 } 2332 2333 static void hv_synic_resume(void) 2334 { 2335 hv_synic_enable_regs(0); 2336 2337 /* 2338 * Note: we don't need to call hv_stimer_init(0), because the timer 2339 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is 2340 * automatically re-enabled in timekeeping_resume(). 2341 */ 2342 } 2343 2344 /* The callbacks run only on CPU0, with irqs_disabled. */ 2345 static struct syscore_ops hv_synic_syscore_ops = { 2346 .suspend = hv_synic_suspend, 2347 .resume = hv_synic_resume, 2348 }; 2349 2350 static int __init hv_acpi_init(void) 2351 { 2352 int ret, t; 2353 2354 if (!hv_is_hyperv_initialized()) 2355 return -ENODEV; 2356 2357 init_completion(&probe_event); 2358 2359 /* 2360 * Get ACPI resources first. 2361 */ 2362 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 2363 2364 if (ret) 2365 return ret; 2366 2367 t = wait_for_completion_timeout(&probe_event, 5*HZ); 2368 if (t == 0) { 2369 ret = -ETIMEDOUT; 2370 goto cleanup; 2371 } 2372 2373 ret = vmbus_bus_init(); 2374 if (ret) 2375 goto cleanup; 2376 2377 hv_setup_kexec_handler(hv_kexec_handler); 2378 hv_setup_crash_handler(hv_crash_handler); 2379 2380 register_syscore_ops(&hv_synic_syscore_ops); 2381 2382 return 0; 2383 2384 cleanup: 2385 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2386 hv_acpi_dev = NULL; 2387 return ret; 2388 } 2389 2390 static void __exit vmbus_exit(void) 2391 { 2392 int cpu; 2393 2394 unregister_syscore_ops(&hv_synic_syscore_ops); 2395 2396 hv_remove_kexec_handler(); 2397 hv_remove_crash_handler(); 2398 vmbus_connection.conn_state = DISCONNECTED; 2399 hv_stimer_global_cleanup(); 2400 vmbus_disconnect(); 2401 hv_remove_vmbus_irq(); 2402 for_each_online_cpu(cpu) { 2403 struct hv_per_cpu_context *hv_cpu 2404 = per_cpu_ptr(hv_context.cpu_context, cpu); 2405 2406 tasklet_kill(&hv_cpu->msg_dpc); 2407 } 2408 vmbus_free_channels(); 2409 2410 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 2411 kmsg_dump_unregister(&hv_kmsg_dumper); 2412 unregister_die_notifier(&hyperv_die_block); 2413 atomic_notifier_chain_unregister(&panic_notifier_list, 2414 &hyperv_panic_block); 2415 } 2416 2417 free_page((unsigned long)hv_panic_page); 2418 unregister_sysctl_table(hv_ctl_table_hdr); 2419 hv_ctl_table_hdr = NULL; 2420 bus_unregister(&hv_bus); 2421 2422 cpuhp_remove_state(hyperv_cpuhp_online); 2423 hv_synic_free(); 2424 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2425 } 2426 2427 2428 MODULE_LICENSE("GPL"); 2429 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver"); 2430 2431 subsys_initcall(hv_acpi_init); 2432 module_exit(vmbus_exit); 2433