1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 15 * Place - Suite 330, Boston, MA 02111-1307 USA. 16 * 17 * Authors: 18 * Haiyang Zhang <haiyangz@microsoft.com> 19 * Hank Janssen <hjanssen@microsoft.com> 20 * K. Y. Srinivasan <kys@microsoft.com> 21 * 22 */ 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/device.h> 28 #include <linux/interrupt.h> 29 #include <linux/sysctl.h> 30 #include <linux/slab.h> 31 #include <linux/acpi.h> 32 #include <linux/completion.h> 33 #include <linux/hyperv.h> 34 #include <linux/kernel_stat.h> 35 #include <linux/clockchips.h> 36 #include <linux/cpu.h> 37 #include <linux/sched/task_stack.h> 38 39 #include <asm/hyperv.h> 40 #include <asm/hypervisor.h> 41 #include <asm/mshyperv.h> 42 #include <linux/notifier.h> 43 #include <linux/ptrace.h> 44 #include <linux/screen_info.h> 45 #include <linux/kdebug.h> 46 #include <linux/efi.h> 47 #include <linux/random.h> 48 #include "hyperv_vmbus.h" 49 50 struct vmbus_dynid { 51 struct list_head node; 52 struct hv_vmbus_device_id id; 53 }; 54 55 static struct acpi_device *hv_acpi_dev; 56 57 static struct completion probe_event; 58 59 static int hyperv_cpuhp_online; 60 61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 62 void *args) 63 { 64 struct pt_regs *regs; 65 66 regs = current_pt_regs(); 67 68 hyperv_report_panic(regs); 69 return NOTIFY_DONE; 70 } 71 72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 73 void *args) 74 { 75 struct die_args *die = (struct die_args *)args; 76 struct pt_regs *regs = die->regs; 77 78 hyperv_report_panic(regs); 79 return NOTIFY_DONE; 80 } 81 82 static struct notifier_block hyperv_die_block = { 83 .notifier_call = hyperv_die_event, 84 }; 85 static struct notifier_block hyperv_panic_block = { 86 .notifier_call = hyperv_panic_event, 87 }; 88 89 static const char *fb_mmio_name = "fb_range"; 90 static struct resource *fb_mmio; 91 static struct resource *hyperv_mmio; 92 static DEFINE_SEMAPHORE(hyperv_mmio_lock); 93 94 static int vmbus_exists(void) 95 { 96 if (hv_acpi_dev == NULL) 97 return -ENODEV; 98 99 return 0; 100 } 101 102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2) 103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name) 104 { 105 int i; 106 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2) 107 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]); 108 } 109 110 static u8 channel_monitor_group(struct vmbus_channel *channel) 111 { 112 return (u8)channel->offermsg.monitorid / 32; 113 } 114 115 static u8 channel_monitor_offset(struct vmbus_channel *channel) 116 { 117 return (u8)channel->offermsg.monitorid % 32; 118 } 119 120 static u32 channel_pending(struct vmbus_channel *channel, 121 struct hv_monitor_page *monitor_page) 122 { 123 u8 monitor_group = channel_monitor_group(channel); 124 return monitor_page->trigger_group[monitor_group].pending; 125 } 126 127 static u32 channel_latency(struct vmbus_channel *channel, 128 struct hv_monitor_page *monitor_page) 129 { 130 u8 monitor_group = channel_monitor_group(channel); 131 u8 monitor_offset = channel_monitor_offset(channel); 132 return monitor_page->latency[monitor_group][monitor_offset]; 133 } 134 135 static u32 channel_conn_id(struct vmbus_channel *channel, 136 struct hv_monitor_page *monitor_page) 137 { 138 u8 monitor_group = channel_monitor_group(channel); 139 u8 monitor_offset = channel_monitor_offset(channel); 140 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 141 } 142 143 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 144 char *buf) 145 { 146 struct hv_device *hv_dev = device_to_hv_device(dev); 147 148 if (!hv_dev->channel) 149 return -ENODEV; 150 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 151 } 152 static DEVICE_ATTR_RO(id); 153 154 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 155 char *buf) 156 { 157 struct hv_device *hv_dev = device_to_hv_device(dev); 158 159 if (!hv_dev->channel) 160 return -ENODEV; 161 return sprintf(buf, "%d\n", hv_dev->channel->state); 162 } 163 static DEVICE_ATTR_RO(state); 164 165 static ssize_t monitor_id_show(struct device *dev, 166 struct device_attribute *dev_attr, char *buf) 167 { 168 struct hv_device *hv_dev = device_to_hv_device(dev); 169 170 if (!hv_dev->channel) 171 return -ENODEV; 172 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 173 } 174 static DEVICE_ATTR_RO(monitor_id); 175 176 static ssize_t class_id_show(struct device *dev, 177 struct device_attribute *dev_attr, char *buf) 178 { 179 struct hv_device *hv_dev = device_to_hv_device(dev); 180 181 if (!hv_dev->channel) 182 return -ENODEV; 183 return sprintf(buf, "{%pUl}\n", 184 hv_dev->channel->offermsg.offer.if_type.b); 185 } 186 static DEVICE_ATTR_RO(class_id); 187 188 static ssize_t device_id_show(struct device *dev, 189 struct device_attribute *dev_attr, char *buf) 190 { 191 struct hv_device *hv_dev = device_to_hv_device(dev); 192 193 if (!hv_dev->channel) 194 return -ENODEV; 195 return sprintf(buf, "{%pUl}\n", 196 hv_dev->channel->offermsg.offer.if_instance.b); 197 } 198 static DEVICE_ATTR_RO(device_id); 199 200 static ssize_t modalias_show(struct device *dev, 201 struct device_attribute *dev_attr, char *buf) 202 { 203 struct hv_device *hv_dev = device_to_hv_device(dev); 204 char alias_name[VMBUS_ALIAS_LEN + 1]; 205 206 print_alias_name(hv_dev, alias_name); 207 return sprintf(buf, "vmbus:%s\n", alias_name); 208 } 209 static DEVICE_ATTR_RO(modalias); 210 211 static ssize_t server_monitor_pending_show(struct device *dev, 212 struct device_attribute *dev_attr, 213 char *buf) 214 { 215 struct hv_device *hv_dev = device_to_hv_device(dev); 216 217 if (!hv_dev->channel) 218 return -ENODEV; 219 return sprintf(buf, "%d\n", 220 channel_pending(hv_dev->channel, 221 vmbus_connection.monitor_pages[1])); 222 } 223 static DEVICE_ATTR_RO(server_monitor_pending); 224 225 static ssize_t client_monitor_pending_show(struct device *dev, 226 struct device_attribute *dev_attr, 227 char *buf) 228 { 229 struct hv_device *hv_dev = device_to_hv_device(dev); 230 231 if (!hv_dev->channel) 232 return -ENODEV; 233 return sprintf(buf, "%d\n", 234 channel_pending(hv_dev->channel, 235 vmbus_connection.monitor_pages[1])); 236 } 237 static DEVICE_ATTR_RO(client_monitor_pending); 238 239 static ssize_t server_monitor_latency_show(struct device *dev, 240 struct device_attribute *dev_attr, 241 char *buf) 242 { 243 struct hv_device *hv_dev = device_to_hv_device(dev); 244 245 if (!hv_dev->channel) 246 return -ENODEV; 247 return sprintf(buf, "%d\n", 248 channel_latency(hv_dev->channel, 249 vmbus_connection.monitor_pages[0])); 250 } 251 static DEVICE_ATTR_RO(server_monitor_latency); 252 253 static ssize_t client_monitor_latency_show(struct device *dev, 254 struct device_attribute *dev_attr, 255 char *buf) 256 { 257 struct hv_device *hv_dev = device_to_hv_device(dev); 258 259 if (!hv_dev->channel) 260 return -ENODEV; 261 return sprintf(buf, "%d\n", 262 channel_latency(hv_dev->channel, 263 vmbus_connection.monitor_pages[1])); 264 } 265 static DEVICE_ATTR_RO(client_monitor_latency); 266 267 static ssize_t server_monitor_conn_id_show(struct device *dev, 268 struct device_attribute *dev_attr, 269 char *buf) 270 { 271 struct hv_device *hv_dev = device_to_hv_device(dev); 272 273 if (!hv_dev->channel) 274 return -ENODEV; 275 return sprintf(buf, "%d\n", 276 channel_conn_id(hv_dev->channel, 277 vmbus_connection.monitor_pages[0])); 278 } 279 static DEVICE_ATTR_RO(server_monitor_conn_id); 280 281 static ssize_t client_monitor_conn_id_show(struct device *dev, 282 struct device_attribute *dev_attr, 283 char *buf) 284 { 285 struct hv_device *hv_dev = device_to_hv_device(dev); 286 287 if (!hv_dev->channel) 288 return -ENODEV; 289 return sprintf(buf, "%d\n", 290 channel_conn_id(hv_dev->channel, 291 vmbus_connection.monitor_pages[1])); 292 } 293 static DEVICE_ATTR_RO(client_monitor_conn_id); 294 295 static ssize_t out_intr_mask_show(struct device *dev, 296 struct device_attribute *dev_attr, char *buf) 297 { 298 struct hv_device *hv_dev = device_to_hv_device(dev); 299 struct hv_ring_buffer_debug_info outbound; 300 301 if (!hv_dev->channel) 302 return -ENODEV; 303 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 304 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 305 } 306 static DEVICE_ATTR_RO(out_intr_mask); 307 308 static ssize_t out_read_index_show(struct device *dev, 309 struct device_attribute *dev_attr, char *buf) 310 { 311 struct hv_device *hv_dev = device_to_hv_device(dev); 312 struct hv_ring_buffer_debug_info outbound; 313 314 if (!hv_dev->channel) 315 return -ENODEV; 316 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 317 return sprintf(buf, "%d\n", outbound.current_read_index); 318 } 319 static DEVICE_ATTR_RO(out_read_index); 320 321 static ssize_t out_write_index_show(struct device *dev, 322 struct device_attribute *dev_attr, 323 char *buf) 324 { 325 struct hv_device *hv_dev = device_to_hv_device(dev); 326 struct hv_ring_buffer_debug_info outbound; 327 328 if (!hv_dev->channel) 329 return -ENODEV; 330 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 331 return sprintf(buf, "%d\n", outbound.current_write_index); 332 } 333 static DEVICE_ATTR_RO(out_write_index); 334 335 static ssize_t out_read_bytes_avail_show(struct device *dev, 336 struct device_attribute *dev_attr, 337 char *buf) 338 { 339 struct hv_device *hv_dev = device_to_hv_device(dev); 340 struct hv_ring_buffer_debug_info outbound; 341 342 if (!hv_dev->channel) 343 return -ENODEV; 344 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 345 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 346 } 347 static DEVICE_ATTR_RO(out_read_bytes_avail); 348 349 static ssize_t out_write_bytes_avail_show(struct device *dev, 350 struct device_attribute *dev_attr, 351 char *buf) 352 { 353 struct hv_device *hv_dev = device_to_hv_device(dev); 354 struct hv_ring_buffer_debug_info outbound; 355 356 if (!hv_dev->channel) 357 return -ENODEV; 358 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 359 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 360 } 361 static DEVICE_ATTR_RO(out_write_bytes_avail); 362 363 static ssize_t in_intr_mask_show(struct device *dev, 364 struct device_attribute *dev_attr, char *buf) 365 { 366 struct hv_device *hv_dev = device_to_hv_device(dev); 367 struct hv_ring_buffer_debug_info inbound; 368 369 if (!hv_dev->channel) 370 return -ENODEV; 371 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 372 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 373 } 374 static DEVICE_ATTR_RO(in_intr_mask); 375 376 static ssize_t in_read_index_show(struct device *dev, 377 struct device_attribute *dev_attr, char *buf) 378 { 379 struct hv_device *hv_dev = device_to_hv_device(dev); 380 struct hv_ring_buffer_debug_info inbound; 381 382 if (!hv_dev->channel) 383 return -ENODEV; 384 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 385 return sprintf(buf, "%d\n", inbound.current_read_index); 386 } 387 static DEVICE_ATTR_RO(in_read_index); 388 389 static ssize_t in_write_index_show(struct device *dev, 390 struct device_attribute *dev_attr, char *buf) 391 { 392 struct hv_device *hv_dev = device_to_hv_device(dev); 393 struct hv_ring_buffer_debug_info inbound; 394 395 if (!hv_dev->channel) 396 return -ENODEV; 397 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 398 return sprintf(buf, "%d\n", inbound.current_write_index); 399 } 400 static DEVICE_ATTR_RO(in_write_index); 401 402 static ssize_t in_read_bytes_avail_show(struct device *dev, 403 struct device_attribute *dev_attr, 404 char *buf) 405 { 406 struct hv_device *hv_dev = device_to_hv_device(dev); 407 struct hv_ring_buffer_debug_info inbound; 408 409 if (!hv_dev->channel) 410 return -ENODEV; 411 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 412 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 413 } 414 static DEVICE_ATTR_RO(in_read_bytes_avail); 415 416 static ssize_t in_write_bytes_avail_show(struct device *dev, 417 struct device_attribute *dev_attr, 418 char *buf) 419 { 420 struct hv_device *hv_dev = device_to_hv_device(dev); 421 struct hv_ring_buffer_debug_info inbound; 422 423 if (!hv_dev->channel) 424 return -ENODEV; 425 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 426 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 427 } 428 static DEVICE_ATTR_RO(in_write_bytes_avail); 429 430 static ssize_t channel_vp_mapping_show(struct device *dev, 431 struct device_attribute *dev_attr, 432 char *buf) 433 { 434 struct hv_device *hv_dev = device_to_hv_device(dev); 435 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 436 unsigned long flags; 437 int buf_size = PAGE_SIZE, n_written, tot_written; 438 struct list_head *cur; 439 440 if (!channel) 441 return -ENODEV; 442 443 tot_written = snprintf(buf, buf_size, "%u:%u\n", 444 channel->offermsg.child_relid, channel->target_cpu); 445 446 spin_lock_irqsave(&channel->lock, flags); 447 448 list_for_each(cur, &channel->sc_list) { 449 if (tot_written >= buf_size - 1) 450 break; 451 452 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 453 n_written = scnprintf(buf + tot_written, 454 buf_size - tot_written, 455 "%u:%u\n", 456 cur_sc->offermsg.child_relid, 457 cur_sc->target_cpu); 458 tot_written += n_written; 459 } 460 461 spin_unlock_irqrestore(&channel->lock, flags); 462 463 return tot_written; 464 } 465 static DEVICE_ATTR_RO(channel_vp_mapping); 466 467 static ssize_t vendor_show(struct device *dev, 468 struct device_attribute *dev_attr, 469 char *buf) 470 { 471 struct hv_device *hv_dev = device_to_hv_device(dev); 472 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 473 } 474 static DEVICE_ATTR_RO(vendor); 475 476 static ssize_t device_show(struct device *dev, 477 struct device_attribute *dev_attr, 478 char *buf) 479 { 480 struct hv_device *hv_dev = device_to_hv_device(dev); 481 return sprintf(buf, "0x%x\n", hv_dev->device_id); 482 } 483 static DEVICE_ATTR_RO(device); 484 485 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 486 static struct attribute *vmbus_dev_attrs[] = { 487 &dev_attr_id.attr, 488 &dev_attr_state.attr, 489 &dev_attr_monitor_id.attr, 490 &dev_attr_class_id.attr, 491 &dev_attr_device_id.attr, 492 &dev_attr_modalias.attr, 493 &dev_attr_server_monitor_pending.attr, 494 &dev_attr_client_monitor_pending.attr, 495 &dev_attr_server_monitor_latency.attr, 496 &dev_attr_client_monitor_latency.attr, 497 &dev_attr_server_monitor_conn_id.attr, 498 &dev_attr_client_monitor_conn_id.attr, 499 &dev_attr_out_intr_mask.attr, 500 &dev_attr_out_read_index.attr, 501 &dev_attr_out_write_index.attr, 502 &dev_attr_out_read_bytes_avail.attr, 503 &dev_attr_out_write_bytes_avail.attr, 504 &dev_attr_in_intr_mask.attr, 505 &dev_attr_in_read_index.attr, 506 &dev_attr_in_write_index.attr, 507 &dev_attr_in_read_bytes_avail.attr, 508 &dev_attr_in_write_bytes_avail.attr, 509 &dev_attr_channel_vp_mapping.attr, 510 &dev_attr_vendor.attr, 511 &dev_attr_device.attr, 512 NULL, 513 }; 514 ATTRIBUTE_GROUPS(vmbus_dev); 515 516 /* 517 * vmbus_uevent - add uevent for our device 518 * 519 * This routine is invoked when a device is added or removed on the vmbus to 520 * generate a uevent to udev in the userspace. The udev will then look at its 521 * rule and the uevent generated here to load the appropriate driver 522 * 523 * The alias string will be of the form vmbus:guid where guid is the string 524 * representation of the device guid (each byte of the guid will be 525 * represented with two hex characters. 526 */ 527 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 528 { 529 struct hv_device *dev = device_to_hv_device(device); 530 int ret; 531 char alias_name[VMBUS_ALIAS_LEN + 1]; 532 533 print_alias_name(dev, alias_name); 534 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name); 535 return ret; 536 } 537 538 static const uuid_le null_guid; 539 540 static inline bool is_null_guid(const uuid_le *guid) 541 { 542 if (uuid_le_cmp(*guid, null_guid)) 543 return false; 544 return true; 545 } 546 547 /* 548 * Return a matching hv_vmbus_device_id pointer. 549 * If there is no match, return NULL. 550 */ 551 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 552 const uuid_le *guid) 553 { 554 const struct hv_vmbus_device_id *id = NULL; 555 struct vmbus_dynid *dynid; 556 557 /* Look at the dynamic ids first, before the static ones */ 558 spin_lock(&drv->dynids.lock); 559 list_for_each_entry(dynid, &drv->dynids.list, node) { 560 if (!uuid_le_cmp(dynid->id.guid, *guid)) { 561 id = &dynid->id; 562 break; 563 } 564 } 565 spin_unlock(&drv->dynids.lock); 566 567 if (id) 568 return id; 569 570 id = drv->id_table; 571 if (id == NULL) 572 return NULL; /* empty device table */ 573 574 for (; !is_null_guid(&id->guid); id++) 575 if (!uuid_le_cmp(id->guid, *guid)) 576 return id; 577 578 return NULL; 579 } 580 581 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 582 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid) 583 { 584 struct vmbus_dynid *dynid; 585 586 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 587 if (!dynid) 588 return -ENOMEM; 589 590 dynid->id.guid = *guid; 591 592 spin_lock(&drv->dynids.lock); 593 list_add_tail(&dynid->node, &drv->dynids.list); 594 spin_unlock(&drv->dynids.lock); 595 596 return driver_attach(&drv->driver); 597 } 598 599 static void vmbus_free_dynids(struct hv_driver *drv) 600 { 601 struct vmbus_dynid *dynid, *n; 602 603 spin_lock(&drv->dynids.lock); 604 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 605 list_del(&dynid->node); 606 kfree(dynid); 607 } 608 spin_unlock(&drv->dynids.lock); 609 } 610 611 /* 612 * store_new_id - sysfs frontend to vmbus_add_dynid() 613 * 614 * Allow GUIDs to be added to an existing driver via sysfs. 615 */ 616 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 617 size_t count) 618 { 619 struct hv_driver *drv = drv_to_hv_drv(driver); 620 uuid_le guid; 621 ssize_t retval; 622 623 retval = uuid_le_to_bin(buf, &guid); 624 if (retval) 625 return retval; 626 627 if (hv_vmbus_get_id(drv, &guid)) 628 return -EEXIST; 629 630 retval = vmbus_add_dynid(drv, &guid); 631 if (retval) 632 return retval; 633 return count; 634 } 635 static DRIVER_ATTR_WO(new_id); 636 637 /* 638 * store_remove_id - remove a PCI device ID from this driver 639 * 640 * Removes a dynamic pci device ID to this driver. 641 */ 642 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 643 size_t count) 644 { 645 struct hv_driver *drv = drv_to_hv_drv(driver); 646 struct vmbus_dynid *dynid, *n; 647 uuid_le guid; 648 ssize_t retval; 649 650 retval = uuid_le_to_bin(buf, &guid); 651 if (retval) 652 return retval; 653 654 retval = -ENODEV; 655 spin_lock(&drv->dynids.lock); 656 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 657 struct hv_vmbus_device_id *id = &dynid->id; 658 659 if (!uuid_le_cmp(id->guid, guid)) { 660 list_del(&dynid->node); 661 kfree(dynid); 662 retval = count; 663 break; 664 } 665 } 666 spin_unlock(&drv->dynids.lock); 667 668 return retval; 669 } 670 static DRIVER_ATTR_WO(remove_id); 671 672 static struct attribute *vmbus_drv_attrs[] = { 673 &driver_attr_new_id.attr, 674 &driver_attr_remove_id.attr, 675 NULL, 676 }; 677 ATTRIBUTE_GROUPS(vmbus_drv); 678 679 680 /* 681 * vmbus_match - Attempt to match the specified device to the specified driver 682 */ 683 static int vmbus_match(struct device *device, struct device_driver *driver) 684 { 685 struct hv_driver *drv = drv_to_hv_drv(driver); 686 struct hv_device *hv_dev = device_to_hv_device(device); 687 688 /* The hv_sock driver handles all hv_sock offers. */ 689 if (is_hvsock_channel(hv_dev->channel)) 690 return drv->hvsock; 691 692 if (hv_vmbus_get_id(drv, &hv_dev->dev_type)) 693 return 1; 694 695 return 0; 696 } 697 698 /* 699 * vmbus_probe - Add the new vmbus's child device 700 */ 701 static int vmbus_probe(struct device *child_device) 702 { 703 int ret = 0; 704 struct hv_driver *drv = 705 drv_to_hv_drv(child_device->driver); 706 struct hv_device *dev = device_to_hv_device(child_device); 707 const struct hv_vmbus_device_id *dev_id; 708 709 dev_id = hv_vmbus_get_id(drv, &dev->dev_type); 710 if (drv->probe) { 711 ret = drv->probe(dev, dev_id); 712 if (ret != 0) 713 pr_err("probe failed for device %s (%d)\n", 714 dev_name(child_device), ret); 715 716 } else { 717 pr_err("probe not set for driver %s\n", 718 dev_name(child_device)); 719 ret = -ENODEV; 720 } 721 return ret; 722 } 723 724 /* 725 * vmbus_remove - Remove a vmbus device 726 */ 727 static int vmbus_remove(struct device *child_device) 728 { 729 struct hv_driver *drv; 730 struct hv_device *dev = device_to_hv_device(child_device); 731 732 if (child_device->driver) { 733 drv = drv_to_hv_drv(child_device->driver); 734 if (drv->remove) 735 drv->remove(dev); 736 } 737 738 return 0; 739 } 740 741 742 /* 743 * vmbus_shutdown - Shutdown a vmbus device 744 */ 745 static void vmbus_shutdown(struct device *child_device) 746 { 747 struct hv_driver *drv; 748 struct hv_device *dev = device_to_hv_device(child_device); 749 750 751 /* The device may not be attached yet */ 752 if (!child_device->driver) 753 return; 754 755 drv = drv_to_hv_drv(child_device->driver); 756 757 if (drv->shutdown) 758 drv->shutdown(dev); 759 } 760 761 762 /* 763 * vmbus_device_release - Final callback release of the vmbus child device 764 */ 765 static void vmbus_device_release(struct device *device) 766 { 767 struct hv_device *hv_dev = device_to_hv_device(device); 768 struct vmbus_channel *channel = hv_dev->channel; 769 770 mutex_lock(&vmbus_connection.channel_mutex); 771 hv_process_channel_removal(channel, 772 channel->offermsg.child_relid); 773 mutex_unlock(&vmbus_connection.channel_mutex); 774 kfree(hv_dev); 775 776 } 777 778 /* The one and only one */ 779 static struct bus_type hv_bus = { 780 .name = "vmbus", 781 .match = vmbus_match, 782 .shutdown = vmbus_shutdown, 783 .remove = vmbus_remove, 784 .probe = vmbus_probe, 785 .uevent = vmbus_uevent, 786 .dev_groups = vmbus_dev_groups, 787 .drv_groups = vmbus_drv_groups, 788 }; 789 790 struct onmessage_work_context { 791 struct work_struct work; 792 struct hv_message msg; 793 }; 794 795 static void vmbus_onmessage_work(struct work_struct *work) 796 { 797 struct onmessage_work_context *ctx; 798 799 /* Do not process messages if we're in DISCONNECTED state */ 800 if (vmbus_connection.conn_state == DISCONNECTED) 801 return; 802 803 ctx = container_of(work, struct onmessage_work_context, 804 work); 805 vmbus_onmessage(&ctx->msg); 806 kfree(ctx); 807 } 808 809 static void hv_process_timer_expiration(struct hv_message *msg, 810 struct hv_per_cpu_context *hv_cpu) 811 { 812 struct clock_event_device *dev = hv_cpu->clk_evt; 813 814 if (dev->event_handler) 815 dev->event_handler(dev); 816 817 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 818 } 819 820 void vmbus_on_msg_dpc(unsigned long data) 821 { 822 struct hv_per_cpu_context *hv_cpu = (void *)data; 823 void *page_addr = hv_cpu->synic_message_page; 824 struct hv_message *msg = (struct hv_message *)page_addr + 825 VMBUS_MESSAGE_SINT; 826 struct vmbus_channel_message_header *hdr; 827 const struct vmbus_channel_message_table_entry *entry; 828 struct onmessage_work_context *ctx; 829 u32 message_type = msg->header.message_type; 830 831 if (message_type == HVMSG_NONE) 832 /* no msg */ 833 return; 834 835 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 836 837 if (hdr->msgtype >= CHANNELMSG_COUNT) { 838 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype); 839 goto msg_handled; 840 } 841 842 entry = &channel_message_table[hdr->msgtype]; 843 if (entry->handler_type == VMHT_BLOCKING) { 844 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 845 if (ctx == NULL) 846 return; 847 848 INIT_WORK(&ctx->work, vmbus_onmessage_work); 849 memcpy(&ctx->msg, msg, sizeof(*msg)); 850 851 /* 852 * The host can generate a rescind message while we 853 * may still be handling the original offer. We deal with 854 * this condition by ensuring the processing is done on the 855 * same CPU. 856 */ 857 switch (hdr->msgtype) { 858 case CHANNELMSG_RESCIND_CHANNELOFFER: 859 /* 860 * If we are handling the rescind message; 861 * schedule the work on the global work queue. 862 */ 863 schedule_work_on(vmbus_connection.connect_cpu, 864 &ctx->work); 865 break; 866 867 case CHANNELMSG_OFFERCHANNEL: 868 atomic_inc(&vmbus_connection.offer_in_progress); 869 queue_work_on(vmbus_connection.connect_cpu, 870 vmbus_connection.work_queue, 871 &ctx->work); 872 break; 873 874 default: 875 queue_work(vmbus_connection.work_queue, &ctx->work); 876 } 877 } else 878 entry->message_handler(hdr); 879 880 msg_handled: 881 vmbus_signal_eom(msg, message_type); 882 } 883 884 885 /* 886 * Direct callback for channels using other deferred processing 887 */ 888 static void vmbus_channel_isr(struct vmbus_channel *channel) 889 { 890 void (*callback_fn)(void *); 891 892 callback_fn = READ_ONCE(channel->onchannel_callback); 893 if (likely(callback_fn != NULL)) 894 (*callback_fn)(channel->channel_callback_context); 895 } 896 897 /* 898 * Schedule all channels with events pending 899 */ 900 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 901 { 902 unsigned long *recv_int_page; 903 u32 maxbits, relid; 904 905 if (vmbus_proto_version < VERSION_WIN8) { 906 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 907 recv_int_page = vmbus_connection.recv_int_page; 908 } else { 909 /* 910 * When the host is win8 and beyond, the event page 911 * can be directly checked to get the id of the channel 912 * that has the interrupt pending. 913 */ 914 void *page_addr = hv_cpu->synic_event_page; 915 union hv_synic_event_flags *event 916 = (union hv_synic_event_flags *)page_addr + 917 VMBUS_MESSAGE_SINT; 918 919 maxbits = HV_EVENT_FLAGS_COUNT; 920 recv_int_page = event->flags; 921 } 922 923 if (unlikely(!recv_int_page)) 924 return; 925 926 for_each_set_bit(relid, recv_int_page, maxbits) { 927 struct vmbus_channel *channel; 928 929 if (!sync_test_and_clear_bit(relid, recv_int_page)) 930 continue; 931 932 /* Special case - vmbus channel protocol msg */ 933 if (relid == 0) 934 continue; 935 936 rcu_read_lock(); 937 938 /* Find channel based on relid */ 939 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) { 940 if (channel->offermsg.child_relid != relid) 941 continue; 942 943 switch (channel->callback_mode) { 944 case HV_CALL_ISR: 945 vmbus_channel_isr(channel); 946 break; 947 948 case HV_CALL_BATCHED: 949 hv_begin_read(&channel->inbound); 950 /* fallthrough */ 951 case HV_CALL_DIRECT: 952 tasklet_schedule(&channel->callback_event); 953 } 954 } 955 956 rcu_read_unlock(); 957 } 958 } 959 960 static void vmbus_isr(void) 961 { 962 struct hv_per_cpu_context *hv_cpu 963 = this_cpu_ptr(hv_context.cpu_context); 964 void *page_addr = hv_cpu->synic_event_page; 965 struct hv_message *msg; 966 union hv_synic_event_flags *event; 967 bool handled = false; 968 969 if (unlikely(page_addr == NULL)) 970 return; 971 972 event = (union hv_synic_event_flags *)page_addr + 973 VMBUS_MESSAGE_SINT; 974 /* 975 * Check for events before checking for messages. This is the order 976 * in which events and messages are checked in Windows guests on 977 * Hyper-V, and the Windows team suggested we do the same. 978 */ 979 980 if ((vmbus_proto_version == VERSION_WS2008) || 981 (vmbus_proto_version == VERSION_WIN7)) { 982 983 /* Since we are a child, we only need to check bit 0 */ 984 if (sync_test_and_clear_bit(0, event->flags)) 985 handled = true; 986 } else { 987 /* 988 * Our host is win8 or above. The signaling mechanism 989 * has changed and we can directly look at the event page. 990 * If bit n is set then we have an interrup on the channel 991 * whose id is n. 992 */ 993 handled = true; 994 } 995 996 if (handled) 997 vmbus_chan_sched(hv_cpu); 998 999 page_addr = hv_cpu->synic_message_page; 1000 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1001 1002 /* Check if there are actual msgs to be processed */ 1003 if (msg->header.message_type != HVMSG_NONE) { 1004 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) 1005 hv_process_timer_expiration(msg, hv_cpu); 1006 else 1007 tasklet_schedule(&hv_cpu->msg_dpc); 1008 } 1009 1010 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0); 1011 } 1012 1013 1014 /* 1015 * vmbus_bus_init -Main vmbus driver initialization routine. 1016 * 1017 * Here, we 1018 * - initialize the vmbus driver context 1019 * - invoke the vmbus hv main init routine 1020 * - retrieve the channel offers 1021 */ 1022 static int vmbus_bus_init(void) 1023 { 1024 int ret; 1025 1026 /* Hypervisor initialization...setup hypercall page..etc */ 1027 ret = hv_init(); 1028 if (ret != 0) { 1029 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1030 return ret; 1031 } 1032 1033 ret = bus_register(&hv_bus); 1034 if (ret) 1035 return ret; 1036 1037 hv_setup_vmbus_irq(vmbus_isr); 1038 1039 ret = hv_synic_alloc(); 1040 if (ret) 1041 goto err_alloc; 1042 /* 1043 * Initialize the per-cpu interrupt state and 1044 * connect to the host. 1045 */ 1046 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv:online", 1047 hv_synic_init, hv_synic_cleanup); 1048 if (ret < 0) 1049 goto err_alloc; 1050 hyperv_cpuhp_online = ret; 1051 1052 ret = vmbus_connect(); 1053 if (ret) 1054 goto err_connect; 1055 1056 /* 1057 * Only register if the crash MSRs are available 1058 */ 1059 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1060 register_die_notifier(&hyperv_die_block); 1061 atomic_notifier_chain_register(&panic_notifier_list, 1062 &hyperv_panic_block); 1063 } 1064 1065 vmbus_request_offers(); 1066 1067 return 0; 1068 1069 err_connect: 1070 cpuhp_remove_state(hyperv_cpuhp_online); 1071 err_alloc: 1072 hv_synic_free(); 1073 hv_remove_vmbus_irq(); 1074 1075 bus_unregister(&hv_bus); 1076 1077 return ret; 1078 } 1079 1080 /** 1081 * __vmbus_child_driver_register() - Register a vmbus's driver 1082 * @hv_driver: Pointer to driver structure you want to register 1083 * @owner: owner module of the drv 1084 * @mod_name: module name string 1085 * 1086 * Registers the given driver with Linux through the 'driver_register()' call 1087 * and sets up the hyper-v vmbus handling for this driver. 1088 * It will return the state of the 'driver_register()' call. 1089 * 1090 */ 1091 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1092 { 1093 int ret; 1094 1095 pr_info("registering driver %s\n", hv_driver->name); 1096 1097 ret = vmbus_exists(); 1098 if (ret < 0) 1099 return ret; 1100 1101 hv_driver->driver.name = hv_driver->name; 1102 hv_driver->driver.owner = owner; 1103 hv_driver->driver.mod_name = mod_name; 1104 hv_driver->driver.bus = &hv_bus; 1105 1106 spin_lock_init(&hv_driver->dynids.lock); 1107 INIT_LIST_HEAD(&hv_driver->dynids.list); 1108 1109 ret = driver_register(&hv_driver->driver); 1110 1111 return ret; 1112 } 1113 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1114 1115 /** 1116 * vmbus_driver_unregister() - Unregister a vmbus's driver 1117 * @hv_driver: Pointer to driver structure you want to 1118 * un-register 1119 * 1120 * Un-register the given driver that was previous registered with a call to 1121 * vmbus_driver_register() 1122 */ 1123 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1124 { 1125 pr_info("unregistering driver %s\n", hv_driver->name); 1126 1127 if (!vmbus_exists()) { 1128 driver_unregister(&hv_driver->driver); 1129 vmbus_free_dynids(hv_driver); 1130 } 1131 } 1132 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1133 1134 /* 1135 * vmbus_device_create - Creates and registers a new child device 1136 * on the vmbus. 1137 */ 1138 struct hv_device *vmbus_device_create(const uuid_le *type, 1139 const uuid_le *instance, 1140 struct vmbus_channel *channel) 1141 { 1142 struct hv_device *child_device_obj; 1143 1144 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 1145 if (!child_device_obj) { 1146 pr_err("Unable to allocate device object for child device\n"); 1147 return NULL; 1148 } 1149 1150 child_device_obj->channel = channel; 1151 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le)); 1152 memcpy(&child_device_obj->dev_instance, instance, 1153 sizeof(uuid_le)); 1154 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 1155 1156 1157 return child_device_obj; 1158 } 1159 1160 /* 1161 * vmbus_device_register - Register the child device 1162 */ 1163 int vmbus_device_register(struct hv_device *child_device_obj) 1164 { 1165 int ret = 0; 1166 1167 dev_set_name(&child_device_obj->device, "%pUl", 1168 child_device_obj->channel->offermsg.offer.if_instance.b); 1169 1170 child_device_obj->device.bus = &hv_bus; 1171 child_device_obj->device.parent = &hv_acpi_dev->dev; 1172 child_device_obj->device.release = vmbus_device_release; 1173 1174 /* 1175 * Register with the LDM. This will kick off the driver/device 1176 * binding...which will eventually call vmbus_match() and vmbus_probe() 1177 */ 1178 ret = device_register(&child_device_obj->device); 1179 1180 if (ret) 1181 pr_err("Unable to register child device\n"); 1182 else 1183 pr_debug("child device %s registered\n", 1184 dev_name(&child_device_obj->device)); 1185 1186 return ret; 1187 } 1188 1189 /* 1190 * vmbus_device_unregister - Remove the specified child device 1191 * from the vmbus. 1192 */ 1193 void vmbus_device_unregister(struct hv_device *device_obj) 1194 { 1195 pr_debug("child device %s unregistered\n", 1196 dev_name(&device_obj->device)); 1197 1198 /* 1199 * Kick off the process of unregistering the device. 1200 * This will call vmbus_remove() and eventually vmbus_device_release() 1201 */ 1202 device_unregister(&device_obj->device); 1203 } 1204 1205 1206 /* 1207 * VMBUS is an acpi enumerated device. Get the information we 1208 * need from DSDT. 1209 */ 1210 #define VTPM_BASE_ADDRESS 0xfed40000 1211 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 1212 { 1213 resource_size_t start = 0; 1214 resource_size_t end = 0; 1215 struct resource *new_res; 1216 struct resource **old_res = &hyperv_mmio; 1217 struct resource **prev_res = NULL; 1218 1219 switch (res->type) { 1220 1221 /* 1222 * "Address" descriptors are for bus windows. Ignore 1223 * "memory" descriptors, which are for registers on 1224 * devices. 1225 */ 1226 case ACPI_RESOURCE_TYPE_ADDRESS32: 1227 start = res->data.address32.address.minimum; 1228 end = res->data.address32.address.maximum; 1229 break; 1230 1231 case ACPI_RESOURCE_TYPE_ADDRESS64: 1232 start = res->data.address64.address.minimum; 1233 end = res->data.address64.address.maximum; 1234 break; 1235 1236 default: 1237 /* Unused resource type */ 1238 return AE_OK; 1239 1240 } 1241 /* 1242 * Ignore ranges that are below 1MB, as they're not 1243 * necessary or useful here. 1244 */ 1245 if (end < 0x100000) 1246 return AE_OK; 1247 1248 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 1249 if (!new_res) 1250 return AE_NO_MEMORY; 1251 1252 /* If this range overlaps the virtual TPM, truncate it. */ 1253 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 1254 end = VTPM_BASE_ADDRESS; 1255 1256 new_res->name = "hyperv mmio"; 1257 new_res->flags = IORESOURCE_MEM; 1258 new_res->start = start; 1259 new_res->end = end; 1260 1261 /* 1262 * If two ranges are adjacent, merge them. 1263 */ 1264 do { 1265 if (!*old_res) { 1266 *old_res = new_res; 1267 break; 1268 } 1269 1270 if (((*old_res)->end + 1) == new_res->start) { 1271 (*old_res)->end = new_res->end; 1272 kfree(new_res); 1273 break; 1274 } 1275 1276 if ((*old_res)->start == new_res->end + 1) { 1277 (*old_res)->start = new_res->start; 1278 kfree(new_res); 1279 break; 1280 } 1281 1282 if ((*old_res)->start > new_res->end) { 1283 new_res->sibling = *old_res; 1284 if (prev_res) 1285 (*prev_res)->sibling = new_res; 1286 *old_res = new_res; 1287 break; 1288 } 1289 1290 prev_res = old_res; 1291 old_res = &(*old_res)->sibling; 1292 1293 } while (1); 1294 1295 return AE_OK; 1296 } 1297 1298 static int vmbus_acpi_remove(struct acpi_device *device) 1299 { 1300 struct resource *cur_res; 1301 struct resource *next_res; 1302 1303 if (hyperv_mmio) { 1304 if (fb_mmio) { 1305 __release_region(hyperv_mmio, fb_mmio->start, 1306 resource_size(fb_mmio)); 1307 fb_mmio = NULL; 1308 } 1309 1310 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 1311 next_res = cur_res->sibling; 1312 kfree(cur_res); 1313 } 1314 } 1315 1316 return 0; 1317 } 1318 1319 static void vmbus_reserve_fb(void) 1320 { 1321 int size; 1322 /* 1323 * Make a claim for the frame buffer in the resource tree under the 1324 * first node, which will be the one below 4GB. The length seems to 1325 * be underreported, particularly in a Generation 1 VM. So start out 1326 * reserving a larger area and make it smaller until it succeeds. 1327 */ 1328 1329 if (screen_info.lfb_base) { 1330 if (efi_enabled(EFI_BOOT)) 1331 size = max_t(__u32, screen_info.lfb_size, 0x800000); 1332 else 1333 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 1334 1335 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 1336 fb_mmio = __request_region(hyperv_mmio, 1337 screen_info.lfb_base, size, 1338 fb_mmio_name, 0); 1339 } 1340 } 1341 } 1342 1343 /** 1344 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 1345 * @new: If successful, supplied a pointer to the 1346 * allocated MMIO space. 1347 * @device_obj: Identifies the caller 1348 * @min: Minimum guest physical address of the 1349 * allocation 1350 * @max: Maximum guest physical address 1351 * @size: Size of the range to be allocated 1352 * @align: Alignment of the range to be allocated 1353 * @fb_overlap_ok: Whether this allocation can be allowed 1354 * to overlap the video frame buffer. 1355 * 1356 * This function walks the resources granted to VMBus by the 1357 * _CRS object in the ACPI namespace underneath the parent 1358 * "bridge" whether that's a root PCI bus in the Generation 1 1359 * case or a Module Device in the Generation 2 case. It then 1360 * attempts to allocate from the global MMIO pool in a way that 1361 * matches the constraints supplied in these parameters and by 1362 * that _CRS. 1363 * 1364 * Return: 0 on success, -errno on failure 1365 */ 1366 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1367 resource_size_t min, resource_size_t max, 1368 resource_size_t size, resource_size_t align, 1369 bool fb_overlap_ok) 1370 { 1371 struct resource *iter, *shadow; 1372 resource_size_t range_min, range_max, start; 1373 const char *dev_n = dev_name(&device_obj->device); 1374 int retval; 1375 1376 retval = -ENXIO; 1377 down(&hyperv_mmio_lock); 1378 1379 /* 1380 * If overlaps with frame buffers are allowed, then first attempt to 1381 * make the allocation from within the reserved region. Because it 1382 * is already reserved, no shadow allocation is necessary. 1383 */ 1384 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 1385 !(max < fb_mmio->start)) { 1386 1387 range_min = fb_mmio->start; 1388 range_max = fb_mmio->end; 1389 start = (range_min + align - 1) & ~(align - 1); 1390 for (; start + size - 1 <= range_max; start += align) { 1391 *new = request_mem_region_exclusive(start, size, dev_n); 1392 if (*new) { 1393 retval = 0; 1394 goto exit; 1395 } 1396 } 1397 } 1398 1399 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1400 if ((iter->start >= max) || (iter->end <= min)) 1401 continue; 1402 1403 range_min = iter->start; 1404 range_max = iter->end; 1405 start = (range_min + align - 1) & ~(align - 1); 1406 for (; start + size - 1 <= range_max; start += align) { 1407 shadow = __request_region(iter, start, size, NULL, 1408 IORESOURCE_BUSY); 1409 if (!shadow) 1410 continue; 1411 1412 *new = request_mem_region_exclusive(start, size, dev_n); 1413 if (*new) { 1414 shadow->name = (char *)*new; 1415 retval = 0; 1416 goto exit; 1417 } 1418 1419 __release_region(iter, start, size); 1420 } 1421 } 1422 1423 exit: 1424 up(&hyperv_mmio_lock); 1425 return retval; 1426 } 1427 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 1428 1429 /** 1430 * vmbus_free_mmio() - Free a memory-mapped I/O range. 1431 * @start: Base address of region to release. 1432 * @size: Size of the range to be allocated 1433 * 1434 * This function releases anything requested by 1435 * vmbus_mmio_allocate(). 1436 */ 1437 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 1438 { 1439 struct resource *iter; 1440 1441 down(&hyperv_mmio_lock); 1442 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1443 if ((iter->start >= start + size) || (iter->end <= start)) 1444 continue; 1445 1446 __release_region(iter, start, size); 1447 } 1448 release_mem_region(start, size); 1449 up(&hyperv_mmio_lock); 1450 1451 } 1452 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 1453 1454 /** 1455 * vmbus_cpu_number_to_vp_number() - Map CPU to VP. 1456 * @cpu_number: CPU number in Linux terms 1457 * 1458 * This function returns the mapping between the Linux processor 1459 * number and the hypervisor's virtual processor number, useful 1460 * in making hypercalls and such that talk about specific 1461 * processors. 1462 * 1463 * Return: Virtual processor number in Hyper-V terms 1464 */ 1465 int vmbus_cpu_number_to_vp_number(int cpu_number) 1466 { 1467 return hv_context.vp_index[cpu_number]; 1468 } 1469 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number); 1470 1471 static int vmbus_acpi_add(struct acpi_device *device) 1472 { 1473 acpi_status result; 1474 int ret_val = -ENODEV; 1475 struct acpi_device *ancestor; 1476 1477 hv_acpi_dev = device; 1478 1479 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 1480 vmbus_walk_resources, NULL); 1481 1482 if (ACPI_FAILURE(result)) 1483 goto acpi_walk_err; 1484 /* 1485 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 1486 * firmware) is the VMOD that has the mmio ranges. Get that. 1487 */ 1488 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 1489 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 1490 vmbus_walk_resources, NULL); 1491 1492 if (ACPI_FAILURE(result)) 1493 continue; 1494 if (hyperv_mmio) { 1495 vmbus_reserve_fb(); 1496 break; 1497 } 1498 } 1499 ret_val = 0; 1500 1501 acpi_walk_err: 1502 complete(&probe_event); 1503 if (ret_val) 1504 vmbus_acpi_remove(device); 1505 return ret_val; 1506 } 1507 1508 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 1509 {"VMBUS", 0}, 1510 {"VMBus", 0}, 1511 {"", 0}, 1512 }; 1513 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 1514 1515 static struct acpi_driver vmbus_acpi_driver = { 1516 .name = "vmbus", 1517 .ids = vmbus_acpi_device_ids, 1518 .ops = { 1519 .add = vmbus_acpi_add, 1520 .remove = vmbus_acpi_remove, 1521 }, 1522 }; 1523 1524 static void hv_kexec_handler(void) 1525 { 1526 hv_synic_clockevents_cleanup(); 1527 vmbus_initiate_unload(false); 1528 vmbus_connection.conn_state = DISCONNECTED; 1529 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 1530 mb(); 1531 cpuhp_remove_state(hyperv_cpuhp_online); 1532 hyperv_cleanup(); 1533 }; 1534 1535 static void hv_crash_handler(struct pt_regs *regs) 1536 { 1537 vmbus_initiate_unload(true); 1538 /* 1539 * In crash handler we can't schedule synic cleanup for all CPUs, 1540 * doing the cleanup for current CPU only. This should be sufficient 1541 * for kdump. 1542 */ 1543 vmbus_connection.conn_state = DISCONNECTED; 1544 hv_synic_cleanup(smp_processor_id()); 1545 hyperv_cleanup(); 1546 }; 1547 1548 static int __init hv_acpi_init(void) 1549 { 1550 int ret, t; 1551 1552 if (x86_hyper != &x86_hyper_ms_hyperv) 1553 return -ENODEV; 1554 1555 init_completion(&probe_event); 1556 1557 /* 1558 * Get ACPI resources first. 1559 */ 1560 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 1561 1562 if (ret) 1563 return ret; 1564 1565 t = wait_for_completion_timeout(&probe_event, 5*HZ); 1566 if (t == 0) { 1567 ret = -ETIMEDOUT; 1568 goto cleanup; 1569 } 1570 1571 ret = vmbus_bus_init(); 1572 if (ret) 1573 goto cleanup; 1574 1575 hv_setup_kexec_handler(hv_kexec_handler); 1576 hv_setup_crash_handler(hv_crash_handler); 1577 1578 return 0; 1579 1580 cleanup: 1581 acpi_bus_unregister_driver(&vmbus_acpi_driver); 1582 hv_acpi_dev = NULL; 1583 return ret; 1584 } 1585 1586 static void __exit vmbus_exit(void) 1587 { 1588 int cpu; 1589 1590 hv_remove_kexec_handler(); 1591 hv_remove_crash_handler(); 1592 vmbus_connection.conn_state = DISCONNECTED; 1593 hv_synic_clockevents_cleanup(); 1594 vmbus_disconnect(); 1595 hv_remove_vmbus_irq(); 1596 for_each_online_cpu(cpu) { 1597 struct hv_per_cpu_context *hv_cpu 1598 = per_cpu_ptr(hv_context.cpu_context, cpu); 1599 1600 tasklet_kill(&hv_cpu->msg_dpc); 1601 } 1602 vmbus_free_channels(); 1603 1604 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1605 unregister_die_notifier(&hyperv_die_block); 1606 atomic_notifier_chain_unregister(&panic_notifier_list, 1607 &hyperv_panic_block); 1608 } 1609 bus_unregister(&hv_bus); 1610 1611 cpuhp_remove_state(hyperv_cpuhp_online); 1612 hv_synic_free(); 1613 acpi_bus_unregister_driver(&vmbus_acpi_driver); 1614 } 1615 1616 1617 MODULE_LICENSE("GPL"); 1618 1619 subsys_initcall(hv_acpi_init); 1620 module_exit(vmbus_exit); 1621