1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 15 * Place - Suite 330, Boston, MA 02111-1307 USA. 16 * 17 * Authors: 18 * Haiyang Zhang <haiyangz@microsoft.com> 19 * Hank Janssen <hjanssen@microsoft.com> 20 * K. Y. Srinivasan <kys@microsoft.com> 21 * 22 */ 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/device.h> 28 #include <linux/interrupt.h> 29 #include <linux/sysctl.h> 30 #include <linux/slab.h> 31 #include <linux/acpi.h> 32 #include <linux/completion.h> 33 #include <linux/hyperv.h> 34 #include <linux/kernel_stat.h> 35 #include <linux/clockchips.h> 36 #include <linux/cpu.h> 37 #include <linux/sched/task_stack.h> 38 39 #include <asm/mshyperv.h> 40 #include <linux/notifier.h> 41 #include <linux/ptrace.h> 42 #include <linux/screen_info.h> 43 #include <linux/kdebug.h> 44 #include <linux/efi.h> 45 #include <linux/random.h> 46 #include "hyperv_vmbus.h" 47 48 struct vmbus_dynid { 49 struct list_head node; 50 struct hv_vmbus_device_id id; 51 }; 52 53 static struct acpi_device *hv_acpi_dev; 54 55 static struct completion probe_event; 56 57 static int hyperv_cpuhp_online; 58 59 static void *hv_panic_page; 60 61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 62 void *args) 63 { 64 struct pt_regs *regs; 65 66 regs = current_pt_regs(); 67 68 hyperv_report_panic(regs, val); 69 return NOTIFY_DONE; 70 } 71 72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 73 void *args) 74 { 75 struct die_args *die = (struct die_args *)args; 76 struct pt_regs *regs = die->regs; 77 78 hyperv_report_panic(regs, val); 79 return NOTIFY_DONE; 80 } 81 82 static struct notifier_block hyperv_die_block = { 83 .notifier_call = hyperv_die_event, 84 }; 85 static struct notifier_block hyperv_panic_block = { 86 .notifier_call = hyperv_panic_event, 87 }; 88 89 static const char *fb_mmio_name = "fb_range"; 90 static struct resource *fb_mmio; 91 static struct resource *hyperv_mmio; 92 static DEFINE_SEMAPHORE(hyperv_mmio_lock); 93 94 static int vmbus_exists(void) 95 { 96 if (hv_acpi_dev == NULL) 97 return -ENODEV; 98 99 return 0; 100 } 101 102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2) 103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name) 104 { 105 int i; 106 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2) 107 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]); 108 } 109 110 static u8 channel_monitor_group(const struct vmbus_channel *channel) 111 { 112 return (u8)channel->offermsg.monitorid / 32; 113 } 114 115 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 116 { 117 return (u8)channel->offermsg.monitorid % 32; 118 } 119 120 static u32 channel_pending(const struct vmbus_channel *channel, 121 const struct hv_monitor_page *monitor_page) 122 { 123 u8 monitor_group = channel_monitor_group(channel); 124 125 return monitor_page->trigger_group[monitor_group].pending; 126 } 127 128 static u32 channel_latency(const struct vmbus_channel *channel, 129 const struct hv_monitor_page *monitor_page) 130 { 131 u8 monitor_group = channel_monitor_group(channel); 132 u8 monitor_offset = channel_monitor_offset(channel); 133 134 return monitor_page->latency[monitor_group][monitor_offset]; 135 } 136 137 static u32 channel_conn_id(struct vmbus_channel *channel, 138 struct hv_monitor_page *monitor_page) 139 { 140 u8 monitor_group = channel_monitor_group(channel); 141 u8 monitor_offset = channel_monitor_offset(channel); 142 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 143 } 144 145 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 146 char *buf) 147 { 148 struct hv_device *hv_dev = device_to_hv_device(dev); 149 150 if (!hv_dev->channel) 151 return -ENODEV; 152 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 153 } 154 static DEVICE_ATTR_RO(id); 155 156 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 157 char *buf) 158 { 159 struct hv_device *hv_dev = device_to_hv_device(dev); 160 161 if (!hv_dev->channel) 162 return -ENODEV; 163 return sprintf(buf, "%d\n", hv_dev->channel->state); 164 } 165 static DEVICE_ATTR_RO(state); 166 167 static ssize_t monitor_id_show(struct device *dev, 168 struct device_attribute *dev_attr, char *buf) 169 { 170 struct hv_device *hv_dev = device_to_hv_device(dev); 171 172 if (!hv_dev->channel) 173 return -ENODEV; 174 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 175 } 176 static DEVICE_ATTR_RO(monitor_id); 177 178 static ssize_t class_id_show(struct device *dev, 179 struct device_attribute *dev_attr, char *buf) 180 { 181 struct hv_device *hv_dev = device_to_hv_device(dev); 182 183 if (!hv_dev->channel) 184 return -ENODEV; 185 return sprintf(buf, "{%pUl}\n", 186 hv_dev->channel->offermsg.offer.if_type.b); 187 } 188 static DEVICE_ATTR_RO(class_id); 189 190 static ssize_t device_id_show(struct device *dev, 191 struct device_attribute *dev_attr, char *buf) 192 { 193 struct hv_device *hv_dev = device_to_hv_device(dev); 194 195 if (!hv_dev->channel) 196 return -ENODEV; 197 return sprintf(buf, "{%pUl}\n", 198 hv_dev->channel->offermsg.offer.if_instance.b); 199 } 200 static DEVICE_ATTR_RO(device_id); 201 202 static ssize_t modalias_show(struct device *dev, 203 struct device_attribute *dev_attr, char *buf) 204 { 205 struct hv_device *hv_dev = device_to_hv_device(dev); 206 char alias_name[VMBUS_ALIAS_LEN + 1]; 207 208 print_alias_name(hv_dev, alias_name); 209 return sprintf(buf, "vmbus:%s\n", alias_name); 210 } 211 static DEVICE_ATTR_RO(modalias); 212 213 #ifdef CONFIG_NUMA 214 static ssize_t numa_node_show(struct device *dev, 215 struct device_attribute *attr, char *buf) 216 { 217 struct hv_device *hv_dev = device_to_hv_device(dev); 218 219 if (!hv_dev->channel) 220 return -ENODEV; 221 222 return sprintf(buf, "%d\n", hv_dev->channel->numa_node); 223 } 224 static DEVICE_ATTR_RO(numa_node); 225 #endif 226 227 static ssize_t server_monitor_pending_show(struct device *dev, 228 struct device_attribute *dev_attr, 229 char *buf) 230 { 231 struct hv_device *hv_dev = device_to_hv_device(dev); 232 233 if (!hv_dev->channel) 234 return -ENODEV; 235 return sprintf(buf, "%d\n", 236 channel_pending(hv_dev->channel, 237 vmbus_connection.monitor_pages[0])); 238 } 239 static DEVICE_ATTR_RO(server_monitor_pending); 240 241 static ssize_t client_monitor_pending_show(struct device *dev, 242 struct device_attribute *dev_attr, 243 char *buf) 244 { 245 struct hv_device *hv_dev = device_to_hv_device(dev); 246 247 if (!hv_dev->channel) 248 return -ENODEV; 249 return sprintf(buf, "%d\n", 250 channel_pending(hv_dev->channel, 251 vmbus_connection.monitor_pages[1])); 252 } 253 static DEVICE_ATTR_RO(client_monitor_pending); 254 255 static ssize_t server_monitor_latency_show(struct device *dev, 256 struct device_attribute *dev_attr, 257 char *buf) 258 { 259 struct hv_device *hv_dev = device_to_hv_device(dev); 260 261 if (!hv_dev->channel) 262 return -ENODEV; 263 return sprintf(buf, "%d\n", 264 channel_latency(hv_dev->channel, 265 vmbus_connection.monitor_pages[0])); 266 } 267 static DEVICE_ATTR_RO(server_monitor_latency); 268 269 static ssize_t client_monitor_latency_show(struct device *dev, 270 struct device_attribute *dev_attr, 271 char *buf) 272 { 273 struct hv_device *hv_dev = device_to_hv_device(dev); 274 275 if (!hv_dev->channel) 276 return -ENODEV; 277 return sprintf(buf, "%d\n", 278 channel_latency(hv_dev->channel, 279 vmbus_connection.monitor_pages[1])); 280 } 281 static DEVICE_ATTR_RO(client_monitor_latency); 282 283 static ssize_t server_monitor_conn_id_show(struct device *dev, 284 struct device_attribute *dev_attr, 285 char *buf) 286 { 287 struct hv_device *hv_dev = device_to_hv_device(dev); 288 289 if (!hv_dev->channel) 290 return -ENODEV; 291 return sprintf(buf, "%d\n", 292 channel_conn_id(hv_dev->channel, 293 vmbus_connection.monitor_pages[0])); 294 } 295 static DEVICE_ATTR_RO(server_monitor_conn_id); 296 297 static ssize_t client_monitor_conn_id_show(struct device *dev, 298 struct device_attribute *dev_attr, 299 char *buf) 300 { 301 struct hv_device *hv_dev = device_to_hv_device(dev); 302 303 if (!hv_dev->channel) 304 return -ENODEV; 305 return sprintf(buf, "%d\n", 306 channel_conn_id(hv_dev->channel, 307 vmbus_connection.monitor_pages[1])); 308 } 309 static DEVICE_ATTR_RO(client_monitor_conn_id); 310 311 static ssize_t out_intr_mask_show(struct device *dev, 312 struct device_attribute *dev_attr, char *buf) 313 { 314 struct hv_device *hv_dev = device_to_hv_device(dev); 315 struct hv_ring_buffer_debug_info outbound; 316 int ret; 317 318 if (!hv_dev->channel) 319 return -ENODEV; 320 321 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 322 &outbound); 323 if (ret < 0) 324 return ret; 325 326 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 327 } 328 static DEVICE_ATTR_RO(out_intr_mask); 329 330 static ssize_t out_read_index_show(struct device *dev, 331 struct device_attribute *dev_attr, char *buf) 332 { 333 struct hv_device *hv_dev = device_to_hv_device(dev); 334 struct hv_ring_buffer_debug_info outbound; 335 int ret; 336 337 if (!hv_dev->channel) 338 return -ENODEV; 339 340 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 341 &outbound); 342 if (ret < 0) 343 return ret; 344 return sprintf(buf, "%d\n", outbound.current_read_index); 345 } 346 static DEVICE_ATTR_RO(out_read_index); 347 348 static ssize_t out_write_index_show(struct device *dev, 349 struct device_attribute *dev_attr, 350 char *buf) 351 { 352 struct hv_device *hv_dev = device_to_hv_device(dev); 353 struct hv_ring_buffer_debug_info outbound; 354 int ret; 355 356 if (!hv_dev->channel) 357 return -ENODEV; 358 359 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 360 &outbound); 361 if (ret < 0) 362 return ret; 363 return sprintf(buf, "%d\n", outbound.current_write_index); 364 } 365 static DEVICE_ATTR_RO(out_write_index); 366 367 static ssize_t out_read_bytes_avail_show(struct device *dev, 368 struct device_attribute *dev_attr, 369 char *buf) 370 { 371 struct hv_device *hv_dev = device_to_hv_device(dev); 372 struct hv_ring_buffer_debug_info outbound; 373 int ret; 374 375 if (!hv_dev->channel) 376 return -ENODEV; 377 378 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 379 &outbound); 380 if (ret < 0) 381 return ret; 382 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 383 } 384 static DEVICE_ATTR_RO(out_read_bytes_avail); 385 386 static ssize_t out_write_bytes_avail_show(struct device *dev, 387 struct device_attribute *dev_attr, 388 char *buf) 389 { 390 struct hv_device *hv_dev = device_to_hv_device(dev); 391 struct hv_ring_buffer_debug_info outbound; 392 int ret; 393 394 if (!hv_dev->channel) 395 return -ENODEV; 396 397 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 398 &outbound); 399 if (ret < 0) 400 return ret; 401 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 402 } 403 static DEVICE_ATTR_RO(out_write_bytes_avail); 404 405 static ssize_t in_intr_mask_show(struct device *dev, 406 struct device_attribute *dev_attr, char *buf) 407 { 408 struct hv_device *hv_dev = device_to_hv_device(dev); 409 struct hv_ring_buffer_debug_info inbound; 410 int ret; 411 412 if (!hv_dev->channel) 413 return -ENODEV; 414 415 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 416 if (ret < 0) 417 return ret; 418 419 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 420 } 421 static DEVICE_ATTR_RO(in_intr_mask); 422 423 static ssize_t in_read_index_show(struct device *dev, 424 struct device_attribute *dev_attr, char *buf) 425 { 426 struct hv_device *hv_dev = device_to_hv_device(dev); 427 struct hv_ring_buffer_debug_info inbound; 428 int ret; 429 430 if (!hv_dev->channel) 431 return -ENODEV; 432 433 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 434 if (ret < 0) 435 return ret; 436 437 return sprintf(buf, "%d\n", inbound.current_read_index); 438 } 439 static DEVICE_ATTR_RO(in_read_index); 440 441 static ssize_t in_write_index_show(struct device *dev, 442 struct device_attribute *dev_attr, char *buf) 443 { 444 struct hv_device *hv_dev = device_to_hv_device(dev); 445 struct hv_ring_buffer_debug_info inbound; 446 int ret; 447 448 if (!hv_dev->channel) 449 return -ENODEV; 450 451 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 452 if (ret < 0) 453 return ret; 454 455 return sprintf(buf, "%d\n", inbound.current_write_index); 456 } 457 static DEVICE_ATTR_RO(in_write_index); 458 459 static ssize_t in_read_bytes_avail_show(struct device *dev, 460 struct device_attribute *dev_attr, 461 char *buf) 462 { 463 struct hv_device *hv_dev = device_to_hv_device(dev); 464 struct hv_ring_buffer_debug_info inbound; 465 int ret; 466 467 if (!hv_dev->channel) 468 return -ENODEV; 469 470 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 471 if (ret < 0) 472 return ret; 473 474 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 475 } 476 static DEVICE_ATTR_RO(in_read_bytes_avail); 477 478 static ssize_t in_write_bytes_avail_show(struct device *dev, 479 struct device_attribute *dev_attr, 480 char *buf) 481 { 482 struct hv_device *hv_dev = device_to_hv_device(dev); 483 struct hv_ring_buffer_debug_info inbound; 484 int ret; 485 486 if (!hv_dev->channel) 487 return -ENODEV; 488 489 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 490 if (ret < 0) 491 return ret; 492 493 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 494 } 495 static DEVICE_ATTR_RO(in_write_bytes_avail); 496 497 static ssize_t channel_vp_mapping_show(struct device *dev, 498 struct device_attribute *dev_attr, 499 char *buf) 500 { 501 struct hv_device *hv_dev = device_to_hv_device(dev); 502 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 503 unsigned long flags; 504 int buf_size = PAGE_SIZE, n_written, tot_written; 505 struct list_head *cur; 506 507 if (!channel) 508 return -ENODEV; 509 510 tot_written = snprintf(buf, buf_size, "%u:%u\n", 511 channel->offermsg.child_relid, channel->target_cpu); 512 513 spin_lock_irqsave(&channel->lock, flags); 514 515 list_for_each(cur, &channel->sc_list) { 516 if (tot_written >= buf_size - 1) 517 break; 518 519 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 520 n_written = scnprintf(buf + tot_written, 521 buf_size - tot_written, 522 "%u:%u\n", 523 cur_sc->offermsg.child_relid, 524 cur_sc->target_cpu); 525 tot_written += n_written; 526 } 527 528 spin_unlock_irqrestore(&channel->lock, flags); 529 530 return tot_written; 531 } 532 static DEVICE_ATTR_RO(channel_vp_mapping); 533 534 static ssize_t vendor_show(struct device *dev, 535 struct device_attribute *dev_attr, 536 char *buf) 537 { 538 struct hv_device *hv_dev = device_to_hv_device(dev); 539 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 540 } 541 static DEVICE_ATTR_RO(vendor); 542 543 static ssize_t device_show(struct device *dev, 544 struct device_attribute *dev_attr, 545 char *buf) 546 { 547 struct hv_device *hv_dev = device_to_hv_device(dev); 548 return sprintf(buf, "0x%x\n", hv_dev->device_id); 549 } 550 static DEVICE_ATTR_RO(device); 551 552 static ssize_t driver_override_store(struct device *dev, 553 struct device_attribute *attr, 554 const char *buf, size_t count) 555 { 556 struct hv_device *hv_dev = device_to_hv_device(dev); 557 char *driver_override, *old, *cp; 558 559 /* We need to keep extra room for a newline */ 560 if (count >= (PAGE_SIZE - 1)) 561 return -EINVAL; 562 563 driver_override = kstrndup(buf, count, GFP_KERNEL); 564 if (!driver_override) 565 return -ENOMEM; 566 567 cp = strchr(driver_override, '\n'); 568 if (cp) 569 *cp = '\0'; 570 571 device_lock(dev); 572 old = hv_dev->driver_override; 573 if (strlen(driver_override)) { 574 hv_dev->driver_override = driver_override; 575 } else { 576 kfree(driver_override); 577 hv_dev->driver_override = NULL; 578 } 579 device_unlock(dev); 580 581 kfree(old); 582 583 return count; 584 } 585 586 static ssize_t driver_override_show(struct device *dev, 587 struct device_attribute *attr, char *buf) 588 { 589 struct hv_device *hv_dev = device_to_hv_device(dev); 590 ssize_t len; 591 592 device_lock(dev); 593 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override); 594 device_unlock(dev); 595 596 return len; 597 } 598 static DEVICE_ATTR_RW(driver_override); 599 600 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 601 static struct attribute *vmbus_dev_attrs[] = { 602 &dev_attr_id.attr, 603 &dev_attr_state.attr, 604 &dev_attr_monitor_id.attr, 605 &dev_attr_class_id.attr, 606 &dev_attr_device_id.attr, 607 &dev_attr_modalias.attr, 608 #ifdef CONFIG_NUMA 609 &dev_attr_numa_node.attr, 610 #endif 611 &dev_attr_server_monitor_pending.attr, 612 &dev_attr_client_monitor_pending.attr, 613 &dev_attr_server_monitor_latency.attr, 614 &dev_attr_client_monitor_latency.attr, 615 &dev_attr_server_monitor_conn_id.attr, 616 &dev_attr_client_monitor_conn_id.attr, 617 &dev_attr_out_intr_mask.attr, 618 &dev_attr_out_read_index.attr, 619 &dev_attr_out_write_index.attr, 620 &dev_attr_out_read_bytes_avail.attr, 621 &dev_attr_out_write_bytes_avail.attr, 622 &dev_attr_in_intr_mask.attr, 623 &dev_attr_in_read_index.attr, 624 &dev_attr_in_write_index.attr, 625 &dev_attr_in_read_bytes_avail.attr, 626 &dev_attr_in_write_bytes_avail.attr, 627 &dev_attr_channel_vp_mapping.attr, 628 &dev_attr_vendor.attr, 629 &dev_attr_device.attr, 630 &dev_attr_driver_override.attr, 631 NULL, 632 }; 633 634 /* 635 * Device-level attribute_group callback function. Returns the permission for 636 * each attribute, and returns 0 if an attribute is not visible. 637 */ 638 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj, 639 struct attribute *attr, int idx) 640 { 641 struct device *dev = kobj_to_dev(kobj); 642 const struct hv_device *hv_dev = device_to_hv_device(dev); 643 644 /* Hide the monitor attributes if the monitor mechanism is not used. */ 645 if (!hv_dev->channel->offermsg.monitor_allocated && 646 (attr == &dev_attr_monitor_id.attr || 647 attr == &dev_attr_server_monitor_pending.attr || 648 attr == &dev_attr_client_monitor_pending.attr || 649 attr == &dev_attr_server_monitor_latency.attr || 650 attr == &dev_attr_client_monitor_latency.attr || 651 attr == &dev_attr_server_monitor_conn_id.attr || 652 attr == &dev_attr_client_monitor_conn_id.attr)) 653 return 0; 654 655 return attr->mode; 656 } 657 658 static const struct attribute_group vmbus_dev_group = { 659 .attrs = vmbus_dev_attrs, 660 .is_visible = vmbus_dev_attr_is_visible 661 }; 662 __ATTRIBUTE_GROUPS(vmbus_dev); 663 664 /* 665 * vmbus_uevent - add uevent for our device 666 * 667 * This routine is invoked when a device is added or removed on the vmbus to 668 * generate a uevent to udev in the userspace. The udev will then look at its 669 * rule and the uevent generated here to load the appropriate driver 670 * 671 * The alias string will be of the form vmbus:guid where guid is the string 672 * representation of the device guid (each byte of the guid will be 673 * represented with two hex characters. 674 */ 675 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 676 { 677 struct hv_device *dev = device_to_hv_device(device); 678 int ret; 679 char alias_name[VMBUS_ALIAS_LEN + 1]; 680 681 print_alias_name(dev, alias_name); 682 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name); 683 return ret; 684 } 685 686 static const struct hv_vmbus_device_id * 687 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid) 688 { 689 if (id == NULL) 690 return NULL; /* empty device table */ 691 692 for (; !guid_is_null(&id->guid); id++) 693 if (guid_equal(&id->guid, guid)) 694 return id; 695 696 return NULL; 697 } 698 699 static const struct hv_vmbus_device_id * 700 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid) 701 { 702 const struct hv_vmbus_device_id *id = NULL; 703 struct vmbus_dynid *dynid; 704 705 spin_lock(&drv->dynids.lock); 706 list_for_each_entry(dynid, &drv->dynids.list, node) { 707 if (guid_equal(&dynid->id.guid, guid)) { 708 id = &dynid->id; 709 break; 710 } 711 } 712 spin_unlock(&drv->dynids.lock); 713 714 return id; 715 } 716 717 static const struct hv_vmbus_device_id vmbus_device_null; 718 719 /* 720 * Return a matching hv_vmbus_device_id pointer. 721 * If there is no match, return NULL. 722 */ 723 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 724 struct hv_device *dev) 725 { 726 const guid_t *guid = &dev->dev_type; 727 const struct hv_vmbus_device_id *id; 728 729 /* When driver_override is set, only bind to the matching driver */ 730 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 731 return NULL; 732 733 /* Look at the dynamic ids first, before the static ones */ 734 id = hv_vmbus_dynid_match(drv, guid); 735 if (!id) 736 id = hv_vmbus_dev_match(drv->id_table, guid); 737 738 /* driver_override will always match, send a dummy id */ 739 if (!id && dev->driver_override) 740 id = &vmbus_device_null; 741 742 return id; 743 } 744 745 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 746 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid) 747 { 748 struct vmbus_dynid *dynid; 749 750 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 751 if (!dynid) 752 return -ENOMEM; 753 754 dynid->id.guid = *guid; 755 756 spin_lock(&drv->dynids.lock); 757 list_add_tail(&dynid->node, &drv->dynids.list); 758 spin_unlock(&drv->dynids.lock); 759 760 return driver_attach(&drv->driver); 761 } 762 763 static void vmbus_free_dynids(struct hv_driver *drv) 764 { 765 struct vmbus_dynid *dynid, *n; 766 767 spin_lock(&drv->dynids.lock); 768 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 769 list_del(&dynid->node); 770 kfree(dynid); 771 } 772 spin_unlock(&drv->dynids.lock); 773 } 774 775 /* 776 * store_new_id - sysfs frontend to vmbus_add_dynid() 777 * 778 * Allow GUIDs to be added to an existing driver via sysfs. 779 */ 780 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 781 size_t count) 782 { 783 struct hv_driver *drv = drv_to_hv_drv(driver); 784 guid_t guid; 785 ssize_t retval; 786 787 retval = guid_parse(buf, &guid); 788 if (retval) 789 return retval; 790 791 if (hv_vmbus_dynid_match(drv, &guid)) 792 return -EEXIST; 793 794 retval = vmbus_add_dynid(drv, &guid); 795 if (retval) 796 return retval; 797 return count; 798 } 799 static DRIVER_ATTR_WO(new_id); 800 801 /* 802 * store_remove_id - remove a PCI device ID from this driver 803 * 804 * Removes a dynamic pci device ID to this driver. 805 */ 806 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 807 size_t count) 808 { 809 struct hv_driver *drv = drv_to_hv_drv(driver); 810 struct vmbus_dynid *dynid, *n; 811 guid_t guid; 812 ssize_t retval; 813 814 retval = guid_parse(buf, &guid); 815 if (retval) 816 return retval; 817 818 retval = -ENODEV; 819 spin_lock(&drv->dynids.lock); 820 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 821 struct hv_vmbus_device_id *id = &dynid->id; 822 823 if (guid_equal(&id->guid, &guid)) { 824 list_del(&dynid->node); 825 kfree(dynid); 826 retval = count; 827 break; 828 } 829 } 830 spin_unlock(&drv->dynids.lock); 831 832 return retval; 833 } 834 static DRIVER_ATTR_WO(remove_id); 835 836 static struct attribute *vmbus_drv_attrs[] = { 837 &driver_attr_new_id.attr, 838 &driver_attr_remove_id.attr, 839 NULL, 840 }; 841 ATTRIBUTE_GROUPS(vmbus_drv); 842 843 844 /* 845 * vmbus_match - Attempt to match the specified device to the specified driver 846 */ 847 static int vmbus_match(struct device *device, struct device_driver *driver) 848 { 849 struct hv_driver *drv = drv_to_hv_drv(driver); 850 struct hv_device *hv_dev = device_to_hv_device(device); 851 852 /* The hv_sock driver handles all hv_sock offers. */ 853 if (is_hvsock_channel(hv_dev->channel)) 854 return drv->hvsock; 855 856 if (hv_vmbus_get_id(drv, hv_dev)) 857 return 1; 858 859 return 0; 860 } 861 862 /* 863 * vmbus_probe - Add the new vmbus's child device 864 */ 865 static int vmbus_probe(struct device *child_device) 866 { 867 int ret = 0; 868 struct hv_driver *drv = 869 drv_to_hv_drv(child_device->driver); 870 struct hv_device *dev = device_to_hv_device(child_device); 871 const struct hv_vmbus_device_id *dev_id; 872 873 dev_id = hv_vmbus_get_id(drv, dev); 874 if (drv->probe) { 875 ret = drv->probe(dev, dev_id); 876 if (ret != 0) 877 pr_err("probe failed for device %s (%d)\n", 878 dev_name(child_device), ret); 879 880 } else { 881 pr_err("probe not set for driver %s\n", 882 dev_name(child_device)); 883 ret = -ENODEV; 884 } 885 return ret; 886 } 887 888 /* 889 * vmbus_remove - Remove a vmbus device 890 */ 891 static int vmbus_remove(struct device *child_device) 892 { 893 struct hv_driver *drv; 894 struct hv_device *dev = device_to_hv_device(child_device); 895 896 if (child_device->driver) { 897 drv = drv_to_hv_drv(child_device->driver); 898 if (drv->remove) 899 drv->remove(dev); 900 } 901 902 return 0; 903 } 904 905 906 /* 907 * vmbus_shutdown - Shutdown a vmbus device 908 */ 909 static void vmbus_shutdown(struct device *child_device) 910 { 911 struct hv_driver *drv; 912 struct hv_device *dev = device_to_hv_device(child_device); 913 914 915 /* The device may not be attached yet */ 916 if (!child_device->driver) 917 return; 918 919 drv = drv_to_hv_drv(child_device->driver); 920 921 if (drv->shutdown) 922 drv->shutdown(dev); 923 } 924 925 926 /* 927 * vmbus_device_release - Final callback release of the vmbus child device 928 */ 929 static void vmbus_device_release(struct device *device) 930 { 931 struct hv_device *hv_dev = device_to_hv_device(device); 932 struct vmbus_channel *channel = hv_dev->channel; 933 934 mutex_lock(&vmbus_connection.channel_mutex); 935 hv_process_channel_removal(channel); 936 mutex_unlock(&vmbus_connection.channel_mutex); 937 kfree(hv_dev); 938 } 939 940 /* The one and only one */ 941 static struct bus_type hv_bus = { 942 .name = "vmbus", 943 .match = vmbus_match, 944 .shutdown = vmbus_shutdown, 945 .remove = vmbus_remove, 946 .probe = vmbus_probe, 947 .uevent = vmbus_uevent, 948 .dev_groups = vmbus_dev_groups, 949 .drv_groups = vmbus_drv_groups, 950 }; 951 952 struct onmessage_work_context { 953 struct work_struct work; 954 struct hv_message msg; 955 }; 956 957 static void vmbus_onmessage_work(struct work_struct *work) 958 { 959 struct onmessage_work_context *ctx; 960 961 /* Do not process messages if we're in DISCONNECTED state */ 962 if (vmbus_connection.conn_state == DISCONNECTED) 963 return; 964 965 ctx = container_of(work, struct onmessage_work_context, 966 work); 967 vmbus_onmessage(&ctx->msg); 968 kfree(ctx); 969 } 970 971 static void hv_process_timer_expiration(struct hv_message *msg, 972 struct hv_per_cpu_context *hv_cpu) 973 { 974 struct clock_event_device *dev = hv_cpu->clk_evt; 975 976 if (dev->event_handler) 977 dev->event_handler(dev); 978 979 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 980 } 981 982 void vmbus_on_msg_dpc(unsigned long data) 983 { 984 struct hv_per_cpu_context *hv_cpu = (void *)data; 985 void *page_addr = hv_cpu->synic_message_page; 986 struct hv_message *msg = (struct hv_message *)page_addr + 987 VMBUS_MESSAGE_SINT; 988 struct vmbus_channel_message_header *hdr; 989 const struct vmbus_channel_message_table_entry *entry; 990 struct onmessage_work_context *ctx; 991 u32 message_type = msg->header.message_type; 992 993 if (message_type == HVMSG_NONE) 994 /* no msg */ 995 return; 996 997 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 998 999 trace_vmbus_on_msg_dpc(hdr); 1000 1001 if (hdr->msgtype >= CHANNELMSG_COUNT) { 1002 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype); 1003 goto msg_handled; 1004 } 1005 1006 entry = &channel_message_table[hdr->msgtype]; 1007 if (entry->handler_type == VMHT_BLOCKING) { 1008 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 1009 if (ctx == NULL) 1010 return; 1011 1012 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1013 memcpy(&ctx->msg, msg, sizeof(*msg)); 1014 1015 /* 1016 * The host can generate a rescind message while we 1017 * may still be handling the original offer. We deal with 1018 * this condition by ensuring the processing is done on the 1019 * same CPU. 1020 */ 1021 switch (hdr->msgtype) { 1022 case CHANNELMSG_RESCIND_CHANNELOFFER: 1023 /* 1024 * If we are handling the rescind message; 1025 * schedule the work on the global work queue. 1026 */ 1027 schedule_work_on(vmbus_connection.connect_cpu, 1028 &ctx->work); 1029 break; 1030 1031 case CHANNELMSG_OFFERCHANNEL: 1032 atomic_inc(&vmbus_connection.offer_in_progress); 1033 queue_work_on(vmbus_connection.connect_cpu, 1034 vmbus_connection.work_queue, 1035 &ctx->work); 1036 break; 1037 1038 default: 1039 queue_work(vmbus_connection.work_queue, &ctx->work); 1040 } 1041 } else 1042 entry->message_handler(hdr); 1043 1044 msg_handled: 1045 vmbus_signal_eom(msg, message_type); 1046 } 1047 1048 1049 /* 1050 * Direct callback for channels using other deferred processing 1051 */ 1052 static void vmbus_channel_isr(struct vmbus_channel *channel) 1053 { 1054 void (*callback_fn)(void *); 1055 1056 callback_fn = READ_ONCE(channel->onchannel_callback); 1057 if (likely(callback_fn != NULL)) 1058 (*callback_fn)(channel->channel_callback_context); 1059 } 1060 1061 /* 1062 * Schedule all channels with events pending 1063 */ 1064 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 1065 { 1066 unsigned long *recv_int_page; 1067 u32 maxbits, relid; 1068 1069 if (vmbus_proto_version < VERSION_WIN8) { 1070 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 1071 recv_int_page = vmbus_connection.recv_int_page; 1072 } else { 1073 /* 1074 * When the host is win8 and beyond, the event page 1075 * can be directly checked to get the id of the channel 1076 * that has the interrupt pending. 1077 */ 1078 void *page_addr = hv_cpu->synic_event_page; 1079 union hv_synic_event_flags *event 1080 = (union hv_synic_event_flags *)page_addr + 1081 VMBUS_MESSAGE_SINT; 1082 1083 maxbits = HV_EVENT_FLAGS_COUNT; 1084 recv_int_page = event->flags; 1085 } 1086 1087 if (unlikely(!recv_int_page)) 1088 return; 1089 1090 for_each_set_bit(relid, recv_int_page, maxbits) { 1091 struct vmbus_channel *channel; 1092 1093 if (!sync_test_and_clear_bit(relid, recv_int_page)) 1094 continue; 1095 1096 /* Special case - vmbus channel protocol msg */ 1097 if (relid == 0) 1098 continue; 1099 1100 rcu_read_lock(); 1101 1102 /* Find channel based on relid */ 1103 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) { 1104 if (channel->offermsg.child_relid != relid) 1105 continue; 1106 1107 if (channel->rescind) 1108 continue; 1109 1110 trace_vmbus_chan_sched(channel); 1111 1112 ++channel->interrupts; 1113 1114 switch (channel->callback_mode) { 1115 case HV_CALL_ISR: 1116 vmbus_channel_isr(channel); 1117 break; 1118 1119 case HV_CALL_BATCHED: 1120 hv_begin_read(&channel->inbound); 1121 /* fallthrough */ 1122 case HV_CALL_DIRECT: 1123 tasklet_schedule(&channel->callback_event); 1124 } 1125 } 1126 1127 rcu_read_unlock(); 1128 } 1129 } 1130 1131 static void vmbus_isr(void) 1132 { 1133 struct hv_per_cpu_context *hv_cpu 1134 = this_cpu_ptr(hv_context.cpu_context); 1135 void *page_addr = hv_cpu->synic_event_page; 1136 struct hv_message *msg; 1137 union hv_synic_event_flags *event; 1138 bool handled = false; 1139 1140 if (unlikely(page_addr == NULL)) 1141 return; 1142 1143 event = (union hv_synic_event_flags *)page_addr + 1144 VMBUS_MESSAGE_SINT; 1145 /* 1146 * Check for events before checking for messages. This is the order 1147 * in which events and messages are checked in Windows guests on 1148 * Hyper-V, and the Windows team suggested we do the same. 1149 */ 1150 1151 if ((vmbus_proto_version == VERSION_WS2008) || 1152 (vmbus_proto_version == VERSION_WIN7)) { 1153 1154 /* Since we are a child, we only need to check bit 0 */ 1155 if (sync_test_and_clear_bit(0, event->flags)) 1156 handled = true; 1157 } else { 1158 /* 1159 * Our host is win8 or above. The signaling mechanism 1160 * has changed and we can directly look at the event page. 1161 * If bit n is set then we have an interrup on the channel 1162 * whose id is n. 1163 */ 1164 handled = true; 1165 } 1166 1167 if (handled) 1168 vmbus_chan_sched(hv_cpu); 1169 1170 page_addr = hv_cpu->synic_message_page; 1171 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1172 1173 /* Check if there are actual msgs to be processed */ 1174 if (msg->header.message_type != HVMSG_NONE) { 1175 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) 1176 hv_process_timer_expiration(msg, hv_cpu); 1177 else 1178 tasklet_schedule(&hv_cpu->msg_dpc); 1179 } 1180 1181 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0); 1182 } 1183 1184 /* 1185 * Boolean to control whether to report panic messages over Hyper-V. 1186 * 1187 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg 1188 */ 1189 static int sysctl_record_panic_msg = 1; 1190 1191 /* 1192 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg 1193 * buffer and call into Hyper-V to transfer the data. 1194 */ 1195 static void hv_kmsg_dump(struct kmsg_dumper *dumper, 1196 enum kmsg_dump_reason reason) 1197 { 1198 size_t bytes_written; 1199 phys_addr_t panic_pa; 1200 1201 /* We are only interested in panics. */ 1202 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg)) 1203 return; 1204 1205 panic_pa = virt_to_phys(hv_panic_page); 1206 1207 /* 1208 * Write dump contents to the page. No need to synchronize; panic should 1209 * be single-threaded. 1210 */ 1211 kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE, 1212 &bytes_written); 1213 if (bytes_written) 1214 hyperv_report_panic_msg(panic_pa, bytes_written); 1215 } 1216 1217 static struct kmsg_dumper hv_kmsg_dumper = { 1218 .dump = hv_kmsg_dump, 1219 }; 1220 1221 static struct ctl_table_header *hv_ctl_table_hdr; 1222 static int zero; 1223 static int one = 1; 1224 1225 /* 1226 * sysctl option to allow the user to control whether kmsg data should be 1227 * reported to Hyper-V on panic. 1228 */ 1229 static struct ctl_table hv_ctl_table[] = { 1230 { 1231 .procname = "hyperv_record_panic_msg", 1232 .data = &sysctl_record_panic_msg, 1233 .maxlen = sizeof(int), 1234 .mode = 0644, 1235 .proc_handler = proc_dointvec_minmax, 1236 .extra1 = &zero, 1237 .extra2 = &one 1238 }, 1239 {} 1240 }; 1241 1242 static struct ctl_table hv_root_table[] = { 1243 { 1244 .procname = "kernel", 1245 .mode = 0555, 1246 .child = hv_ctl_table 1247 }, 1248 {} 1249 }; 1250 1251 /* 1252 * vmbus_bus_init -Main vmbus driver initialization routine. 1253 * 1254 * Here, we 1255 * - initialize the vmbus driver context 1256 * - invoke the vmbus hv main init routine 1257 * - retrieve the channel offers 1258 */ 1259 static int vmbus_bus_init(void) 1260 { 1261 int ret; 1262 1263 /* Hypervisor initialization...setup hypercall page..etc */ 1264 ret = hv_init(); 1265 if (ret != 0) { 1266 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1267 return ret; 1268 } 1269 1270 ret = bus_register(&hv_bus); 1271 if (ret) 1272 return ret; 1273 1274 hv_setup_vmbus_irq(vmbus_isr); 1275 1276 ret = hv_synic_alloc(); 1277 if (ret) 1278 goto err_alloc; 1279 /* 1280 * Initialize the per-cpu interrupt state and 1281 * connect to the host. 1282 */ 1283 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1284 hv_synic_init, hv_synic_cleanup); 1285 if (ret < 0) 1286 goto err_alloc; 1287 hyperv_cpuhp_online = ret; 1288 1289 ret = vmbus_connect(); 1290 if (ret) 1291 goto err_connect; 1292 1293 /* 1294 * Only register if the crash MSRs are available 1295 */ 1296 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1297 u64 hyperv_crash_ctl; 1298 /* 1299 * Sysctl registration is not fatal, since by default 1300 * reporting is enabled. 1301 */ 1302 hv_ctl_table_hdr = register_sysctl_table(hv_root_table); 1303 if (!hv_ctl_table_hdr) 1304 pr_err("Hyper-V: sysctl table register error"); 1305 1306 /* 1307 * Register for panic kmsg callback only if the right 1308 * capability is supported by the hypervisor. 1309 */ 1310 hv_get_crash_ctl(hyperv_crash_ctl); 1311 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) { 1312 hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL); 1313 if (hv_panic_page) { 1314 ret = kmsg_dump_register(&hv_kmsg_dumper); 1315 if (ret) 1316 pr_err("Hyper-V: kmsg dump register " 1317 "error 0x%x\n", ret); 1318 } else 1319 pr_err("Hyper-V: panic message page memory " 1320 "allocation failed"); 1321 } 1322 1323 register_die_notifier(&hyperv_die_block); 1324 atomic_notifier_chain_register(&panic_notifier_list, 1325 &hyperv_panic_block); 1326 } 1327 1328 vmbus_request_offers(); 1329 1330 return 0; 1331 1332 err_connect: 1333 cpuhp_remove_state(hyperv_cpuhp_online); 1334 err_alloc: 1335 hv_synic_free(); 1336 hv_remove_vmbus_irq(); 1337 1338 bus_unregister(&hv_bus); 1339 free_page((unsigned long)hv_panic_page); 1340 unregister_sysctl_table(hv_ctl_table_hdr); 1341 hv_ctl_table_hdr = NULL; 1342 return ret; 1343 } 1344 1345 /** 1346 * __vmbus_child_driver_register() - Register a vmbus's driver 1347 * @hv_driver: Pointer to driver structure you want to register 1348 * @owner: owner module of the drv 1349 * @mod_name: module name string 1350 * 1351 * Registers the given driver with Linux through the 'driver_register()' call 1352 * and sets up the hyper-v vmbus handling for this driver. 1353 * It will return the state of the 'driver_register()' call. 1354 * 1355 */ 1356 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1357 { 1358 int ret; 1359 1360 pr_info("registering driver %s\n", hv_driver->name); 1361 1362 ret = vmbus_exists(); 1363 if (ret < 0) 1364 return ret; 1365 1366 hv_driver->driver.name = hv_driver->name; 1367 hv_driver->driver.owner = owner; 1368 hv_driver->driver.mod_name = mod_name; 1369 hv_driver->driver.bus = &hv_bus; 1370 1371 spin_lock_init(&hv_driver->dynids.lock); 1372 INIT_LIST_HEAD(&hv_driver->dynids.list); 1373 1374 ret = driver_register(&hv_driver->driver); 1375 1376 return ret; 1377 } 1378 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1379 1380 /** 1381 * vmbus_driver_unregister() - Unregister a vmbus's driver 1382 * @hv_driver: Pointer to driver structure you want to 1383 * un-register 1384 * 1385 * Un-register the given driver that was previous registered with a call to 1386 * vmbus_driver_register() 1387 */ 1388 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1389 { 1390 pr_info("unregistering driver %s\n", hv_driver->name); 1391 1392 if (!vmbus_exists()) { 1393 driver_unregister(&hv_driver->driver); 1394 vmbus_free_dynids(hv_driver); 1395 } 1396 } 1397 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1398 1399 1400 /* 1401 * Called when last reference to channel is gone. 1402 */ 1403 static void vmbus_chan_release(struct kobject *kobj) 1404 { 1405 struct vmbus_channel *channel 1406 = container_of(kobj, struct vmbus_channel, kobj); 1407 1408 kfree_rcu(channel, rcu); 1409 } 1410 1411 struct vmbus_chan_attribute { 1412 struct attribute attr; 1413 ssize_t (*show)(struct vmbus_channel *chan, char *buf); 1414 ssize_t (*store)(struct vmbus_channel *chan, 1415 const char *buf, size_t count); 1416 }; 1417 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1418 struct vmbus_chan_attribute chan_attr_##_name \ 1419 = __ATTR(_name, _mode, _show, _store) 1420 #define VMBUS_CHAN_ATTR_RW(_name) \ 1421 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1422 #define VMBUS_CHAN_ATTR_RO(_name) \ 1423 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1424 #define VMBUS_CHAN_ATTR_WO(_name) \ 1425 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1426 1427 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1428 struct attribute *attr, char *buf) 1429 { 1430 const struct vmbus_chan_attribute *attribute 1431 = container_of(attr, struct vmbus_chan_attribute, attr); 1432 struct vmbus_channel *chan 1433 = container_of(kobj, struct vmbus_channel, kobj); 1434 1435 if (!attribute->show) 1436 return -EIO; 1437 1438 return attribute->show(chan, buf); 1439 } 1440 1441 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1442 .show = vmbus_chan_attr_show, 1443 }; 1444 1445 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf) 1446 { 1447 struct hv_ring_buffer_info *rbi = &channel->outbound; 1448 ssize_t ret; 1449 1450 mutex_lock(&rbi->ring_buffer_mutex); 1451 if (!rbi->ring_buffer) { 1452 mutex_unlock(&rbi->ring_buffer_mutex); 1453 return -EINVAL; 1454 } 1455 1456 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1457 mutex_unlock(&rbi->ring_buffer_mutex); 1458 return ret; 1459 } 1460 static VMBUS_CHAN_ATTR_RO(out_mask); 1461 1462 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf) 1463 { 1464 struct hv_ring_buffer_info *rbi = &channel->inbound; 1465 ssize_t ret; 1466 1467 mutex_lock(&rbi->ring_buffer_mutex); 1468 if (!rbi->ring_buffer) { 1469 mutex_unlock(&rbi->ring_buffer_mutex); 1470 return -EINVAL; 1471 } 1472 1473 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1474 mutex_unlock(&rbi->ring_buffer_mutex); 1475 return ret; 1476 } 1477 static VMBUS_CHAN_ATTR_RO(in_mask); 1478 1479 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf) 1480 { 1481 struct hv_ring_buffer_info *rbi = &channel->inbound; 1482 ssize_t ret; 1483 1484 mutex_lock(&rbi->ring_buffer_mutex); 1485 if (!rbi->ring_buffer) { 1486 mutex_unlock(&rbi->ring_buffer_mutex); 1487 return -EINVAL; 1488 } 1489 1490 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1491 mutex_unlock(&rbi->ring_buffer_mutex); 1492 return ret; 1493 } 1494 static VMBUS_CHAN_ATTR_RO(read_avail); 1495 1496 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf) 1497 { 1498 struct hv_ring_buffer_info *rbi = &channel->outbound; 1499 ssize_t ret; 1500 1501 mutex_lock(&rbi->ring_buffer_mutex); 1502 if (!rbi->ring_buffer) { 1503 mutex_unlock(&rbi->ring_buffer_mutex); 1504 return -EINVAL; 1505 } 1506 1507 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1508 mutex_unlock(&rbi->ring_buffer_mutex); 1509 return ret; 1510 } 1511 static VMBUS_CHAN_ATTR_RO(write_avail); 1512 1513 static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf) 1514 { 1515 return sprintf(buf, "%u\n", channel->target_cpu); 1516 } 1517 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL); 1518 1519 static ssize_t channel_pending_show(struct vmbus_channel *channel, 1520 char *buf) 1521 { 1522 return sprintf(buf, "%d\n", 1523 channel_pending(channel, 1524 vmbus_connection.monitor_pages[1])); 1525 } 1526 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL); 1527 1528 static ssize_t channel_latency_show(struct vmbus_channel *channel, 1529 char *buf) 1530 { 1531 return sprintf(buf, "%d\n", 1532 channel_latency(channel, 1533 vmbus_connection.monitor_pages[1])); 1534 } 1535 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL); 1536 1537 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf) 1538 { 1539 return sprintf(buf, "%llu\n", channel->interrupts); 1540 } 1541 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL); 1542 1543 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf) 1544 { 1545 return sprintf(buf, "%llu\n", channel->sig_events); 1546 } 1547 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL); 1548 1549 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel, 1550 char *buf) 1551 { 1552 return sprintf(buf, "%llu\n", 1553 (unsigned long long)channel->intr_in_full); 1554 } 1555 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL); 1556 1557 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel, 1558 char *buf) 1559 { 1560 return sprintf(buf, "%llu\n", 1561 (unsigned long long)channel->intr_out_empty); 1562 } 1563 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL); 1564 1565 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel, 1566 char *buf) 1567 { 1568 return sprintf(buf, "%llu\n", 1569 (unsigned long long)channel->out_full_first); 1570 } 1571 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL); 1572 1573 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel, 1574 char *buf) 1575 { 1576 return sprintf(buf, "%llu\n", 1577 (unsigned long long)channel->out_full_total); 1578 } 1579 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL); 1580 1581 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel, 1582 char *buf) 1583 { 1584 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1585 } 1586 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL); 1587 1588 static ssize_t subchannel_id_show(struct vmbus_channel *channel, 1589 char *buf) 1590 { 1591 return sprintf(buf, "%u\n", 1592 channel->offermsg.offer.sub_channel_index); 1593 } 1594 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1595 1596 static struct attribute *vmbus_chan_attrs[] = { 1597 &chan_attr_out_mask.attr, 1598 &chan_attr_in_mask.attr, 1599 &chan_attr_read_avail.attr, 1600 &chan_attr_write_avail.attr, 1601 &chan_attr_cpu.attr, 1602 &chan_attr_pending.attr, 1603 &chan_attr_latency.attr, 1604 &chan_attr_interrupts.attr, 1605 &chan_attr_events.attr, 1606 &chan_attr_intr_in_full.attr, 1607 &chan_attr_intr_out_empty.attr, 1608 &chan_attr_out_full_first.attr, 1609 &chan_attr_out_full_total.attr, 1610 &chan_attr_monitor_id.attr, 1611 &chan_attr_subchannel_id.attr, 1612 NULL 1613 }; 1614 1615 /* 1616 * Channel-level attribute_group callback function. Returns the permission for 1617 * each attribute, and returns 0 if an attribute is not visible. 1618 */ 1619 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj, 1620 struct attribute *attr, int idx) 1621 { 1622 const struct vmbus_channel *channel = 1623 container_of(kobj, struct vmbus_channel, kobj); 1624 1625 /* Hide the monitor attributes if the monitor mechanism is not used. */ 1626 if (!channel->offermsg.monitor_allocated && 1627 (attr == &chan_attr_pending.attr || 1628 attr == &chan_attr_latency.attr || 1629 attr == &chan_attr_monitor_id.attr)) 1630 return 0; 1631 1632 return attr->mode; 1633 } 1634 1635 static struct attribute_group vmbus_chan_group = { 1636 .attrs = vmbus_chan_attrs, 1637 .is_visible = vmbus_chan_attr_is_visible 1638 }; 1639 1640 static struct kobj_type vmbus_chan_ktype = { 1641 .sysfs_ops = &vmbus_chan_sysfs_ops, 1642 .release = vmbus_chan_release, 1643 }; 1644 1645 /* 1646 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 1647 */ 1648 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 1649 { 1650 const struct device *device = &dev->device; 1651 struct kobject *kobj = &channel->kobj; 1652 u32 relid = channel->offermsg.child_relid; 1653 int ret; 1654 1655 kobj->kset = dev->channels_kset; 1656 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 1657 "%u", relid); 1658 if (ret) 1659 return ret; 1660 1661 ret = sysfs_create_group(kobj, &vmbus_chan_group); 1662 1663 if (ret) { 1664 /* 1665 * The calling functions' error handling paths will cleanup the 1666 * empty channel directory. 1667 */ 1668 dev_err(device, "Unable to set up channel sysfs files\n"); 1669 return ret; 1670 } 1671 1672 kobject_uevent(kobj, KOBJ_ADD); 1673 1674 return 0; 1675 } 1676 1677 /* 1678 * vmbus_remove_channel_attr_group - remove the channel's attribute group 1679 */ 1680 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel) 1681 { 1682 sysfs_remove_group(&channel->kobj, &vmbus_chan_group); 1683 } 1684 1685 /* 1686 * vmbus_device_create - Creates and registers a new child device 1687 * on the vmbus. 1688 */ 1689 struct hv_device *vmbus_device_create(const guid_t *type, 1690 const guid_t *instance, 1691 struct vmbus_channel *channel) 1692 { 1693 struct hv_device *child_device_obj; 1694 1695 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 1696 if (!child_device_obj) { 1697 pr_err("Unable to allocate device object for child device\n"); 1698 return NULL; 1699 } 1700 1701 child_device_obj->channel = channel; 1702 guid_copy(&child_device_obj->dev_type, type); 1703 guid_copy(&child_device_obj->dev_instance, instance); 1704 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 1705 1706 return child_device_obj; 1707 } 1708 1709 /* 1710 * vmbus_device_register - Register the child device 1711 */ 1712 int vmbus_device_register(struct hv_device *child_device_obj) 1713 { 1714 struct kobject *kobj = &child_device_obj->device.kobj; 1715 int ret; 1716 1717 dev_set_name(&child_device_obj->device, "%pUl", 1718 child_device_obj->channel->offermsg.offer.if_instance.b); 1719 1720 child_device_obj->device.bus = &hv_bus; 1721 child_device_obj->device.parent = &hv_acpi_dev->dev; 1722 child_device_obj->device.release = vmbus_device_release; 1723 1724 /* 1725 * Register with the LDM. This will kick off the driver/device 1726 * binding...which will eventually call vmbus_match() and vmbus_probe() 1727 */ 1728 ret = device_register(&child_device_obj->device); 1729 if (ret) { 1730 pr_err("Unable to register child device\n"); 1731 return ret; 1732 } 1733 1734 child_device_obj->channels_kset = kset_create_and_add("channels", 1735 NULL, kobj); 1736 if (!child_device_obj->channels_kset) { 1737 ret = -ENOMEM; 1738 goto err_dev_unregister; 1739 } 1740 1741 ret = vmbus_add_channel_kobj(child_device_obj, 1742 child_device_obj->channel); 1743 if (ret) { 1744 pr_err("Unable to register primary channeln"); 1745 goto err_kset_unregister; 1746 } 1747 1748 return 0; 1749 1750 err_kset_unregister: 1751 kset_unregister(child_device_obj->channels_kset); 1752 1753 err_dev_unregister: 1754 device_unregister(&child_device_obj->device); 1755 return ret; 1756 } 1757 1758 /* 1759 * vmbus_device_unregister - Remove the specified child device 1760 * from the vmbus. 1761 */ 1762 void vmbus_device_unregister(struct hv_device *device_obj) 1763 { 1764 pr_debug("child device %s unregistered\n", 1765 dev_name(&device_obj->device)); 1766 1767 kset_unregister(device_obj->channels_kset); 1768 1769 /* 1770 * Kick off the process of unregistering the device. 1771 * This will call vmbus_remove() and eventually vmbus_device_release() 1772 */ 1773 device_unregister(&device_obj->device); 1774 } 1775 1776 1777 /* 1778 * VMBUS is an acpi enumerated device. Get the information we 1779 * need from DSDT. 1780 */ 1781 #define VTPM_BASE_ADDRESS 0xfed40000 1782 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 1783 { 1784 resource_size_t start = 0; 1785 resource_size_t end = 0; 1786 struct resource *new_res; 1787 struct resource **old_res = &hyperv_mmio; 1788 struct resource **prev_res = NULL; 1789 1790 switch (res->type) { 1791 1792 /* 1793 * "Address" descriptors are for bus windows. Ignore 1794 * "memory" descriptors, which are for registers on 1795 * devices. 1796 */ 1797 case ACPI_RESOURCE_TYPE_ADDRESS32: 1798 start = res->data.address32.address.minimum; 1799 end = res->data.address32.address.maximum; 1800 break; 1801 1802 case ACPI_RESOURCE_TYPE_ADDRESS64: 1803 start = res->data.address64.address.minimum; 1804 end = res->data.address64.address.maximum; 1805 break; 1806 1807 default: 1808 /* Unused resource type */ 1809 return AE_OK; 1810 1811 } 1812 /* 1813 * Ignore ranges that are below 1MB, as they're not 1814 * necessary or useful here. 1815 */ 1816 if (end < 0x100000) 1817 return AE_OK; 1818 1819 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 1820 if (!new_res) 1821 return AE_NO_MEMORY; 1822 1823 /* If this range overlaps the virtual TPM, truncate it. */ 1824 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 1825 end = VTPM_BASE_ADDRESS; 1826 1827 new_res->name = "hyperv mmio"; 1828 new_res->flags = IORESOURCE_MEM; 1829 new_res->start = start; 1830 new_res->end = end; 1831 1832 /* 1833 * If two ranges are adjacent, merge them. 1834 */ 1835 do { 1836 if (!*old_res) { 1837 *old_res = new_res; 1838 break; 1839 } 1840 1841 if (((*old_res)->end + 1) == new_res->start) { 1842 (*old_res)->end = new_res->end; 1843 kfree(new_res); 1844 break; 1845 } 1846 1847 if ((*old_res)->start == new_res->end + 1) { 1848 (*old_res)->start = new_res->start; 1849 kfree(new_res); 1850 break; 1851 } 1852 1853 if ((*old_res)->start > new_res->end) { 1854 new_res->sibling = *old_res; 1855 if (prev_res) 1856 (*prev_res)->sibling = new_res; 1857 *old_res = new_res; 1858 break; 1859 } 1860 1861 prev_res = old_res; 1862 old_res = &(*old_res)->sibling; 1863 1864 } while (1); 1865 1866 return AE_OK; 1867 } 1868 1869 static int vmbus_acpi_remove(struct acpi_device *device) 1870 { 1871 struct resource *cur_res; 1872 struct resource *next_res; 1873 1874 if (hyperv_mmio) { 1875 if (fb_mmio) { 1876 __release_region(hyperv_mmio, fb_mmio->start, 1877 resource_size(fb_mmio)); 1878 fb_mmio = NULL; 1879 } 1880 1881 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 1882 next_res = cur_res->sibling; 1883 kfree(cur_res); 1884 } 1885 } 1886 1887 return 0; 1888 } 1889 1890 static void vmbus_reserve_fb(void) 1891 { 1892 int size; 1893 /* 1894 * Make a claim for the frame buffer in the resource tree under the 1895 * first node, which will be the one below 4GB. The length seems to 1896 * be underreported, particularly in a Generation 1 VM. So start out 1897 * reserving a larger area and make it smaller until it succeeds. 1898 */ 1899 1900 if (screen_info.lfb_base) { 1901 if (efi_enabled(EFI_BOOT)) 1902 size = max_t(__u32, screen_info.lfb_size, 0x800000); 1903 else 1904 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 1905 1906 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 1907 fb_mmio = __request_region(hyperv_mmio, 1908 screen_info.lfb_base, size, 1909 fb_mmio_name, 0); 1910 } 1911 } 1912 } 1913 1914 /** 1915 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 1916 * @new: If successful, supplied a pointer to the 1917 * allocated MMIO space. 1918 * @device_obj: Identifies the caller 1919 * @min: Minimum guest physical address of the 1920 * allocation 1921 * @max: Maximum guest physical address 1922 * @size: Size of the range to be allocated 1923 * @align: Alignment of the range to be allocated 1924 * @fb_overlap_ok: Whether this allocation can be allowed 1925 * to overlap the video frame buffer. 1926 * 1927 * This function walks the resources granted to VMBus by the 1928 * _CRS object in the ACPI namespace underneath the parent 1929 * "bridge" whether that's a root PCI bus in the Generation 1 1930 * case or a Module Device in the Generation 2 case. It then 1931 * attempts to allocate from the global MMIO pool in a way that 1932 * matches the constraints supplied in these parameters and by 1933 * that _CRS. 1934 * 1935 * Return: 0 on success, -errno on failure 1936 */ 1937 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1938 resource_size_t min, resource_size_t max, 1939 resource_size_t size, resource_size_t align, 1940 bool fb_overlap_ok) 1941 { 1942 struct resource *iter, *shadow; 1943 resource_size_t range_min, range_max, start; 1944 const char *dev_n = dev_name(&device_obj->device); 1945 int retval; 1946 1947 retval = -ENXIO; 1948 down(&hyperv_mmio_lock); 1949 1950 /* 1951 * If overlaps with frame buffers are allowed, then first attempt to 1952 * make the allocation from within the reserved region. Because it 1953 * is already reserved, no shadow allocation is necessary. 1954 */ 1955 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 1956 !(max < fb_mmio->start)) { 1957 1958 range_min = fb_mmio->start; 1959 range_max = fb_mmio->end; 1960 start = (range_min + align - 1) & ~(align - 1); 1961 for (; start + size - 1 <= range_max; start += align) { 1962 *new = request_mem_region_exclusive(start, size, dev_n); 1963 if (*new) { 1964 retval = 0; 1965 goto exit; 1966 } 1967 } 1968 } 1969 1970 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1971 if ((iter->start >= max) || (iter->end <= min)) 1972 continue; 1973 1974 range_min = iter->start; 1975 range_max = iter->end; 1976 start = (range_min + align - 1) & ~(align - 1); 1977 for (; start + size - 1 <= range_max; start += align) { 1978 shadow = __request_region(iter, start, size, NULL, 1979 IORESOURCE_BUSY); 1980 if (!shadow) 1981 continue; 1982 1983 *new = request_mem_region_exclusive(start, size, dev_n); 1984 if (*new) { 1985 shadow->name = (char *)*new; 1986 retval = 0; 1987 goto exit; 1988 } 1989 1990 __release_region(iter, start, size); 1991 } 1992 } 1993 1994 exit: 1995 up(&hyperv_mmio_lock); 1996 return retval; 1997 } 1998 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 1999 2000 /** 2001 * vmbus_free_mmio() - Free a memory-mapped I/O range. 2002 * @start: Base address of region to release. 2003 * @size: Size of the range to be allocated 2004 * 2005 * This function releases anything requested by 2006 * vmbus_mmio_allocate(). 2007 */ 2008 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 2009 { 2010 struct resource *iter; 2011 2012 down(&hyperv_mmio_lock); 2013 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2014 if ((iter->start >= start + size) || (iter->end <= start)) 2015 continue; 2016 2017 __release_region(iter, start, size); 2018 } 2019 release_mem_region(start, size); 2020 up(&hyperv_mmio_lock); 2021 2022 } 2023 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 2024 2025 static int vmbus_acpi_add(struct acpi_device *device) 2026 { 2027 acpi_status result; 2028 int ret_val = -ENODEV; 2029 struct acpi_device *ancestor; 2030 2031 hv_acpi_dev = device; 2032 2033 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 2034 vmbus_walk_resources, NULL); 2035 2036 if (ACPI_FAILURE(result)) 2037 goto acpi_walk_err; 2038 /* 2039 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 2040 * firmware) is the VMOD that has the mmio ranges. Get that. 2041 */ 2042 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 2043 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 2044 vmbus_walk_resources, NULL); 2045 2046 if (ACPI_FAILURE(result)) 2047 continue; 2048 if (hyperv_mmio) { 2049 vmbus_reserve_fb(); 2050 break; 2051 } 2052 } 2053 ret_val = 0; 2054 2055 acpi_walk_err: 2056 complete(&probe_event); 2057 if (ret_val) 2058 vmbus_acpi_remove(device); 2059 return ret_val; 2060 } 2061 2062 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 2063 {"VMBUS", 0}, 2064 {"VMBus", 0}, 2065 {"", 0}, 2066 }; 2067 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 2068 2069 static struct acpi_driver vmbus_acpi_driver = { 2070 .name = "vmbus", 2071 .ids = vmbus_acpi_device_ids, 2072 .ops = { 2073 .add = vmbus_acpi_add, 2074 .remove = vmbus_acpi_remove, 2075 }, 2076 }; 2077 2078 static void hv_kexec_handler(void) 2079 { 2080 hv_synic_clockevents_cleanup(); 2081 vmbus_initiate_unload(false); 2082 vmbus_connection.conn_state = DISCONNECTED; 2083 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 2084 mb(); 2085 cpuhp_remove_state(hyperv_cpuhp_online); 2086 hyperv_cleanup(); 2087 }; 2088 2089 static void hv_crash_handler(struct pt_regs *regs) 2090 { 2091 vmbus_initiate_unload(true); 2092 /* 2093 * In crash handler we can't schedule synic cleanup for all CPUs, 2094 * doing the cleanup for current CPU only. This should be sufficient 2095 * for kdump. 2096 */ 2097 vmbus_connection.conn_state = DISCONNECTED; 2098 hv_synic_cleanup(smp_processor_id()); 2099 hyperv_cleanup(); 2100 }; 2101 2102 static int __init hv_acpi_init(void) 2103 { 2104 int ret, t; 2105 2106 if (!hv_is_hyperv_initialized()) 2107 return -ENODEV; 2108 2109 init_completion(&probe_event); 2110 2111 /* 2112 * Get ACPI resources first. 2113 */ 2114 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 2115 2116 if (ret) 2117 return ret; 2118 2119 t = wait_for_completion_timeout(&probe_event, 5*HZ); 2120 if (t == 0) { 2121 ret = -ETIMEDOUT; 2122 goto cleanup; 2123 } 2124 2125 ret = vmbus_bus_init(); 2126 if (ret) 2127 goto cleanup; 2128 2129 hv_setup_kexec_handler(hv_kexec_handler); 2130 hv_setup_crash_handler(hv_crash_handler); 2131 2132 return 0; 2133 2134 cleanup: 2135 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2136 hv_acpi_dev = NULL; 2137 return ret; 2138 } 2139 2140 static void __exit vmbus_exit(void) 2141 { 2142 int cpu; 2143 2144 hv_remove_kexec_handler(); 2145 hv_remove_crash_handler(); 2146 vmbus_connection.conn_state = DISCONNECTED; 2147 hv_synic_clockevents_cleanup(); 2148 vmbus_disconnect(); 2149 hv_remove_vmbus_irq(); 2150 for_each_online_cpu(cpu) { 2151 struct hv_per_cpu_context *hv_cpu 2152 = per_cpu_ptr(hv_context.cpu_context, cpu); 2153 2154 tasklet_kill(&hv_cpu->msg_dpc); 2155 } 2156 vmbus_free_channels(); 2157 2158 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 2159 kmsg_dump_unregister(&hv_kmsg_dumper); 2160 unregister_die_notifier(&hyperv_die_block); 2161 atomic_notifier_chain_unregister(&panic_notifier_list, 2162 &hyperv_panic_block); 2163 } 2164 2165 free_page((unsigned long)hv_panic_page); 2166 unregister_sysctl_table(hv_ctl_table_hdr); 2167 hv_ctl_table_hdr = NULL; 2168 bus_unregister(&hv_bus); 2169 2170 cpuhp_remove_state(hyperv_cpuhp_online); 2171 hv_synic_free(); 2172 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2173 } 2174 2175 2176 MODULE_LICENSE("GPL"); 2177 2178 subsys_initcall(hv_acpi_init); 2179 module_exit(vmbus_exit); 2180