xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision 4a075bd4)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *   K. Y. Srinivasan <kys@microsoft.com>
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
38 
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
47 
48 struct vmbus_dynid {
49 	struct list_head node;
50 	struct hv_vmbus_device_id id;
51 };
52 
53 static struct acpi_device  *hv_acpi_dev;
54 
55 static struct completion probe_event;
56 
57 static int hyperv_cpuhp_online;
58 
59 static void *hv_panic_page;
60 
61 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62 			      void *args)
63 {
64 	struct pt_regs *regs;
65 
66 	regs = current_pt_regs();
67 
68 	hyperv_report_panic(regs, val);
69 	return NOTIFY_DONE;
70 }
71 
72 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73 			    void *args)
74 {
75 	struct die_args *die = (struct die_args *)args;
76 	struct pt_regs *regs = die->regs;
77 
78 	hyperv_report_panic(regs, val);
79 	return NOTIFY_DONE;
80 }
81 
82 static struct notifier_block hyperv_die_block = {
83 	.notifier_call = hyperv_die_event,
84 };
85 static struct notifier_block hyperv_panic_block = {
86 	.notifier_call = hyperv_panic_event,
87 };
88 
89 static const char *fb_mmio_name = "fb_range";
90 static struct resource *fb_mmio;
91 static struct resource *hyperv_mmio;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93 
94 static int vmbus_exists(void)
95 {
96 	if (hv_acpi_dev == NULL)
97 		return -ENODEV;
98 
99 	return 0;
100 }
101 
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104 {
105 	int i;
106 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108 }
109 
110 static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 {
112 	return (u8)channel->offermsg.monitorid / 32;
113 }
114 
115 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 {
117 	return (u8)channel->offermsg.monitorid % 32;
118 }
119 
120 static u32 channel_pending(const struct vmbus_channel *channel,
121 			   const struct hv_monitor_page *monitor_page)
122 {
123 	u8 monitor_group = channel_monitor_group(channel);
124 
125 	return monitor_page->trigger_group[monitor_group].pending;
126 }
127 
128 static u32 channel_latency(const struct vmbus_channel *channel,
129 			   const struct hv_monitor_page *monitor_page)
130 {
131 	u8 monitor_group = channel_monitor_group(channel);
132 	u8 monitor_offset = channel_monitor_offset(channel);
133 
134 	return monitor_page->latency[monitor_group][monitor_offset];
135 }
136 
137 static u32 channel_conn_id(struct vmbus_channel *channel,
138 			   struct hv_monitor_page *monitor_page)
139 {
140 	u8 monitor_group = channel_monitor_group(channel);
141 	u8 monitor_offset = channel_monitor_offset(channel);
142 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
143 }
144 
145 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
146 		       char *buf)
147 {
148 	struct hv_device *hv_dev = device_to_hv_device(dev);
149 
150 	if (!hv_dev->channel)
151 		return -ENODEV;
152 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
153 }
154 static DEVICE_ATTR_RO(id);
155 
156 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
157 			  char *buf)
158 {
159 	struct hv_device *hv_dev = device_to_hv_device(dev);
160 
161 	if (!hv_dev->channel)
162 		return -ENODEV;
163 	return sprintf(buf, "%d\n", hv_dev->channel->state);
164 }
165 static DEVICE_ATTR_RO(state);
166 
167 static ssize_t monitor_id_show(struct device *dev,
168 			       struct device_attribute *dev_attr, char *buf)
169 {
170 	struct hv_device *hv_dev = device_to_hv_device(dev);
171 
172 	if (!hv_dev->channel)
173 		return -ENODEV;
174 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
175 }
176 static DEVICE_ATTR_RO(monitor_id);
177 
178 static ssize_t class_id_show(struct device *dev,
179 			       struct device_attribute *dev_attr, char *buf)
180 {
181 	struct hv_device *hv_dev = device_to_hv_device(dev);
182 
183 	if (!hv_dev->channel)
184 		return -ENODEV;
185 	return sprintf(buf, "{%pUl}\n",
186 		       hv_dev->channel->offermsg.offer.if_type.b);
187 }
188 static DEVICE_ATTR_RO(class_id);
189 
190 static ssize_t device_id_show(struct device *dev,
191 			      struct device_attribute *dev_attr, char *buf)
192 {
193 	struct hv_device *hv_dev = device_to_hv_device(dev);
194 
195 	if (!hv_dev->channel)
196 		return -ENODEV;
197 	return sprintf(buf, "{%pUl}\n",
198 		       hv_dev->channel->offermsg.offer.if_instance.b);
199 }
200 static DEVICE_ATTR_RO(device_id);
201 
202 static ssize_t modalias_show(struct device *dev,
203 			     struct device_attribute *dev_attr, char *buf)
204 {
205 	struct hv_device *hv_dev = device_to_hv_device(dev);
206 	char alias_name[VMBUS_ALIAS_LEN + 1];
207 
208 	print_alias_name(hv_dev, alias_name);
209 	return sprintf(buf, "vmbus:%s\n", alias_name);
210 }
211 static DEVICE_ATTR_RO(modalias);
212 
213 #ifdef CONFIG_NUMA
214 static ssize_t numa_node_show(struct device *dev,
215 			      struct device_attribute *attr, char *buf)
216 {
217 	struct hv_device *hv_dev = device_to_hv_device(dev);
218 
219 	if (!hv_dev->channel)
220 		return -ENODEV;
221 
222 	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
223 }
224 static DEVICE_ATTR_RO(numa_node);
225 #endif
226 
227 static ssize_t server_monitor_pending_show(struct device *dev,
228 					   struct device_attribute *dev_attr,
229 					   char *buf)
230 {
231 	struct hv_device *hv_dev = device_to_hv_device(dev);
232 
233 	if (!hv_dev->channel)
234 		return -ENODEV;
235 	return sprintf(buf, "%d\n",
236 		       channel_pending(hv_dev->channel,
237 				       vmbus_connection.monitor_pages[0]));
238 }
239 static DEVICE_ATTR_RO(server_monitor_pending);
240 
241 static ssize_t client_monitor_pending_show(struct device *dev,
242 					   struct device_attribute *dev_attr,
243 					   char *buf)
244 {
245 	struct hv_device *hv_dev = device_to_hv_device(dev);
246 
247 	if (!hv_dev->channel)
248 		return -ENODEV;
249 	return sprintf(buf, "%d\n",
250 		       channel_pending(hv_dev->channel,
251 				       vmbus_connection.monitor_pages[1]));
252 }
253 static DEVICE_ATTR_RO(client_monitor_pending);
254 
255 static ssize_t server_monitor_latency_show(struct device *dev,
256 					   struct device_attribute *dev_attr,
257 					   char *buf)
258 {
259 	struct hv_device *hv_dev = device_to_hv_device(dev);
260 
261 	if (!hv_dev->channel)
262 		return -ENODEV;
263 	return sprintf(buf, "%d\n",
264 		       channel_latency(hv_dev->channel,
265 				       vmbus_connection.monitor_pages[0]));
266 }
267 static DEVICE_ATTR_RO(server_monitor_latency);
268 
269 static ssize_t client_monitor_latency_show(struct device *dev,
270 					   struct device_attribute *dev_attr,
271 					   char *buf)
272 {
273 	struct hv_device *hv_dev = device_to_hv_device(dev);
274 
275 	if (!hv_dev->channel)
276 		return -ENODEV;
277 	return sprintf(buf, "%d\n",
278 		       channel_latency(hv_dev->channel,
279 				       vmbus_connection.monitor_pages[1]));
280 }
281 static DEVICE_ATTR_RO(client_monitor_latency);
282 
283 static ssize_t server_monitor_conn_id_show(struct device *dev,
284 					   struct device_attribute *dev_attr,
285 					   char *buf)
286 {
287 	struct hv_device *hv_dev = device_to_hv_device(dev);
288 
289 	if (!hv_dev->channel)
290 		return -ENODEV;
291 	return sprintf(buf, "%d\n",
292 		       channel_conn_id(hv_dev->channel,
293 				       vmbus_connection.monitor_pages[0]));
294 }
295 static DEVICE_ATTR_RO(server_monitor_conn_id);
296 
297 static ssize_t client_monitor_conn_id_show(struct device *dev,
298 					   struct device_attribute *dev_attr,
299 					   char *buf)
300 {
301 	struct hv_device *hv_dev = device_to_hv_device(dev);
302 
303 	if (!hv_dev->channel)
304 		return -ENODEV;
305 	return sprintf(buf, "%d\n",
306 		       channel_conn_id(hv_dev->channel,
307 				       vmbus_connection.monitor_pages[1]));
308 }
309 static DEVICE_ATTR_RO(client_monitor_conn_id);
310 
311 static ssize_t out_intr_mask_show(struct device *dev,
312 				  struct device_attribute *dev_attr, char *buf)
313 {
314 	struct hv_device *hv_dev = device_to_hv_device(dev);
315 	struct hv_ring_buffer_debug_info outbound;
316 	int ret;
317 
318 	if (!hv_dev->channel)
319 		return -ENODEV;
320 
321 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
322 					  &outbound);
323 	if (ret < 0)
324 		return ret;
325 
326 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
327 }
328 static DEVICE_ATTR_RO(out_intr_mask);
329 
330 static ssize_t out_read_index_show(struct device *dev,
331 				   struct device_attribute *dev_attr, char *buf)
332 {
333 	struct hv_device *hv_dev = device_to_hv_device(dev);
334 	struct hv_ring_buffer_debug_info outbound;
335 	int ret;
336 
337 	if (!hv_dev->channel)
338 		return -ENODEV;
339 
340 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
341 					  &outbound);
342 	if (ret < 0)
343 		return ret;
344 	return sprintf(buf, "%d\n", outbound.current_read_index);
345 }
346 static DEVICE_ATTR_RO(out_read_index);
347 
348 static ssize_t out_write_index_show(struct device *dev,
349 				    struct device_attribute *dev_attr,
350 				    char *buf)
351 {
352 	struct hv_device *hv_dev = device_to_hv_device(dev);
353 	struct hv_ring_buffer_debug_info outbound;
354 	int ret;
355 
356 	if (!hv_dev->channel)
357 		return -ENODEV;
358 
359 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
360 					  &outbound);
361 	if (ret < 0)
362 		return ret;
363 	return sprintf(buf, "%d\n", outbound.current_write_index);
364 }
365 static DEVICE_ATTR_RO(out_write_index);
366 
367 static ssize_t out_read_bytes_avail_show(struct device *dev,
368 					 struct device_attribute *dev_attr,
369 					 char *buf)
370 {
371 	struct hv_device *hv_dev = device_to_hv_device(dev);
372 	struct hv_ring_buffer_debug_info outbound;
373 	int ret;
374 
375 	if (!hv_dev->channel)
376 		return -ENODEV;
377 
378 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
379 					  &outbound);
380 	if (ret < 0)
381 		return ret;
382 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
383 }
384 static DEVICE_ATTR_RO(out_read_bytes_avail);
385 
386 static ssize_t out_write_bytes_avail_show(struct device *dev,
387 					  struct device_attribute *dev_attr,
388 					  char *buf)
389 {
390 	struct hv_device *hv_dev = device_to_hv_device(dev);
391 	struct hv_ring_buffer_debug_info outbound;
392 	int ret;
393 
394 	if (!hv_dev->channel)
395 		return -ENODEV;
396 
397 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
398 					  &outbound);
399 	if (ret < 0)
400 		return ret;
401 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
402 }
403 static DEVICE_ATTR_RO(out_write_bytes_avail);
404 
405 static ssize_t in_intr_mask_show(struct device *dev,
406 				 struct device_attribute *dev_attr, char *buf)
407 {
408 	struct hv_device *hv_dev = device_to_hv_device(dev);
409 	struct hv_ring_buffer_debug_info inbound;
410 	int ret;
411 
412 	if (!hv_dev->channel)
413 		return -ENODEV;
414 
415 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
416 	if (ret < 0)
417 		return ret;
418 
419 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
420 }
421 static DEVICE_ATTR_RO(in_intr_mask);
422 
423 static ssize_t in_read_index_show(struct device *dev,
424 				  struct device_attribute *dev_attr, char *buf)
425 {
426 	struct hv_device *hv_dev = device_to_hv_device(dev);
427 	struct hv_ring_buffer_debug_info inbound;
428 	int ret;
429 
430 	if (!hv_dev->channel)
431 		return -ENODEV;
432 
433 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
434 	if (ret < 0)
435 		return ret;
436 
437 	return sprintf(buf, "%d\n", inbound.current_read_index);
438 }
439 static DEVICE_ATTR_RO(in_read_index);
440 
441 static ssize_t in_write_index_show(struct device *dev,
442 				   struct device_attribute *dev_attr, char *buf)
443 {
444 	struct hv_device *hv_dev = device_to_hv_device(dev);
445 	struct hv_ring_buffer_debug_info inbound;
446 	int ret;
447 
448 	if (!hv_dev->channel)
449 		return -ENODEV;
450 
451 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
452 	if (ret < 0)
453 		return ret;
454 
455 	return sprintf(buf, "%d\n", inbound.current_write_index);
456 }
457 static DEVICE_ATTR_RO(in_write_index);
458 
459 static ssize_t in_read_bytes_avail_show(struct device *dev,
460 					struct device_attribute *dev_attr,
461 					char *buf)
462 {
463 	struct hv_device *hv_dev = device_to_hv_device(dev);
464 	struct hv_ring_buffer_debug_info inbound;
465 	int ret;
466 
467 	if (!hv_dev->channel)
468 		return -ENODEV;
469 
470 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
471 	if (ret < 0)
472 		return ret;
473 
474 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
475 }
476 static DEVICE_ATTR_RO(in_read_bytes_avail);
477 
478 static ssize_t in_write_bytes_avail_show(struct device *dev,
479 					 struct device_attribute *dev_attr,
480 					 char *buf)
481 {
482 	struct hv_device *hv_dev = device_to_hv_device(dev);
483 	struct hv_ring_buffer_debug_info inbound;
484 	int ret;
485 
486 	if (!hv_dev->channel)
487 		return -ENODEV;
488 
489 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
490 	if (ret < 0)
491 		return ret;
492 
493 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
494 }
495 static DEVICE_ATTR_RO(in_write_bytes_avail);
496 
497 static ssize_t channel_vp_mapping_show(struct device *dev,
498 				       struct device_attribute *dev_attr,
499 				       char *buf)
500 {
501 	struct hv_device *hv_dev = device_to_hv_device(dev);
502 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
503 	unsigned long flags;
504 	int buf_size = PAGE_SIZE, n_written, tot_written;
505 	struct list_head *cur;
506 
507 	if (!channel)
508 		return -ENODEV;
509 
510 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
511 		channel->offermsg.child_relid, channel->target_cpu);
512 
513 	spin_lock_irqsave(&channel->lock, flags);
514 
515 	list_for_each(cur, &channel->sc_list) {
516 		if (tot_written >= buf_size - 1)
517 			break;
518 
519 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
520 		n_written = scnprintf(buf + tot_written,
521 				     buf_size - tot_written,
522 				     "%u:%u\n",
523 				     cur_sc->offermsg.child_relid,
524 				     cur_sc->target_cpu);
525 		tot_written += n_written;
526 	}
527 
528 	spin_unlock_irqrestore(&channel->lock, flags);
529 
530 	return tot_written;
531 }
532 static DEVICE_ATTR_RO(channel_vp_mapping);
533 
534 static ssize_t vendor_show(struct device *dev,
535 			   struct device_attribute *dev_attr,
536 			   char *buf)
537 {
538 	struct hv_device *hv_dev = device_to_hv_device(dev);
539 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
540 }
541 static DEVICE_ATTR_RO(vendor);
542 
543 static ssize_t device_show(struct device *dev,
544 			   struct device_attribute *dev_attr,
545 			   char *buf)
546 {
547 	struct hv_device *hv_dev = device_to_hv_device(dev);
548 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
549 }
550 static DEVICE_ATTR_RO(device);
551 
552 static ssize_t driver_override_store(struct device *dev,
553 				     struct device_attribute *attr,
554 				     const char *buf, size_t count)
555 {
556 	struct hv_device *hv_dev = device_to_hv_device(dev);
557 	char *driver_override, *old, *cp;
558 
559 	/* We need to keep extra room for a newline */
560 	if (count >= (PAGE_SIZE - 1))
561 		return -EINVAL;
562 
563 	driver_override = kstrndup(buf, count, GFP_KERNEL);
564 	if (!driver_override)
565 		return -ENOMEM;
566 
567 	cp = strchr(driver_override, '\n');
568 	if (cp)
569 		*cp = '\0';
570 
571 	device_lock(dev);
572 	old = hv_dev->driver_override;
573 	if (strlen(driver_override)) {
574 		hv_dev->driver_override = driver_override;
575 	} else {
576 		kfree(driver_override);
577 		hv_dev->driver_override = NULL;
578 	}
579 	device_unlock(dev);
580 
581 	kfree(old);
582 
583 	return count;
584 }
585 
586 static ssize_t driver_override_show(struct device *dev,
587 				    struct device_attribute *attr, char *buf)
588 {
589 	struct hv_device *hv_dev = device_to_hv_device(dev);
590 	ssize_t len;
591 
592 	device_lock(dev);
593 	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
594 	device_unlock(dev);
595 
596 	return len;
597 }
598 static DEVICE_ATTR_RW(driver_override);
599 
600 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
601 static struct attribute *vmbus_dev_attrs[] = {
602 	&dev_attr_id.attr,
603 	&dev_attr_state.attr,
604 	&dev_attr_monitor_id.attr,
605 	&dev_attr_class_id.attr,
606 	&dev_attr_device_id.attr,
607 	&dev_attr_modalias.attr,
608 #ifdef CONFIG_NUMA
609 	&dev_attr_numa_node.attr,
610 #endif
611 	&dev_attr_server_monitor_pending.attr,
612 	&dev_attr_client_monitor_pending.attr,
613 	&dev_attr_server_monitor_latency.attr,
614 	&dev_attr_client_monitor_latency.attr,
615 	&dev_attr_server_monitor_conn_id.attr,
616 	&dev_attr_client_monitor_conn_id.attr,
617 	&dev_attr_out_intr_mask.attr,
618 	&dev_attr_out_read_index.attr,
619 	&dev_attr_out_write_index.attr,
620 	&dev_attr_out_read_bytes_avail.attr,
621 	&dev_attr_out_write_bytes_avail.attr,
622 	&dev_attr_in_intr_mask.attr,
623 	&dev_attr_in_read_index.attr,
624 	&dev_attr_in_write_index.attr,
625 	&dev_attr_in_read_bytes_avail.attr,
626 	&dev_attr_in_write_bytes_avail.attr,
627 	&dev_attr_channel_vp_mapping.attr,
628 	&dev_attr_vendor.attr,
629 	&dev_attr_device.attr,
630 	&dev_attr_driver_override.attr,
631 	NULL,
632 };
633 
634 /*
635  * Device-level attribute_group callback function. Returns the permission for
636  * each attribute, and returns 0 if an attribute is not visible.
637  */
638 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
639 					 struct attribute *attr, int idx)
640 {
641 	struct device *dev = kobj_to_dev(kobj);
642 	const struct hv_device *hv_dev = device_to_hv_device(dev);
643 
644 	/* Hide the monitor attributes if the monitor mechanism is not used. */
645 	if (!hv_dev->channel->offermsg.monitor_allocated &&
646 	    (attr == &dev_attr_monitor_id.attr ||
647 	     attr == &dev_attr_server_monitor_pending.attr ||
648 	     attr == &dev_attr_client_monitor_pending.attr ||
649 	     attr == &dev_attr_server_monitor_latency.attr ||
650 	     attr == &dev_attr_client_monitor_latency.attr ||
651 	     attr == &dev_attr_server_monitor_conn_id.attr ||
652 	     attr == &dev_attr_client_monitor_conn_id.attr))
653 		return 0;
654 
655 	return attr->mode;
656 }
657 
658 static const struct attribute_group vmbus_dev_group = {
659 	.attrs = vmbus_dev_attrs,
660 	.is_visible = vmbus_dev_attr_is_visible
661 };
662 __ATTRIBUTE_GROUPS(vmbus_dev);
663 
664 /*
665  * vmbus_uevent - add uevent for our device
666  *
667  * This routine is invoked when a device is added or removed on the vmbus to
668  * generate a uevent to udev in the userspace. The udev will then look at its
669  * rule and the uevent generated here to load the appropriate driver
670  *
671  * The alias string will be of the form vmbus:guid where guid is the string
672  * representation of the device guid (each byte of the guid will be
673  * represented with two hex characters.
674  */
675 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
676 {
677 	struct hv_device *dev = device_to_hv_device(device);
678 	int ret;
679 	char alias_name[VMBUS_ALIAS_LEN + 1];
680 
681 	print_alias_name(dev, alias_name);
682 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
683 	return ret;
684 }
685 
686 static const struct hv_vmbus_device_id *
687 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
688 {
689 	if (id == NULL)
690 		return NULL; /* empty device table */
691 
692 	for (; !guid_is_null(&id->guid); id++)
693 		if (guid_equal(&id->guid, guid))
694 			return id;
695 
696 	return NULL;
697 }
698 
699 static const struct hv_vmbus_device_id *
700 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
701 {
702 	const struct hv_vmbus_device_id *id = NULL;
703 	struct vmbus_dynid *dynid;
704 
705 	spin_lock(&drv->dynids.lock);
706 	list_for_each_entry(dynid, &drv->dynids.list, node) {
707 		if (guid_equal(&dynid->id.guid, guid)) {
708 			id = &dynid->id;
709 			break;
710 		}
711 	}
712 	spin_unlock(&drv->dynids.lock);
713 
714 	return id;
715 }
716 
717 static const struct hv_vmbus_device_id vmbus_device_null;
718 
719 /*
720  * Return a matching hv_vmbus_device_id pointer.
721  * If there is no match, return NULL.
722  */
723 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
724 							struct hv_device *dev)
725 {
726 	const guid_t *guid = &dev->dev_type;
727 	const struct hv_vmbus_device_id *id;
728 
729 	/* When driver_override is set, only bind to the matching driver */
730 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
731 		return NULL;
732 
733 	/* Look at the dynamic ids first, before the static ones */
734 	id = hv_vmbus_dynid_match(drv, guid);
735 	if (!id)
736 		id = hv_vmbus_dev_match(drv->id_table, guid);
737 
738 	/* driver_override will always match, send a dummy id */
739 	if (!id && dev->driver_override)
740 		id = &vmbus_device_null;
741 
742 	return id;
743 }
744 
745 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
746 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
747 {
748 	struct vmbus_dynid *dynid;
749 
750 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
751 	if (!dynid)
752 		return -ENOMEM;
753 
754 	dynid->id.guid = *guid;
755 
756 	spin_lock(&drv->dynids.lock);
757 	list_add_tail(&dynid->node, &drv->dynids.list);
758 	spin_unlock(&drv->dynids.lock);
759 
760 	return driver_attach(&drv->driver);
761 }
762 
763 static void vmbus_free_dynids(struct hv_driver *drv)
764 {
765 	struct vmbus_dynid *dynid, *n;
766 
767 	spin_lock(&drv->dynids.lock);
768 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
769 		list_del(&dynid->node);
770 		kfree(dynid);
771 	}
772 	spin_unlock(&drv->dynids.lock);
773 }
774 
775 /*
776  * store_new_id - sysfs frontend to vmbus_add_dynid()
777  *
778  * Allow GUIDs to be added to an existing driver via sysfs.
779  */
780 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
781 			    size_t count)
782 {
783 	struct hv_driver *drv = drv_to_hv_drv(driver);
784 	guid_t guid;
785 	ssize_t retval;
786 
787 	retval = guid_parse(buf, &guid);
788 	if (retval)
789 		return retval;
790 
791 	if (hv_vmbus_dynid_match(drv, &guid))
792 		return -EEXIST;
793 
794 	retval = vmbus_add_dynid(drv, &guid);
795 	if (retval)
796 		return retval;
797 	return count;
798 }
799 static DRIVER_ATTR_WO(new_id);
800 
801 /*
802  * store_remove_id - remove a PCI device ID from this driver
803  *
804  * Removes a dynamic pci device ID to this driver.
805  */
806 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
807 			       size_t count)
808 {
809 	struct hv_driver *drv = drv_to_hv_drv(driver);
810 	struct vmbus_dynid *dynid, *n;
811 	guid_t guid;
812 	ssize_t retval;
813 
814 	retval = guid_parse(buf, &guid);
815 	if (retval)
816 		return retval;
817 
818 	retval = -ENODEV;
819 	spin_lock(&drv->dynids.lock);
820 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
821 		struct hv_vmbus_device_id *id = &dynid->id;
822 
823 		if (guid_equal(&id->guid, &guid)) {
824 			list_del(&dynid->node);
825 			kfree(dynid);
826 			retval = count;
827 			break;
828 		}
829 	}
830 	spin_unlock(&drv->dynids.lock);
831 
832 	return retval;
833 }
834 static DRIVER_ATTR_WO(remove_id);
835 
836 static struct attribute *vmbus_drv_attrs[] = {
837 	&driver_attr_new_id.attr,
838 	&driver_attr_remove_id.attr,
839 	NULL,
840 };
841 ATTRIBUTE_GROUPS(vmbus_drv);
842 
843 
844 /*
845  * vmbus_match - Attempt to match the specified device to the specified driver
846  */
847 static int vmbus_match(struct device *device, struct device_driver *driver)
848 {
849 	struct hv_driver *drv = drv_to_hv_drv(driver);
850 	struct hv_device *hv_dev = device_to_hv_device(device);
851 
852 	/* The hv_sock driver handles all hv_sock offers. */
853 	if (is_hvsock_channel(hv_dev->channel))
854 		return drv->hvsock;
855 
856 	if (hv_vmbus_get_id(drv, hv_dev))
857 		return 1;
858 
859 	return 0;
860 }
861 
862 /*
863  * vmbus_probe - Add the new vmbus's child device
864  */
865 static int vmbus_probe(struct device *child_device)
866 {
867 	int ret = 0;
868 	struct hv_driver *drv =
869 			drv_to_hv_drv(child_device->driver);
870 	struct hv_device *dev = device_to_hv_device(child_device);
871 	const struct hv_vmbus_device_id *dev_id;
872 
873 	dev_id = hv_vmbus_get_id(drv, dev);
874 	if (drv->probe) {
875 		ret = drv->probe(dev, dev_id);
876 		if (ret != 0)
877 			pr_err("probe failed for device %s (%d)\n",
878 			       dev_name(child_device), ret);
879 
880 	} else {
881 		pr_err("probe not set for driver %s\n",
882 		       dev_name(child_device));
883 		ret = -ENODEV;
884 	}
885 	return ret;
886 }
887 
888 /*
889  * vmbus_remove - Remove a vmbus device
890  */
891 static int vmbus_remove(struct device *child_device)
892 {
893 	struct hv_driver *drv;
894 	struct hv_device *dev = device_to_hv_device(child_device);
895 
896 	if (child_device->driver) {
897 		drv = drv_to_hv_drv(child_device->driver);
898 		if (drv->remove)
899 			drv->remove(dev);
900 	}
901 
902 	return 0;
903 }
904 
905 
906 /*
907  * vmbus_shutdown - Shutdown a vmbus device
908  */
909 static void vmbus_shutdown(struct device *child_device)
910 {
911 	struct hv_driver *drv;
912 	struct hv_device *dev = device_to_hv_device(child_device);
913 
914 
915 	/* The device may not be attached yet */
916 	if (!child_device->driver)
917 		return;
918 
919 	drv = drv_to_hv_drv(child_device->driver);
920 
921 	if (drv->shutdown)
922 		drv->shutdown(dev);
923 }
924 
925 
926 /*
927  * vmbus_device_release - Final callback release of the vmbus child device
928  */
929 static void vmbus_device_release(struct device *device)
930 {
931 	struct hv_device *hv_dev = device_to_hv_device(device);
932 	struct vmbus_channel *channel = hv_dev->channel;
933 
934 	mutex_lock(&vmbus_connection.channel_mutex);
935 	hv_process_channel_removal(channel);
936 	mutex_unlock(&vmbus_connection.channel_mutex);
937 	kfree(hv_dev);
938 }
939 
940 /* The one and only one */
941 static struct bus_type  hv_bus = {
942 	.name =		"vmbus",
943 	.match =		vmbus_match,
944 	.shutdown =		vmbus_shutdown,
945 	.remove =		vmbus_remove,
946 	.probe =		vmbus_probe,
947 	.uevent =		vmbus_uevent,
948 	.dev_groups =		vmbus_dev_groups,
949 	.drv_groups =		vmbus_drv_groups,
950 };
951 
952 struct onmessage_work_context {
953 	struct work_struct work;
954 	struct hv_message msg;
955 };
956 
957 static void vmbus_onmessage_work(struct work_struct *work)
958 {
959 	struct onmessage_work_context *ctx;
960 
961 	/* Do not process messages if we're in DISCONNECTED state */
962 	if (vmbus_connection.conn_state == DISCONNECTED)
963 		return;
964 
965 	ctx = container_of(work, struct onmessage_work_context,
966 			   work);
967 	vmbus_onmessage(&ctx->msg);
968 	kfree(ctx);
969 }
970 
971 static void hv_process_timer_expiration(struct hv_message *msg,
972 					struct hv_per_cpu_context *hv_cpu)
973 {
974 	struct clock_event_device *dev = hv_cpu->clk_evt;
975 
976 	if (dev->event_handler)
977 		dev->event_handler(dev);
978 
979 	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
980 }
981 
982 void vmbus_on_msg_dpc(unsigned long data)
983 {
984 	struct hv_per_cpu_context *hv_cpu = (void *)data;
985 	void *page_addr = hv_cpu->synic_message_page;
986 	struct hv_message *msg = (struct hv_message *)page_addr +
987 				  VMBUS_MESSAGE_SINT;
988 	struct vmbus_channel_message_header *hdr;
989 	const struct vmbus_channel_message_table_entry *entry;
990 	struct onmessage_work_context *ctx;
991 	u32 message_type = msg->header.message_type;
992 
993 	if (message_type == HVMSG_NONE)
994 		/* no msg */
995 		return;
996 
997 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
998 
999 	trace_vmbus_on_msg_dpc(hdr);
1000 
1001 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
1002 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
1003 		goto msg_handled;
1004 	}
1005 
1006 	entry = &channel_message_table[hdr->msgtype];
1007 	if (entry->handler_type	== VMHT_BLOCKING) {
1008 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
1009 		if (ctx == NULL)
1010 			return;
1011 
1012 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1013 		memcpy(&ctx->msg, msg, sizeof(*msg));
1014 
1015 		/*
1016 		 * The host can generate a rescind message while we
1017 		 * may still be handling the original offer. We deal with
1018 		 * this condition by ensuring the processing is done on the
1019 		 * same CPU.
1020 		 */
1021 		switch (hdr->msgtype) {
1022 		case CHANNELMSG_RESCIND_CHANNELOFFER:
1023 			/*
1024 			 * If we are handling the rescind message;
1025 			 * schedule the work on the global work queue.
1026 			 */
1027 			schedule_work_on(vmbus_connection.connect_cpu,
1028 					 &ctx->work);
1029 			break;
1030 
1031 		case CHANNELMSG_OFFERCHANNEL:
1032 			atomic_inc(&vmbus_connection.offer_in_progress);
1033 			queue_work_on(vmbus_connection.connect_cpu,
1034 				      vmbus_connection.work_queue,
1035 				      &ctx->work);
1036 			break;
1037 
1038 		default:
1039 			queue_work(vmbus_connection.work_queue, &ctx->work);
1040 		}
1041 	} else
1042 		entry->message_handler(hdr);
1043 
1044 msg_handled:
1045 	vmbus_signal_eom(msg, message_type);
1046 }
1047 
1048 
1049 /*
1050  * Direct callback for channels using other deferred processing
1051  */
1052 static void vmbus_channel_isr(struct vmbus_channel *channel)
1053 {
1054 	void (*callback_fn)(void *);
1055 
1056 	callback_fn = READ_ONCE(channel->onchannel_callback);
1057 	if (likely(callback_fn != NULL))
1058 		(*callback_fn)(channel->channel_callback_context);
1059 }
1060 
1061 /*
1062  * Schedule all channels with events pending
1063  */
1064 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1065 {
1066 	unsigned long *recv_int_page;
1067 	u32 maxbits, relid;
1068 
1069 	if (vmbus_proto_version < VERSION_WIN8) {
1070 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1071 		recv_int_page = vmbus_connection.recv_int_page;
1072 	} else {
1073 		/*
1074 		 * When the host is win8 and beyond, the event page
1075 		 * can be directly checked to get the id of the channel
1076 		 * that has the interrupt pending.
1077 		 */
1078 		void *page_addr = hv_cpu->synic_event_page;
1079 		union hv_synic_event_flags *event
1080 			= (union hv_synic_event_flags *)page_addr +
1081 						 VMBUS_MESSAGE_SINT;
1082 
1083 		maxbits = HV_EVENT_FLAGS_COUNT;
1084 		recv_int_page = event->flags;
1085 	}
1086 
1087 	if (unlikely(!recv_int_page))
1088 		return;
1089 
1090 	for_each_set_bit(relid, recv_int_page, maxbits) {
1091 		struct vmbus_channel *channel;
1092 
1093 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1094 			continue;
1095 
1096 		/* Special case - vmbus channel protocol msg */
1097 		if (relid == 0)
1098 			continue;
1099 
1100 		rcu_read_lock();
1101 
1102 		/* Find channel based on relid */
1103 		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1104 			if (channel->offermsg.child_relid != relid)
1105 				continue;
1106 
1107 			if (channel->rescind)
1108 				continue;
1109 
1110 			trace_vmbus_chan_sched(channel);
1111 
1112 			++channel->interrupts;
1113 
1114 			switch (channel->callback_mode) {
1115 			case HV_CALL_ISR:
1116 				vmbus_channel_isr(channel);
1117 				break;
1118 
1119 			case HV_CALL_BATCHED:
1120 				hv_begin_read(&channel->inbound);
1121 				/* fallthrough */
1122 			case HV_CALL_DIRECT:
1123 				tasklet_schedule(&channel->callback_event);
1124 			}
1125 		}
1126 
1127 		rcu_read_unlock();
1128 	}
1129 }
1130 
1131 static void vmbus_isr(void)
1132 {
1133 	struct hv_per_cpu_context *hv_cpu
1134 		= this_cpu_ptr(hv_context.cpu_context);
1135 	void *page_addr = hv_cpu->synic_event_page;
1136 	struct hv_message *msg;
1137 	union hv_synic_event_flags *event;
1138 	bool handled = false;
1139 
1140 	if (unlikely(page_addr == NULL))
1141 		return;
1142 
1143 	event = (union hv_synic_event_flags *)page_addr +
1144 					 VMBUS_MESSAGE_SINT;
1145 	/*
1146 	 * Check for events before checking for messages. This is the order
1147 	 * in which events and messages are checked in Windows guests on
1148 	 * Hyper-V, and the Windows team suggested we do the same.
1149 	 */
1150 
1151 	if ((vmbus_proto_version == VERSION_WS2008) ||
1152 		(vmbus_proto_version == VERSION_WIN7)) {
1153 
1154 		/* Since we are a child, we only need to check bit 0 */
1155 		if (sync_test_and_clear_bit(0, event->flags))
1156 			handled = true;
1157 	} else {
1158 		/*
1159 		 * Our host is win8 or above. The signaling mechanism
1160 		 * has changed and we can directly look at the event page.
1161 		 * If bit n is set then we have an interrup on the channel
1162 		 * whose id is n.
1163 		 */
1164 		handled = true;
1165 	}
1166 
1167 	if (handled)
1168 		vmbus_chan_sched(hv_cpu);
1169 
1170 	page_addr = hv_cpu->synic_message_page;
1171 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1172 
1173 	/* Check if there are actual msgs to be processed */
1174 	if (msg->header.message_type != HVMSG_NONE) {
1175 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1176 			hv_process_timer_expiration(msg, hv_cpu);
1177 		else
1178 			tasklet_schedule(&hv_cpu->msg_dpc);
1179 	}
1180 
1181 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1182 }
1183 
1184 /*
1185  * Boolean to control whether to report panic messages over Hyper-V.
1186  *
1187  * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
1188  */
1189 static int sysctl_record_panic_msg = 1;
1190 
1191 /*
1192  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1193  * buffer and call into Hyper-V to transfer the data.
1194  */
1195 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1196 			 enum kmsg_dump_reason reason)
1197 {
1198 	size_t bytes_written;
1199 	phys_addr_t panic_pa;
1200 
1201 	/* We are only interested in panics. */
1202 	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1203 		return;
1204 
1205 	panic_pa = virt_to_phys(hv_panic_page);
1206 
1207 	/*
1208 	 * Write dump contents to the page. No need to synchronize; panic should
1209 	 * be single-threaded.
1210 	 */
1211 	kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
1212 			     &bytes_written);
1213 	if (bytes_written)
1214 		hyperv_report_panic_msg(panic_pa, bytes_written);
1215 }
1216 
1217 static struct kmsg_dumper hv_kmsg_dumper = {
1218 	.dump = hv_kmsg_dump,
1219 };
1220 
1221 static struct ctl_table_header *hv_ctl_table_hdr;
1222 static int zero;
1223 static int one = 1;
1224 
1225 /*
1226  * sysctl option to allow the user to control whether kmsg data should be
1227  * reported to Hyper-V on panic.
1228  */
1229 static struct ctl_table hv_ctl_table[] = {
1230 	{
1231 		.procname       = "hyperv_record_panic_msg",
1232 		.data           = &sysctl_record_panic_msg,
1233 		.maxlen         = sizeof(int),
1234 		.mode           = 0644,
1235 		.proc_handler   = proc_dointvec_minmax,
1236 		.extra1		= &zero,
1237 		.extra2		= &one
1238 	},
1239 	{}
1240 };
1241 
1242 static struct ctl_table hv_root_table[] = {
1243 	{
1244 		.procname	= "kernel",
1245 		.mode		= 0555,
1246 		.child		= hv_ctl_table
1247 	},
1248 	{}
1249 };
1250 
1251 /*
1252  * vmbus_bus_init -Main vmbus driver initialization routine.
1253  *
1254  * Here, we
1255  *	- initialize the vmbus driver context
1256  *	- invoke the vmbus hv main init routine
1257  *	- retrieve the channel offers
1258  */
1259 static int vmbus_bus_init(void)
1260 {
1261 	int ret;
1262 
1263 	/* Hypervisor initialization...setup hypercall page..etc */
1264 	ret = hv_init();
1265 	if (ret != 0) {
1266 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1267 		return ret;
1268 	}
1269 
1270 	ret = bus_register(&hv_bus);
1271 	if (ret)
1272 		return ret;
1273 
1274 	hv_setup_vmbus_irq(vmbus_isr);
1275 
1276 	ret = hv_synic_alloc();
1277 	if (ret)
1278 		goto err_alloc;
1279 	/*
1280 	 * Initialize the per-cpu interrupt state and
1281 	 * connect to the host.
1282 	 */
1283 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1284 				hv_synic_init, hv_synic_cleanup);
1285 	if (ret < 0)
1286 		goto err_alloc;
1287 	hyperv_cpuhp_online = ret;
1288 
1289 	ret = vmbus_connect();
1290 	if (ret)
1291 		goto err_connect;
1292 
1293 	/*
1294 	 * Only register if the crash MSRs are available
1295 	 */
1296 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1297 		u64 hyperv_crash_ctl;
1298 		/*
1299 		 * Sysctl registration is not fatal, since by default
1300 		 * reporting is enabled.
1301 		 */
1302 		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1303 		if (!hv_ctl_table_hdr)
1304 			pr_err("Hyper-V: sysctl table register error");
1305 
1306 		/*
1307 		 * Register for panic kmsg callback only if the right
1308 		 * capability is supported by the hypervisor.
1309 		 */
1310 		hv_get_crash_ctl(hyperv_crash_ctl);
1311 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1312 			hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
1313 			if (hv_panic_page) {
1314 				ret = kmsg_dump_register(&hv_kmsg_dumper);
1315 				if (ret)
1316 					pr_err("Hyper-V: kmsg dump register "
1317 						"error 0x%x\n", ret);
1318 			} else
1319 				pr_err("Hyper-V: panic message page memory "
1320 					"allocation failed");
1321 		}
1322 
1323 		register_die_notifier(&hyperv_die_block);
1324 		atomic_notifier_chain_register(&panic_notifier_list,
1325 					       &hyperv_panic_block);
1326 	}
1327 
1328 	vmbus_request_offers();
1329 
1330 	return 0;
1331 
1332 err_connect:
1333 	cpuhp_remove_state(hyperv_cpuhp_online);
1334 err_alloc:
1335 	hv_synic_free();
1336 	hv_remove_vmbus_irq();
1337 
1338 	bus_unregister(&hv_bus);
1339 	free_page((unsigned long)hv_panic_page);
1340 	unregister_sysctl_table(hv_ctl_table_hdr);
1341 	hv_ctl_table_hdr = NULL;
1342 	return ret;
1343 }
1344 
1345 /**
1346  * __vmbus_child_driver_register() - Register a vmbus's driver
1347  * @hv_driver: Pointer to driver structure you want to register
1348  * @owner: owner module of the drv
1349  * @mod_name: module name string
1350  *
1351  * Registers the given driver with Linux through the 'driver_register()' call
1352  * and sets up the hyper-v vmbus handling for this driver.
1353  * It will return the state of the 'driver_register()' call.
1354  *
1355  */
1356 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1357 {
1358 	int ret;
1359 
1360 	pr_info("registering driver %s\n", hv_driver->name);
1361 
1362 	ret = vmbus_exists();
1363 	if (ret < 0)
1364 		return ret;
1365 
1366 	hv_driver->driver.name = hv_driver->name;
1367 	hv_driver->driver.owner = owner;
1368 	hv_driver->driver.mod_name = mod_name;
1369 	hv_driver->driver.bus = &hv_bus;
1370 
1371 	spin_lock_init(&hv_driver->dynids.lock);
1372 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1373 
1374 	ret = driver_register(&hv_driver->driver);
1375 
1376 	return ret;
1377 }
1378 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1379 
1380 /**
1381  * vmbus_driver_unregister() - Unregister a vmbus's driver
1382  * @hv_driver: Pointer to driver structure you want to
1383  *             un-register
1384  *
1385  * Un-register the given driver that was previous registered with a call to
1386  * vmbus_driver_register()
1387  */
1388 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1389 {
1390 	pr_info("unregistering driver %s\n", hv_driver->name);
1391 
1392 	if (!vmbus_exists()) {
1393 		driver_unregister(&hv_driver->driver);
1394 		vmbus_free_dynids(hv_driver);
1395 	}
1396 }
1397 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1398 
1399 
1400 /*
1401  * Called when last reference to channel is gone.
1402  */
1403 static void vmbus_chan_release(struct kobject *kobj)
1404 {
1405 	struct vmbus_channel *channel
1406 		= container_of(kobj, struct vmbus_channel, kobj);
1407 
1408 	kfree_rcu(channel, rcu);
1409 }
1410 
1411 struct vmbus_chan_attribute {
1412 	struct attribute attr;
1413 	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1414 	ssize_t (*store)(struct vmbus_channel *chan,
1415 			 const char *buf, size_t count);
1416 };
1417 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1418 	struct vmbus_chan_attribute chan_attr_##_name \
1419 		= __ATTR(_name, _mode, _show, _store)
1420 #define VMBUS_CHAN_ATTR_RW(_name) \
1421 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1422 #define VMBUS_CHAN_ATTR_RO(_name) \
1423 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1424 #define VMBUS_CHAN_ATTR_WO(_name) \
1425 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1426 
1427 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1428 				    struct attribute *attr, char *buf)
1429 {
1430 	const struct vmbus_chan_attribute *attribute
1431 		= container_of(attr, struct vmbus_chan_attribute, attr);
1432 	struct vmbus_channel *chan
1433 		= container_of(kobj, struct vmbus_channel, kobj);
1434 
1435 	if (!attribute->show)
1436 		return -EIO;
1437 
1438 	return attribute->show(chan, buf);
1439 }
1440 
1441 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1442 	.show = vmbus_chan_attr_show,
1443 };
1444 
1445 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1446 {
1447 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1448 	ssize_t ret;
1449 
1450 	mutex_lock(&rbi->ring_buffer_mutex);
1451 	if (!rbi->ring_buffer) {
1452 		mutex_unlock(&rbi->ring_buffer_mutex);
1453 		return -EINVAL;
1454 	}
1455 
1456 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1457 	mutex_unlock(&rbi->ring_buffer_mutex);
1458 	return ret;
1459 }
1460 static VMBUS_CHAN_ATTR_RO(out_mask);
1461 
1462 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1463 {
1464 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1465 	ssize_t ret;
1466 
1467 	mutex_lock(&rbi->ring_buffer_mutex);
1468 	if (!rbi->ring_buffer) {
1469 		mutex_unlock(&rbi->ring_buffer_mutex);
1470 		return -EINVAL;
1471 	}
1472 
1473 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1474 	mutex_unlock(&rbi->ring_buffer_mutex);
1475 	return ret;
1476 }
1477 static VMBUS_CHAN_ATTR_RO(in_mask);
1478 
1479 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1480 {
1481 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1482 	ssize_t ret;
1483 
1484 	mutex_lock(&rbi->ring_buffer_mutex);
1485 	if (!rbi->ring_buffer) {
1486 		mutex_unlock(&rbi->ring_buffer_mutex);
1487 		return -EINVAL;
1488 	}
1489 
1490 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1491 	mutex_unlock(&rbi->ring_buffer_mutex);
1492 	return ret;
1493 }
1494 static VMBUS_CHAN_ATTR_RO(read_avail);
1495 
1496 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1497 {
1498 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1499 	ssize_t ret;
1500 
1501 	mutex_lock(&rbi->ring_buffer_mutex);
1502 	if (!rbi->ring_buffer) {
1503 		mutex_unlock(&rbi->ring_buffer_mutex);
1504 		return -EINVAL;
1505 	}
1506 
1507 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1508 	mutex_unlock(&rbi->ring_buffer_mutex);
1509 	return ret;
1510 }
1511 static VMBUS_CHAN_ATTR_RO(write_avail);
1512 
1513 static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf)
1514 {
1515 	return sprintf(buf, "%u\n", channel->target_cpu);
1516 }
1517 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1518 
1519 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1520 				    char *buf)
1521 {
1522 	return sprintf(buf, "%d\n",
1523 		       channel_pending(channel,
1524 				       vmbus_connection.monitor_pages[1]));
1525 }
1526 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1527 
1528 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1529 				    char *buf)
1530 {
1531 	return sprintf(buf, "%d\n",
1532 		       channel_latency(channel,
1533 				       vmbus_connection.monitor_pages[1]));
1534 }
1535 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1536 
1537 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1538 {
1539 	return sprintf(buf, "%llu\n", channel->interrupts);
1540 }
1541 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1542 
1543 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1544 {
1545 	return sprintf(buf, "%llu\n", channel->sig_events);
1546 }
1547 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1548 
1549 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1550 					 char *buf)
1551 {
1552 	return sprintf(buf, "%llu\n",
1553 		       (unsigned long long)channel->intr_in_full);
1554 }
1555 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1556 
1557 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1558 					   char *buf)
1559 {
1560 	return sprintf(buf, "%llu\n",
1561 		       (unsigned long long)channel->intr_out_empty);
1562 }
1563 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1564 
1565 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1566 					   char *buf)
1567 {
1568 	return sprintf(buf, "%llu\n",
1569 		       (unsigned long long)channel->out_full_first);
1570 }
1571 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1572 
1573 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1574 					   char *buf)
1575 {
1576 	return sprintf(buf, "%llu\n",
1577 		       (unsigned long long)channel->out_full_total);
1578 }
1579 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1580 
1581 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1582 					  char *buf)
1583 {
1584 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1585 }
1586 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1587 
1588 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1589 				  char *buf)
1590 {
1591 	return sprintf(buf, "%u\n",
1592 		       channel->offermsg.offer.sub_channel_index);
1593 }
1594 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1595 
1596 static struct attribute *vmbus_chan_attrs[] = {
1597 	&chan_attr_out_mask.attr,
1598 	&chan_attr_in_mask.attr,
1599 	&chan_attr_read_avail.attr,
1600 	&chan_attr_write_avail.attr,
1601 	&chan_attr_cpu.attr,
1602 	&chan_attr_pending.attr,
1603 	&chan_attr_latency.attr,
1604 	&chan_attr_interrupts.attr,
1605 	&chan_attr_events.attr,
1606 	&chan_attr_intr_in_full.attr,
1607 	&chan_attr_intr_out_empty.attr,
1608 	&chan_attr_out_full_first.attr,
1609 	&chan_attr_out_full_total.attr,
1610 	&chan_attr_monitor_id.attr,
1611 	&chan_attr_subchannel_id.attr,
1612 	NULL
1613 };
1614 
1615 /*
1616  * Channel-level attribute_group callback function. Returns the permission for
1617  * each attribute, and returns 0 if an attribute is not visible.
1618  */
1619 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1620 					  struct attribute *attr, int idx)
1621 {
1622 	const struct vmbus_channel *channel =
1623 		container_of(kobj, struct vmbus_channel, kobj);
1624 
1625 	/* Hide the monitor attributes if the monitor mechanism is not used. */
1626 	if (!channel->offermsg.monitor_allocated &&
1627 	    (attr == &chan_attr_pending.attr ||
1628 	     attr == &chan_attr_latency.attr ||
1629 	     attr == &chan_attr_monitor_id.attr))
1630 		return 0;
1631 
1632 	return attr->mode;
1633 }
1634 
1635 static struct attribute_group vmbus_chan_group = {
1636 	.attrs = vmbus_chan_attrs,
1637 	.is_visible = vmbus_chan_attr_is_visible
1638 };
1639 
1640 static struct kobj_type vmbus_chan_ktype = {
1641 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1642 	.release = vmbus_chan_release,
1643 };
1644 
1645 /*
1646  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1647  */
1648 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1649 {
1650 	const struct device *device = &dev->device;
1651 	struct kobject *kobj = &channel->kobj;
1652 	u32 relid = channel->offermsg.child_relid;
1653 	int ret;
1654 
1655 	kobj->kset = dev->channels_kset;
1656 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1657 				   "%u", relid);
1658 	if (ret)
1659 		return ret;
1660 
1661 	ret = sysfs_create_group(kobj, &vmbus_chan_group);
1662 
1663 	if (ret) {
1664 		/*
1665 		 * The calling functions' error handling paths will cleanup the
1666 		 * empty channel directory.
1667 		 */
1668 		dev_err(device, "Unable to set up channel sysfs files\n");
1669 		return ret;
1670 	}
1671 
1672 	kobject_uevent(kobj, KOBJ_ADD);
1673 
1674 	return 0;
1675 }
1676 
1677 /*
1678  * vmbus_remove_channel_attr_group - remove the channel's attribute group
1679  */
1680 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1681 {
1682 	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1683 }
1684 
1685 /*
1686  * vmbus_device_create - Creates and registers a new child device
1687  * on the vmbus.
1688  */
1689 struct hv_device *vmbus_device_create(const guid_t *type,
1690 				      const guid_t *instance,
1691 				      struct vmbus_channel *channel)
1692 {
1693 	struct hv_device *child_device_obj;
1694 
1695 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1696 	if (!child_device_obj) {
1697 		pr_err("Unable to allocate device object for child device\n");
1698 		return NULL;
1699 	}
1700 
1701 	child_device_obj->channel = channel;
1702 	guid_copy(&child_device_obj->dev_type, type);
1703 	guid_copy(&child_device_obj->dev_instance, instance);
1704 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1705 
1706 	return child_device_obj;
1707 }
1708 
1709 /*
1710  * vmbus_device_register - Register the child device
1711  */
1712 int vmbus_device_register(struct hv_device *child_device_obj)
1713 {
1714 	struct kobject *kobj = &child_device_obj->device.kobj;
1715 	int ret;
1716 
1717 	dev_set_name(&child_device_obj->device, "%pUl",
1718 		     child_device_obj->channel->offermsg.offer.if_instance.b);
1719 
1720 	child_device_obj->device.bus = &hv_bus;
1721 	child_device_obj->device.parent = &hv_acpi_dev->dev;
1722 	child_device_obj->device.release = vmbus_device_release;
1723 
1724 	/*
1725 	 * Register with the LDM. This will kick off the driver/device
1726 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1727 	 */
1728 	ret = device_register(&child_device_obj->device);
1729 	if (ret) {
1730 		pr_err("Unable to register child device\n");
1731 		return ret;
1732 	}
1733 
1734 	child_device_obj->channels_kset = kset_create_and_add("channels",
1735 							      NULL, kobj);
1736 	if (!child_device_obj->channels_kset) {
1737 		ret = -ENOMEM;
1738 		goto err_dev_unregister;
1739 	}
1740 
1741 	ret = vmbus_add_channel_kobj(child_device_obj,
1742 				     child_device_obj->channel);
1743 	if (ret) {
1744 		pr_err("Unable to register primary channeln");
1745 		goto err_kset_unregister;
1746 	}
1747 
1748 	return 0;
1749 
1750 err_kset_unregister:
1751 	kset_unregister(child_device_obj->channels_kset);
1752 
1753 err_dev_unregister:
1754 	device_unregister(&child_device_obj->device);
1755 	return ret;
1756 }
1757 
1758 /*
1759  * vmbus_device_unregister - Remove the specified child device
1760  * from the vmbus.
1761  */
1762 void vmbus_device_unregister(struct hv_device *device_obj)
1763 {
1764 	pr_debug("child device %s unregistered\n",
1765 		dev_name(&device_obj->device));
1766 
1767 	kset_unregister(device_obj->channels_kset);
1768 
1769 	/*
1770 	 * Kick off the process of unregistering the device.
1771 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1772 	 */
1773 	device_unregister(&device_obj->device);
1774 }
1775 
1776 
1777 /*
1778  * VMBUS is an acpi enumerated device. Get the information we
1779  * need from DSDT.
1780  */
1781 #define VTPM_BASE_ADDRESS 0xfed40000
1782 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1783 {
1784 	resource_size_t start = 0;
1785 	resource_size_t end = 0;
1786 	struct resource *new_res;
1787 	struct resource **old_res = &hyperv_mmio;
1788 	struct resource **prev_res = NULL;
1789 
1790 	switch (res->type) {
1791 
1792 	/*
1793 	 * "Address" descriptors are for bus windows. Ignore
1794 	 * "memory" descriptors, which are for registers on
1795 	 * devices.
1796 	 */
1797 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1798 		start = res->data.address32.address.minimum;
1799 		end = res->data.address32.address.maximum;
1800 		break;
1801 
1802 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1803 		start = res->data.address64.address.minimum;
1804 		end = res->data.address64.address.maximum;
1805 		break;
1806 
1807 	default:
1808 		/* Unused resource type */
1809 		return AE_OK;
1810 
1811 	}
1812 	/*
1813 	 * Ignore ranges that are below 1MB, as they're not
1814 	 * necessary or useful here.
1815 	 */
1816 	if (end < 0x100000)
1817 		return AE_OK;
1818 
1819 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1820 	if (!new_res)
1821 		return AE_NO_MEMORY;
1822 
1823 	/* If this range overlaps the virtual TPM, truncate it. */
1824 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1825 		end = VTPM_BASE_ADDRESS;
1826 
1827 	new_res->name = "hyperv mmio";
1828 	new_res->flags = IORESOURCE_MEM;
1829 	new_res->start = start;
1830 	new_res->end = end;
1831 
1832 	/*
1833 	 * If two ranges are adjacent, merge them.
1834 	 */
1835 	do {
1836 		if (!*old_res) {
1837 			*old_res = new_res;
1838 			break;
1839 		}
1840 
1841 		if (((*old_res)->end + 1) == new_res->start) {
1842 			(*old_res)->end = new_res->end;
1843 			kfree(new_res);
1844 			break;
1845 		}
1846 
1847 		if ((*old_res)->start == new_res->end + 1) {
1848 			(*old_res)->start = new_res->start;
1849 			kfree(new_res);
1850 			break;
1851 		}
1852 
1853 		if ((*old_res)->start > new_res->end) {
1854 			new_res->sibling = *old_res;
1855 			if (prev_res)
1856 				(*prev_res)->sibling = new_res;
1857 			*old_res = new_res;
1858 			break;
1859 		}
1860 
1861 		prev_res = old_res;
1862 		old_res = &(*old_res)->sibling;
1863 
1864 	} while (1);
1865 
1866 	return AE_OK;
1867 }
1868 
1869 static int vmbus_acpi_remove(struct acpi_device *device)
1870 {
1871 	struct resource *cur_res;
1872 	struct resource *next_res;
1873 
1874 	if (hyperv_mmio) {
1875 		if (fb_mmio) {
1876 			__release_region(hyperv_mmio, fb_mmio->start,
1877 					 resource_size(fb_mmio));
1878 			fb_mmio = NULL;
1879 		}
1880 
1881 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1882 			next_res = cur_res->sibling;
1883 			kfree(cur_res);
1884 		}
1885 	}
1886 
1887 	return 0;
1888 }
1889 
1890 static void vmbus_reserve_fb(void)
1891 {
1892 	int size;
1893 	/*
1894 	 * Make a claim for the frame buffer in the resource tree under the
1895 	 * first node, which will be the one below 4GB.  The length seems to
1896 	 * be underreported, particularly in a Generation 1 VM.  So start out
1897 	 * reserving a larger area and make it smaller until it succeeds.
1898 	 */
1899 
1900 	if (screen_info.lfb_base) {
1901 		if (efi_enabled(EFI_BOOT))
1902 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
1903 		else
1904 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1905 
1906 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1907 			fb_mmio = __request_region(hyperv_mmio,
1908 						   screen_info.lfb_base, size,
1909 						   fb_mmio_name, 0);
1910 		}
1911 	}
1912 }
1913 
1914 /**
1915  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1916  * @new:		If successful, supplied a pointer to the
1917  *			allocated MMIO space.
1918  * @device_obj:		Identifies the caller
1919  * @min:		Minimum guest physical address of the
1920  *			allocation
1921  * @max:		Maximum guest physical address
1922  * @size:		Size of the range to be allocated
1923  * @align:		Alignment of the range to be allocated
1924  * @fb_overlap_ok:	Whether this allocation can be allowed
1925  *			to overlap the video frame buffer.
1926  *
1927  * This function walks the resources granted to VMBus by the
1928  * _CRS object in the ACPI namespace underneath the parent
1929  * "bridge" whether that's a root PCI bus in the Generation 1
1930  * case or a Module Device in the Generation 2 case.  It then
1931  * attempts to allocate from the global MMIO pool in a way that
1932  * matches the constraints supplied in these parameters and by
1933  * that _CRS.
1934  *
1935  * Return: 0 on success, -errno on failure
1936  */
1937 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1938 			resource_size_t min, resource_size_t max,
1939 			resource_size_t size, resource_size_t align,
1940 			bool fb_overlap_ok)
1941 {
1942 	struct resource *iter, *shadow;
1943 	resource_size_t range_min, range_max, start;
1944 	const char *dev_n = dev_name(&device_obj->device);
1945 	int retval;
1946 
1947 	retval = -ENXIO;
1948 	down(&hyperv_mmio_lock);
1949 
1950 	/*
1951 	 * If overlaps with frame buffers are allowed, then first attempt to
1952 	 * make the allocation from within the reserved region.  Because it
1953 	 * is already reserved, no shadow allocation is necessary.
1954 	 */
1955 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1956 	    !(max < fb_mmio->start)) {
1957 
1958 		range_min = fb_mmio->start;
1959 		range_max = fb_mmio->end;
1960 		start = (range_min + align - 1) & ~(align - 1);
1961 		for (; start + size - 1 <= range_max; start += align) {
1962 			*new = request_mem_region_exclusive(start, size, dev_n);
1963 			if (*new) {
1964 				retval = 0;
1965 				goto exit;
1966 			}
1967 		}
1968 	}
1969 
1970 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1971 		if ((iter->start >= max) || (iter->end <= min))
1972 			continue;
1973 
1974 		range_min = iter->start;
1975 		range_max = iter->end;
1976 		start = (range_min + align - 1) & ~(align - 1);
1977 		for (; start + size - 1 <= range_max; start += align) {
1978 			shadow = __request_region(iter, start, size, NULL,
1979 						  IORESOURCE_BUSY);
1980 			if (!shadow)
1981 				continue;
1982 
1983 			*new = request_mem_region_exclusive(start, size, dev_n);
1984 			if (*new) {
1985 				shadow->name = (char *)*new;
1986 				retval = 0;
1987 				goto exit;
1988 			}
1989 
1990 			__release_region(iter, start, size);
1991 		}
1992 	}
1993 
1994 exit:
1995 	up(&hyperv_mmio_lock);
1996 	return retval;
1997 }
1998 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1999 
2000 /**
2001  * vmbus_free_mmio() - Free a memory-mapped I/O range.
2002  * @start:		Base address of region to release.
2003  * @size:		Size of the range to be allocated
2004  *
2005  * This function releases anything requested by
2006  * vmbus_mmio_allocate().
2007  */
2008 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2009 {
2010 	struct resource *iter;
2011 
2012 	down(&hyperv_mmio_lock);
2013 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2014 		if ((iter->start >= start + size) || (iter->end <= start))
2015 			continue;
2016 
2017 		__release_region(iter, start, size);
2018 	}
2019 	release_mem_region(start, size);
2020 	up(&hyperv_mmio_lock);
2021 
2022 }
2023 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2024 
2025 static int vmbus_acpi_add(struct acpi_device *device)
2026 {
2027 	acpi_status result;
2028 	int ret_val = -ENODEV;
2029 	struct acpi_device *ancestor;
2030 
2031 	hv_acpi_dev = device;
2032 
2033 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2034 					vmbus_walk_resources, NULL);
2035 
2036 	if (ACPI_FAILURE(result))
2037 		goto acpi_walk_err;
2038 	/*
2039 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2040 	 * firmware) is the VMOD that has the mmio ranges. Get that.
2041 	 */
2042 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2043 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2044 					     vmbus_walk_resources, NULL);
2045 
2046 		if (ACPI_FAILURE(result))
2047 			continue;
2048 		if (hyperv_mmio) {
2049 			vmbus_reserve_fb();
2050 			break;
2051 		}
2052 	}
2053 	ret_val = 0;
2054 
2055 acpi_walk_err:
2056 	complete(&probe_event);
2057 	if (ret_val)
2058 		vmbus_acpi_remove(device);
2059 	return ret_val;
2060 }
2061 
2062 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2063 	{"VMBUS", 0},
2064 	{"VMBus", 0},
2065 	{"", 0},
2066 };
2067 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2068 
2069 static struct acpi_driver vmbus_acpi_driver = {
2070 	.name = "vmbus",
2071 	.ids = vmbus_acpi_device_ids,
2072 	.ops = {
2073 		.add = vmbus_acpi_add,
2074 		.remove = vmbus_acpi_remove,
2075 	},
2076 };
2077 
2078 static void hv_kexec_handler(void)
2079 {
2080 	hv_synic_clockevents_cleanup();
2081 	vmbus_initiate_unload(false);
2082 	vmbus_connection.conn_state = DISCONNECTED;
2083 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2084 	mb();
2085 	cpuhp_remove_state(hyperv_cpuhp_online);
2086 	hyperv_cleanup();
2087 };
2088 
2089 static void hv_crash_handler(struct pt_regs *regs)
2090 {
2091 	vmbus_initiate_unload(true);
2092 	/*
2093 	 * In crash handler we can't schedule synic cleanup for all CPUs,
2094 	 * doing the cleanup for current CPU only. This should be sufficient
2095 	 * for kdump.
2096 	 */
2097 	vmbus_connection.conn_state = DISCONNECTED;
2098 	hv_synic_cleanup(smp_processor_id());
2099 	hyperv_cleanup();
2100 };
2101 
2102 static int __init hv_acpi_init(void)
2103 {
2104 	int ret, t;
2105 
2106 	if (!hv_is_hyperv_initialized())
2107 		return -ENODEV;
2108 
2109 	init_completion(&probe_event);
2110 
2111 	/*
2112 	 * Get ACPI resources first.
2113 	 */
2114 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2115 
2116 	if (ret)
2117 		return ret;
2118 
2119 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
2120 	if (t == 0) {
2121 		ret = -ETIMEDOUT;
2122 		goto cleanup;
2123 	}
2124 
2125 	ret = vmbus_bus_init();
2126 	if (ret)
2127 		goto cleanup;
2128 
2129 	hv_setup_kexec_handler(hv_kexec_handler);
2130 	hv_setup_crash_handler(hv_crash_handler);
2131 
2132 	return 0;
2133 
2134 cleanup:
2135 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2136 	hv_acpi_dev = NULL;
2137 	return ret;
2138 }
2139 
2140 static void __exit vmbus_exit(void)
2141 {
2142 	int cpu;
2143 
2144 	hv_remove_kexec_handler();
2145 	hv_remove_crash_handler();
2146 	vmbus_connection.conn_state = DISCONNECTED;
2147 	hv_synic_clockevents_cleanup();
2148 	vmbus_disconnect();
2149 	hv_remove_vmbus_irq();
2150 	for_each_online_cpu(cpu) {
2151 		struct hv_per_cpu_context *hv_cpu
2152 			= per_cpu_ptr(hv_context.cpu_context, cpu);
2153 
2154 		tasklet_kill(&hv_cpu->msg_dpc);
2155 	}
2156 	vmbus_free_channels();
2157 
2158 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2159 		kmsg_dump_unregister(&hv_kmsg_dumper);
2160 		unregister_die_notifier(&hyperv_die_block);
2161 		atomic_notifier_chain_unregister(&panic_notifier_list,
2162 						 &hyperv_panic_block);
2163 	}
2164 
2165 	free_page((unsigned long)hv_panic_page);
2166 	unregister_sysctl_table(hv_ctl_table_hdr);
2167 	hv_ctl_table_hdr = NULL;
2168 	bus_unregister(&hv_bus);
2169 
2170 	cpuhp_remove_state(hyperv_cpuhp_online);
2171 	hv_synic_free();
2172 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2173 }
2174 
2175 
2176 MODULE_LICENSE("GPL");
2177 
2178 subsys_initcall(hv_acpi_init);
2179 module_exit(vmbus_exit);
2180