1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/device.h> 15 #include <linux/interrupt.h> 16 #include <linux/sysctl.h> 17 #include <linux/slab.h> 18 #include <linux/acpi.h> 19 #include <linux/completion.h> 20 #include <linux/hyperv.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/clockchips.h> 23 #include <linux/cpu.h> 24 #include <linux/sched/task_stack.h> 25 26 #include <linux/delay.h> 27 #include <linux/notifier.h> 28 #include <linux/ptrace.h> 29 #include <linux/screen_info.h> 30 #include <linux/kdebug.h> 31 #include <linux/efi.h> 32 #include <linux/random.h> 33 #include <linux/kernel.h> 34 #include <linux/syscore_ops.h> 35 #include <clocksource/hyperv_timer.h> 36 #include "hyperv_vmbus.h" 37 38 struct vmbus_dynid { 39 struct list_head node; 40 struct hv_vmbus_device_id id; 41 }; 42 43 static struct acpi_device *hv_acpi_dev; 44 45 static struct completion probe_event; 46 47 static int hyperv_cpuhp_online; 48 49 static void *hv_panic_page; 50 51 static long __percpu *vmbus_evt; 52 53 /* Values parsed from ACPI DSDT */ 54 int vmbus_irq; 55 int vmbus_interrupt; 56 57 /* 58 * Boolean to control whether to report panic messages over Hyper-V. 59 * 60 * It can be set via /proc/sys/kernel/hyperv_record_panic_msg 61 */ 62 static int sysctl_record_panic_msg = 1; 63 64 static int hyperv_report_reg(void) 65 { 66 return !sysctl_record_panic_msg || !hv_panic_page; 67 } 68 69 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 70 void *args) 71 { 72 struct pt_regs *regs; 73 74 vmbus_initiate_unload(true); 75 76 /* 77 * Hyper-V should be notified only once about a panic. If we will be 78 * doing hyperv_report_panic_msg() later with kmsg data, don't do 79 * the notification here. 80 */ 81 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE 82 && hyperv_report_reg()) { 83 regs = current_pt_regs(); 84 hyperv_report_panic(regs, val, false); 85 } 86 return NOTIFY_DONE; 87 } 88 89 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 90 void *args) 91 { 92 struct die_args *die = args; 93 struct pt_regs *regs = die->regs; 94 95 /* Don't notify Hyper-V if the die event is other than oops */ 96 if (val != DIE_OOPS) 97 return NOTIFY_DONE; 98 99 /* 100 * Hyper-V should be notified only once about a panic. If we will be 101 * doing hyperv_report_panic_msg() later with kmsg data, don't do 102 * the notification here. 103 */ 104 if (hyperv_report_reg()) 105 hyperv_report_panic(regs, val, true); 106 return NOTIFY_DONE; 107 } 108 109 static struct notifier_block hyperv_die_block = { 110 .notifier_call = hyperv_die_event, 111 }; 112 static struct notifier_block hyperv_panic_block = { 113 .notifier_call = hyperv_panic_event, 114 }; 115 116 static const char *fb_mmio_name = "fb_range"; 117 static struct resource *fb_mmio; 118 static struct resource *hyperv_mmio; 119 static DEFINE_MUTEX(hyperv_mmio_lock); 120 121 static int vmbus_exists(void) 122 { 123 if (hv_acpi_dev == NULL) 124 return -ENODEV; 125 126 return 0; 127 } 128 129 static u8 channel_monitor_group(const struct vmbus_channel *channel) 130 { 131 return (u8)channel->offermsg.monitorid / 32; 132 } 133 134 static u8 channel_monitor_offset(const struct vmbus_channel *channel) 135 { 136 return (u8)channel->offermsg.monitorid % 32; 137 } 138 139 static u32 channel_pending(const struct vmbus_channel *channel, 140 const struct hv_monitor_page *monitor_page) 141 { 142 u8 monitor_group = channel_monitor_group(channel); 143 144 return monitor_page->trigger_group[monitor_group].pending; 145 } 146 147 static u32 channel_latency(const struct vmbus_channel *channel, 148 const struct hv_monitor_page *monitor_page) 149 { 150 u8 monitor_group = channel_monitor_group(channel); 151 u8 monitor_offset = channel_monitor_offset(channel); 152 153 return monitor_page->latency[monitor_group][monitor_offset]; 154 } 155 156 static u32 channel_conn_id(struct vmbus_channel *channel, 157 struct hv_monitor_page *monitor_page) 158 { 159 u8 monitor_group = channel_monitor_group(channel); 160 u8 monitor_offset = channel_monitor_offset(channel); 161 162 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 163 } 164 165 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 166 char *buf) 167 { 168 struct hv_device *hv_dev = device_to_hv_device(dev); 169 170 if (!hv_dev->channel) 171 return -ENODEV; 172 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 173 } 174 static DEVICE_ATTR_RO(id); 175 176 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 177 char *buf) 178 { 179 struct hv_device *hv_dev = device_to_hv_device(dev); 180 181 if (!hv_dev->channel) 182 return -ENODEV; 183 return sprintf(buf, "%d\n", hv_dev->channel->state); 184 } 185 static DEVICE_ATTR_RO(state); 186 187 static ssize_t monitor_id_show(struct device *dev, 188 struct device_attribute *dev_attr, char *buf) 189 { 190 struct hv_device *hv_dev = device_to_hv_device(dev); 191 192 if (!hv_dev->channel) 193 return -ENODEV; 194 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 195 } 196 static DEVICE_ATTR_RO(monitor_id); 197 198 static ssize_t class_id_show(struct device *dev, 199 struct device_attribute *dev_attr, char *buf) 200 { 201 struct hv_device *hv_dev = device_to_hv_device(dev); 202 203 if (!hv_dev->channel) 204 return -ENODEV; 205 return sprintf(buf, "{%pUl}\n", 206 &hv_dev->channel->offermsg.offer.if_type); 207 } 208 static DEVICE_ATTR_RO(class_id); 209 210 static ssize_t device_id_show(struct device *dev, 211 struct device_attribute *dev_attr, char *buf) 212 { 213 struct hv_device *hv_dev = device_to_hv_device(dev); 214 215 if (!hv_dev->channel) 216 return -ENODEV; 217 return sprintf(buf, "{%pUl}\n", 218 &hv_dev->channel->offermsg.offer.if_instance); 219 } 220 static DEVICE_ATTR_RO(device_id); 221 222 static ssize_t modalias_show(struct device *dev, 223 struct device_attribute *dev_attr, char *buf) 224 { 225 struct hv_device *hv_dev = device_to_hv_device(dev); 226 227 return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type); 228 } 229 static DEVICE_ATTR_RO(modalias); 230 231 #ifdef CONFIG_NUMA 232 static ssize_t numa_node_show(struct device *dev, 233 struct device_attribute *attr, char *buf) 234 { 235 struct hv_device *hv_dev = device_to_hv_device(dev); 236 237 if (!hv_dev->channel) 238 return -ENODEV; 239 240 return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu)); 241 } 242 static DEVICE_ATTR_RO(numa_node); 243 #endif 244 245 static ssize_t server_monitor_pending_show(struct device *dev, 246 struct device_attribute *dev_attr, 247 char *buf) 248 { 249 struct hv_device *hv_dev = device_to_hv_device(dev); 250 251 if (!hv_dev->channel) 252 return -ENODEV; 253 return sprintf(buf, "%d\n", 254 channel_pending(hv_dev->channel, 255 vmbus_connection.monitor_pages[0])); 256 } 257 static DEVICE_ATTR_RO(server_monitor_pending); 258 259 static ssize_t client_monitor_pending_show(struct device *dev, 260 struct device_attribute *dev_attr, 261 char *buf) 262 { 263 struct hv_device *hv_dev = device_to_hv_device(dev); 264 265 if (!hv_dev->channel) 266 return -ENODEV; 267 return sprintf(buf, "%d\n", 268 channel_pending(hv_dev->channel, 269 vmbus_connection.monitor_pages[1])); 270 } 271 static DEVICE_ATTR_RO(client_monitor_pending); 272 273 static ssize_t server_monitor_latency_show(struct device *dev, 274 struct device_attribute *dev_attr, 275 char *buf) 276 { 277 struct hv_device *hv_dev = device_to_hv_device(dev); 278 279 if (!hv_dev->channel) 280 return -ENODEV; 281 return sprintf(buf, "%d\n", 282 channel_latency(hv_dev->channel, 283 vmbus_connection.monitor_pages[0])); 284 } 285 static DEVICE_ATTR_RO(server_monitor_latency); 286 287 static ssize_t client_monitor_latency_show(struct device *dev, 288 struct device_attribute *dev_attr, 289 char *buf) 290 { 291 struct hv_device *hv_dev = device_to_hv_device(dev); 292 293 if (!hv_dev->channel) 294 return -ENODEV; 295 return sprintf(buf, "%d\n", 296 channel_latency(hv_dev->channel, 297 vmbus_connection.monitor_pages[1])); 298 } 299 static DEVICE_ATTR_RO(client_monitor_latency); 300 301 static ssize_t server_monitor_conn_id_show(struct device *dev, 302 struct device_attribute *dev_attr, 303 char *buf) 304 { 305 struct hv_device *hv_dev = device_to_hv_device(dev); 306 307 if (!hv_dev->channel) 308 return -ENODEV; 309 return sprintf(buf, "%d\n", 310 channel_conn_id(hv_dev->channel, 311 vmbus_connection.monitor_pages[0])); 312 } 313 static DEVICE_ATTR_RO(server_monitor_conn_id); 314 315 static ssize_t client_monitor_conn_id_show(struct device *dev, 316 struct device_attribute *dev_attr, 317 char *buf) 318 { 319 struct hv_device *hv_dev = device_to_hv_device(dev); 320 321 if (!hv_dev->channel) 322 return -ENODEV; 323 return sprintf(buf, "%d\n", 324 channel_conn_id(hv_dev->channel, 325 vmbus_connection.monitor_pages[1])); 326 } 327 static DEVICE_ATTR_RO(client_monitor_conn_id); 328 329 static ssize_t out_intr_mask_show(struct device *dev, 330 struct device_attribute *dev_attr, char *buf) 331 { 332 struct hv_device *hv_dev = device_to_hv_device(dev); 333 struct hv_ring_buffer_debug_info outbound; 334 int ret; 335 336 if (!hv_dev->channel) 337 return -ENODEV; 338 339 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 340 &outbound); 341 if (ret < 0) 342 return ret; 343 344 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 345 } 346 static DEVICE_ATTR_RO(out_intr_mask); 347 348 static ssize_t out_read_index_show(struct device *dev, 349 struct device_attribute *dev_attr, char *buf) 350 { 351 struct hv_device *hv_dev = device_to_hv_device(dev); 352 struct hv_ring_buffer_debug_info outbound; 353 int ret; 354 355 if (!hv_dev->channel) 356 return -ENODEV; 357 358 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 359 &outbound); 360 if (ret < 0) 361 return ret; 362 return sprintf(buf, "%d\n", outbound.current_read_index); 363 } 364 static DEVICE_ATTR_RO(out_read_index); 365 366 static ssize_t out_write_index_show(struct device *dev, 367 struct device_attribute *dev_attr, 368 char *buf) 369 { 370 struct hv_device *hv_dev = device_to_hv_device(dev); 371 struct hv_ring_buffer_debug_info outbound; 372 int ret; 373 374 if (!hv_dev->channel) 375 return -ENODEV; 376 377 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 378 &outbound); 379 if (ret < 0) 380 return ret; 381 return sprintf(buf, "%d\n", outbound.current_write_index); 382 } 383 static DEVICE_ATTR_RO(out_write_index); 384 385 static ssize_t out_read_bytes_avail_show(struct device *dev, 386 struct device_attribute *dev_attr, 387 char *buf) 388 { 389 struct hv_device *hv_dev = device_to_hv_device(dev); 390 struct hv_ring_buffer_debug_info outbound; 391 int ret; 392 393 if (!hv_dev->channel) 394 return -ENODEV; 395 396 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 397 &outbound); 398 if (ret < 0) 399 return ret; 400 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 401 } 402 static DEVICE_ATTR_RO(out_read_bytes_avail); 403 404 static ssize_t out_write_bytes_avail_show(struct device *dev, 405 struct device_attribute *dev_attr, 406 char *buf) 407 { 408 struct hv_device *hv_dev = device_to_hv_device(dev); 409 struct hv_ring_buffer_debug_info outbound; 410 int ret; 411 412 if (!hv_dev->channel) 413 return -ENODEV; 414 415 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, 416 &outbound); 417 if (ret < 0) 418 return ret; 419 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 420 } 421 static DEVICE_ATTR_RO(out_write_bytes_avail); 422 423 static ssize_t in_intr_mask_show(struct device *dev, 424 struct device_attribute *dev_attr, char *buf) 425 { 426 struct hv_device *hv_dev = device_to_hv_device(dev); 427 struct hv_ring_buffer_debug_info inbound; 428 int ret; 429 430 if (!hv_dev->channel) 431 return -ENODEV; 432 433 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 434 if (ret < 0) 435 return ret; 436 437 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 438 } 439 static DEVICE_ATTR_RO(in_intr_mask); 440 441 static ssize_t in_read_index_show(struct device *dev, 442 struct device_attribute *dev_attr, char *buf) 443 { 444 struct hv_device *hv_dev = device_to_hv_device(dev); 445 struct hv_ring_buffer_debug_info inbound; 446 int ret; 447 448 if (!hv_dev->channel) 449 return -ENODEV; 450 451 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 452 if (ret < 0) 453 return ret; 454 455 return sprintf(buf, "%d\n", inbound.current_read_index); 456 } 457 static DEVICE_ATTR_RO(in_read_index); 458 459 static ssize_t in_write_index_show(struct device *dev, 460 struct device_attribute *dev_attr, char *buf) 461 { 462 struct hv_device *hv_dev = device_to_hv_device(dev); 463 struct hv_ring_buffer_debug_info inbound; 464 int ret; 465 466 if (!hv_dev->channel) 467 return -ENODEV; 468 469 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 470 if (ret < 0) 471 return ret; 472 473 return sprintf(buf, "%d\n", inbound.current_write_index); 474 } 475 static DEVICE_ATTR_RO(in_write_index); 476 477 static ssize_t in_read_bytes_avail_show(struct device *dev, 478 struct device_attribute *dev_attr, 479 char *buf) 480 { 481 struct hv_device *hv_dev = device_to_hv_device(dev); 482 struct hv_ring_buffer_debug_info inbound; 483 int ret; 484 485 if (!hv_dev->channel) 486 return -ENODEV; 487 488 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 489 if (ret < 0) 490 return ret; 491 492 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 493 } 494 static DEVICE_ATTR_RO(in_read_bytes_avail); 495 496 static ssize_t in_write_bytes_avail_show(struct device *dev, 497 struct device_attribute *dev_attr, 498 char *buf) 499 { 500 struct hv_device *hv_dev = device_to_hv_device(dev); 501 struct hv_ring_buffer_debug_info inbound; 502 int ret; 503 504 if (!hv_dev->channel) 505 return -ENODEV; 506 507 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 508 if (ret < 0) 509 return ret; 510 511 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 512 } 513 static DEVICE_ATTR_RO(in_write_bytes_avail); 514 515 static ssize_t channel_vp_mapping_show(struct device *dev, 516 struct device_attribute *dev_attr, 517 char *buf) 518 { 519 struct hv_device *hv_dev = device_to_hv_device(dev); 520 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 521 int buf_size = PAGE_SIZE, n_written, tot_written; 522 struct list_head *cur; 523 524 if (!channel) 525 return -ENODEV; 526 527 mutex_lock(&vmbus_connection.channel_mutex); 528 529 tot_written = snprintf(buf, buf_size, "%u:%u\n", 530 channel->offermsg.child_relid, channel->target_cpu); 531 532 list_for_each(cur, &channel->sc_list) { 533 if (tot_written >= buf_size - 1) 534 break; 535 536 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 537 n_written = scnprintf(buf + tot_written, 538 buf_size - tot_written, 539 "%u:%u\n", 540 cur_sc->offermsg.child_relid, 541 cur_sc->target_cpu); 542 tot_written += n_written; 543 } 544 545 mutex_unlock(&vmbus_connection.channel_mutex); 546 547 return tot_written; 548 } 549 static DEVICE_ATTR_RO(channel_vp_mapping); 550 551 static ssize_t vendor_show(struct device *dev, 552 struct device_attribute *dev_attr, 553 char *buf) 554 { 555 struct hv_device *hv_dev = device_to_hv_device(dev); 556 557 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 558 } 559 static DEVICE_ATTR_RO(vendor); 560 561 static ssize_t device_show(struct device *dev, 562 struct device_attribute *dev_attr, 563 char *buf) 564 { 565 struct hv_device *hv_dev = device_to_hv_device(dev); 566 567 return sprintf(buf, "0x%x\n", hv_dev->device_id); 568 } 569 static DEVICE_ATTR_RO(device); 570 571 static ssize_t driver_override_store(struct device *dev, 572 struct device_attribute *attr, 573 const char *buf, size_t count) 574 { 575 struct hv_device *hv_dev = device_to_hv_device(dev); 576 char *driver_override, *old, *cp; 577 578 /* We need to keep extra room for a newline */ 579 if (count >= (PAGE_SIZE - 1)) 580 return -EINVAL; 581 582 driver_override = kstrndup(buf, count, GFP_KERNEL); 583 if (!driver_override) 584 return -ENOMEM; 585 586 cp = strchr(driver_override, '\n'); 587 if (cp) 588 *cp = '\0'; 589 590 device_lock(dev); 591 old = hv_dev->driver_override; 592 if (strlen(driver_override)) { 593 hv_dev->driver_override = driver_override; 594 } else { 595 kfree(driver_override); 596 hv_dev->driver_override = NULL; 597 } 598 device_unlock(dev); 599 600 kfree(old); 601 602 return count; 603 } 604 605 static ssize_t driver_override_show(struct device *dev, 606 struct device_attribute *attr, char *buf) 607 { 608 struct hv_device *hv_dev = device_to_hv_device(dev); 609 ssize_t len; 610 611 device_lock(dev); 612 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override); 613 device_unlock(dev); 614 615 return len; 616 } 617 static DEVICE_ATTR_RW(driver_override); 618 619 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 620 static struct attribute *vmbus_dev_attrs[] = { 621 &dev_attr_id.attr, 622 &dev_attr_state.attr, 623 &dev_attr_monitor_id.attr, 624 &dev_attr_class_id.attr, 625 &dev_attr_device_id.attr, 626 &dev_attr_modalias.attr, 627 #ifdef CONFIG_NUMA 628 &dev_attr_numa_node.attr, 629 #endif 630 &dev_attr_server_monitor_pending.attr, 631 &dev_attr_client_monitor_pending.attr, 632 &dev_attr_server_monitor_latency.attr, 633 &dev_attr_client_monitor_latency.attr, 634 &dev_attr_server_monitor_conn_id.attr, 635 &dev_attr_client_monitor_conn_id.attr, 636 &dev_attr_out_intr_mask.attr, 637 &dev_attr_out_read_index.attr, 638 &dev_attr_out_write_index.attr, 639 &dev_attr_out_read_bytes_avail.attr, 640 &dev_attr_out_write_bytes_avail.attr, 641 &dev_attr_in_intr_mask.attr, 642 &dev_attr_in_read_index.attr, 643 &dev_attr_in_write_index.attr, 644 &dev_attr_in_read_bytes_avail.attr, 645 &dev_attr_in_write_bytes_avail.attr, 646 &dev_attr_channel_vp_mapping.attr, 647 &dev_attr_vendor.attr, 648 &dev_attr_device.attr, 649 &dev_attr_driver_override.attr, 650 NULL, 651 }; 652 653 /* 654 * Device-level attribute_group callback function. Returns the permission for 655 * each attribute, and returns 0 if an attribute is not visible. 656 */ 657 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj, 658 struct attribute *attr, int idx) 659 { 660 struct device *dev = kobj_to_dev(kobj); 661 const struct hv_device *hv_dev = device_to_hv_device(dev); 662 663 /* Hide the monitor attributes if the monitor mechanism is not used. */ 664 if (!hv_dev->channel->offermsg.monitor_allocated && 665 (attr == &dev_attr_monitor_id.attr || 666 attr == &dev_attr_server_monitor_pending.attr || 667 attr == &dev_attr_client_monitor_pending.attr || 668 attr == &dev_attr_server_monitor_latency.attr || 669 attr == &dev_attr_client_monitor_latency.attr || 670 attr == &dev_attr_server_monitor_conn_id.attr || 671 attr == &dev_attr_client_monitor_conn_id.attr)) 672 return 0; 673 674 return attr->mode; 675 } 676 677 static const struct attribute_group vmbus_dev_group = { 678 .attrs = vmbus_dev_attrs, 679 .is_visible = vmbus_dev_attr_is_visible 680 }; 681 __ATTRIBUTE_GROUPS(vmbus_dev); 682 683 /* Set up the attribute for /sys/bus/vmbus/hibernation */ 684 static ssize_t hibernation_show(struct bus_type *bus, char *buf) 685 { 686 return sprintf(buf, "%d\n", !!hv_is_hibernation_supported()); 687 } 688 689 static BUS_ATTR_RO(hibernation); 690 691 static struct attribute *vmbus_bus_attrs[] = { 692 &bus_attr_hibernation.attr, 693 NULL, 694 }; 695 static const struct attribute_group vmbus_bus_group = { 696 .attrs = vmbus_bus_attrs, 697 }; 698 __ATTRIBUTE_GROUPS(vmbus_bus); 699 700 /* 701 * vmbus_uevent - add uevent for our device 702 * 703 * This routine is invoked when a device is added or removed on the vmbus to 704 * generate a uevent to udev in the userspace. The udev will then look at its 705 * rule and the uevent generated here to load the appropriate driver 706 * 707 * The alias string will be of the form vmbus:guid where guid is the string 708 * representation of the device guid (each byte of the guid will be 709 * represented with two hex characters. 710 */ 711 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 712 { 713 struct hv_device *dev = device_to_hv_device(device); 714 const char *format = "MODALIAS=vmbus:%*phN"; 715 716 return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type); 717 } 718 719 static const struct hv_vmbus_device_id * 720 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid) 721 { 722 if (id == NULL) 723 return NULL; /* empty device table */ 724 725 for (; !guid_is_null(&id->guid); id++) 726 if (guid_equal(&id->guid, guid)) 727 return id; 728 729 return NULL; 730 } 731 732 static const struct hv_vmbus_device_id * 733 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid) 734 { 735 const struct hv_vmbus_device_id *id = NULL; 736 struct vmbus_dynid *dynid; 737 738 spin_lock(&drv->dynids.lock); 739 list_for_each_entry(dynid, &drv->dynids.list, node) { 740 if (guid_equal(&dynid->id.guid, guid)) { 741 id = &dynid->id; 742 break; 743 } 744 } 745 spin_unlock(&drv->dynids.lock); 746 747 return id; 748 } 749 750 static const struct hv_vmbus_device_id vmbus_device_null; 751 752 /* 753 * Return a matching hv_vmbus_device_id pointer. 754 * If there is no match, return NULL. 755 */ 756 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv, 757 struct hv_device *dev) 758 { 759 const guid_t *guid = &dev->dev_type; 760 const struct hv_vmbus_device_id *id; 761 762 /* When driver_override is set, only bind to the matching driver */ 763 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 764 return NULL; 765 766 /* Look at the dynamic ids first, before the static ones */ 767 id = hv_vmbus_dynid_match(drv, guid); 768 if (!id) 769 id = hv_vmbus_dev_match(drv->id_table, guid); 770 771 /* driver_override will always match, send a dummy id */ 772 if (!id && dev->driver_override) 773 id = &vmbus_device_null; 774 775 return id; 776 } 777 778 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */ 779 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid) 780 { 781 struct vmbus_dynid *dynid; 782 783 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 784 if (!dynid) 785 return -ENOMEM; 786 787 dynid->id.guid = *guid; 788 789 spin_lock(&drv->dynids.lock); 790 list_add_tail(&dynid->node, &drv->dynids.list); 791 spin_unlock(&drv->dynids.lock); 792 793 return driver_attach(&drv->driver); 794 } 795 796 static void vmbus_free_dynids(struct hv_driver *drv) 797 { 798 struct vmbus_dynid *dynid, *n; 799 800 spin_lock(&drv->dynids.lock); 801 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 802 list_del(&dynid->node); 803 kfree(dynid); 804 } 805 spin_unlock(&drv->dynids.lock); 806 } 807 808 /* 809 * store_new_id - sysfs frontend to vmbus_add_dynid() 810 * 811 * Allow GUIDs to be added to an existing driver via sysfs. 812 */ 813 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 814 size_t count) 815 { 816 struct hv_driver *drv = drv_to_hv_drv(driver); 817 guid_t guid; 818 ssize_t retval; 819 820 retval = guid_parse(buf, &guid); 821 if (retval) 822 return retval; 823 824 if (hv_vmbus_dynid_match(drv, &guid)) 825 return -EEXIST; 826 827 retval = vmbus_add_dynid(drv, &guid); 828 if (retval) 829 return retval; 830 return count; 831 } 832 static DRIVER_ATTR_WO(new_id); 833 834 /* 835 * store_remove_id - remove a PCI device ID from this driver 836 * 837 * Removes a dynamic pci device ID to this driver. 838 */ 839 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 840 size_t count) 841 { 842 struct hv_driver *drv = drv_to_hv_drv(driver); 843 struct vmbus_dynid *dynid, *n; 844 guid_t guid; 845 ssize_t retval; 846 847 retval = guid_parse(buf, &guid); 848 if (retval) 849 return retval; 850 851 retval = -ENODEV; 852 spin_lock(&drv->dynids.lock); 853 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 854 struct hv_vmbus_device_id *id = &dynid->id; 855 856 if (guid_equal(&id->guid, &guid)) { 857 list_del(&dynid->node); 858 kfree(dynid); 859 retval = count; 860 break; 861 } 862 } 863 spin_unlock(&drv->dynids.lock); 864 865 return retval; 866 } 867 static DRIVER_ATTR_WO(remove_id); 868 869 static struct attribute *vmbus_drv_attrs[] = { 870 &driver_attr_new_id.attr, 871 &driver_attr_remove_id.attr, 872 NULL, 873 }; 874 ATTRIBUTE_GROUPS(vmbus_drv); 875 876 877 /* 878 * vmbus_match - Attempt to match the specified device to the specified driver 879 */ 880 static int vmbus_match(struct device *device, struct device_driver *driver) 881 { 882 struct hv_driver *drv = drv_to_hv_drv(driver); 883 struct hv_device *hv_dev = device_to_hv_device(device); 884 885 /* The hv_sock driver handles all hv_sock offers. */ 886 if (is_hvsock_channel(hv_dev->channel)) 887 return drv->hvsock; 888 889 if (hv_vmbus_get_id(drv, hv_dev)) 890 return 1; 891 892 return 0; 893 } 894 895 /* 896 * vmbus_probe - Add the new vmbus's child device 897 */ 898 static int vmbus_probe(struct device *child_device) 899 { 900 int ret = 0; 901 struct hv_driver *drv = 902 drv_to_hv_drv(child_device->driver); 903 struct hv_device *dev = device_to_hv_device(child_device); 904 const struct hv_vmbus_device_id *dev_id; 905 906 dev_id = hv_vmbus_get_id(drv, dev); 907 if (drv->probe) { 908 ret = drv->probe(dev, dev_id); 909 if (ret != 0) 910 pr_err("probe failed for device %s (%d)\n", 911 dev_name(child_device), ret); 912 913 } else { 914 pr_err("probe not set for driver %s\n", 915 dev_name(child_device)); 916 ret = -ENODEV; 917 } 918 return ret; 919 } 920 921 /* 922 * vmbus_remove - Remove a vmbus device 923 */ 924 static int vmbus_remove(struct device *child_device) 925 { 926 struct hv_driver *drv; 927 struct hv_device *dev = device_to_hv_device(child_device); 928 929 if (child_device->driver) { 930 drv = drv_to_hv_drv(child_device->driver); 931 if (drv->remove) 932 drv->remove(dev); 933 } 934 935 return 0; 936 } 937 938 939 /* 940 * vmbus_shutdown - Shutdown a vmbus device 941 */ 942 static void vmbus_shutdown(struct device *child_device) 943 { 944 struct hv_driver *drv; 945 struct hv_device *dev = device_to_hv_device(child_device); 946 947 948 /* The device may not be attached yet */ 949 if (!child_device->driver) 950 return; 951 952 drv = drv_to_hv_drv(child_device->driver); 953 954 if (drv->shutdown) 955 drv->shutdown(dev); 956 } 957 958 #ifdef CONFIG_PM_SLEEP 959 /* 960 * vmbus_suspend - Suspend a vmbus device 961 */ 962 static int vmbus_suspend(struct device *child_device) 963 { 964 struct hv_driver *drv; 965 struct hv_device *dev = device_to_hv_device(child_device); 966 967 /* The device may not be attached yet */ 968 if (!child_device->driver) 969 return 0; 970 971 drv = drv_to_hv_drv(child_device->driver); 972 if (!drv->suspend) 973 return -EOPNOTSUPP; 974 975 return drv->suspend(dev); 976 } 977 978 /* 979 * vmbus_resume - Resume a vmbus device 980 */ 981 static int vmbus_resume(struct device *child_device) 982 { 983 struct hv_driver *drv; 984 struct hv_device *dev = device_to_hv_device(child_device); 985 986 /* The device may not be attached yet */ 987 if (!child_device->driver) 988 return 0; 989 990 drv = drv_to_hv_drv(child_device->driver); 991 if (!drv->resume) 992 return -EOPNOTSUPP; 993 994 return drv->resume(dev); 995 } 996 #else 997 #define vmbus_suspend NULL 998 #define vmbus_resume NULL 999 #endif /* CONFIG_PM_SLEEP */ 1000 1001 /* 1002 * vmbus_device_release - Final callback release of the vmbus child device 1003 */ 1004 static void vmbus_device_release(struct device *device) 1005 { 1006 struct hv_device *hv_dev = device_to_hv_device(device); 1007 struct vmbus_channel *channel = hv_dev->channel; 1008 1009 hv_debug_rm_dev_dir(hv_dev); 1010 1011 mutex_lock(&vmbus_connection.channel_mutex); 1012 hv_process_channel_removal(channel); 1013 mutex_unlock(&vmbus_connection.channel_mutex); 1014 kfree(hv_dev); 1015 } 1016 1017 /* 1018 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm. 1019 * 1020 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we 1021 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there 1022 * is no way to wake up a Generation-2 VM. 1023 * 1024 * The other 4 ops are for hibernation. 1025 */ 1026 1027 static const struct dev_pm_ops vmbus_pm = { 1028 .suspend_noirq = NULL, 1029 .resume_noirq = NULL, 1030 .freeze_noirq = vmbus_suspend, 1031 .thaw_noirq = vmbus_resume, 1032 .poweroff_noirq = vmbus_suspend, 1033 .restore_noirq = vmbus_resume, 1034 }; 1035 1036 /* The one and only one */ 1037 static struct bus_type hv_bus = { 1038 .name = "vmbus", 1039 .match = vmbus_match, 1040 .shutdown = vmbus_shutdown, 1041 .remove = vmbus_remove, 1042 .probe = vmbus_probe, 1043 .uevent = vmbus_uevent, 1044 .dev_groups = vmbus_dev_groups, 1045 .drv_groups = vmbus_drv_groups, 1046 .bus_groups = vmbus_bus_groups, 1047 .pm = &vmbus_pm, 1048 }; 1049 1050 struct onmessage_work_context { 1051 struct work_struct work; 1052 struct { 1053 struct hv_message_header header; 1054 u8 payload[]; 1055 } msg; 1056 }; 1057 1058 static void vmbus_onmessage_work(struct work_struct *work) 1059 { 1060 struct onmessage_work_context *ctx; 1061 1062 /* Do not process messages if we're in DISCONNECTED state */ 1063 if (vmbus_connection.conn_state == DISCONNECTED) 1064 return; 1065 1066 ctx = container_of(work, struct onmessage_work_context, 1067 work); 1068 vmbus_onmessage((struct vmbus_channel_message_header *) 1069 &ctx->msg.payload); 1070 kfree(ctx); 1071 } 1072 1073 void vmbus_on_msg_dpc(unsigned long data) 1074 { 1075 struct hv_per_cpu_context *hv_cpu = (void *)data; 1076 void *page_addr = hv_cpu->synic_message_page; 1077 struct hv_message msg_copy, *msg = (struct hv_message *)page_addr + 1078 VMBUS_MESSAGE_SINT; 1079 struct vmbus_channel_message_header *hdr; 1080 enum vmbus_channel_message_type msgtype; 1081 const struct vmbus_channel_message_table_entry *entry; 1082 struct onmessage_work_context *ctx; 1083 __u8 payload_size; 1084 u32 message_type; 1085 1086 /* 1087 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as 1088 * it is being used in 'struct vmbus_channel_message_header' definition 1089 * which is supposed to match hypervisor ABI. 1090 */ 1091 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32)); 1092 1093 /* 1094 * Since the message is in memory shared with the host, an erroneous or 1095 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc() 1096 * or individual message handlers are executing; to prevent this, copy 1097 * the message into private memory. 1098 */ 1099 memcpy(&msg_copy, msg, sizeof(struct hv_message)); 1100 1101 message_type = msg_copy.header.message_type; 1102 if (message_type == HVMSG_NONE) 1103 /* no msg */ 1104 return; 1105 1106 hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload; 1107 msgtype = hdr->msgtype; 1108 1109 trace_vmbus_on_msg_dpc(hdr); 1110 1111 if (msgtype >= CHANNELMSG_COUNT) { 1112 WARN_ONCE(1, "unknown msgtype=%d\n", msgtype); 1113 goto msg_handled; 1114 } 1115 1116 payload_size = msg_copy.header.payload_size; 1117 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) { 1118 WARN_ONCE(1, "payload size is too large (%d)\n", payload_size); 1119 goto msg_handled; 1120 } 1121 1122 entry = &channel_message_table[msgtype]; 1123 1124 if (!entry->message_handler) 1125 goto msg_handled; 1126 1127 if (payload_size < entry->min_payload_len) { 1128 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size); 1129 goto msg_handled; 1130 } 1131 1132 if (entry->handler_type == VMHT_BLOCKING) { 1133 ctx = kmalloc(sizeof(*ctx) + payload_size, GFP_ATOMIC); 1134 if (ctx == NULL) 1135 return; 1136 1137 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1138 memcpy(&ctx->msg, &msg_copy, sizeof(msg->header) + payload_size); 1139 1140 /* 1141 * The host can generate a rescind message while we 1142 * may still be handling the original offer. We deal with 1143 * this condition by relying on the synchronization provided 1144 * by offer_in_progress and by channel_mutex. See also the 1145 * inline comments in vmbus_onoffer_rescind(). 1146 */ 1147 switch (msgtype) { 1148 case CHANNELMSG_RESCIND_CHANNELOFFER: 1149 /* 1150 * If we are handling the rescind message; 1151 * schedule the work on the global work queue. 1152 * 1153 * The OFFER message and the RESCIND message should 1154 * not be handled by the same serialized work queue, 1155 * because the OFFER handler may call vmbus_open(), 1156 * which tries to open the channel by sending an 1157 * OPEN_CHANNEL message to the host and waits for 1158 * the host's response; however, if the host has 1159 * rescinded the channel before it receives the 1160 * OPEN_CHANNEL message, the host just silently 1161 * ignores the OPEN_CHANNEL message; as a result, 1162 * the guest's OFFER handler hangs for ever, if we 1163 * handle the RESCIND message in the same serialized 1164 * work queue: the RESCIND handler can not start to 1165 * run before the OFFER handler finishes. 1166 */ 1167 schedule_work(&ctx->work); 1168 break; 1169 1170 case CHANNELMSG_OFFERCHANNEL: 1171 /* 1172 * The host sends the offer message of a given channel 1173 * before sending the rescind message of the same 1174 * channel. These messages are sent to the guest's 1175 * connect CPU; the guest then starts processing them 1176 * in the tasklet handler on this CPU: 1177 * 1178 * VMBUS_CONNECT_CPU 1179 * 1180 * [vmbus_on_msg_dpc()] 1181 * atomic_inc() // CHANNELMSG_OFFERCHANNEL 1182 * queue_work() 1183 * ... 1184 * [vmbus_on_msg_dpc()] 1185 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER 1186 * 1187 * We rely on the memory-ordering properties of the 1188 * queue_work() and schedule_work() primitives, which 1189 * guarantee that the atomic increment will be visible 1190 * to the CPUs which will execute the offer & rescind 1191 * works by the time these works will start execution. 1192 */ 1193 atomic_inc(&vmbus_connection.offer_in_progress); 1194 fallthrough; 1195 1196 default: 1197 queue_work(vmbus_connection.work_queue, &ctx->work); 1198 } 1199 } else 1200 entry->message_handler(hdr); 1201 1202 msg_handled: 1203 vmbus_signal_eom(msg, message_type); 1204 } 1205 1206 #ifdef CONFIG_PM_SLEEP 1207 /* 1208 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for 1209 * hibernation, because hv_sock connections can not persist across hibernation. 1210 */ 1211 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel) 1212 { 1213 struct onmessage_work_context *ctx; 1214 struct vmbus_channel_rescind_offer *rescind; 1215 1216 WARN_ON(!is_hvsock_channel(channel)); 1217 1218 /* 1219 * Allocation size is small and the allocation should really not fail, 1220 * otherwise the state of the hv_sock connections ends up in limbo. 1221 */ 1222 ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind), 1223 GFP_KERNEL | __GFP_NOFAIL); 1224 1225 /* 1226 * So far, these are not really used by Linux. Just set them to the 1227 * reasonable values conforming to the definitions of the fields. 1228 */ 1229 ctx->msg.header.message_type = 1; 1230 ctx->msg.header.payload_size = sizeof(*rescind); 1231 1232 /* These values are actually used by Linux. */ 1233 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload; 1234 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER; 1235 rescind->child_relid = channel->offermsg.child_relid; 1236 1237 INIT_WORK(&ctx->work, vmbus_onmessage_work); 1238 1239 queue_work(vmbus_connection.work_queue, &ctx->work); 1240 } 1241 #endif /* CONFIG_PM_SLEEP */ 1242 1243 /* 1244 * Schedule all channels with events pending 1245 */ 1246 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu) 1247 { 1248 unsigned long *recv_int_page; 1249 u32 maxbits, relid; 1250 1251 if (vmbus_proto_version < VERSION_WIN8) { 1252 maxbits = MAX_NUM_CHANNELS_SUPPORTED; 1253 recv_int_page = vmbus_connection.recv_int_page; 1254 } else { 1255 /* 1256 * When the host is win8 and beyond, the event page 1257 * can be directly checked to get the id of the channel 1258 * that has the interrupt pending. 1259 */ 1260 void *page_addr = hv_cpu->synic_event_page; 1261 union hv_synic_event_flags *event 1262 = (union hv_synic_event_flags *)page_addr + 1263 VMBUS_MESSAGE_SINT; 1264 1265 maxbits = HV_EVENT_FLAGS_COUNT; 1266 recv_int_page = event->flags; 1267 } 1268 1269 if (unlikely(!recv_int_page)) 1270 return; 1271 1272 for_each_set_bit(relid, recv_int_page, maxbits) { 1273 void (*callback_fn)(void *context); 1274 struct vmbus_channel *channel; 1275 1276 if (!sync_test_and_clear_bit(relid, recv_int_page)) 1277 continue; 1278 1279 /* Special case - vmbus channel protocol msg */ 1280 if (relid == 0) 1281 continue; 1282 1283 /* 1284 * Pairs with the kfree_rcu() in vmbus_chan_release(). 1285 * Guarantees that the channel data structure doesn't 1286 * get freed while the channel pointer below is being 1287 * dereferenced. 1288 */ 1289 rcu_read_lock(); 1290 1291 /* Find channel based on relid */ 1292 channel = relid2channel(relid); 1293 if (channel == NULL) 1294 goto sched_unlock_rcu; 1295 1296 if (channel->rescind) 1297 goto sched_unlock_rcu; 1298 1299 /* 1300 * Make sure that the ring buffer data structure doesn't get 1301 * freed while we dereference the ring buffer pointer. Test 1302 * for the channel's onchannel_callback being NULL within a 1303 * sched_lock critical section. See also the inline comments 1304 * in vmbus_reset_channel_cb(). 1305 */ 1306 spin_lock(&channel->sched_lock); 1307 1308 callback_fn = channel->onchannel_callback; 1309 if (unlikely(callback_fn == NULL)) 1310 goto sched_unlock; 1311 1312 trace_vmbus_chan_sched(channel); 1313 1314 ++channel->interrupts; 1315 1316 switch (channel->callback_mode) { 1317 case HV_CALL_ISR: 1318 (*callback_fn)(channel->channel_callback_context); 1319 break; 1320 1321 case HV_CALL_BATCHED: 1322 hv_begin_read(&channel->inbound); 1323 fallthrough; 1324 case HV_CALL_DIRECT: 1325 tasklet_schedule(&channel->callback_event); 1326 } 1327 1328 sched_unlock: 1329 spin_unlock(&channel->sched_lock); 1330 sched_unlock_rcu: 1331 rcu_read_unlock(); 1332 } 1333 } 1334 1335 static void vmbus_isr(void) 1336 { 1337 struct hv_per_cpu_context *hv_cpu 1338 = this_cpu_ptr(hv_context.cpu_context); 1339 void *page_addr = hv_cpu->synic_event_page; 1340 struct hv_message *msg; 1341 union hv_synic_event_flags *event; 1342 bool handled = false; 1343 1344 if (unlikely(page_addr == NULL)) 1345 return; 1346 1347 event = (union hv_synic_event_flags *)page_addr + 1348 VMBUS_MESSAGE_SINT; 1349 /* 1350 * Check for events before checking for messages. This is the order 1351 * in which events and messages are checked in Windows guests on 1352 * Hyper-V, and the Windows team suggested we do the same. 1353 */ 1354 1355 if ((vmbus_proto_version == VERSION_WS2008) || 1356 (vmbus_proto_version == VERSION_WIN7)) { 1357 1358 /* Since we are a child, we only need to check bit 0 */ 1359 if (sync_test_and_clear_bit(0, event->flags)) 1360 handled = true; 1361 } else { 1362 /* 1363 * Our host is win8 or above. The signaling mechanism 1364 * has changed and we can directly look at the event page. 1365 * If bit n is set then we have an interrup on the channel 1366 * whose id is n. 1367 */ 1368 handled = true; 1369 } 1370 1371 if (handled) 1372 vmbus_chan_sched(hv_cpu); 1373 1374 page_addr = hv_cpu->synic_message_page; 1375 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 1376 1377 /* Check if there are actual msgs to be processed */ 1378 if (msg->header.message_type != HVMSG_NONE) { 1379 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) { 1380 hv_stimer0_isr(); 1381 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 1382 } else 1383 tasklet_schedule(&hv_cpu->msg_dpc); 1384 } 1385 1386 add_interrupt_randomness(vmbus_interrupt, 0); 1387 } 1388 1389 static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id) 1390 { 1391 vmbus_isr(); 1392 return IRQ_HANDLED; 1393 } 1394 1395 /* 1396 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg 1397 * buffer and call into Hyper-V to transfer the data. 1398 */ 1399 static void hv_kmsg_dump(struct kmsg_dumper *dumper, 1400 enum kmsg_dump_reason reason) 1401 { 1402 struct kmsg_dump_iter iter; 1403 size_t bytes_written; 1404 1405 /* We are only interested in panics. */ 1406 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg)) 1407 return; 1408 1409 /* 1410 * Write dump contents to the page. No need to synchronize; panic should 1411 * be single-threaded. 1412 */ 1413 kmsg_dump_rewind(&iter); 1414 kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE, 1415 &bytes_written); 1416 if (!bytes_written) 1417 return; 1418 /* 1419 * P3 to contain the physical address of the panic page & P4 to 1420 * contain the size of the panic data in that page. Rest of the 1421 * registers are no-op when the NOTIFY_MSG flag is set. 1422 */ 1423 hv_set_register(HV_REGISTER_CRASH_P0, 0); 1424 hv_set_register(HV_REGISTER_CRASH_P1, 0); 1425 hv_set_register(HV_REGISTER_CRASH_P2, 0); 1426 hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page)); 1427 hv_set_register(HV_REGISTER_CRASH_P4, bytes_written); 1428 1429 /* 1430 * Let Hyper-V know there is crash data available along with 1431 * the panic message. 1432 */ 1433 hv_set_register(HV_REGISTER_CRASH_CTL, 1434 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG)); 1435 } 1436 1437 static struct kmsg_dumper hv_kmsg_dumper = { 1438 .dump = hv_kmsg_dump, 1439 }; 1440 1441 static void hv_kmsg_dump_register(void) 1442 { 1443 int ret; 1444 1445 hv_panic_page = hv_alloc_hyperv_zeroed_page(); 1446 if (!hv_panic_page) { 1447 pr_err("Hyper-V: panic message page memory allocation failed\n"); 1448 return; 1449 } 1450 1451 ret = kmsg_dump_register(&hv_kmsg_dumper); 1452 if (ret) { 1453 pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret); 1454 hv_free_hyperv_page((unsigned long)hv_panic_page); 1455 hv_panic_page = NULL; 1456 } 1457 } 1458 1459 static struct ctl_table_header *hv_ctl_table_hdr; 1460 1461 /* 1462 * sysctl option to allow the user to control whether kmsg data should be 1463 * reported to Hyper-V on panic. 1464 */ 1465 static struct ctl_table hv_ctl_table[] = { 1466 { 1467 .procname = "hyperv_record_panic_msg", 1468 .data = &sysctl_record_panic_msg, 1469 .maxlen = sizeof(int), 1470 .mode = 0644, 1471 .proc_handler = proc_dointvec_minmax, 1472 .extra1 = SYSCTL_ZERO, 1473 .extra2 = SYSCTL_ONE 1474 }, 1475 {} 1476 }; 1477 1478 static struct ctl_table hv_root_table[] = { 1479 { 1480 .procname = "kernel", 1481 .mode = 0555, 1482 .child = hv_ctl_table 1483 }, 1484 {} 1485 }; 1486 1487 /* 1488 * vmbus_bus_init -Main vmbus driver initialization routine. 1489 * 1490 * Here, we 1491 * - initialize the vmbus driver context 1492 * - invoke the vmbus hv main init routine 1493 * - retrieve the channel offers 1494 */ 1495 static int vmbus_bus_init(void) 1496 { 1497 int ret; 1498 1499 ret = hv_init(); 1500 if (ret != 0) { 1501 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 1502 return ret; 1503 } 1504 1505 ret = bus_register(&hv_bus); 1506 if (ret) 1507 return ret; 1508 1509 /* 1510 * VMbus interrupts are best modeled as per-cpu interrupts. If 1511 * on an architecture with support for per-cpu IRQs (e.g. ARM64), 1512 * allocate a per-cpu IRQ using standard Linux kernel functionality. 1513 * If not on such an architecture (e.g., x86/x64), then rely on 1514 * code in the arch-specific portion of the code tree to connect 1515 * the VMbus interrupt handler. 1516 */ 1517 1518 if (vmbus_irq == -1) { 1519 hv_setup_vmbus_handler(vmbus_isr); 1520 } else { 1521 vmbus_evt = alloc_percpu(long); 1522 ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr, 1523 "Hyper-V VMbus", vmbus_evt); 1524 if (ret) { 1525 pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d", 1526 vmbus_irq, ret); 1527 free_percpu(vmbus_evt); 1528 goto err_setup; 1529 } 1530 } 1531 1532 ret = hv_synic_alloc(); 1533 if (ret) 1534 goto err_alloc; 1535 1536 /* 1537 * Initialize the per-cpu interrupt state and stimer state. 1538 * Then connect to the host. 1539 */ 1540 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online", 1541 hv_synic_init, hv_synic_cleanup); 1542 if (ret < 0) 1543 goto err_cpuhp; 1544 hyperv_cpuhp_online = ret; 1545 1546 ret = vmbus_connect(); 1547 if (ret) 1548 goto err_connect; 1549 1550 /* 1551 * Only register if the crash MSRs are available 1552 */ 1553 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1554 u64 hyperv_crash_ctl; 1555 /* 1556 * Sysctl registration is not fatal, since by default 1557 * reporting is enabled. 1558 */ 1559 hv_ctl_table_hdr = register_sysctl_table(hv_root_table); 1560 if (!hv_ctl_table_hdr) 1561 pr_err("Hyper-V: sysctl table register error"); 1562 1563 /* 1564 * Register for panic kmsg callback only if the right 1565 * capability is supported by the hypervisor. 1566 */ 1567 hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL); 1568 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) 1569 hv_kmsg_dump_register(); 1570 1571 register_die_notifier(&hyperv_die_block); 1572 } 1573 1574 /* 1575 * Always register the panic notifier because we need to unload 1576 * the VMbus channel connection to prevent any VMbus 1577 * activity after the VM panics. 1578 */ 1579 atomic_notifier_chain_register(&panic_notifier_list, 1580 &hyperv_panic_block); 1581 1582 vmbus_request_offers(); 1583 1584 return 0; 1585 1586 err_connect: 1587 cpuhp_remove_state(hyperv_cpuhp_online); 1588 err_cpuhp: 1589 hv_synic_free(); 1590 err_alloc: 1591 if (vmbus_irq == -1) { 1592 hv_remove_vmbus_handler(); 1593 } else { 1594 free_percpu_irq(vmbus_irq, vmbus_evt); 1595 free_percpu(vmbus_evt); 1596 } 1597 err_setup: 1598 bus_unregister(&hv_bus); 1599 unregister_sysctl_table(hv_ctl_table_hdr); 1600 hv_ctl_table_hdr = NULL; 1601 return ret; 1602 } 1603 1604 /** 1605 * __vmbus_child_driver_register() - Register a vmbus's driver 1606 * @hv_driver: Pointer to driver structure you want to register 1607 * @owner: owner module of the drv 1608 * @mod_name: module name string 1609 * 1610 * Registers the given driver with Linux through the 'driver_register()' call 1611 * and sets up the hyper-v vmbus handling for this driver. 1612 * It will return the state of the 'driver_register()' call. 1613 * 1614 */ 1615 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 1616 { 1617 int ret; 1618 1619 pr_info("registering driver %s\n", hv_driver->name); 1620 1621 ret = vmbus_exists(); 1622 if (ret < 0) 1623 return ret; 1624 1625 hv_driver->driver.name = hv_driver->name; 1626 hv_driver->driver.owner = owner; 1627 hv_driver->driver.mod_name = mod_name; 1628 hv_driver->driver.bus = &hv_bus; 1629 1630 spin_lock_init(&hv_driver->dynids.lock); 1631 INIT_LIST_HEAD(&hv_driver->dynids.list); 1632 1633 ret = driver_register(&hv_driver->driver); 1634 1635 return ret; 1636 } 1637 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 1638 1639 /** 1640 * vmbus_driver_unregister() - Unregister a vmbus's driver 1641 * @hv_driver: Pointer to driver structure you want to 1642 * un-register 1643 * 1644 * Un-register the given driver that was previous registered with a call to 1645 * vmbus_driver_register() 1646 */ 1647 void vmbus_driver_unregister(struct hv_driver *hv_driver) 1648 { 1649 pr_info("unregistering driver %s\n", hv_driver->name); 1650 1651 if (!vmbus_exists()) { 1652 driver_unregister(&hv_driver->driver); 1653 vmbus_free_dynids(hv_driver); 1654 } 1655 } 1656 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 1657 1658 1659 /* 1660 * Called when last reference to channel is gone. 1661 */ 1662 static void vmbus_chan_release(struct kobject *kobj) 1663 { 1664 struct vmbus_channel *channel 1665 = container_of(kobj, struct vmbus_channel, kobj); 1666 1667 kfree_rcu(channel, rcu); 1668 } 1669 1670 struct vmbus_chan_attribute { 1671 struct attribute attr; 1672 ssize_t (*show)(struct vmbus_channel *chan, char *buf); 1673 ssize_t (*store)(struct vmbus_channel *chan, 1674 const char *buf, size_t count); 1675 }; 1676 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \ 1677 struct vmbus_chan_attribute chan_attr_##_name \ 1678 = __ATTR(_name, _mode, _show, _store) 1679 #define VMBUS_CHAN_ATTR_RW(_name) \ 1680 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name) 1681 #define VMBUS_CHAN_ATTR_RO(_name) \ 1682 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name) 1683 #define VMBUS_CHAN_ATTR_WO(_name) \ 1684 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name) 1685 1686 static ssize_t vmbus_chan_attr_show(struct kobject *kobj, 1687 struct attribute *attr, char *buf) 1688 { 1689 const struct vmbus_chan_attribute *attribute 1690 = container_of(attr, struct vmbus_chan_attribute, attr); 1691 struct vmbus_channel *chan 1692 = container_of(kobj, struct vmbus_channel, kobj); 1693 1694 if (!attribute->show) 1695 return -EIO; 1696 1697 return attribute->show(chan, buf); 1698 } 1699 1700 static ssize_t vmbus_chan_attr_store(struct kobject *kobj, 1701 struct attribute *attr, const char *buf, 1702 size_t count) 1703 { 1704 const struct vmbus_chan_attribute *attribute 1705 = container_of(attr, struct vmbus_chan_attribute, attr); 1706 struct vmbus_channel *chan 1707 = container_of(kobj, struct vmbus_channel, kobj); 1708 1709 if (!attribute->store) 1710 return -EIO; 1711 1712 return attribute->store(chan, buf, count); 1713 } 1714 1715 static const struct sysfs_ops vmbus_chan_sysfs_ops = { 1716 .show = vmbus_chan_attr_show, 1717 .store = vmbus_chan_attr_store, 1718 }; 1719 1720 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf) 1721 { 1722 struct hv_ring_buffer_info *rbi = &channel->outbound; 1723 ssize_t ret; 1724 1725 mutex_lock(&rbi->ring_buffer_mutex); 1726 if (!rbi->ring_buffer) { 1727 mutex_unlock(&rbi->ring_buffer_mutex); 1728 return -EINVAL; 1729 } 1730 1731 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1732 mutex_unlock(&rbi->ring_buffer_mutex); 1733 return ret; 1734 } 1735 static VMBUS_CHAN_ATTR_RO(out_mask); 1736 1737 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf) 1738 { 1739 struct hv_ring_buffer_info *rbi = &channel->inbound; 1740 ssize_t ret; 1741 1742 mutex_lock(&rbi->ring_buffer_mutex); 1743 if (!rbi->ring_buffer) { 1744 mutex_unlock(&rbi->ring_buffer_mutex); 1745 return -EINVAL; 1746 } 1747 1748 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask); 1749 mutex_unlock(&rbi->ring_buffer_mutex); 1750 return ret; 1751 } 1752 static VMBUS_CHAN_ATTR_RO(in_mask); 1753 1754 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf) 1755 { 1756 struct hv_ring_buffer_info *rbi = &channel->inbound; 1757 ssize_t ret; 1758 1759 mutex_lock(&rbi->ring_buffer_mutex); 1760 if (!rbi->ring_buffer) { 1761 mutex_unlock(&rbi->ring_buffer_mutex); 1762 return -EINVAL; 1763 } 1764 1765 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi)); 1766 mutex_unlock(&rbi->ring_buffer_mutex); 1767 return ret; 1768 } 1769 static VMBUS_CHAN_ATTR_RO(read_avail); 1770 1771 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf) 1772 { 1773 struct hv_ring_buffer_info *rbi = &channel->outbound; 1774 ssize_t ret; 1775 1776 mutex_lock(&rbi->ring_buffer_mutex); 1777 if (!rbi->ring_buffer) { 1778 mutex_unlock(&rbi->ring_buffer_mutex); 1779 return -EINVAL; 1780 } 1781 1782 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi)); 1783 mutex_unlock(&rbi->ring_buffer_mutex); 1784 return ret; 1785 } 1786 static VMBUS_CHAN_ATTR_RO(write_avail); 1787 1788 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf) 1789 { 1790 return sprintf(buf, "%u\n", channel->target_cpu); 1791 } 1792 static ssize_t target_cpu_store(struct vmbus_channel *channel, 1793 const char *buf, size_t count) 1794 { 1795 u32 target_cpu, origin_cpu; 1796 ssize_t ret = count; 1797 1798 if (vmbus_proto_version < VERSION_WIN10_V4_1) 1799 return -EIO; 1800 1801 if (sscanf(buf, "%uu", &target_cpu) != 1) 1802 return -EIO; 1803 1804 /* Validate target_cpu for the cpumask_test_cpu() operation below. */ 1805 if (target_cpu >= nr_cpumask_bits) 1806 return -EINVAL; 1807 1808 /* No CPUs should come up or down during this. */ 1809 cpus_read_lock(); 1810 1811 if (!cpu_online(target_cpu)) { 1812 cpus_read_unlock(); 1813 return -EINVAL; 1814 } 1815 1816 /* 1817 * Synchronizes target_cpu_store() and channel closure: 1818 * 1819 * { Initially: state = CHANNEL_OPENED } 1820 * 1821 * CPU1 CPU2 1822 * 1823 * [target_cpu_store()] [vmbus_disconnect_ring()] 1824 * 1825 * LOCK channel_mutex LOCK channel_mutex 1826 * LOAD r1 = state LOAD r2 = state 1827 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED) 1828 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN 1829 * [...] SEND CLOSECHANNEL 1830 * UNLOCK channel_mutex UNLOCK channel_mutex 1831 * 1832 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes 1833 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND 1834 * 1835 * Note. The host processes the channel messages "sequentially", in 1836 * the order in which they are received on a per-partition basis. 1837 */ 1838 mutex_lock(&vmbus_connection.channel_mutex); 1839 1840 /* 1841 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels; 1842 * avoid sending the message and fail here for such channels. 1843 */ 1844 if (channel->state != CHANNEL_OPENED_STATE) { 1845 ret = -EIO; 1846 goto cpu_store_unlock; 1847 } 1848 1849 origin_cpu = channel->target_cpu; 1850 if (target_cpu == origin_cpu) 1851 goto cpu_store_unlock; 1852 1853 if (vmbus_send_modifychannel(channel, 1854 hv_cpu_number_to_vp_number(target_cpu))) { 1855 ret = -EIO; 1856 goto cpu_store_unlock; 1857 } 1858 1859 /* 1860 * For version before VERSION_WIN10_V5_3, the following warning holds: 1861 * 1862 * Warning. At this point, there is *no* guarantee that the host will 1863 * have successfully processed the vmbus_send_modifychannel() request. 1864 * See the header comment of vmbus_send_modifychannel() for more info. 1865 * 1866 * Lags in the processing of the above vmbus_send_modifychannel() can 1867 * result in missed interrupts if the "old" target CPU is taken offline 1868 * before Hyper-V starts sending interrupts to the "new" target CPU. 1869 * But apart from this offlining scenario, the code tolerates such 1870 * lags. It will function correctly even if a channel interrupt comes 1871 * in on a CPU that is different from the channel target_cpu value. 1872 */ 1873 1874 channel->target_cpu = target_cpu; 1875 1876 /* See init_vp_index(). */ 1877 if (hv_is_perf_channel(channel)) 1878 hv_update_alloced_cpus(origin_cpu, target_cpu); 1879 1880 /* Currently set only for storvsc channels. */ 1881 if (channel->change_target_cpu_callback) { 1882 (*channel->change_target_cpu_callback)(channel, 1883 origin_cpu, target_cpu); 1884 } 1885 1886 cpu_store_unlock: 1887 mutex_unlock(&vmbus_connection.channel_mutex); 1888 cpus_read_unlock(); 1889 return ret; 1890 } 1891 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store); 1892 1893 static ssize_t channel_pending_show(struct vmbus_channel *channel, 1894 char *buf) 1895 { 1896 return sprintf(buf, "%d\n", 1897 channel_pending(channel, 1898 vmbus_connection.monitor_pages[1])); 1899 } 1900 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL); 1901 1902 static ssize_t channel_latency_show(struct vmbus_channel *channel, 1903 char *buf) 1904 { 1905 return sprintf(buf, "%d\n", 1906 channel_latency(channel, 1907 vmbus_connection.monitor_pages[1])); 1908 } 1909 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL); 1910 1911 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf) 1912 { 1913 return sprintf(buf, "%llu\n", channel->interrupts); 1914 } 1915 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL); 1916 1917 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf) 1918 { 1919 return sprintf(buf, "%llu\n", channel->sig_events); 1920 } 1921 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL); 1922 1923 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel, 1924 char *buf) 1925 { 1926 return sprintf(buf, "%llu\n", 1927 (unsigned long long)channel->intr_in_full); 1928 } 1929 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL); 1930 1931 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel, 1932 char *buf) 1933 { 1934 return sprintf(buf, "%llu\n", 1935 (unsigned long long)channel->intr_out_empty); 1936 } 1937 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL); 1938 1939 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel, 1940 char *buf) 1941 { 1942 return sprintf(buf, "%llu\n", 1943 (unsigned long long)channel->out_full_first); 1944 } 1945 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL); 1946 1947 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel, 1948 char *buf) 1949 { 1950 return sprintf(buf, "%llu\n", 1951 (unsigned long long)channel->out_full_total); 1952 } 1953 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL); 1954 1955 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel, 1956 char *buf) 1957 { 1958 return sprintf(buf, "%u\n", channel->offermsg.monitorid); 1959 } 1960 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL); 1961 1962 static ssize_t subchannel_id_show(struct vmbus_channel *channel, 1963 char *buf) 1964 { 1965 return sprintf(buf, "%u\n", 1966 channel->offermsg.offer.sub_channel_index); 1967 } 1968 static VMBUS_CHAN_ATTR_RO(subchannel_id); 1969 1970 static struct attribute *vmbus_chan_attrs[] = { 1971 &chan_attr_out_mask.attr, 1972 &chan_attr_in_mask.attr, 1973 &chan_attr_read_avail.attr, 1974 &chan_attr_write_avail.attr, 1975 &chan_attr_cpu.attr, 1976 &chan_attr_pending.attr, 1977 &chan_attr_latency.attr, 1978 &chan_attr_interrupts.attr, 1979 &chan_attr_events.attr, 1980 &chan_attr_intr_in_full.attr, 1981 &chan_attr_intr_out_empty.attr, 1982 &chan_attr_out_full_first.attr, 1983 &chan_attr_out_full_total.attr, 1984 &chan_attr_monitor_id.attr, 1985 &chan_attr_subchannel_id.attr, 1986 NULL 1987 }; 1988 1989 /* 1990 * Channel-level attribute_group callback function. Returns the permission for 1991 * each attribute, and returns 0 if an attribute is not visible. 1992 */ 1993 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj, 1994 struct attribute *attr, int idx) 1995 { 1996 const struct vmbus_channel *channel = 1997 container_of(kobj, struct vmbus_channel, kobj); 1998 1999 /* Hide the monitor attributes if the monitor mechanism is not used. */ 2000 if (!channel->offermsg.monitor_allocated && 2001 (attr == &chan_attr_pending.attr || 2002 attr == &chan_attr_latency.attr || 2003 attr == &chan_attr_monitor_id.attr)) 2004 return 0; 2005 2006 return attr->mode; 2007 } 2008 2009 static struct attribute_group vmbus_chan_group = { 2010 .attrs = vmbus_chan_attrs, 2011 .is_visible = vmbus_chan_attr_is_visible 2012 }; 2013 2014 static struct kobj_type vmbus_chan_ktype = { 2015 .sysfs_ops = &vmbus_chan_sysfs_ops, 2016 .release = vmbus_chan_release, 2017 }; 2018 2019 /* 2020 * vmbus_add_channel_kobj - setup a sub-directory under device/channels 2021 */ 2022 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel) 2023 { 2024 const struct device *device = &dev->device; 2025 struct kobject *kobj = &channel->kobj; 2026 u32 relid = channel->offermsg.child_relid; 2027 int ret; 2028 2029 kobj->kset = dev->channels_kset; 2030 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL, 2031 "%u", relid); 2032 if (ret) 2033 return ret; 2034 2035 ret = sysfs_create_group(kobj, &vmbus_chan_group); 2036 2037 if (ret) { 2038 /* 2039 * The calling functions' error handling paths will cleanup the 2040 * empty channel directory. 2041 */ 2042 dev_err(device, "Unable to set up channel sysfs files\n"); 2043 return ret; 2044 } 2045 2046 kobject_uevent(kobj, KOBJ_ADD); 2047 2048 return 0; 2049 } 2050 2051 /* 2052 * vmbus_remove_channel_attr_group - remove the channel's attribute group 2053 */ 2054 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel) 2055 { 2056 sysfs_remove_group(&channel->kobj, &vmbus_chan_group); 2057 } 2058 2059 /* 2060 * vmbus_device_create - Creates and registers a new child device 2061 * on the vmbus. 2062 */ 2063 struct hv_device *vmbus_device_create(const guid_t *type, 2064 const guid_t *instance, 2065 struct vmbus_channel *channel) 2066 { 2067 struct hv_device *child_device_obj; 2068 2069 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 2070 if (!child_device_obj) { 2071 pr_err("Unable to allocate device object for child device\n"); 2072 return NULL; 2073 } 2074 2075 child_device_obj->channel = channel; 2076 guid_copy(&child_device_obj->dev_type, type); 2077 guid_copy(&child_device_obj->dev_instance, instance); 2078 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 2079 2080 return child_device_obj; 2081 } 2082 2083 /* 2084 * vmbus_device_register - Register the child device 2085 */ 2086 int vmbus_device_register(struct hv_device *child_device_obj) 2087 { 2088 struct kobject *kobj = &child_device_obj->device.kobj; 2089 int ret; 2090 2091 dev_set_name(&child_device_obj->device, "%pUl", 2092 &child_device_obj->channel->offermsg.offer.if_instance); 2093 2094 child_device_obj->device.bus = &hv_bus; 2095 child_device_obj->device.parent = &hv_acpi_dev->dev; 2096 child_device_obj->device.release = vmbus_device_release; 2097 2098 /* 2099 * Register with the LDM. This will kick off the driver/device 2100 * binding...which will eventually call vmbus_match() and vmbus_probe() 2101 */ 2102 ret = device_register(&child_device_obj->device); 2103 if (ret) { 2104 pr_err("Unable to register child device\n"); 2105 return ret; 2106 } 2107 2108 child_device_obj->channels_kset = kset_create_and_add("channels", 2109 NULL, kobj); 2110 if (!child_device_obj->channels_kset) { 2111 ret = -ENOMEM; 2112 goto err_dev_unregister; 2113 } 2114 2115 ret = vmbus_add_channel_kobj(child_device_obj, 2116 child_device_obj->channel); 2117 if (ret) { 2118 pr_err("Unable to register primary channeln"); 2119 goto err_kset_unregister; 2120 } 2121 hv_debug_add_dev_dir(child_device_obj); 2122 2123 return 0; 2124 2125 err_kset_unregister: 2126 kset_unregister(child_device_obj->channels_kset); 2127 2128 err_dev_unregister: 2129 device_unregister(&child_device_obj->device); 2130 return ret; 2131 } 2132 2133 /* 2134 * vmbus_device_unregister - Remove the specified child device 2135 * from the vmbus. 2136 */ 2137 void vmbus_device_unregister(struct hv_device *device_obj) 2138 { 2139 pr_debug("child device %s unregistered\n", 2140 dev_name(&device_obj->device)); 2141 2142 kset_unregister(device_obj->channels_kset); 2143 2144 /* 2145 * Kick off the process of unregistering the device. 2146 * This will call vmbus_remove() and eventually vmbus_device_release() 2147 */ 2148 device_unregister(&device_obj->device); 2149 } 2150 2151 2152 /* 2153 * VMBUS is an acpi enumerated device. Get the information we 2154 * need from DSDT. 2155 */ 2156 #define VTPM_BASE_ADDRESS 0xfed40000 2157 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 2158 { 2159 resource_size_t start = 0; 2160 resource_size_t end = 0; 2161 struct resource *new_res; 2162 struct resource **old_res = &hyperv_mmio; 2163 struct resource **prev_res = NULL; 2164 struct resource r; 2165 2166 switch (res->type) { 2167 2168 /* 2169 * "Address" descriptors are for bus windows. Ignore 2170 * "memory" descriptors, which are for registers on 2171 * devices. 2172 */ 2173 case ACPI_RESOURCE_TYPE_ADDRESS32: 2174 start = res->data.address32.address.minimum; 2175 end = res->data.address32.address.maximum; 2176 break; 2177 2178 case ACPI_RESOURCE_TYPE_ADDRESS64: 2179 start = res->data.address64.address.minimum; 2180 end = res->data.address64.address.maximum; 2181 break; 2182 2183 /* 2184 * The IRQ information is needed only on ARM64, which Hyper-V 2185 * sets up in the extended format. IRQ information is present 2186 * on x86/x64 in the non-extended format but it is not used by 2187 * Linux. So don't bother checking for the non-extended format. 2188 */ 2189 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 2190 if (!acpi_dev_resource_interrupt(res, 0, &r)) { 2191 pr_err("Unable to parse Hyper-V ACPI interrupt\n"); 2192 return AE_ERROR; 2193 } 2194 /* ARM64 INTID for VMbus */ 2195 vmbus_interrupt = res->data.extended_irq.interrupts[0]; 2196 /* Linux IRQ number */ 2197 vmbus_irq = r.start; 2198 return AE_OK; 2199 2200 default: 2201 /* Unused resource type */ 2202 return AE_OK; 2203 2204 } 2205 /* 2206 * Ignore ranges that are below 1MB, as they're not 2207 * necessary or useful here. 2208 */ 2209 if (end < 0x100000) 2210 return AE_OK; 2211 2212 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 2213 if (!new_res) 2214 return AE_NO_MEMORY; 2215 2216 /* If this range overlaps the virtual TPM, truncate it. */ 2217 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 2218 end = VTPM_BASE_ADDRESS; 2219 2220 new_res->name = "hyperv mmio"; 2221 new_res->flags = IORESOURCE_MEM; 2222 new_res->start = start; 2223 new_res->end = end; 2224 2225 /* 2226 * If two ranges are adjacent, merge them. 2227 */ 2228 do { 2229 if (!*old_res) { 2230 *old_res = new_res; 2231 break; 2232 } 2233 2234 if (((*old_res)->end + 1) == new_res->start) { 2235 (*old_res)->end = new_res->end; 2236 kfree(new_res); 2237 break; 2238 } 2239 2240 if ((*old_res)->start == new_res->end + 1) { 2241 (*old_res)->start = new_res->start; 2242 kfree(new_res); 2243 break; 2244 } 2245 2246 if ((*old_res)->start > new_res->end) { 2247 new_res->sibling = *old_res; 2248 if (prev_res) 2249 (*prev_res)->sibling = new_res; 2250 *old_res = new_res; 2251 break; 2252 } 2253 2254 prev_res = old_res; 2255 old_res = &(*old_res)->sibling; 2256 2257 } while (1); 2258 2259 return AE_OK; 2260 } 2261 2262 static int vmbus_acpi_remove(struct acpi_device *device) 2263 { 2264 struct resource *cur_res; 2265 struct resource *next_res; 2266 2267 if (hyperv_mmio) { 2268 if (fb_mmio) { 2269 __release_region(hyperv_mmio, fb_mmio->start, 2270 resource_size(fb_mmio)); 2271 fb_mmio = NULL; 2272 } 2273 2274 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 2275 next_res = cur_res->sibling; 2276 kfree(cur_res); 2277 } 2278 } 2279 2280 return 0; 2281 } 2282 2283 static void vmbus_reserve_fb(void) 2284 { 2285 int size; 2286 /* 2287 * Make a claim for the frame buffer in the resource tree under the 2288 * first node, which will be the one below 4GB. The length seems to 2289 * be underreported, particularly in a Generation 1 VM. So start out 2290 * reserving a larger area and make it smaller until it succeeds. 2291 */ 2292 2293 if (screen_info.lfb_base) { 2294 if (efi_enabled(EFI_BOOT)) 2295 size = max_t(__u32, screen_info.lfb_size, 0x800000); 2296 else 2297 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 2298 2299 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 2300 fb_mmio = __request_region(hyperv_mmio, 2301 screen_info.lfb_base, size, 2302 fb_mmio_name, 0); 2303 } 2304 } 2305 } 2306 2307 /** 2308 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 2309 * @new: If successful, supplied a pointer to the 2310 * allocated MMIO space. 2311 * @device_obj: Identifies the caller 2312 * @min: Minimum guest physical address of the 2313 * allocation 2314 * @max: Maximum guest physical address 2315 * @size: Size of the range to be allocated 2316 * @align: Alignment of the range to be allocated 2317 * @fb_overlap_ok: Whether this allocation can be allowed 2318 * to overlap the video frame buffer. 2319 * 2320 * This function walks the resources granted to VMBus by the 2321 * _CRS object in the ACPI namespace underneath the parent 2322 * "bridge" whether that's a root PCI bus in the Generation 1 2323 * case or a Module Device in the Generation 2 case. It then 2324 * attempts to allocate from the global MMIO pool in a way that 2325 * matches the constraints supplied in these parameters and by 2326 * that _CRS. 2327 * 2328 * Return: 0 on success, -errno on failure 2329 */ 2330 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 2331 resource_size_t min, resource_size_t max, 2332 resource_size_t size, resource_size_t align, 2333 bool fb_overlap_ok) 2334 { 2335 struct resource *iter, *shadow; 2336 resource_size_t range_min, range_max, start; 2337 const char *dev_n = dev_name(&device_obj->device); 2338 int retval; 2339 2340 retval = -ENXIO; 2341 mutex_lock(&hyperv_mmio_lock); 2342 2343 /* 2344 * If overlaps with frame buffers are allowed, then first attempt to 2345 * make the allocation from within the reserved region. Because it 2346 * is already reserved, no shadow allocation is necessary. 2347 */ 2348 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 2349 !(max < fb_mmio->start)) { 2350 2351 range_min = fb_mmio->start; 2352 range_max = fb_mmio->end; 2353 start = (range_min + align - 1) & ~(align - 1); 2354 for (; start + size - 1 <= range_max; start += align) { 2355 *new = request_mem_region_exclusive(start, size, dev_n); 2356 if (*new) { 2357 retval = 0; 2358 goto exit; 2359 } 2360 } 2361 } 2362 2363 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2364 if ((iter->start >= max) || (iter->end <= min)) 2365 continue; 2366 2367 range_min = iter->start; 2368 range_max = iter->end; 2369 start = (range_min + align - 1) & ~(align - 1); 2370 for (; start + size - 1 <= range_max; start += align) { 2371 shadow = __request_region(iter, start, size, NULL, 2372 IORESOURCE_BUSY); 2373 if (!shadow) 2374 continue; 2375 2376 *new = request_mem_region_exclusive(start, size, dev_n); 2377 if (*new) { 2378 shadow->name = (char *)*new; 2379 retval = 0; 2380 goto exit; 2381 } 2382 2383 __release_region(iter, start, size); 2384 } 2385 } 2386 2387 exit: 2388 mutex_unlock(&hyperv_mmio_lock); 2389 return retval; 2390 } 2391 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 2392 2393 /** 2394 * vmbus_free_mmio() - Free a memory-mapped I/O range. 2395 * @start: Base address of region to release. 2396 * @size: Size of the range to be allocated 2397 * 2398 * This function releases anything requested by 2399 * vmbus_mmio_allocate(). 2400 */ 2401 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 2402 { 2403 struct resource *iter; 2404 2405 mutex_lock(&hyperv_mmio_lock); 2406 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 2407 if ((iter->start >= start + size) || (iter->end <= start)) 2408 continue; 2409 2410 __release_region(iter, start, size); 2411 } 2412 release_mem_region(start, size); 2413 mutex_unlock(&hyperv_mmio_lock); 2414 2415 } 2416 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 2417 2418 static int vmbus_acpi_add(struct acpi_device *device) 2419 { 2420 acpi_status result; 2421 int ret_val = -ENODEV; 2422 struct acpi_device *ancestor; 2423 2424 hv_acpi_dev = device; 2425 2426 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 2427 vmbus_walk_resources, NULL); 2428 2429 if (ACPI_FAILURE(result)) 2430 goto acpi_walk_err; 2431 /* 2432 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 2433 * firmware) is the VMOD that has the mmio ranges. Get that. 2434 */ 2435 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 2436 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 2437 vmbus_walk_resources, NULL); 2438 2439 if (ACPI_FAILURE(result)) 2440 continue; 2441 if (hyperv_mmio) { 2442 vmbus_reserve_fb(); 2443 break; 2444 } 2445 } 2446 ret_val = 0; 2447 2448 acpi_walk_err: 2449 complete(&probe_event); 2450 if (ret_val) 2451 vmbus_acpi_remove(device); 2452 return ret_val; 2453 } 2454 2455 #ifdef CONFIG_PM_SLEEP 2456 static int vmbus_bus_suspend(struct device *dev) 2457 { 2458 struct vmbus_channel *channel, *sc; 2459 2460 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) { 2461 /* 2462 * We wait here until the completion of any channel 2463 * offers that are currently in progress. 2464 */ 2465 usleep_range(1000, 2000); 2466 } 2467 2468 mutex_lock(&vmbus_connection.channel_mutex); 2469 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2470 if (!is_hvsock_channel(channel)) 2471 continue; 2472 2473 vmbus_force_channel_rescinded(channel); 2474 } 2475 mutex_unlock(&vmbus_connection.channel_mutex); 2476 2477 /* 2478 * Wait until all the sub-channels and hv_sock channels have been 2479 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise 2480 * they would conflict with the new sub-channels that will be created 2481 * in the resume path. hv_sock channels should also be destroyed, but 2482 * a hv_sock channel of an established hv_sock connection can not be 2483 * really destroyed since it may still be referenced by the userspace 2484 * application, so we just force the hv_sock channel to be rescinded 2485 * by vmbus_force_channel_rescinded(), and the userspace application 2486 * will thoroughly destroy the channel after hibernation. 2487 * 2488 * Note: the counter nr_chan_close_on_suspend may never go above 0 if 2489 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM. 2490 */ 2491 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0) 2492 wait_for_completion(&vmbus_connection.ready_for_suspend_event); 2493 2494 if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) { 2495 pr_err("Can not suspend due to a previous failed resuming\n"); 2496 return -EBUSY; 2497 } 2498 2499 mutex_lock(&vmbus_connection.channel_mutex); 2500 2501 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 2502 /* 2503 * Remove the channel from the array of channels and invalidate 2504 * the channel's relid. Upon resume, vmbus_onoffer() will fix 2505 * up the relid (and other fields, if necessary) and add the 2506 * channel back to the array. 2507 */ 2508 vmbus_channel_unmap_relid(channel); 2509 channel->offermsg.child_relid = INVALID_RELID; 2510 2511 if (is_hvsock_channel(channel)) { 2512 if (!channel->rescind) { 2513 pr_err("hv_sock channel not rescinded!\n"); 2514 WARN_ON_ONCE(1); 2515 } 2516 continue; 2517 } 2518 2519 list_for_each_entry(sc, &channel->sc_list, sc_list) { 2520 pr_err("Sub-channel not deleted!\n"); 2521 WARN_ON_ONCE(1); 2522 } 2523 2524 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume); 2525 } 2526 2527 mutex_unlock(&vmbus_connection.channel_mutex); 2528 2529 vmbus_initiate_unload(false); 2530 2531 /* Reset the event for the next resume. */ 2532 reinit_completion(&vmbus_connection.ready_for_resume_event); 2533 2534 return 0; 2535 } 2536 2537 static int vmbus_bus_resume(struct device *dev) 2538 { 2539 struct vmbus_channel_msginfo *msginfo; 2540 size_t msgsize; 2541 int ret; 2542 2543 /* 2544 * We only use the 'vmbus_proto_version', which was in use before 2545 * hibernation, to re-negotiate with the host. 2546 */ 2547 if (!vmbus_proto_version) { 2548 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version); 2549 return -EINVAL; 2550 } 2551 2552 msgsize = sizeof(*msginfo) + 2553 sizeof(struct vmbus_channel_initiate_contact); 2554 2555 msginfo = kzalloc(msgsize, GFP_KERNEL); 2556 2557 if (msginfo == NULL) 2558 return -ENOMEM; 2559 2560 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version); 2561 2562 kfree(msginfo); 2563 2564 if (ret != 0) 2565 return ret; 2566 2567 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0); 2568 2569 vmbus_request_offers(); 2570 2571 if (wait_for_completion_timeout( 2572 &vmbus_connection.ready_for_resume_event, 10 * HZ) == 0) 2573 pr_err("Some vmbus device is missing after suspending?\n"); 2574 2575 /* Reset the event for the next suspend. */ 2576 reinit_completion(&vmbus_connection.ready_for_suspend_event); 2577 2578 return 0; 2579 } 2580 #else 2581 #define vmbus_bus_suspend NULL 2582 #define vmbus_bus_resume NULL 2583 #endif /* CONFIG_PM_SLEEP */ 2584 2585 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 2586 {"VMBUS", 0}, 2587 {"VMBus", 0}, 2588 {"", 0}, 2589 }; 2590 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 2591 2592 /* 2593 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with 2594 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in 2595 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see 2596 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() -> 2597 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's 2598 * resume callback must also run via the "noirq" ops. 2599 * 2600 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment 2601 * earlier in this file before vmbus_pm. 2602 */ 2603 2604 static const struct dev_pm_ops vmbus_bus_pm = { 2605 .suspend_noirq = NULL, 2606 .resume_noirq = NULL, 2607 .freeze_noirq = vmbus_bus_suspend, 2608 .thaw_noirq = vmbus_bus_resume, 2609 .poweroff_noirq = vmbus_bus_suspend, 2610 .restore_noirq = vmbus_bus_resume 2611 }; 2612 2613 static struct acpi_driver vmbus_acpi_driver = { 2614 .name = "vmbus", 2615 .ids = vmbus_acpi_device_ids, 2616 .ops = { 2617 .add = vmbus_acpi_add, 2618 .remove = vmbus_acpi_remove, 2619 }, 2620 .drv.pm = &vmbus_bus_pm, 2621 }; 2622 2623 static void hv_kexec_handler(void) 2624 { 2625 hv_stimer_global_cleanup(); 2626 vmbus_initiate_unload(false); 2627 /* Make sure conn_state is set as hv_synic_cleanup checks for it */ 2628 mb(); 2629 cpuhp_remove_state(hyperv_cpuhp_online); 2630 }; 2631 2632 static void hv_crash_handler(struct pt_regs *regs) 2633 { 2634 int cpu; 2635 2636 vmbus_initiate_unload(true); 2637 /* 2638 * In crash handler we can't schedule synic cleanup for all CPUs, 2639 * doing the cleanup for current CPU only. This should be sufficient 2640 * for kdump. 2641 */ 2642 cpu = smp_processor_id(); 2643 hv_stimer_cleanup(cpu); 2644 hv_synic_disable_regs(cpu); 2645 }; 2646 2647 static int hv_synic_suspend(void) 2648 { 2649 /* 2650 * When we reach here, all the non-boot CPUs have been offlined. 2651 * If we're in a legacy configuration where stimer Direct Mode is 2652 * not enabled, the stimers on the non-boot CPUs have been unbound 2653 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() -> 2654 * hv_stimer_cleanup() -> clockevents_unbind_device(). 2655 * 2656 * hv_synic_suspend() only runs on CPU0 with interrupts disabled. 2657 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because: 2658 * 1) it's unnecessary as interrupts remain disabled between 2659 * syscore_suspend() and syscore_resume(): see create_image() and 2660 * resume_target_kernel() 2661 * 2) the stimer on CPU0 is automatically disabled later by 2662 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ... 2663 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown() 2664 * 3) a warning would be triggered if we call 2665 * clockevents_unbind_device(), which may sleep, in an 2666 * interrupts-disabled context. 2667 */ 2668 2669 hv_synic_disable_regs(0); 2670 2671 return 0; 2672 } 2673 2674 static void hv_synic_resume(void) 2675 { 2676 hv_synic_enable_regs(0); 2677 2678 /* 2679 * Note: we don't need to call hv_stimer_init(0), because the timer 2680 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is 2681 * automatically re-enabled in timekeeping_resume(). 2682 */ 2683 } 2684 2685 /* The callbacks run only on CPU0, with irqs_disabled. */ 2686 static struct syscore_ops hv_synic_syscore_ops = { 2687 .suspend = hv_synic_suspend, 2688 .resume = hv_synic_resume, 2689 }; 2690 2691 static int __init hv_acpi_init(void) 2692 { 2693 int ret, t; 2694 2695 if (!hv_is_hyperv_initialized()) 2696 return -ENODEV; 2697 2698 if (hv_root_partition) 2699 return 0; 2700 2701 init_completion(&probe_event); 2702 2703 /* 2704 * Get ACPI resources first. 2705 */ 2706 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 2707 2708 if (ret) 2709 return ret; 2710 2711 t = wait_for_completion_timeout(&probe_event, 5*HZ); 2712 if (t == 0) { 2713 ret = -ETIMEDOUT; 2714 goto cleanup; 2715 } 2716 2717 /* 2718 * If we're on an architecture with a hardcoded hypervisor 2719 * vector (i.e. x86/x64), override the VMbus interrupt found 2720 * in the ACPI tables. Ensure vmbus_irq is not set since the 2721 * normal Linux IRQ mechanism is not used in this case. 2722 */ 2723 #ifdef HYPERVISOR_CALLBACK_VECTOR 2724 vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR; 2725 vmbus_irq = -1; 2726 #endif 2727 2728 hv_debug_init(); 2729 2730 ret = vmbus_bus_init(); 2731 if (ret) 2732 goto cleanup; 2733 2734 hv_setup_kexec_handler(hv_kexec_handler); 2735 hv_setup_crash_handler(hv_crash_handler); 2736 2737 register_syscore_ops(&hv_synic_syscore_ops); 2738 2739 return 0; 2740 2741 cleanup: 2742 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2743 hv_acpi_dev = NULL; 2744 return ret; 2745 } 2746 2747 static void __exit vmbus_exit(void) 2748 { 2749 int cpu; 2750 2751 unregister_syscore_ops(&hv_synic_syscore_ops); 2752 2753 hv_remove_kexec_handler(); 2754 hv_remove_crash_handler(); 2755 vmbus_connection.conn_state = DISCONNECTED; 2756 hv_stimer_global_cleanup(); 2757 vmbus_disconnect(); 2758 if (vmbus_irq == -1) { 2759 hv_remove_vmbus_handler(); 2760 } else { 2761 free_percpu_irq(vmbus_irq, vmbus_evt); 2762 free_percpu(vmbus_evt); 2763 } 2764 for_each_online_cpu(cpu) { 2765 struct hv_per_cpu_context *hv_cpu 2766 = per_cpu_ptr(hv_context.cpu_context, cpu); 2767 2768 tasklet_kill(&hv_cpu->msg_dpc); 2769 } 2770 hv_debug_rm_all_dir(); 2771 2772 vmbus_free_channels(); 2773 kfree(vmbus_connection.channels); 2774 2775 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 2776 kmsg_dump_unregister(&hv_kmsg_dumper); 2777 unregister_die_notifier(&hyperv_die_block); 2778 atomic_notifier_chain_unregister(&panic_notifier_list, 2779 &hyperv_panic_block); 2780 } 2781 2782 free_page((unsigned long)hv_panic_page); 2783 unregister_sysctl_table(hv_ctl_table_hdr); 2784 hv_ctl_table_hdr = NULL; 2785 bus_unregister(&hv_bus); 2786 2787 cpuhp_remove_state(hyperv_cpuhp_online); 2788 hv_synic_free(); 2789 acpi_bus_unregister_driver(&vmbus_acpi_driver); 2790 } 2791 2792 2793 MODULE_LICENSE("GPL"); 2794 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver"); 2795 2796 subsys_initcall(hv_acpi_init); 2797 module_exit(vmbus_exit); 2798