xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/task_stack.h>
25 
26 #include <asm/mshyperv.h>
27 #include <linux/notifier.h>
28 #include <linux/ptrace.h>
29 #include <linux/screen_info.h>
30 #include <linux/kdebug.h>
31 #include <linux/efi.h>
32 #include <linux/random.h>
33 #include "hyperv_vmbus.h"
34 
35 struct vmbus_dynid {
36 	struct list_head node;
37 	struct hv_vmbus_device_id id;
38 };
39 
40 static struct acpi_device  *hv_acpi_dev;
41 
42 static struct completion probe_event;
43 
44 static int hyperv_cpuhp_online;
45 
46 static void *hv_panic_page;
47 
48 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
49 			      void *args)
50 {
51 	struct pt_regs *regs;
52 
53 	regs = current_pt_regs();
54 
55 	hyperv_report_panic(regs, val);
56 	return NOTIFY_DONE;
57 }
58 
59 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
60 			    void *args)
61 {
62 	struct die_args *die = (struct die_args *)args;
63 	struct pt_regs *regs = die->regs;
64 
65 	hyperv_report_panic(regs, val);
66 	return NOTIFY_DONE;
67 }
68 
69 static struct notifier_block hyperv_die_block = {
70 	.notifier_call = hyperv_die_event,
71 };
72 static struct notifier_block hyperv_panic_block = {
73 	.notifier_call = hyperv_panic_event,
74 };
75 
76 static const char *fb_mmio_name = "fb_range";
77 static struct resource *fb_mmio;
78 static struct resource *hyperv_mmio;
79 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
80 
81 static int vmbus_exists(void)
82 {
83 	if (hv_acpi_dev == NULL)
84 		return -ENODEV;
85 
86 	return 0;
87 }
88 
89 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
90 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
91 {
92 	int i;
93 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
94 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
95 }
96 
97 static u8 channel_monitor_group(const struct vmbus_channel *channel)
98 {
99 	return (u8)channel->offermsg.monitorid / 32;
100 }
101 
102 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
103 {
104 	return (u8)channel->offermsg.monitorid % 32;
105 }
106 
107 static u32 channel_pending(const struct vmbus_channel *channel,
108 			   const struct hv_monitor_page *monitor_page)
109 {
110 	u8 monitor_group = channel_monitor_group(channel);
111 
112 	return monitor_page->trigger_group[monitor_group].pending;
113 }
114 
115 static u32 channel_latency(const struct vmbus_channel *channel,
116 			   const struct hv_monitor_page *monitor_page)
117 {
118 	u8 monitor_group = channel_monitor_group(channel);
119 	u8 monitor_offset = channel_monitor_offset(channel);
120 
121 	return monitor_page->latency[monitor_group][monitor_offset];
122 }
123 
124 static u32 channel_conn_id(struct vmbus_channel *channel,
125 			   struct hv_monitor_page *monitor_page)
126 {
127 	u8 monitor_group = channel_monitor_group(channel);
128 	u8 monitor_offset = channel_monitor_offset(channel);
129 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
130 }
131 
132 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
133 		       char *buf)
134 {
135 	struct hv_device *hv_dev = device_to_hv_device(dev);
136 
137 	if (!hv_dev->channel)
138 		return -ENODEV;
139 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
140 }
141 static DEVICE_ATTR_RO(id);
142 
143 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
144 			  char *buf)
145 {
146 	struct hv_device *hv_dev = device_to_hv_device(dev);
147 
148 	if (!hv_dev->channel)
149 		return -ENODEV;
150 	return sprintf(buf, "%d\n", hv_dev->channel->state);
151 }
152 static DEVICE_ATTR_RO(state);
153 
154 static ssize_t monitor_id_show(struct device *dev,
155 			       struct device_attribute *dev_attr, char *buf)
156 {
157 	struct hv_device *hv_dev = device_to_hv_device(dev);
158 
159 	if (!hv_dev->channel)
160 		return -ENODEV;
161 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
162 }
163 static DEVICE_ATTR_RO(monitor_id);
164 
165 static ssize_t class_id_show(struct device *dev,
166 			       struct device_attribute *dev_attr, char *buf)
167 {
168 	struct hv_device *hv_dev = device_to_hv_device(dev);
169 
170 	if (!hv_dev->channel)
171 		return -ENODEV;
172 	return sprintf(buf, "{%pUl}\n",
173 		       hv_dev->channel->offermsg.offer.if_type.b);
174 }
175 static DEVICE_ATTR_RO(class_id);
176 
177 static ssize_t device_id_show(struct device *dev,
178 			      struct device_attribute *dev_attr, char *buf)
179 {
180 	struct hv_device *hv_dev = device_to_hv_device(dev);
181 
182 	if (!hv_dev->channel)
183 		return -ENODEV;
184 	return sprintf(buf, "{%pUl}\n",
185 		       hv_dev->channel->offermsg.offer.if_instance.b);
186 }
187 static DEVICE_ATTR_RO(device_id);
188 
189 static ssize_t modalias_show(struct device *dev,
190 			     struct device_attribute *dev_attr, char *buf)
191 {
192 	struct hv_device *hv_dev = device_to_hv_device(dev);
193 	char alias_name[VMBUS_ALIAS_LEN + 1];
194 
195 	print_alias_name(hv_dev, alias_name);
196 	return sprintf(buf, "vmbus:%s\n", alias_name);
197 }
198 static DEVICE_ATTR_RO(modalias);
199 
200 #ifdef CONFIG_NUMA
201 static ssize_t numa_node_show(struct device *dev,
202 			      struct device_attribute *attr, char *buf)
203 {
204 	struct hv_device *hv_dev = device_to_hv_device(dev);
205 
206 	if (!hv_dev->channel)
207 		return -ENODEV;
208 
209 	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
210 }
211 static DEVICE_ATTR_RO(numa_node);
212 #endif
213 
214 static ssize_t server_monitor_pending_show(struct device *dev,
215 					   struct device_attribute *dev_attr,
216 					   char *buf)
217 {
218 	struct hv_device *hv_dev = device_to_hv_device(dev);
219 
220 	if (!hv_dev->channel)
221 		return -ENODEV;
222 	return sprintf(buf, "%d\n",
223 		       channel_pending(hv_dev->channel,
224 				       vmbus_connection.monitor_pages[0]));
225 }
226 static DEVICE_ATTR_RO(server_monitor_pending);
227 
228 static ssize_t client_monitor_pending_show(struct device *dev,
229 					   struct device_attribute *dev_attr,
230 					   char *buf)
231 {
232 	struct hv_device *hv_dev = device_to_hv_device(dev);
233 
234 	if (!hv_dev->channel)
235 		return -ENODEV;
236 	return sprintf(buf, "%d\n",
237 		       channel_pending(hv_dev->channel,
238 				       vmbus_connection.monitor_pages[1]));
239 }
240 static DEVICE_ATTR_RO(client_monitor_pending);
241 
242 static ssize_t server_monitor_latency_show(struct device *dev,
243 					   struct device_attribute *dev_attr,
244 					   char *buf)
245 {
246 	struct hv_device *hv_dev = device_to_hv_device(dev);
247 
248 	if (!hv_dev->channel)
249 		return -ENODEV;
250 	return sprintf(buf, "%d\n",
251 		       channel_latency(hv_dev->channel,
252 				       vmbus_connection.monitor_pages[0]));
253 }
254 static DEVICE_ATTR_RO(server_monitor_latency);
255 
256 static ssize_t client_monitor_latency_show(struct device *dev,
257 					   struct device_attribute *dev_attr,
258 					   char *buf)
259 {
260 	struct hv_device *hv_dev = device_to_hv_device(dev);
261 
262 	if (!hv_dev->channel)
263 		return -ENODEV;
264 	return sprintf(buf, "%d\n",
265 		       channel_latency(hv_dev->channel,
266 				       vmbus_connection.monitor_pages[1]));
267 }
268 static DEVICE_ATTR_RO(client_monitor_latency);
269 
270 static ssize_t server_monitor_conn_id_show(struct device *dev,
271 					   struct device_attribute *dev_attr,
272 					   char *buf)
273 {
274 	struct hv_device *hv_dev = device_to_hv_device(dev);
275 
276 	if (!hv_dev->channel)
277 		return -ENODEV;
278 	return sprintf(buf, "%d\n",
279 		       channel_conn_id(hv_dev->channel,
280 				       vmbus_connection.monitor_pages[0]));
281 }
282 static DEVICE_ATTR_RO(server_monitor_conn_id);
283 
284 static ssize_t client_monitor_conn_id_show(struct device *dev,
285 					   struct device_attribute *dev_attr,
286 					   char *buf)
287 {
288 	struct hv_device *hv_dev = device_to_hv_device(dev);
289 
290 	if (!hv_dev->channel)
291 		return -ENODEV;
292 	return sprintf(buf, "%d\n",
293 		       channel_conn_id(hv_dev->channel,
294 				       vmbus_connection.monitor_pages[1]));
295 }
296 static DEVICE_ATTR_RO(client_monitor_conn_id);
297 
298 static ssize_t out_intr_mask_show(struct device *dev,
299 				  struct device_attribute *dev_attr, char *buf)
300 {
301 	struct hv_device *hv_dev = device_to_hv_device(dev);
302 	struct hv_ring_buffer_debug_info outbound;
303 	int ret;
304 
305 	if (!hv_dev->channel)
306 		return -ENODEV;
307 
308 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
309 					  &outbound);
310 	if (ret < 0)
311 		return ret;
312 
313 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
314 }
315 static DEVICE_ATTR_RO(out_intr_mask);
316 
317 static ssize_t out_read_index_show(struct device *dev,
318 				   struct device_attribute *dev_attr, char *buf)
319 {
320 	struct hv_device *hv_dev = device_to_hv_device(dev);
321 	struct hv_ring_buffer_debug_info outbound;
322 	int ret;
323 
324 	if (!hv_dev->channel)
325 		return -ENODEV;
326 
327 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
328 					  &outbound);
329 	if (ret < 0)
330 		return ret;
331 	return sprintf(buf, "%d\n", outbound.current_read_index);
332 }
333 static DEVICE_ATTR_RO(out_read_index);
334 
335 static ssize_t out_write_index_show(struct device *dev,
336 				    struct device_attribute *dev_attr,
337 				    char *buf)
338 {
339 	struct hv_device *hv_dev = device_to_hv_device(dev);
340 	struct hv_ring_buffer_debug_info outbound;
341 	int ret;
342 
343 	if (!hv_dev->channel)
344 		return -ENODEV;
345 
346 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
347 					  &outbound);
348 	if (ret < 0)
349 		return ret;
350 	return sprintf(buf, "%d\n", outbound.current_write_index);
351 }
352 static DEVICE_ATTR_RO(out_write_index);
353 
354 static ssize_t out_read_bytes_avail_show(struct device *dev,
355 					 struct device_attribute *dev_attr,
356 					 char *buf)
357 {
358 	struct hv_device *hv_dev = device_to_hv_device(dev);
359 	struct hv_ring_buffer_debug_info outbound;
360 	int ret;
361 
362 	if (!hv_dev->channel)
363 		return -ENODEV;
364 
365 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
366 					  &outbound);
367 	if (ret < 0)
368 		return ret;
369 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
370 }
371 static DEVICE_ATTR_RO(out_read_bytes_avail);
372 
373 static ssize_t out_write_bytes_avail_show(struct device *dev,
374 					  struct device_attribute *dev_attr,
375 					  char *buf)
376 {
377 	struct hv_device *hv_dev = device_to_hv_device(dev);
378 	struct hv_ring_buffer_debug_info outbound;
379 	int ret;
380 
381 	if (!hv_dev->channel)
382 		return -ENODEV;
383 
384 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
385 					  &outbound);
386 	if (ret < 0)
387 		return ret;
388 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
389 }
390 static DEVICE_ATTR_RO(out_write_bytes_avail);
391 
392 static ssize_t in_intr_mask_show(struct device *dev,
393 				 struct device_attribute *dev_attr, char *buf)
394 {
395 	struct hv_device *hv_dev = device_to_hv_device(dev);
396 	struct hv_ring_buffer_debug_info inbound;
397 	int ret;
398 
399 	if (!hv_dev->channel)
400 		return -ENODEV;
401 
402 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
403 	if (ret < 0)
404 		return ret;
405 
406 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
407 }
408 static DEVICE_ATTR_RO(in_intr_mask);
409 
410 static ssize_t in_read_index_show(struct device *dev,
411 				  struct device_attribute *dev_attr, char *buf)
412 {
413 	struct hv_device *hv_dev = device_to_hv_device(dev);
414 	struct hv_ring_buffer_debug_info inbound;
415 	int ret;
416 
417 	if (!hv_dev->channel)
418 		return -ENODEV;
419 
420 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
421 	if (ret < 0)
422 		return ret;
423 
424 	return sprintf(buf, "%d\n", inbound.current_read_index);
425 }
426 static DEVICE_ATTR_RO(in_read_index);
427 
428 static ssize_t in_write_index_show(struct device *dev,
429 				   struct device_attribute *dev_attr, char *buf)
430 {
431 	struct hv_device *hv_dev = device_to_hv_device(dev);
432 	struct hv_ring_buffer_debug_info inbound;
433 	int ret;
434 
435 	if (!hv_dev->channel)
436 		return -ENODEV;
437 
438 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
439 	if (ret < 0)
440 		return ret;
441 
442 	return sprintf(buf, "%d\n", inbound.current_write_index);
443 }
444 static DEVICE_ATTR_RO(in_write_index);
445 
446 static ssize_t in_read_bytes_avail_show(struct device *dev,
447 					struct device_attribute *dev_attr,
448 					char *buf)
449 {
450 	struct hv_device *hv_dev = device_to_hv_device(dev);
451 	struct hv_ring_buffer_debug_info inbound;
452 	int ret;
453 
454 	if (!hv_dev->channel)
455 		return -ENODEV;
456 
457 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
458 	if (ret < 0)
459 		return ret;
460 
461 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
462 }
463 static DEVICE_ATTR_RO(in_read_bytes_avail);
464 
465 static ssize_t in_write_bytes_avail_show(struct device *dev,
466 					 struct device_attribute *dev_attr,
467 					 char *buf)
468 {
469 	struct hv_device *hv_dev = device_to_hv_device(dev);
470 	struct hv_ring_buffer_debug_info inbound;
471 	int ret;
472 
473 	if (!hv_dev->channel)
474 		return -ENODEV;
475 
476 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
477 	if (ret < 0)
478 		return ret;
479 
480 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
481 }
482 static DEVICE_ATTR_RO(in_write_bytes_avail);
483 
484 static ssize_t channel_vp_mapping_show(struct device *dev,
485 				       struct device_attribute *dev_attr,
486 				       char *buf)
487 {
488 	struct hv_device *hv_dev = device_to_hv_device(dev);
489 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
490 	unsigned long flags;
491 	int buf_size = PAGE_SIZE, n_written, tot_written;
492 	struct list_head *cur;
493 
494 	if (!channel)
495 		return -ENODEV;
496 
497 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
498 		channel->offermsg.child_relid, channel->target_cpu);
499 
500 	spin_lock_irqsave(&channel->lock, flags);
501 
502 	list_for_each(cur, &channel->sc_list) {
503 		if (tot_written >= buf_size - 1)
504 			break;
505 
506 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
507 		n_written = scnprintf(buf + tot_written,
508 				     buf_size - tot_written,
509 				     "%u:%u\n",
510 				     cur_sc->offermsg.child_relid,
511 				     cur_sc->target_cpu);
512 		tot_written += n_written;
513 	}
514 
515 	spin_unlock_irqrestore(&channel->lock, flags);
516 
517 	return tot_written;
518 }
519 static DEVICE_ATTR_RO(channel_vp_mapping);
520 
521 static ssize_t vendor_show(struct device *dev,
522 			   struct device_attribute *dev_attr,
523 			   char *buf)
524 {
525 	struct hv_device *hv_dev = device_to_hv_device(dev);
526 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
527 }
528 static DEVICE_ATTR_RO(vendor);
529 
530 static ssize_t device_show(struct device *dev,
531 			   struct device_attribute *dev_attr,
532 			   char *buf)
533 {
534 	struct hv_device *hv_dev = device_to_hv_device(dev);
535 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
536 }
537 static DEVICE_ATTR_RO(device);
538 
539 static ssize_t driver_override_store(struct device *dev,
540 				     struct device_attribute *attr,
541 				     const char *buf, size_t count)
542 {
543 	struct hv_device *hv_dev = device_to_hv_device(dev);
544 	char *driver_override, *old, *cp;
545 
546 	/* We need to keep extra room for a newline */
547 	if (count >= (PAGE_SIZE - 1))
548 		return -EINVAL;
549 
550 	driver_override = kstrndup(buf, count, GFP_KERNEL);
551 	if (!driver_override)
552 		return -ENOMEM;
553 
554 	cp = strchr(driver_override, '\n');
555 	if (cp)
556 		*cp = '\0';
557 
558 	device_lock(dev);
559 	old = hv_dev->driver_override;
560 	if (strlen(driver_override)) {
561 		hv_dev->driver_override = driver_override;
562 	} else {
563 		kfree(driver_override);
564 		hv_dev->driver_override = NULL;
565 	}
566 	device_unlock(dev);
567 
568 	kfree(old);
569 
570 	return count;
571 }
572 
573 static ssize_t driver_override_show(struct device *dev,
574 				    struct device_attribute *attr, char *buf)
575 {
576 	struct hv_device *hv_dev = device_to_hv_device(dev);
577 	ssize_t len;
578 
579 	device_lock(dev);
580 	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
581 	device_unlock(dev);
582 
583 	return len;
584 }
585 static DEVICE_ATTR_RW(driver_override);
586 
587 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
588 static struct attribute *vmbus_dev_attrs[] = {
589 	&dev_attr_id.attr,
590 	&dev_attr_state.attr,
591 	&dev_attr_monitor_id.attr,
592 	&dev_attr_class_id.attr,
593 	&dev_attr_device_id.attr,
594 	&dev_attr_modalias.attr,
595 #ifdef CONFIG_NUMA
596 	&dev_attr_numa_node.attr,
597 #endif
598 	&dev_attr_server_monitor_pending.attr,
599 	&dev_attr_client_monitor_pending.attr,
600 	&dev_attr_server_monitor_latency.attr,
601 	&dev_attr_client_monitor_latency.attr,
602 	&dev_attr_server_monitor_conn_id.attr,
603 	&dev_attr_client_monitor_conn_id.attr,
604 	&dev_attr_out_intr_mask.attr,
605 	&dev_attr_out_read_index.attr,
606 	&dev_attr_out_write_index.attr,
607 	&dev_attr_out_read_bytes_avail.attr,
608 	&dev_attr_out_write_bytes_avail.attr,
609 	&dev_attr_in_intr_mask.attr,
610 	&dev_attr_in_read_index.attr,
611 	&dev_attr_in_write_index.attr,
612 	&dev_attr_in_read_bytes_avail.attr,
613 	&dev_attr_in_write_bytes_avail.attr,
614 	&dev_attr_channel_vp_mapping.attr,
615 	&dev_attr_vendor.attr,
616 	&dev_attr_device.attr,
617 	&dev_attr_driver_override.attr,
618 	NULL,
619 };
620 
621 /*
622  * Device-level attribute_group callback function. Returns the permission for
623  * each attribute, and returns 0 if an attribute is not visible.
624  */
625 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
626 					 struct attribute *attr, int idx)
627 {
628 	struct device *dev = kobj_to_dev(kobj);
629 	const struct hv_device *hv_dev = device_to_hv_device(dev);
630 
631 	/* Hide the monitor attributes if the monitor mechanism is not used. */
632 	if (!hv_dev->channel->offermsg.monitor_allocated &&
633 	    (attr == &dev_attr_monitor_id.attr ||
634 	     attr == &dev_attr_server_monitor_pending.attr ||
635 	     attr == &dev_attr_client_monitor_pending.attr ||
636 	     attr == &dev_attr_server_monitor_latency.attr ||
637 	     attr == &dev_attr_client_monitor_latency.attr ||
638 	     attr == &dev_attr_server_monitor_conn_id.attr ||
639 	     attr == &dev_attr_client_monitor_conn_id.attr))
640 		return 0;
641 
642 	return attr->mode;
643 }
644 
645 static const struct attribute_group vmbus_dev_group = {
646 	.attrs = vmbus_dev_attrs,
647 	.is_visible = vmbus_dev_attr_is_visible
648 };
649 __ATTRIBUTE_GROUPS(vmbus_dev);
650 
651 /*
652  * vmbus_uevent - add uevent for our device
653  *
654  * This routine is invoked when a device is added or removed on the vmbus to
655  * generate a uevent to udev in the userspace. The udev will then look at its
656  * rule and the uevent generated here to load the appropriate driver
657  *
658  * The alias string will be of the form vmbus:guid where guid is the string
659  * representation of the device guid (each byte of the guid will be
660  * represented with two hex characters.
661  */
662 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
663 {
664 	struct hv_device *dev = device_to_hv_device(device);
665 	int ret;
666 	char alias_name[VMBUS_ALIAS_LEN + 1];
667 
668 	print_alias_name(dev, alias_name);
669 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
670 	return ret;
671 }
672 
673 static const struct hv_vmbus_device_id *
674 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
675 {
676 	if (id == NULL)
677 		return NULL; /* empty device table */
678 
679 	for (; !guid_is_null(&id->guid); id++)
680 		if (guid_equal(&id->guid, guid))
681 			return id;
682 
683 	return NULL;
684 }
685 
686 static const struct hv_vmbus_device_id *
687 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
688 {
689 	const struct hv_vmbus_device_id *id = NULL;
690 	struct vmbus_dynid *dynid;
691 
692 	spin_lock(&drv->dynids.lock);
693 	list_for_each_entry(dynid, &drv->dynids.list, node) {
694 		if (guid_equal(&dynid->id.guid, guid)) {
695 			id = &dynid->id;
696 			break;
697 		}
698 	}
699 	spin_unlock(&drv->dynids.lock);
700 
701 	return id;
702 }
703 
704 static const struct hv_vmbus_device_id vmbus_device_null;
705 
706 /*
707  * Return a matching hv_vmbus_device_id pointer.
708  * If there is no match, return NULL.
709  */
710 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
711 							struct hv_device *dev)
712 {
713 	const guid_t *guid = &dev->dev_type;
714 	const struct hv_vmbus_device_id *id;
715 
716 	/* When driver_override is set, only bind to the matching driver */
717 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
718 		return NULL;
719 
720 	/* Look at the dynamic ids first, before the static ones */
721 	id = hv_vmbus_dynid_match(drv, guid);
722 	if (!id)
723 		id = hv_vmbus_dev_match(drv->id_table, guid);
724 
725 	/* driver_override will always match, send a dummy id */
726 	if (!id && dev->driver_override)
727 		id = &vmbus_device_null;
728 
729 	return id;
730 }
731 
732 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
733 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
734 {
735 	struct vmbus_dynid *dynid;
736 
737 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
738 	if (!dynid)
739 		return -ENOMEM;
740 
741 	dynid->id.guid = *guid;
742 
743 	spin_lock(&drv->dynids.lock);
744 	list_add_tail(&dynid->node, &drv->dynids.list);
745 	spin_unlock(&drv->dynids.lock);
746 
747 	return driver_attach(&drv->driver);
748 }
749 
750 static void vmbus_free_dynids(struct hv_driver *drv)
751 {
752 	struct vmbus_dynid *dynid, *n;
753 
754 	spin_lock(&drv->dynids.lock);
755 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
756 		list_del(&dynid->node);
757 		kfree(dynid);
758 	}
759 	spin_unlock(&drv->dynids.lock);
760 }
761 
762 /*
763  * store_new_id - sysfs frontend to vmbus_add_dynid()
764  *
765  * Allow GUIDs to be added to an existing driver via sysfs.
766  */
767 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
768 			    size_t count)
769 {
770 	struct hv_driver *drv = drv_to_hv_drv(driver);
771 	guid_t guid;
772 	ssize_t retval;
773 
774 	retval = guid_parse(buf, &guid);
775 	if (retval)
776 		return retval;
777 
778 	if (hv_vmbus_dynid_match(drv, &guid))
779 		return -EEXIST;
780 
781 	retval = vmbus_add_dynid(drv, &guid);
782 	if (retval)
783 		return retval;
784 	return count;
785 }
786 static DRIVER_ATTR_WO(new_id);
787 
788 /*
789  * store_remove_id - remove a PCI device ID from this driver
790  *
791  * Removes a dynamic pci device ID to this driver.
792  */
793 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
794 			       size_t count)
795 {
796 	struct hv_driver *drv = drv_to_hv_drv(driver);
797 	struct vmbus_dynid *dynid, *n;
798 	guid_t guid;
799 	ssize_t retval;
800 
801 	retval = guid_parse(buf, &guid);
802 	if (retval)
803 		return retval;
804 
805 	retval = -ENODEV;
806 	spin_lock(&drv->dynids.lock);
807 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
808 		struct hv_vmbus_device_id *id = &dynid->id;
809 
810 		if (guid_equal(&id->guid, &guid)) {
811 			list_del(&dynid->node);
812 			kfree(dynid);
813 			retval = count;
814 			break;
815 		}
816 	}
817 	spin_unlock(&drv->dynids.lock);
818 
819 	return retval;
820 }
821 static DRIVER_ATTR_WO(remove_id);
822 
823 static struct attribute *vmbus_drv_attrs[] = {
824 	&driver_attr_new_id.attr,
825 	&driver_attr_remove_id.attr,
826 	NULL,
827 };
828 ATTRIBUTE_GROUPS(vmbus_drv);
829 
830 
831 /*
832  * vmbus_match - Attempt to match the specified device to the specified driver
833  */
834 static int vmbus_match(struct device *device, struct device_driver *driver)
835 {
836 	struct hv_driver *drv = drv_to_hv_drv(driver);
837 	struct hv_device *hv_dev = device_to_hv_device(device);
838 
839 	/* The hv_sock driver handles all hv_sock offers. */
840 	if (is_hvsock_channel(hv_dev->channel))
841 		return drv->hvsock;
842 
843 	if (hv_vmbus_get_id(drv, hv_dev))
844 		return 1;
845 
846 	return 0;
847 }
848 
849 /*
850  * vmbus_probe - Add the new vmbus's child device
851  */
852 static int vmbus_probe(struct device *child_device)
853 {
854 	int ret = 0;
855 	struct hv_driver *drv =
856 			drv_to_hv_drv(child_device->driver);
857 	struct hv_device *dev = device_to_hv_device(child_device);
858 	const struct hv_vmbus_device_id *dev_id;
859 
860 	dev_id = hv_vmbus_get_id(drv, dev);
861 	if (drv->probe) {
862 		ret = drv->probe(dev, dev_id);
863 		if (ret != 0)
864 			pr_err("probe failed for device %s (%d)\n",
865 			       dev_name(child_device), ret);
866 
867 	} else {
868 		pr_err("probe not set for driver %s\n",
869 		       dev_name(child_device));
870 		ret = -ENODEV;
871 	}
872 	return ret;
873 }
874 
875 /*
876  * vmbus_remove - Remove a vmbus device
877  */
878 static int vmbus_remove(struct device *child_device)
879 {
880 	struct hv_driver *drv;
881 	struct hv_device *dev = device_to_hv_device(child_device);
882 
883 	if (child_device->driver) {
884 		drv = drv_to_hv_drv(child_device->driver);
885 		if (drv->remove)
886 			drv->remove(dev);
887 	}
888 
889 	return 0;
890 }
891 
892 
893 /*
894  * vmbus_shutdown - Shutdown a vmbus device
895  */
896 static void vmbus_shutdown(struct device *child_device)
897 {
898 	struct hv_driver *drv;
899 	struct hv_device *dev = device_to_hv_device(child_device);
900 
901 
902 	/* The device may not be attached yet */
903 	if (!child_device->driver)
904 		return;
905 
906 	drv = drv_to_hv_drv(child_device->driver);
907 
908 	if (drv->shutdown)
909 		drv->shutdown(dev);
910 }
911 
912 
913 /*
914  * vmbus_device_release - Final callback release of the vmbus child device
915  */
916 static void vmbus_device_release(struct device *device)
917 {
918 	struct hv_device *hv_dev = device_to_hv_device(device);
919 	struct vmbus_channel *channel = hv_dev->channel;
920 
921 	mutex_lock(&vmbus_connection.channel_mutex);
922 	hv_process_channel_removal(channel);
923 	mutex_unlock(&vmbus_connection.channel_mutex);
924 	kfree(hv_dev);
925 }
926 
927 /* The one and only one */
928 static struct bus_type  hv_bus = {
929 	.name =		"vmbus",
930 	.match =		vmbus_match,
931 	.shutdown =		vmbus_shutdown,
932 	.remove =		vmbus_remove,
933 	.probe =		vmbus_probe,
934 	.uevent =		vmbus_uevent,
935 	.dev_groups =		vmbus_dev_groups,
936 	.drv_groups =		vmbus_drv_groups,
937 };
938 
939 struct onmessage_work_context {
940 	struct work_struct work;
941 	struct hv_message msg;
942 };
943 
944 static void vmbus_onmessage_work(struct work_struct *work)
945 {
946 	struct onmessage_work_context *ctx;
947 
948 	/* Do not process messages if we're in DISCONNECTED state */
949 	if (vmbus_connection.conn_state == DISCONNECTED)
950 		return;
951 
952 	ctx = container_of(work, struct onmessage_work_context,
953 			   work);
954 	vmbus_onmessage(&ctx->msg);
955 	kfree(ctx);
956 }
957 
958 static void hv_process_timer_expiration(struct hv_message *msg,
959 					struct hv_per_cpu_context *hv_cpu)
960 {
961 	struct clock_event_device *dev = hv_cpu->clk_evt;
962 
963 	if (dev->event_handler)
964 		dev->event_handler(dev);
965 
966 	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
967 }
968 
969 void vmbus_on_msg_dpc(unsigned long data)
970 {
971 	struct hv_per_cpu_context *hv_cpu = (void *)data;
972 	void *page_addr = hv_cpu->synic_message_page;
973 	struct hv_message *msg = (struct hv_message *)page_addr +
974 				  VMBUS_MESSAGE_SINT;
975 	struct vmbus_channel_message_header *hdr;
976 	const struct vmbus_channel_message_table_entry *entry;
977 	struct onmessage_work_context *ctx;
978 	u32 message_type = msg->header.message_type;
979 
980 	if (message_type == HVMSG_NONE)
981 		/* no msg */
982 		return;
983 
984 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
985 
986 	trace_vmbus_on_msg_dpc(hdr);
987 
988 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
989 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
990 		goto msg_handled;
991 	}
992 
993 	entry = &channel_message_table[hdr->msgtype];
994 	if (entry->handler_type	== VMHT_BLOCKING) {
995 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
996 		if (ctx == NULL)
997 			return;
998 
999 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1000 		memcpy(&ctx->msg, msg, sizeof(*msg));
1001 
1002 		/*
1003 		 * The host can generate a rescind message while we
1004 		 * may still be handling the original offer. We deal with
1005 		 * this condition by ensuring the processing is done on the
1006 		 * same CPU.
1007 		 */
1008 		switch (hdr->msgtype) {
1009 		case CHANNELMSG_RESCIND_CHANNELOFFER:
1010 			/*
1011 			 * If we are handling the rescind message;
1012 			 * schedule the work on the global work queue.
1013 			 */
1014 			schedule_work_on(vmbus_connection.connect_cpu,
1015 					 &ctx->work);
1016 			break;
1017 
1018 		case CHANNELMSG_OFFERCHANNEL:
1019 			atomic_inc(&vmbus_connection.offer_in_progress);
1020 			queue_work_on(vmbus_connection.connect_cpu,
1021 				      vmbus_connection.work_queue,
1022 				      &ctx->work);
1023 			break;
1024 
1025 		default:
1026 			queue_work(vmbus_connection.work_queue, &ctx->work);
1027 		}
1028 	} else
1029 		entry->message_handler(hdr);
1030 
1031 msg_handled:
1032 	vmbus_signal_eom(msg, message_type);
1033 }
1034 
1035 
1036 /*
1037  * Direct callback for channels using other deferred processing
1038  */
1039 static void vmbus_channel_isr(struct vmbus_channel *channel)
1040 {
1041 	void (*callback_fn)(void *);
1042 
1043 	callback_fn = READ_ONCE(channel->onchannel_callback);
1044 	if (likely(callback_fn != NULL))
1045 		(*callback_fn)(channel->channel_callback_context);
1046 }
1047 
1048 /*
1049  * Schedule all channels with events pending
1050  */
1051 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1052 {
1053 	unsigned long *recv_int_page;
1054 	u32 maxbits, relid;
1055 
1056 	if (vmbus_proto_version < VERSION_WIN8) {
1057 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1058 		recv_int_page = vmbus_connection.recv_int_page;
1059 	} else {
1060 		/*
1061 		 * When the host is win8 and beyond, the event page
1062 		 * can be directly checked to get the id of the channel
1063 		 * that has the interrupt pending.
1064 		 */
1065 		void *page_addr = hv_cpu->synic_event_page;
1066 		union hv_synic_event_flags *event
1067 			= (union hv_synic_event_flags *)page_addr +
1068 						 VMBUS_MESSAGE_SINT;
1069 
1070 		maxbits = HV_EVENT_FLAGS_COUNT;
1071 		recv_int_page = event->flags;
1072 	}
1073 
1074 	if (unlikely(!recv_int_page))
1075 		return;
1076 
1077 	for_each_set_bit(relid, recv_int_page, maxbits) {
1078 		struct vmbus_channel *channel;
1079 
1080 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1081 			continue;
1082 
1083 		/* Special case - vmbus channel protocol msg */
1084 		if (relid == 0)
1085 			continue;
1086 
1087 		rcu_read_lock();
1088 
1089 		/* Find channel based on relid */
1090 		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1091 			if (channel->offermsg.child_relid != relid)
1092 				continue;
1093 
1094 			if (channel->rescind)
1095 				continue;
1096 
1097 			trace_vmbus_chan_sched(channel);
1098 
1099 			++channel->interrupts;
1100 
1101 			switch (channel->callback_mode) {
1102 			case HV_CALL_ISR:
1103 				vmbus_channel_isr(channel);
1104 				break;
1105 
1106 			case HV_CALL_BATCHED:
1107 				hv_begin_read(&channel->inbound);
1108 				/* fallthrough */
1109 			case HV_CALL_DIRECT:
1110 				tasklet_schedule(&channel->callback_event);
1111 			}
1112 		}
1113 
1114 		rcu_read_unlock();
1115 	}
1116 }
1117 
1118 static void vmbus_isr(void)
1119 {
1120 	struct hv_per_cpu_context *hv_cpu
1121 		= this_cpu_ptr(hv_context.cpu_context);
1122 	void *page_addr = hv_cpu->synic_event_page;
1123 	struct hv_message *msg;
1124 	union hv_synic_event_flags *event;
1125 	bool handled = false;
1126 
1127 	if (unlikely(page_addr == NULL))
1128 		return;
1129 
1130 	event = (union hv_synic_event_flags *)page_addr +
1131 					 VMBUS_MESSAGE_SINT;
1132 	/*
1133 	 * Check for events before checking for messages. This is the order
1134 	 * in which events and messages are checked in Windows guests on
1135 	 * Hyper-V, and the Windows team suggested we do the same.
1136 	 */
1137 
1138 	if ((vmbus_proto_version == VERSION_WS2008) ||
1139 		(vmbus_proto_version == VERSION_WIN7)) {
1140 
1141 		/* Since we are a child, we only need to check bit 0 */
1142 		if (sync_test_and_clear_bit(0, event->flags))
1143 			handled = true;
1144 	} else {
1145 		/*
1146 		 * Our host is win8 or above. The signaling mechanism
1147 		 * has changed and we can directly look at the event page.
1148 		 * If bit n is set then we have an interrup on the channel
1149 		 * whose id is n.
1150 		 */
1151 		handled = true;
1152 	}
1153 
1154 	if (handled)
1155 		vmbus_chan_sched(hv_cpu);
1156 
1157 	page_addr = hv_cpu->synic_message_page;
1158 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1159 
1160 	/* Check if there are actual msgs to be processed */
1161 	if (msg->header.message_type != HVMSG_NONE) {
1162 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1163 			hv_process_timer_expiration(msg, hv_cpu);
1164 		else
1165 			tasklet_schedule(&hv_cpu->msg_dpc);
1166 	}
1167 
1168 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1169 }
1170 
1171 /*
1172  * Boolean to control whether to report panic messages over Hyper-V.
1173  *
1174  * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
1175  */
1176 static int sysctl_record_panic_msg = 1;
1177 
1178 /*
1179  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1180  * buffer and call into Hyper-V to transfer the data.
1181  */
1182 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1183 			 enum kmsg_dump_reason reason)
1184 {
1185 	size_t bytes_written;
1186 	phys_addr_t panic_pa;
1187 
1188 	/* We are only interested in panics. */
1189 	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1190 		return;
1191 
1192 	panic_pa = virt_to_phys(hv_panic_page);
1193 
1194 	/*
1195 	 * Write dump contents to the page. No need to synchronize; panic should
1196 	 * be single-threaded.
1197 	 */
1198 	kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
1199 			     &bytes_written);
1200 	if (bytes_written)
1201 		hyperv_report_panic_msg(panic_pa, bytes_written);
1202 }
1203 
1204 static struct kmsg_dumper hv_kmsg_dumper = {
1205 	.dump = hv_kmsg_dump,
1206 };
1207 
1208 static struct ctl_table_header *hv_ctl_table_hdr;
1209 static int zero;
1210 static int one = 1;
1211 
1212 /*
1213  * sysctl option to allow the user to control whether kmsg data should be
1214  * reported to Hyper-V on panic.
1215  */
1216 static struct ctl_table hv_ctl_table[] = {
1217 	{
1218 		.procname       = "hyperv_record_panic_msg",
1219 		.data           = &sysctl_record_panic_msg,
1220 		.maxlen         = sizeof(int),
1221 		.mode           = 0644,
1222 		.proc_handler   = proc_dointvec_minmax,
1223 		.extra1		= &zero,
1224 		.extra2		= &one
1225 	},
1226 	{}
1227 };
1228 
1229 static struct ctl_table hv_root_table[] = {
1230 	{
1231 		.procname	= "kernel",
1232 		.mode		= 0555,
1233 		.child		= hv_ctl_table
1234 	},
1235 	{}
1236 };
1237 
1238 /*
1239  * vmbus_bus_init -Main vmbus driver initialization routine.
1240  *
1241  * Here, we
1242  *	- initialize the vmbus driver context
1243  *	- invoke the vmbus hv main init routine
1244  *	- retrieve the channel offers
1245  */
1246 static int vmbus_bus_init(void)
1247 {
1248 	int ret;
1249 
1250 	/* Hypervisor initialization...setup hypercall page..etc */
1251 	ret = hv_init();
1252 	if (ret != 0) {
1253 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1254 		return ret;
1255 	}
1256 
1257 	ret = bus_register(&hv_bus);
1258 	if (ret)
1259 		return ret;
1260 
1261 	hv_setup_vmbus_irq(vmbus_isr);
1262 
1263 	ret = hv_synic_alloc();
1264 	if (ret)
1265 		goto err_alloc;
1266 	/*
1267 	 * Initialize the per-cpu interrupt state and
1268 	 * connect to the host.
1269 	 */
1270 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1271 				hv_synic_init, hv_synic_cleanup);
1272 	if (ret < 0)
1273 		goto err_alloc;
1274 	hyperv_cpuhp_online = ret;
1275 
1276 	ret = vmbus_connect();
1277 	if (ret)
1278 		goto err_connect;
1279 
1280 	/*
1281 	 * Only register if the crash MSRs are available
1282 	 */
1283 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1284 		u64 hyperv_crash_ctl;
1285 		/*
1286 		 * Sysctl registration is not fatal, since by default
1287 		 * reporting is enabled.
1288 		 */
1289 		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1290 		if (!hv_ctl_table_hdr)
1291 			pr_err("Hyper-V: sysctl table register error");
1292 
1293 		/*
1294 		 * Register for panic kmsg callback only if the right
1295 		 * capability is supported by the hypervisor.
1296 		 */
1297 		hv_get_crash_ctl(hyperv_crash_ctl);
1298 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1299 			hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
1300 			if (hv_panic_page) {
1301 				ret = kmsg_dump_register(&hv_kmsg_dumper);
1302 				if (ret)
1303 					pr_err("Hyper-V: kmsg dump register "
1304 						"error 0x%x\n", ret);
1305 			} else
1306 				pr_err("Hyper-V: panic message page memory "
1307 					"allocation failed");
1308 		}
1309 
1310 		register_die_notifier(&hyperv_die_block);
1311 		atomic_notifier_chain_register(&panic_notifier_list,
1312 					       &hyperv_panic_block);
1313 	}
1314 
1315 	vmbus_request_offers();
1316 
1317 	return 0;
1318 
1319 err_connect:
1320 	cpuhp_remove_state(hyperv_cpuhp_online);
1321 err_alloc:
1322 	hv_synic_free();
1323 	hv_remove_vmbus_irq();
1324 
1325 	bus_unregister(&hv_bus);
1326 	free_page((unsigned long)hv_panic_page);
1327 	unregister_sysctl_table(hv_ctl_table_hdr);
1328 	hv_ctl_table_hdr = NULL;
1329 	return ret;
1330 }
1331 
1332 /**
1333  * __vmbus_child_driver_register() - Register a vmbus's driver
1334  * @hv_driver: Pointer to driver structure you want to register
1335  * @owner: owner module of the drv
1336  * @mod_name: module name string
1337  *
1338  * Registers the given driver with Linux through the 'driver_register()' call
1339  * and sets up the hyper-v vmbus handling for this driver.
1340  * It will return the state of the 'driver_register()' call.
1341  *
1342  */
1343 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1344 {
1345 	int ret;
1346 
1347 	pr_info("registering driver %s\n", hv_driver->name);
1348 
1349 	ret = vmbus_exists();
1350 	if (ret < 0)
1351 		return ret;
1352 
1353 	hv_driver->driver.name = hv_driver->name;
1354 	hv_driver->driver.owner = owner;
1355 	hv_driver->driver.mod_name = mod_name;
1356 	hv_driver->driver.bus = &hv_bus;
1357 
1358 	spin_lock_init(&hv_driver->dynids.lock);
1359 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1360 
1361 	ret = driver_register(&hv_driver->driver);
1362 
1363 	return ret;
1364 }
1365 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1366 
1367 /**
1368  * vmbus_driver_unregister() - Unregister a vmbus's driver
1369  * @hv_driver: Pointer to driver structure you want to
1370  *             un-register
1371  *
1372  * Un-register the given driver that was previous registered with a call to
1373  * vmbus_driver_register()
1374  */
1375 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1376 {
1377 	pr_info("unregistering driver %s\n", hv_driver->name);
1378 
1379 	if (!vmbus_exists()) {
1380 		driver_unregister(&hv_driver->driver);
1381 		vmbus_free_dynids(hv_driver);
1382 	}
1383 }
1384 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1385 
1386 
1387 /*
1388  * Called when last reference to channel is gone.
1389  */
1390 static void vmbus_chan_release(struct kobject *kobj)
1391 {
1392 	struct vmbus_channel *channel
1393 		= container_of(kobj, struct vmbus_channel, kobj);
1394 
1395 	kfree_rcu(channel, rcu);
1396 }
1397 
1398 struct vmbus_chan_attribute {
1399 	struct attribute attr;
1400 	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1401 	ssize_t (*store)(struct vmbus_channel *chan,
1402 			 const char *buf, size_t count);
1403 };
1404 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1405 	struct vmbus_chan_attribute chan_attr_##_name \
1406 		= __ATTR(_name, _mode, _show, _store)
1407 #define VMBUS_CHAN_ATTR_RW(_name) \
1408 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1409 #define VMBUS_CHAN_ATTR_RO(_name) \
1410 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1411 #define VMBUS_CHAN_ATTR_WO(_name) \
1412 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1413 
1414 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1415 				    struct attribute *attr, char *buf)
1416 {
1417 	const struct vmbus_chan_attribute *attribute
1418 		= container_of(attr, struct vmbus_chan_attribute, attr);
1419 	struct vmbus_channel *chan
1420 		= container_of(kobj, struct vmbus_channel, kobj);
1421 
1422 	if (!attribute->show)
1423 		return -EIO;
1424 
1425 	return attribute->show(chan, buf);
1426 }
1427 
1428 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1429 	.show = vmbus_chan_attr_show,
1430 };
1431 
1432 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1433 {
1434 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1435 	ssize_t ret;
1436 
1437 	mutex_lock(&rbi->ring_buffer_mutex);
1438 	if (!rbi->ring_buffer) {
1439 		mutex_unlock(&rbi->ring_buffer_mutex);
1440 		return -EINVAL;
1441 	}
1442 
1443 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1444 	mutex_unlock(&rbi->ring_buffer_mutex);
1445 	return ret;
1446 }
1447 static VMBUS_CHAN_ATTR_RO(out_mask);
1448 
1449 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1450 {
1451 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1452 	ssize_t ret;
1453 
1454 	mutex_lock(&rbi->ring_buffer_mutex);
1455 	if (!rbi->ring_buffer) {
1456 		mutex_unlock(&rbi->ring_buffer_mutex);
1457 		return -EINVAL;
1458 	}
1459 
1460 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1461 	mutex_unlock(&rbi->ring_buffer_mutex);
1462 	return ret;
1463 }
1464 static VMBUS_CHAN_ATTR_RO(in_mask);
1465 
1466 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1467 {
1468 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1469 	ssize_t ret;
1470 
1471 	mutex_lock(&rbi->ring_buffer_mutex);
1472 	if (!rbi->ring_buffer) {
1473 		mutex_unlock(&rbi->ring_buffer_mutex);
1474 		return -EINVAL;
1475 	}
1476 
1477 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1478 	mutex_unlock(&rbi->ring_buffer_mutex);
1479 	return ret;
1480 }
1481 static VMBUS_CHAN_ATTR_RO(read_avail);
1482 
1483 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1484 {
1485 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1486 	ssize_t ret;
1487 
1488 	mutex_lock(&rbi->ring_buffer_mutex);
1489 	if (!rbi->ring_buffer) {
1490 		mutex_unlock(&rbi->ring_buffer_mutex);
1491 		return -EINVAL;
1492 	}
1493 
1494 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1495 	mutex_unlock(&rbi->ring_buffer_mutex);
1496 	return ret;
1497 }
1498 static VMBUS_CHAN_ATTR_RO(write_avail);
1499 
1500 static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf)
1501 {
1502 	return sprintf(buf, "%u\n", channel->target_cpu);
1503 }
1504 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1505 
1506 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1507 				    char *buf)
1508 {
1509 	return sprintf(buf, "%d\n",
1510 		       channel_pending(channel,
1511 				       vmbus_connection.monitor_pages[1]));
1512 }
1513 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1514 
1515 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1516 				    char *buf)
1517 {
1518 	return sprintf(buf, "%d\n",
1519 		       channel_latency(channel,
1520 				       vmbus_connection.monitor_pages[1]));
1521 }
1522 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1523 
1524 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1525 {
1526 	return sprintf(buf, "%llu\n", channel->interrupts);
1527 }
1528 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1529 
1530 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1531 {
1532 	return sprintf(buf, "%llu\n", channel->sig_events);
1533 }
1534 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1535 
1536 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1537 					 char *buf)
1538 {
1539 	return sprintf(buf, "%llu\n",
1540 		       (unsigned long long)channel->intr_in_full);
1541 }
1542 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1543 
1544 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1545 					   char *buf)
1546 {
1547 	return sprintf(buf, "%llu\n",
1548 		       (unsigned long long)channel->intr_out_empty);
1549 }
1550 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1551 
1552 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1553 					   char *buf)
1554 {
1555 	return sprintf(buf, "%llu\n",
1556 		       (unsigned long long)channel->out_full_first);
1557 }
1558 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1559 
1560 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1561 					   char *buf)
1562 {
1563 	return sprintf(buf, "%llu\n",
1564 		       (unsigned long long)channel->out_full_total);
1565 }
1566 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1567 
1568 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1569 					  char *buf)
1570 {
1571 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1572 }
1573 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1574 
1575 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1576 				  char *buf)
1577 {
1578 	return sprintf(buf, "%u\n",
1579 		       channel->offermsg.offer.sub_channel_index);
1580 }
1581 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1582 
1583 static struct attribute *vmbus_chan_attrs[] = {
1584 	&chan_attr_out_mask.attr,
1585 	&chan_attr_in_mask.attr,
1586 	&chan_attr_read_avail.attr,
1587 	&chan_attr_write_avail.attr,
1588 	&chan_attr_cpu.attr,
1589 	&chan_attr_pending.attr,
1590 	&chan_attr_latency.attr,
1591 	&chan_attr_interrupts.attr,
1592 	&chan_attr_events.attr,
1593 	&chan_attr_intr_in_full.attr,
1594 	&chan_attr_intr_out_empty.attr,
1595 	&chan_attr_out_full_first.attr,
1596 	&chan_attr_out_full_total.attr,
1597 	&chan_attr_monitor_id.attr,
1598 	&chan_attr_subchannel_id.attr,
1599 	NULL
1600 };
1601 
1602 /*
1603  * Channel-level attribute_group callback function. Returns the permission for
1604  * each attribute, and returns 0 if an attribute is not visible.
1605  */
1606 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1607 					  struct attribute *attr, int idx)
1608 {
1609 	const struct vmbus_channel *channel =
1610 		container_of(kobj, struct vmbus_channel, kobj);
1611 
1612 	/* Hide the monitor attributes if the monitor mechanism is not used. */
1613 	if (!channel->offermsg.monitor_allocated &&
1614 	    (attr == &chan_attr_pending.attr ||
1615 	     attr == &chan_attr_latency.attr ||
1616 	     attr == &chan_attr_monitor_id.attr))
1617 		return 0;
1618 
1619 	return attr->mode;
1620 }
1621 
1622 static struct attribute_group vmbus_chan_group = {
1623 	.attrs = vmbus_chan_attrs,
1624 	.is_visible = vmbus_chan_attr_is_visible
1625 };
1626 
1627 static struct kobj_type vmbus_chan_ktype = {
1628 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1629 	.release = vmbus_chan_release,
1630 };
1631 
1632 /*
1633  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1634  */
1635 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1636 {
1637 	const struct device *device = &dev->device;
1638 	struct kobject *kobj = &channel->kobj;
1639 	u32 relid = channel->offermsg.child_relid;
1640 	int ret;
1641 
1642 	kobj->kset = dev->channels_kset;
1643 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1644 				   "%u", relid);
1645 	if (ret)
1646 		return ret;
1647 
1648 	ret = sysfs_create_group(kobj, &vmbus_chan_group);
1649 
1650 	if (ret) {
1651 		/*
1652 		 * The calling functions' error handling paths will cleanup the
1653 		 * empty channel directory.
1654 		 */
1655 		dev_err(device, "Unable to set up channel sysfs files\n");
1656 		return ret;
1657 	}
1658 
1659 	kobject_uevent(kobj, KOBJ_ADD);
1660 
1661 	return 0;
1662 }
1663 
1664 /*
1665  * vmbus_remove_channel_attr_group - remove the channel's attribute group
1666  */
1667 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1668 {
1669 	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1670 }
1671 
1672 /*
1673  * vmbus_device_create - Creates and registers a new child device
1674  * on the vmbus.
1675  */
1676 struct hv_device *vmbus_device_create(const guid_t *type,
1677 				      const guid_t *instance,
1678 				      struct vmbus_channel *channel)
1679 {
1680 	struct hv_device *child_device_obj;
1681 
1682 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1683 	if (!child_device_obj) {
1684 		pr_err("Unable to allocate device object for child device\n");
1685 		return NULL;
1686 	}
1687 
1688 	child_device_obj->channel = channel;
1689 	guid_copy(&child_device_obj->dev_type, type);
1690 	guid_copy(&child_device_obj->dev_instance, instance);
1691 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1692 
1693 	return child_device_obj;
1694 }
1695 
1696 /*
1697  * vmbus_device_register - Register the child device
1698  */
1699 int vmbus_device_register(struct hv_device *child_device_obj)
1700 {
1701 	struct kobject *kobj = &child_device_obj->device.kobj;
1702 	int ret;
1703 
1704 	dev_set_name(&child_device_obj->device, "%pUl",
1705 		     child_device_obj->channel->offermsg.offer.if_instance.b);
1706 
1707 	child_device_obj->device.bus = &hv_bus;
1708 	child_device_obj->device.parent = &hv_acpi_dev->dev;
1709 	child_device_obj->device.release = vmbus_device_release;
1710 
1711 	/*
1712 	 * Register with the LDM. This will kick off the driver/device
1713 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1714 	 */
1715 	ret = device_register(&child_device_obj->device);
1716 	if (ret) {
1717 		pr_err("Unable to register child device\n");
1718 		return ret;
1719 	}
1720 
1721 	child_device_obj->channels_kset = kset_create_and_add("channels",
1722 							      NULL, kobj);
1723 	if (!child_device_obj->channels_kset) {
1724 		ret = -ENOMEM;
1725 		goto err_dev_unregister;
1726 	}
1727 
1728 	ret = vmbus_add_channel_kobj(child_device_obj,
1729 				     child_device_obj->channel);
1730 	if (ret) {
1731 		pr_err("Unable to register primary channeln");
1732 		goto err_kset_unregister;
1733 	}
1734 
1735 	return 0;
1736 
1737 err_kset_unregister:
1738 	kset_unregister(child_device_obj->channels_kset);
1739 
1740 err_dev_unregister:
1741 	device_unregister(&child_device_obj->device);
1742 	return ret;
1743 }
1744 
1745 /*
1746  * vmbus_device_unregister - Remove the specified child device
1747  * from the vmbus.
1748  */
1749 void vmbus_device_unregister(struct hv_device *device_obj)
1750 {
1751 	pr_debug("child device %s unregistered\n",
1752 		dev_name(&device_obj->device));
1753 
1754 	kset_unregister(device_obj->channels_kset);
1755 
1756 	/*
1757 	 * Kick off the process of unregistering the device.
1758 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1759 	 */
1760 	device_unregister(&device_obj->device);
1761 }
1762 
1763 
1764 /*
1765  * VMBUS is an acpi enumerated device. Get the information we
1766  * need from DSDT.
1767  */
1768 #define VTPM_BASE_ADDRESS 0xfed40000
1769 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1770 {
1771 	resource_size_t start = 0;
1772 	resource_size_t end = 0;
1773 	struct resource *new_res;
1774 	struct resource **old_res = &hyperv_mmio;
1775 	struct resource **prev_res = NULL;
1776 
1777 	switch (res->type) {
1778 
1779 	/*
1780 	 * "Address" descriptors are for bus windows. Ignore
1781 	 * "memory" descriptors, which are for registers on
1782 	 * devices.
1783 	 */
1784 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1785 		start = res->data.address32.address.minimum;
1786 		end = res->data.address32.address.maximum;
1787 		break;
1788 
1789 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1790 		start = res->data.address64.address.minimum;
1791 		end = res->data.address64.address.maximum;
1792 		break;
1793 
1794 	default:
1795 		/* Unused resource type */
1796 		return AE_OK;
1797 
1798 	}
1799 	/*
1800 	 * Ignore ranges that are below 1MB, as they're not
1801 	 * necessary or useful here.
1802 	 */
1803 	if (end < 0x100000)
1804 		return AE_OK;
1805 
1806 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1807 	if (!new_res)
1808 		return AE_NO_MEMORY;
1809 
1810 	/* If this range overlaps the virtual TPM, truncate it. */
1811 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1812 		end = VTPM_BASE_ADDRESS;
1813 
1814 	new_res->name = "hyperv mmio";
1815 	new_res->flags = IORESOURCE_MEM;
1816 	new_res->start = start;
1817 	new_res->end = end;
1818 
1819 	/*
1820 	 * If two ranges are adjacent, merge them.
1821 	 */
1822 	do {
1823 		if (!*old_res) {
1824 			*old_res = new_res;
1825 			break;
1826 		}
1827 
1828 		if (((*old_res)->end + 1) == new_res->start) {
1829 			(*old_res)->end = new_res->end;
1830 			kfree(new_res);
1831 			break;
1832 		}
1833 
1834 		if ((*old_res)->start == new_res->end + 1) {
1835 			(*old_res)->start = new_res->start;
1836 			kfree(new_res);
1837 			break;
1838 		}
1839 
1840 		if ((*old_res)->start > new_res->end) {
1841 			new_res->sibling = *old_res;
1842 			if (prev_res)
1843 				(*prev_res)->sibling = new_res;
1844 			*old_res = new_res;
1845 			break;
1846 		}
1847 
1848 		prev_res = old_res;
1849 		old_res = &(*old_res)->sibling;
1850 
1851 	} while (1);
1852 
1853 	return AE_OK;
1854 }
1855 
1856 static int vmbus_acpi_remove(struct acpi_device *device)
1857 {
1858 	struct resource *cur_res;
1859 	struct resource *next_res;
1860 
1861 	if (hyperv_mmio) {
1862 		if (fb_mmio) {
1863 			__release_region(hyperv_mmio, fb_mmio->start,
1864 					 resource_size(fb_mmio));
1865 			fb_mmio = NULL;
1866 		}
1867 
1868 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1869 			next_res = cur_res->sibling;
1870 			kfree(cur_res);
1871 		}
1872 	}
1873 
1874 	return 0;
1875 }
1876 
1877 static void vmbus_reserve_fb(void)
1878 {
1879 	int size;
1880 	/*
1881 	 * Make a claim for the frame buffer in the resource tree under the
1882 	 * first node, which will be the one below 4GB.  The length seems to
1883 	 * be underreported, particularly in a Generation 1 VM.  So start out
1884 	 * reserving a larger area and make it smaller until it succeeds.
1885 	 */
1886 
1887 	if (screen_info.lfb_base) {
1888 		if (efi_enabled(EFI_BOOT))
1889 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
1890 		else
1891 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1892 
1893 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1894 			fb_mmio = __request_region(hyperv_mmio,
1895 						   screen_info.lfb_base, size,
1896 						   fb_mmio_name, 0);
1897 		}
1898 	}
1899 }
1900 
1901 /**
1902  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1903  * @new:		If successful, supplied a pointer to the
1904  *			allocated MMIO space.
1905  * @device_obj:		Identifies the caller
1906  * @min:		Minimum guest physical address of the
1907  *			allocation
1908  * @max:		Maximum guest physical address
1909  * @size:		Size of the range to be allocated
1910  * @align:		Alignment of the range to be allocated
1911  * @fb_overlap_ok:	Whether this allocation can be allowed
1912  *			to overlap the video frame buffer.
1913  *
1914  * This function walks the resources granted to VMBus by the
1915  * _CRS object in the ACPI namespace underneath the parent
1916  * "bridge" whether that's a root PCI bus in the Generation 1
1917  * case or a Module Device in the Generation 2 case.  It then
1918  * attempts to allocate from the global MMIO pool in a way that
1919  * matches the constraints supplied in these parameters and by
1920  * that _CRS.
1921  *
1922  * Return: 0 on success, -errno on failure
1923  */
1924 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1925 			resource_size_t min, resource_size_t max,
1926 			resource_size_t size, resource_size_t align,
1927 			bool fb_overlap_ok)
1928 {
1929 	struct resource *iter, *shadow;
1930 	resource_size_t range_min, range_max, start;
1931 	const char *dev_n = dev_name(&device_obj->device);
1932 	int retval;
1933 
1934 	retval = -ENXIO;
1935 	down(&hyperv_mmio_lock);
1936 
1937 	/*
1938 	 * If overlaps with frame buffers are allowed, then first attempt to
1939 	 * make the allocation from within the reserved region.  Because it
1940 	 * is already reserved, no shadow allocation is necessary.
1941 	 */
1942 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1943 	    !(max < fb_mmio->start)) {
1944 
1945 		range_min = fb_mmio->start;
1946 		range_max = fb_mmio->end;
1947 		start = (range_min + align - 1) & ~(align - 1);
1948 		for (; start + size - 1 <= range_max; start += align) {
1949 			*new = request_mem_region_exclusive(start, size, dev_n);
1950 			if (*new) {
1951 				retval = 0;
1952 				goto exit;
1953 			}
1954 		}
1955 	}
1956 
1957 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1958 		if ((iter->start >= max) || (iter->end <= min))
1959 			continue;
1960 
1961 		range_min = iter->start;
1962 		range_max = iter->end;
1963 		start = (range_min + align - 1) & ~(align - 1);
1964 		for (; start + size - 1 <= range_max; start += align) {
1965 			shadow = __request_region(iter, start, size, NULL,
1966 						  IORESOURCE_BUSY);
1967 			if (!shadow)
1968 				continue;
1969 
1970 			*new = request_mem_region_exclusive(start, size, dev_n);
1971 			if (*new) {
1972 				shadow->name = (char *)*new;
1973 				retval = 0;
1974 				goto exit;
1975 			}
1976 
1977 			__release_region(iter, start, size);
1978 		}
1979 	}
1980 
1981 exit:
1982 	up(&hyperv_mmio_lock);
1983 	return retval;
1984 }
1985 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1986 
1987 /**
1988  * vmbus_free_mmio() - Free a memory-mapped I/O range.
1989  * @start:		Base address of region to release.
1990  * @size:		Size of the range to be allocated
1991  *
1992  * This function releases anything requested by
1993  * vmbus_mmio_allocate().
1994  */
1995 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1996 {
1997 	struct resource *iter;
1998 
1999 	down(&hyperv_mmio_lock);
2000 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2001 		if ((iter->start >= start + size) || (iter->end <= start))
2002 			continue;
2003 
2004 		__release_region(iter, start, size);
2005 	}
2006 	release_mem_region(start, size);
2007 	up(&hyperv_mmio_lock);
2008 
2009 }
2010 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2011 
2012 static int vmbus_acpi_add(struct acpi_device *device)
2013 {
2014 	acpi_status result;
2015 	int ret_val = -ENODEV;
2016 	struct acpi_device *ancestor;
2017 
2018 	hv_acpi_dev = device;
2019 
2020 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2021 					vmbus_walk_resources, NULL);
2022 
2023 	if (ACPI_FAILURE(result))
2024 		goto acpi_walk_err;
2025 	/*
2026 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2027 	 * firmware) is the VMOD that has the mmio ranges. Get that.
2028 	 */
2029 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2030 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2031 					     vmbus_walk_resources, NULL);
2032 
2033 		if (ACPI_FAILURE(result))
2034 			continue;
2035 		if (hyperv_mmio) {
2036 			vmbus_reserve_fb();
2037 			break;
2038 		}
2039 	}
2040 	ret_val = 0;
2041 
2042 acpi_walk_err:
2043 	complete(&probe_event);
2044 	if (ret_val)
2045 		vmbus_acpi_remove(device);
2046 	return ret_val;
2047 }
2048 
2049 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2050 	{"VMBUS", 0},
2051 	{"VMBus", 0},
2052 	{"", 0},
2053 };
2054 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2055 
2056 static struct acpi_driver vmbus_acpi_driver = {
2057 	.name = "vmbus",
2058 	.ids = vmbus_acpi_device_ids,
2059 	.ops = {
2060 		.add = vmbus_acpi_add,
2061 		.remove = vmbus_acpi_remove,
2062 	},
2063 };
2064 
2065 static void hv_kexec_handler(void)
2066 {
2067 	hv_synic_clockevents_cleanup();
2068 	vmbus_initiate_unload(false);
2069 	vmbus_connection.conn_state = DISCONNECTED;
2070 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2071 	mb();
2072 	cpuhp_remove_state(hyperv_cpuhp_online);
2073 	hyperv_cleanup();
2074 };
2075 
2076 static void hv_crash_handler(struct pt_regs *regs)
2077 {
2078 	vmbus_initiate_unload(true);
2079 	/*
2080 	 * In crash handler we can't schedule synic cleanup for all CPUs,
2081 	 * doing the cleanup for current CPU only. This should be sufficient
2082 	 * for kdump.
2083 	 */
2084 	vmbus_connection.conn_state = DISCONNECTED;
2085 	hv_synic_cleanup(smp_processor_id());
2086 	hyperv_cleanup();
2087 };
2088 
2089 static int __init hv_acpi_init(void)
2090 {
2091 	int ret, t;
2092 
2093 	if (!hv_is_hyperv_initialized())
2094 		return -ENODEV;
2095 
2096 	init_completion(&probe_event);
2097 
2098 	/*
2099 	 * Get ACPI resources first.
2100 	 */
2101 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2102 
2103 	if (ret)
2104 		return ret;
2105 
2106 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
2107 	if (t == 0) {
2108 		ret = -ETIMEDOUT;
2109 		goto cleanup;
2110 	}
2111 
2112 	ret = vmbus_bus_init();
2113 	if (ret)
2114 		goto cleanup;
2115 
2116 	hv_setup_kexec_handler(hv_kexec_handler);
2117 	hv_setup_crash_handler(hv_crash_handler);
2118 
2119 	return 0;
2120 
2121 cleanup:
2122 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2123 	hv_acpi_dev = NULL;
2124 	return ret;
2125 }
2126 
2127 static void __exit vmbus_exit(void)
2128 {
2129 	int cpu;
2130 
2131 	hv_remove_kexec_handler();
2132 	hv_remove_crash_handler();
2133 	vmbus_connection.conn_state = DISCONNECTED;
2134 	hv_synic_clockevents_cleanup();
2135 	vmbus_disconnect();
2136 	hv_remove_vmbus_irq();
2137 	for_each_online_cpu(cpu) {
2138 		struct hv_per_cpu_context *hv_cpu
2139 			= per_cpu_ptr(hv_context.cpu_context, cpu);
2140 
2141 		tasklet_kill(&hv_cpu->msg_dpc);
2142 	}
2143 	vmbus_free_channels();
2144 
2145 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2146 		kmsg_dump_unregister(&hv_kmsg_dumper);
2147 		unregister_die_notifier(&hyperv_die_block);
2148 		atomic_notifier_chain_unregister(&panic_notifier_list,
2149 						 &hyperv_panic_block);
2150 	}
2151 
2152 	free_page((unsigned long)hv_panic_page);
2153 	unregister_sysctl_table(hv_ctl_table_hdr);
2154 	hv_ctl_table_hdr = NULL;
2155 	bus_unregister(&hv_bus);
2156 
2157 	cpuhp_remove_state(hyperv_cpuhp_online);
2158 	hv_synic_free();
2159 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2160 }
2161 
2162 
2163 MODULE_LICENSE("GPL");
2164 
2165 subsys_initcall(hv_acpi_init);
2166 module_exit(vmbus_exit);
2167