xref: /openbmc/linux/drivers/hv/vmbus_drv.c (revision 165f2d28)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/task_stack.h>
25 
26 #include <asm/mshyperv.h>
27 #include <linux/delay.h>
28 #include <linux/notifier.h>
29 #include <linux/ptrace.h>
30 #include <linux/screen_info.h>
31 #include <linux/kdebug.h>
32 #include <linux/efi.h>
33 #include <linux/random.h>
34 #include <linux/kernel.h>
35 #include <linux/syscore_ops.h>
36 #include <clocksource/hyperv_timer.h>
37 #include "hyperv_vmbus.h"
38 
39 struct vmbus_dynid {
40 	struct list_head node;
41 	struct hv_vmbus_device_id id;
42 };
43 
44 static struct acpi_device  *hv_acpi_dev;
45 
46 static struct completion probe_event;
47 
48 static int hyperv_cpuhp_online;
49 
50 static void *hv_panic_page;
51 
52 /*
53  * Boolean to control whether to report panic messages over Hyper-V.
54  *
55  * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
56  */
57 static int sysctl_record_panic_msg = 1;
58 
59 static int hyperv_report_reg(void)
60 {
61 	return !sysctl_record_panic_msg || !hv_panic_page;
62 }
63 
64 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
65 			      void *args)
66 {
67 	struct pt_regs *regs;
68 
69 	vmbus_initiate_unload(true);
70 
71 	/*
72 	 * Hyper-V should be notified only once about a panic.  If we will be
73 	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
74 	 * the notification here.
75 	 */
76 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
77 	    && hyperv_report_reg()) {
78 		regs = current_pt_regs();
79 		hyperv_report_panic(regs, val, false);
80 	}
81 	return NOTIFY_DONE;
82 }
83 
84 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
85 			    void *args)
86 {
87 	struct die_args *die = (struct die_args *)args;
88 	struct pt_regs *regs = die->regs;
89 
90 	/*
91 	 * Hyper-V should be notified only once about a panic.  If we will be
92 	 * doing hyperv_report_panic_msg() later with kmsg data, don't do
93 	 * the notification here.
94 	 */
95 	if (hyperv_report_reg())
96 		hyperv_report_panic(regs, val, true);
97 	return NOTIFY_DONE;
98 }
99 
100 static struct notifier_block hyperv_die_block = {
101 	.notifier_call = hyperv_die_event,
102 };
103 static struct notifier_block hyperv_panic_block = {
104 	.notifier_call = hyperv_panic_event,
105 };
106 
107 static const char *fb_mmio_name = "fb_range";
108 static struct resource *fb_mmio;
109 static struct resource *hyperv_mmio;
110 static DEFINE_MUTEX(hyperv_mmio_lock);
111 
112 static int vmbus_exists(void)
113 {
114 	if (hv_acpi_dev == NULL)
115 		return -ENODEV;
116 
117 	return 0;
118 }
119 
120 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
121 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
122 {
123 	int i;
124 	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
125 		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
126 }
127 
128 static u8 channel_monitor_group(const struct vmbus_channel *channel)
129 {
130 	return (u8)channel->offermsg.monitorid / 32;
131 }
132 
133 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
134 {
135 	return (u8)channel->offermsg.monitorid % 32;
136 }
137 
138 static u32 channel_pending(const struct vmbus_channel *channel,
139 			   const struct hv_monitor_page *monitor_page)
140 {
141 	u8 monitor_group = channel_monitor_group(channel);
142 
143 	return monitor_page->trigger_group[monitor_group].pending;
144 }
145 
146 static u32 channel_latency(const struct vmbus_channel *channel,
147 			   const struct hv_monitor_page *monitor_page)
148 {
149 	u8 monitor_group = channel_monitor_group(channel);
150 	u8 monitor_offset = channel_monitor_offset(channel);
151 
152 	return monitor_page->latency[monitor_group][monitor_offset];
153 }
154 
155 static u32 channel_conn_id(struct vmbus_channel *channel,
156 			   struct hv_monitor_page *monitor_page)
157 {
158 	u8 monitor_group = channel_monitor_group(channel);
159 	u8 monitor_offset = channel_monitor_offset(channel);
160 	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
161 }
162 
163 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
164 		       char *buf)
165 {
166 	struct hv_device *hv_dev = device_to_hv_device(dev);
167 
168 	if (!hv_dev->channel)
169 		return -ENODEV;
170 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
171 }
172 static DEVICE_ATTR_RO(id);
173 
174 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
175 			  char *buf)
176 {
177 	struct hv_device *hv_dev = device_to_hv_device(dev);
178 
179 	if (!hv_dev->channel)
180 		return -ENODEV;
181 	return sprintf(buf, "%d\n", hv_dev->channel->state);
182 }
183 static DEVICE_ATTR_RO(state);
184 
185 static ssize_t monitor_id_show(struct device *dev,
186 			       struct device_attribute *dev_attr, char *buf)
187 {
188 	struct hv_device *hv_dev = device_to_hv_device(dev);
189 
190 	if (!hv_dev->channel)
191 		return -ENODEV;
192 	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
193 }
194 static DEVICE_ATTR_RO(monitor_id);
195 
196 static ssize_t class_id_show(struct device *dev,
197 			       struct device_attribute *dev_attr, char *buf)
198 {
199 	struct hv_device *hv_dev = device_to_hv_device(dev);
200 
201 	if (!hv_dev->channel)
202 		return -ENODEV;
203 	return sprintf(buf, "{%pUl}\n",
204 		       hv_dev->channel->offermsg.offer.if_type.b);
205 }
206 static DEVICE_ATTR_RO(class_id);
207 
208 static ssize_t device_id_show(struct device *dev,
209 			      struct device_attribute *dev_attr, char *buf)
210 {
211 	struct hv_device *hv_dev = device_to_hv_device(dev);
212 
213 	if (!hv_dev->channel)
214 		return -ENODEV;
215 	return sprintf(buf, "{%pUl}\n",
216 		       hv_dev->channel->offermsg.offer.if_instance.b);
217 }
218 static DEVICE_ATTR_RO(device_id);
219 
220 static ssize_t modalias_show(struct device *dev,
221 			     struct device_attribute *dev_attr, char *buf)
222 {
223 	struct hv_device *hv_dev = device_to_hv_device(dev);
224 	char alias_name[VMBUS_ALIAS_LEN + 1];
225 
226 	print_alias_name(hv_dev, alias_name);
227 	return sprintf(buf, "vmbus:%s\n", alias_name);
228 }
229 static DEVICE_ATTR_RO(modalias);
230 
231 #ifdef CONFIG_NUMA
232 static ssize_t numa_node_show(struct device *dev,
233 			      struct device_attribute *attr, char *buf)
234 {
235 	struct hv_device *hv_dev = device_to_hv_device(dev);
236 
237 	if (!hv_dev->channel)
238 		return -ENODEV;
239 
240 	return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
241 }
242 static DEVICE_ATTR_RO(numa_node);
243 #endif
244 
245 static ssize_t server_monitor_pending_show(struct device *dev,
246 					   struct device_attribute *dev_attr,
247 					   char *buf)
248 {
249 	struct hv_device *hv_dev = device_to_hv_device(dev);
250 
251 	if (!hv_dev->channel)
252 		return -ENODEV;
253 	return sprintf(buf, "%d\n",
254 		       channel_pending(hv_dev->channel,
255 				       vmbus_connection.monitor_pages[0]));
256 }
257 static DEVICE_ATTR_RO(server_monitor_pending);
258 
259 static ssize_t client_monitor_pending_show(struct device *dev,
260 					   struct device_attribute *dev_attr,
261 					   char *buf)
262 {
263 	struct hv_device *hv_dev = device_to_hv_device(dev);
264 
265 	if (!hv_dev->channel)
266 		return -ENODEV;
267 	return sprintf(buf, "%d\n",
268 		       channel_pending(hv_dev->channel,
269 				       vmbus_connection.monitor_pages[1]));
270 }
271 static DEVICE_ATTR_RO(client_monitor_pending);
272 
273 static ssize_t server_monitor_latency_show(struct device *dev,
274 					   struct device_attribute *dev_attr,
275 					   char *buf)
276 {
277 	struct hv_device *hv_dev = device_to_hv_device(dev);
278 
279 	if (!hv_dev->channel)
280 		return -ENODEV;
281 	return sprintf(buf, "%d\n",
282 		       channel_latency(hv_dev->channel,
283 				       vmbus_connection.monitor_pages[0]));
284 }
285 static DEVICE_ATTR_RO(server_monitor_latency);
286 
287 static ssize_t client_monitor_latency_show(struct device *dev,
288 					   struct device_attribute *dev_attr,
289 					   char *buf)
290 {
291 	struct hv_device *hv_dev = device_to_hv_device(dev);
292 
293 	if (!hv_dev->channel)
294 		return -ENODEV;
295 	return sprintf(buf, "%d\n",
296 		       channel_latency(hv_dev->channel,
297 				       vmbus_connection.monitor_pages[1]));
298 }
299 static DEVICE_ATTR_RO(client_monitor_latency);
300 
301 static ssize_t server_monitor_conn_id_show(struct device *dev,
302 					   struct device_attribute *dev_attr,
303 					   char *buf)
304 {
305 	struct hv_device *hv_dev = device_to_hv_device(dev);
306 
307 	if (!hv_dev->channel)
308 		return -ENODEV;
309 	return sprintf(buf, "%d\n",
310 		       channel_conn_id(hv_dev->channel,
311 				       vmbus_connection.monitor_pages[0]));
312 }
313 static DEVICE_ATTR_RO(server_monitor_conn_id);
314 
315 static ssize_t client_monitor_conn_id_show(struct device *dev,
316 					   struct device_attribute *dev_attr,
317 					   char *buf)
318 {
319 	struct hv_device *hv_dev = device_to_hv_device(dev);
320 
321 	if (!hv_dev->channel)
322 		return -ENODEV;
323 	return sprintf(buf, "%d\n",
324 		       channel_conn_id(hv_dev->channel,
325 				       vmbus_connection.monitor_pages[1]));
326 }
327 static DEVICE_ATTR_RO(client_monitor_conn_id);
328 
329 static ssize_t out_intr_mask_show(struct device *dev,
330 				  struct device_attribute *dev_attr, char *buf)
331 {
332 	struct hv_device *hv_dev = device_to_hv_device(dev);
333 	struct hv_ring_buffer_debug_info outbound;
334 	int ret;
335 
336 	if (!hv_dev->channel)
337 		return -ENODEV;
338 
339 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
340 					  &outbound);
341 	if (ret < 0)
342 		return ret;
343 
344 	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
345 }
346 static DEVICE_ATTR_RO(out_intr_mask);
347 
348 static ssize_t out_read_index_show(struct device *dev,
349 				   struct device_attribute *dev_attr, char *buf)
350 {
351 	struct hv_device *hv_dev = device_to_hv_device(dev);
352 	struct hv_ring_buffer_debug_info outbound;
353 	int ret;
354 
355 	if (!hv_dev->channel)
356 		return -ENODEV;
357 
358 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
359 					  &outbound);
360 	if (ret < 0)
361 		return ret;
362 	return sprintf(buf, "%d\n", outbound.current_read_index);
363 }
364 static DEVICE_ATTR_RO(out_read_index);
365 
366 static ssize_t out_write_index_show(struct device *dev,
367 				    struct device_attribute *dev_attr,
368 				    char *buf)
369 {
370 	struct hv_device *hv_dev = device_to_hv_device(dev);
371 	struct hv_ring_buffer_debug_info outbound;
372 	int ret;
373 
374 	if (!hv_dev->channel)
375 		return -ENODEV;
376 
377 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
378 					  &outbound);
379 	if (ret < 0)
380 		return ret;
381 	return sprintf(buf, "%d\n", outbound.current_write_index);
382 }
383 static DEVICE_ATTR_RO(out_write_index);
384 
385 static ssize_t out_read_bytes_avail_show(struct device *dev,
386 					 struct device_attribute *dev_attr,
387 					 char *buf)
388 {
389 	struct hv_device *hv_dev = device_to_hv_device(dev);
390 	struct hv_ring_buffer_debug_info outbound;
391 	int ret;
392 
393 	if (!hv_dev->channel)
394 		return -ENODEV;
395 
396 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
397 					  &outbound);
398 	if (ret < 0)
399 		return ret;
400 	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
401 }
402 static DEVICE_ATTR_RO(out_read_bytes_avail);
403 
404 static ssize_t out_write_bytes_avail_show(struct device *dev,
405 					  struct device_attribute *dev_attr,
406 					  char *buf)
407 {
408 	struct hv_device *hv_dev = device_to_hv_device(dev);
409 	struct hv_ring_buffer_debug_info outbound;
410 	int ret;
411 
412 	if (!hv_dev->channel)
413 		return -ENODEV;
414 
415 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
416 					  &outbound);
417 	if (ret < 0)
418 		return ret;
419 	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
420 }
421 static DEVICE_ATTR_RO(out_write_bytes_avail);
422 
423 static ssize_t in_intr_mask_show(struct device *dev,
424 				 struct device_attribute *dev_attr, char *buf)
425 {
426 	struct hv_device *hv_dev = device_to_hv_device(dev);
427 	struct hv_ring_buffer_debug_info inbound;
428 	int ret;
429 
430 	if (!hv_dev->channel)
431 		return -ENODEV;
432 
433 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
434 	if (ret < 0)
435 		return ret;
436 
437 	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
438 }
439 static DEVICE_ATTR_RO(in_intr_mask);
440 
441 static ssize_t in_read_index_show(struct device *dev,
442 				  struct device_attribute *dev_attr, char *buf)
443 {
444 	struct hv_device *hv_dev = device_to_hv_device(dev);
445 	struct hv_ring_buffer_debug_info inbound;
446 	int ret;
447 
448 	if (!hv_dev->channel)
449 		return -ENODEV;
450 
451 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
452 	if (ret < 0)
453 		return ret;
454 
455 	return sprintf(buf, "%d\n", inbound.current_read_index);
456 }
457 static DEVICE_ATTR_RO(in_read_index);
458 
459 static ssize_t in_write_index_show(struct device *dev,
460 				   struct device_attribute *dev_attr, char *buf)
461 {
462 	struct hv_device *hv_dev = device_to_hv_device(dev);
463 	struct hv_ring_buffer_debug_info inbound;
464 	int ret;
465 
466 	if (!hv_dev->channel)
467 		return -ENODEV;
468 
469 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
470 	if (ret < 0)
471 		return ret;
472 
473 	return sprintf(buf, "%d\n", inbound.current_write_index);
474 }
475 static DEVICE_ATTR_RO(in_write_index);
476 
477 static ssize_t in_read_bytes_avail_show(struct device *dev,
478 					struct device_attribute *dev_attr,
479 					char *buf)
480 {
481 	struct hv_device *hv_dev = device_to_hv_device(dev);
482 	struct hv_ring_buffer_debug_info inbound;
483 	int ret;
484 
485 	if (!hv_dev->channel)
486 		return -ENODEV;
487 
488 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
489 	if (ret < 0)
490 		return ret;
491 
492 	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
493 }
494 static DEVICE_ATTR_RO(in_read_bytes_avail);
495 
496 static ssize_t in_write_bytes_avail_show(struct device *dev,
497 					 struct device_attribute *dev_attr,
498 					 char *buf)
499 {
500 	struct hv_device *hv_dev = device_to_hv_device(dev);
501 	struct hv_ring_buffer_debug_info inbound;
502 	int ret;
503 
504 	if (!hv_dev->channel)
505 		return -ENODEV;
506 
507 	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
508 	if (ret < 0)
509 		return ret;
510 
511 	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
512 }
513 static DEVICE_ATTR_RO(in_write_bytes_avail);
514 
515 static ssize_t channel_vp_mapping_show(struct device *dev,
516 				       struct device_attribute *dev_attr,
517 				       char *buf)
518 {
519 	struct hv_device *hv_dev = device_to_hv_device(dev);
520 	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
521 	unsigned long flags;
522 	int buf_size = PAGE_SIZE, n_written, tot_written;
523 	struct list_head *cur;
524 
525 	if (!channel)
526 		return -ENODEV;
527 
528 	tot_written = snprintf(buf, buf_size, "%u:%u\n",
529 		channel->offermsg.child_relid, channel->target_cpu);
530 
531 	spin_lock_irqsave(&channel->lock, flags);
532 
533 	list_for_each(cur, &channel->sc_list) {
534 		if (tot_written >= buf_size - 1)
535 			break;
536 
537 		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
538 		n_written = scnprintf(buf + tot_written,
539 				     buf_size - tot_written,
540 				     "%u:%u\n",
541 				     cur_sc->offermsg.child_relid,
542 				     cur_sc->target_cpu);
543 		tot_written += n_written;
544 	}
545 
546 	spin_unlock_irqrestore(&channel->lock, flags);
547 
548 	return tot_written;
549 }
550 static DEVICE_ATTR_RO(channel_vp_mapping);
551 
552 static ssize_t vendor_show(struct device *dev,
553 			   struct device_attribute *dev_attr,
554 			   char *buf)
555 {
556 	struct hv_device *hv_dev = device_to_hv_device(dev);
557 	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
558 }
559 static DEVICE_ATTR_RO(vendor);
560 
561 static ssize_t device_show(struct device *dev,
562 			   struct device_attribute *dev_attr,
563 			   char *buf)
564 {
565 	struct hv_device *hv_dev = device_to_hv_device(dev);
566 	return sprintf(buf, "0x%x\n", hv_dev->device_id);
567 }
568 static DEVICE_ATTR_RO(device);
569 
570 static ssize_t driver_override_store(struct device *dev,
571 				     struct device_attribute *attr,
572 				     const char *buf, size_t count)
573 {
574 	struct hv_device *hv_dev = device_to_hv_device(dev);
575 	char *driver_override, *old, *cp;
576 
577 	/* We need to keep extra room for a newline */
578 	if (count >= (PAGE_SIZE - 1))
579 		return -EINVAL;
580 
581 	driver_override = kstrndup(buf, count, GFP_KERNEL);
582 	if (!driver_override)
583 		return -ENOMEM;
584 
585 	cp = strchr(driver_override, '\n');
586 	if (cp)
587 		*cp = '\0';
588 
589 	device_lock(dev);
590 	old = hv_dev->driver_override;
591 	if (strlen(driver_override)) {
592 		hv_dev->driver_override = driver_override;
593 	} else {
594 		kfree(driver_override);
595 		hv_dev->driver_override = NULL;
596 	}
597 	device_unlock(dev);
598 
599 	kfree(old);
600 
601 	return count;
602 }
603 
604 static ssize_t driver_override_show(struct device *dev,
605 				    struct device_attribute *attr, char *buf)
606 {
607 	struct hv_device *hv_dev = device_to_hv_device(dev);
608 	ssize_t len;
609 
610 	device_lock(dev);
611 	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
612 	device_unlock(dev);
613 
614 	return len;
615 }
616 static DEVICE_ATTR_RW(driver_override);
617 
618 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
619 static struct attribute *vmbus_dev_attrs[] = {
620 	&dev_attr_id.attr,
621 	&dev_attr_state.attr,
622 	&dev_attr_monitor_id.attr,
623 	&dev_attr_class_id.attr,
624 	&dev_attr_device_id.attr,
625 	&dev_attr_modalias.attr,
626 #ifdef CONFIG_NUMA
627 	&dev_attr_numa_node.attr,
628 #endif
629 	&dev_attr_server_monitor_pending.attr,
630 	&dev_attr_client_monitor_pending.attr,
631 	&dev_attr_server_monitor_latency.attr,
632 	&dev_attr_client_monitor_latency.attr,
633 	&dev_attr_server_monitor_conn_id.attr,
634 	&dev_attr_client_monitor_conn_id.attr,
635 	&dev_attr_out_intr_mask.attr,
636 	&dev_attr_out_read_index.attr,
637 	&dev_attr_out_write_index.attr,
638 	&dev_attr_out_read_bytes_avail.attr,
639 	&dev_attr_out_write_bytes_avail.attr,
640 	&dev_attr_in_intr_mask.attr,
641 	&dev_attr_in_read_index.attr,
642 	&dev_attr_in_write_index.attr,
643 	&dev_attr_in_read_bytes_avail.attr,
644 	&dev_attr_in_write_bytes_avail.attr,
645 	&dev_attr_channel_vp_mapping.attr,
646 	&dev_attr_vendor.attr,
647 	&dev_attr_device.attr,
648 	&dev_attr_driver_override.attr,
649 	NULL,
650 };
651 
652 /*
653  * Device-level attribute_group callback function. Returns the permission for
654  * each attribute, and returns 0 if an attribute is not visible.
655  */
656 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
657 					 struct attribute *attr, int idx)
658 {
659 	struct device *dev = kobj_to_dev(kobj);
660 	const struct hv_device *hv_dev = device_to_hv_device(dev);
661 
662 	/* Hide the monitor attributes if the monitor mechanism is not used. */
663 	if (!hv_dev->channel->offermsg.monitor_allocated &&
664 	    (attr == &dev_attr_monitor_id.attr ||
665 	     attr == &dev_attr_server_monitor_pending.attr ||
666 	     attr == &dev_attr_client_monitor_pending.attr ||
667 	     attr == &dev_attr_server_monitor_latency.attr ||
668 	     attr == &dev_attr_client_monitor_latency.attr ||
669 	     attr == &dev_attr_server_monitor_conn_id.attr ||
670 	     attr == &dev_attr_client_monitor_conn_id.attr))
671 		return 0;
672 
673 	return attr->mode;
674 }
675 
676 static const struct attribute_group vmbus_dev_group = {
677 	.attrs = vmbus_dev_attrs,
678 	.is_visible = vmbus_dev_attr_is_visible
679 };
680 __ATTRIBUTE_GROUPS(vmbus_dev);
681 
682 /*
683  * vmbus_uevent - add uevent for our device
684  *
685  * This routine is invoked when a device is added or removed on the vmbus to
686  * generate a uevent to udev in the userspace. The udev will then look at its
687  * rule and the uevent generated here to load the appropriate driver
688  *
689  * The alias string will be of the form vmbus:guid where guid is the string
690  * representation of the device guid (each byte of the guid will be
691  * represented with two hex characters.
692  */
693 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
694 {
695 	struct hv_device *dev = device_to_hv_device(device);
696 	int ret;
697 	char alias_name[VMBUS_ALIAS_LEN + 1];
698 
699 	print_alias_name(dev, alias_name);
700 	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
701 	return ret;
702 }
703 
704 static const struct hv_vmbus_device_id *
705 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
706 {
707 	if (id == NULL)
708 		return NULL; /* empty device table */
709 
710 	for (; !guid_is_null(&id->guid); id++)
711 		if (guid_equal(&id->guid, guid))
712 			return id;
713 
714 	return NULL;
715 }
716 
717 static const struct hv_vmbus_device_id *
718 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
719 {
720 	const struct hv_vmbus_device_id *id = NULL;
721 	struct vmbus_dynid *dynid;
722 
723 	spin_lock(&drv->dynids.lock);
724 	list_for_each_entry(dynid, &drv->dynids.list, node) {
725 		if (guid_equal(&dynid->id.guid, guid)) {
726 			id = &dynid->id;
727 			break;
728 		}
729 	}
730 	spin_unlock(&drv->dynids.lock);
731 
732 	return id;
733 }
734 
735 static const struct hv_vmbus_device_id vmbus_device_null;
736 
737 /*
738  * Return a matching hv_vmbus_device_id pointer.
739  * If there is no match, return NULL.
740  */
741 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
742 							struct hv_device *dev)
743 {
744 	const guid_t *guid = &dev->dev_type;
745 	const struct hv_vmbus_device_id *id;
746 
747 	/* When driver_override is set, only bind to the matching driver */
748 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
749 		return NULL;
750 
751 	/* Look at the dynamic ids first, before the static ones */
752 	id = hv_vmbus_dynid_match(drv, guid);
753 	if (!id)
754 		id = hv_vmbus_dev_match(drv->id_table, guid);
755 
756 	/* driver_override will always match, send a dummy id */
757 	if (!id && dev->driver_override)
758 		id = &vmbus_device_null;
759 
760 	return id;
761 }
762 
763 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
764 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
765 {
766 	struct vmbus_dynid *dynid;
767 
768 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
769 	if (!dynid)
770 		return -ENOMEM;
771 
772 	dynid->id.guid = *guid;
773 
774 	spin_lock(&drv->dynids.lock);
775 	list_add_tail(&dynid->node, &drv->dynids.list);
776 	spin_unlock(&drv->dynids.lock);
777 
778 	return driver_attach(&drv->driver);
779 }
780 
781 static void vmbus_free_dynids(struct hv_driver *drv)
782 {
783 	struct vmbus_dynid *dynid, *n;
784 
785 	spin_lock(&drv->dynids.lock);
786 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
787 		list_del(&dynid->node);
788 		kfree(dynid);
789 	}
790 	spin_unlock(&drv->dynids.lock);
791 }
792 
793 /*
794  * store_new_id - sysfs frontend to vmbus_add_dynid()
795  *
796  * Allow GUIDs to be added to an existing driver via sysfs.
797  */
798 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
799 			    size_t count)
800 {
801 	struct hv_driver *drv = drv_to_hv_drv(driver);
802 	guid_t guid;
803 	ssize_t retval;
804 
805 	retval = guid_parse(buf, &guid);
806 	if (retval)
807 		return retval;
808 
809 	if (hv_vmbus_dynid_match(drv, &guid))
810 		return -EEXIST;
811 
812 	retval = vmbus_add_dynid(drv, &guid);
813 	if (retval)
814 		return retval;
815 	return count;
816 }
817 static DRIVER_ATTR_WO(new_id);
818 
819 /*
820  * store_remove_id - remove a PCI device ID from this driver
821  *
822  * Removes a dynamic pci device ID to this driver.
823  */
824 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
825 			       size_t count)
826 {
827 	struct hv_driver *drv = drv_to_hv_drv(driver);
828 	struct vmbus_dynid *dynid, *n;
829 	guid_t guid;
830 	ssize_t retval;
831 
832 	retval = guid_parse(buf, &guid);
833 	if (retval)
834 		return retval;
835 
836 	retval = -ENODEV;
837 	spin_lock(&drv->dynids.lock);
838 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
839 		struct hv_vmbus_device_id *id = &dynid->id;
840 
841 		if (guid_equal(&id->guid, &guid)) {
842 			list_del(&dynid->node);
843 			kfree(dynid);
844 			retval = count;
845 			break;
846 		}
847 	}
848 	spin_unlock(&drv->dynids.lock);
849 
850 	return retval;
851 }
852 static DRIVER_ATTR_WO(remove_id);
853 
854 static struct attribute *vmbus_drv_attrs[] = {
855 	&driver_attr_new_id.attr,
856 	&driver_attr_remove_id.attr,
857 	NULL,
858 };
859 ATTRIBUTE_GROUPS(vmbus_drv);
860 
861 
862 /*
863  * vmbus_match - Attempt to match the specified device to the specified driver
864  */
865 static int vmbus_match(struct device *device, struct device_driver *driver)
866 {
867 	struct hv_driver *drv = drv_to_hv_drv(driver);
868 	struct hv_device *hv_dev = device_to_hv_device(device);
869 
870 	/* The hv_sock driver handles all hv_sock offers. */
871 	if (is_hvsock_channel(hv_dev->channel))
872 		return drv->hvsock;
873 
874 	if (hv_vmbus_get_id(drv, hv_dev))
875 		return 1;
876 
877 	return 0;
878 }
879 
880 /*
881  * vmbus_probe - Add the new vmbus's child device
882  */
883 static int vmbus_probe(struct device *child_device)
884 {
885 	int ret = 0;
886 	struct hv_driver *drv =
887 			drv_to_hv_drv(child_device->driver);
888 	struct hv_device *dev = device_to_hv_device(child_device);
889 	const struct hv_vmbus_device_id *dev_id;
890 
891 	dev_id = hv_vmbus_get_id(drv, dev);
892 	if (drv->probe) {
893 		ret = drv->probe(dev, dev_id);
894 		if (ret != 0)
895 			pr_err("probe failed for device %s (%d)\n",
896 			       dev_name(child_device), ret);
897 
898 	} else {
899 		pr_err("probe not set for driver %s\n",
900 		       dev_name(child_device));
901 		ret = -ENODEV;
902 	}
903 	return ret;
904 }
905 
906 /*
907  * vmbus_remove - Remove a vmbus device
908  */
909 static int vmbus_remove(struct device *child_device)
910 {
911 	struct hv_driver *drv;
912 	struct hv_device *dev = device_to_hv_device(child_device);
913 
914 	if (child_device->driver) {
915 		drv = drv_to_hv_drv(child_device->driver);
916 		if (drv->remove)
917 			drv->remove(dev);
918 	}
919 
920 	return 0;
921 }
922 
923 
924 /*
925  * vmbus_shutdown - Shutdown a vmbus device
926  */
927 static void vmbus_shutdown(struct device *child_device)
928 {
929 	struct hv_driver *drv;
930 	struct hv_device *dev = device_to_hv_device(child_device);
931 
932 
933 	/* The device may not be attached yet */
934 	if (!child_device->driver)
935 		return;
936 
937 	drv = drv_to_hv_drv(child_device->driver);
938 
939 	if (drv->shutdown)
940 		drv->shutdown(dev);
941 }
942 
943 #ifdef CONFIG_PM_SLEEP
944 /*
945  * vmbus_suspend - Suspend a vmbus device
946  */
947 static int vmbus_suspend(struct device *child_device)
948 {
949 	struct hv_driver *drv;
950 	struct hv_device *dev = device_to_hv_device(child_device);
951 
952 	/* The device may not be attached yet */
953 	if (!child_device->driver)
954 		return 0;
955 
956 	drv = drv_to_hv_drv(child_device->driver);
957 	if (!drv->suspend)
958 		return -EOPNOTSUPP;
959 
960 	return drv->suspend(dev);
961 }
962 
963 /*
964  * vmbus_resume - Resume a vmbus device
965  */
966 static int vmbus_resume(struct device *child_device)
967 {
968 	struct hv_driver *drv;
969 	struct hv_device *dev = device_to_hv_device(child_device);
970 
971 	/* The device may not be attached yet */
972 	if (!child_device->driver)
973 		return 0;
974 
975 	drv = drv_to_hv_drv(child_device->driver);
976 	if (!drv->resume)
977 		return -EOPNOTSUPP;
978 
979 	return drv->resume(dev);
980 }
981 #else
982 #define vmbus_suspend NULL
983 #define vmbus_resume NULL
984 #endif /* CONFIG_PM_SLEEP */
985 
986 /*
987  * vmbus_device_release - Final callback release of the vmbus child device
988  */
989 static void vmbus_device_release(struct device *device)
990 {
991 	struct hv_device *hv_dev = device_to_hv_device(device);
992 	struct vmbus_channel *channel = hv_dev->channel;
993 
994 	hv_debug_rm_dev_dir(hv_dev);
995 
996 	mutex_lock(&vmbus_connection.channel_mutex);
997 	hv_process_channel_removal(channel);
998 	mutex_unlock(&vmbus_connection.channel_mutex);
999 	kfree(hv_dev);
1000 }
1001 
1002 /*
1003  * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
1004  *
1005  * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
1006  * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
1007  * is no way to wake up a Generation-2 VM.
1008  *
1009  * The other 4 ops are for hibernation.
1010  */
1011 
1012 static const struct dev_pm_ops vmbus_pm = {
1013 	.suspend_noirq	= NULL,
1014 	.resume_noirq	= NULL,
1015 	.freeze_noirq	= vmbus_suspend,
1016 	.thaw_noirq	= vmbus_resume,
1017 	.poweroff_noirq	= vmbus_suspend,
1018 	.restore_noirq	= vmbus_resume,
1019 };
1020 
1021 /* The one and only one */
1022 static struct bus_type  hv_bus = {
1023 	.name =		"vmbus",
1024 	.match =		vmbus_match,
1025 	.shutdown =		vmbus_shutdown,
1026 	.remove =		vmbus_remove,
1027 	.probe =		vmbus_probe,
1028 	.uevent =		vmbus_uevent,
1029 	.dev_groups =		vmbus_dev_groups,
1030 	.drv_groups =		vmbus_drv_groups,
1031 	.pm =			&vmbus_pm,
1032 };
1033 
1034 struct onmessage_work_context {
1035 	struct work_struct work;
1036 	struct hv_message msg;
1037 };
1038 
1039 static void vmbus_onmessage_work(struct work_struct *work)
1040 {
1041 	struct onmessage_work_context *ctx;
1042 
1043 	/* Do not process messages if we're in DISCONNECTED state */
1044 	if (vmbus_connection.conn_state == DISCONNECTED)
1045 		return;
1046 
1047 	ctx = container_of(work, struct onmessage_work_context,
1048 			   work);
1049 	vmbus_onmessage(&ctx->msg);
1050 	kfree(ctx);
1051 }
1052 
1053 void vmbus_on_msg_dpc(unsigned long data)
1054 {
1055 	struct hv_per_cpu_context *hv_cpu = (void *)data;
1056 	void *page_addr = hv_cpu->synic_message_page;
1057 	struct hv_message *msg = (struct hv_message *)page_addr +
1058 				  VMBUS_MESSAGE_SINT;
1059 	struct vmbus_channel_message_header *hdr;
1060 	const struct vmbus_channel_message_table_entry *entry;
1061 	struct onmessage_work_context *ctx;
1062 	u32 message_type = msg->header.message_type;
1063 
1064 	if (message_type == HVMSG_NONE)
1065 		/* no msg */
1066 		return;
1067 
1068 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1069 
1070 	trace_vmbus_on_msg_dpc(hdr);
1071 
1072 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
1073 		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
1074 		goto msg_handled;
1075 	}
1076 
1077 	entry = &channel_message_table[hdr->msgtype];
1078 
1079 	if (!entry->message_handler)
1080 		goto msg_handled;
1081 
1082 	if (entry->handler_type	== VMHT_BLOCKING) {
1083 		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
1084 		if (ctx == NULL)
1085 			return;
1086 
1087 		INIT_WORK(&ctx->work, vmbus_onmessage_work);
1088 		memcpy(&ctx->msg, msg, sizeof(*msg));
1089 
1090 		/*
1091 		 * The host can generate a rescind message while we
1092 		 * may still be handling the original offer. We deal with
1093 		 * this condition by ensuring the processing is done on the
1094 		 * same CPU.
1095 		 */
1096 		switch (hdr->msgtype) {
1097 		case CHANNELMSG_RESCIND_CHANNELOFFER:
1098 			/*
1099 			 * If we are handling the rescind message;
1100 			 * schedule the work on the global work queue.
1101 			 */
1102 			schedule_work_on(vmbus_connection.connect_cpu,
1103 					 &ctx->work);
1104 			break;
1105 
1106 		case CHANNELMSG_OFFERCHANNEL:
1107 			atomic_inc(&vmbus_connection.offer_in_progress);
1108 			queue_work_on(vmbus_connection.connect_cpu,
1109 				      vmbus_connection.work_queue,
1110 				      &ctx->work);
1111 			break;
1112 
1113 		default:
1114 			queue_work(vmbus_connection.work_queue, &ctx->work);
1115 		}
1116 	} else
1117 		entry->message_handler(hdr);
1118 
1119 msg_handled:
1120 	vmbus_signal_eom(msg, message_type);
1121 }
1122 
1123 #ifdef CONFIG_PM_SLEEP
1124 /*
1125  * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1126  * hibernation, because hv_sock connections can not persist across hibernation.
1127  */
1128 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1129 {
1130 	struct onmessage_work_context *ctx;
1131 	struct vmbus_channel_rescind_offer *rescind;
1132 
1133 	WARN_ON(!is_hvsock_channel(channel));
1134 
1135 	/*
1136 	 * sizeof(*ctx) is small and the allocation should really not fail,
1137 	 * otherwise the state of the hv_sock connections ends up in limbo.
1138 	 */
1139 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL | __GFP_NOFAIL);
1140 
1141 	/*
1142 	 * So far, these are not really used by Linux. Just set them to the
1143 	 * reasonable values conforming to the definitions of the fields.
1144 	 */
1145 	ctx->msg.header.message_type = 1;
1146 	ctx->msg.header.payload_size = sizeof(*rescind);
1147 
1148 	/* These values are actually used by Linux. */
1149 	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.u.payload;
1150 	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1151 	rescind->child_relid = channel->offermsg.child_relid;
1152 
1153 	INIT_WORK(&ctx->work, vmbus_onmessage_work);
1154 
1155 	queue_work_on(vmbus_connection.connect_cpu,
1156 		      vmbus_connection.work_queue,
1157 		      &ctx->work);
1158 }
1159 #endif /* CONFIG_PM_SLEEP */
1160 
1161 /*
1162  * Direct callback for channels using other deferred processing
1163  */
1164 static void vmbus_channel_isr(struct vmbus_channel *channel)
1165 {
1166 	void (*callback_fn)(void *);
1167 
1168 	callback_fn = READ_ONCE(channel->onchannel_callback);
1169 	if (likely(callback_fn != NULL))
1170 		(*callback_fn)(channel->channel_callback_context);
1171 }
1172 
1173 /*
1174  * Schedule all channels with events pending
1175  */
1176 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1177 {
1178 	unsigned long *recv_int_page;
1179 	u32 maxbits, relid;
1180 
1181 	if (vmbus_proto_version < VERSION_WIN8) {
1182 		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1183 		recv_int_page = vmbus_connection.recv_int_page;
1184 	} else {
1185 		/*
1186 		 * When the host is win8 and beyond, the event page
1187 		 * can be directly checked to get the id of the channel
1188 		 * that has the interrupt pending.
1189 		 */
1190 		void *page_addr = hv_cpu->synic_event_page;
1191 		union hv_synic_event_flags *event
1192 			= (union hv_synic_event_flags *)page_addr +
1193 						 VMBUS_MESSAGE_SINT;
1194 
1195 		maxbits = HV_EVENT_FLAGS_COUNT;
1196 		recv_int_page = event->flags;
1197 	}
1198 
1199 	if (unlikely(!recv_int_page))
1200 		return;
1201 
1202 	for_each_set_bit(relid, recv_int_page, maxbits) {
1203 		struct vmbus_channel *channel;
1204 
1205 		if (!sync_test_and_clear_bit(relid, recv_int_page))
1206 			continue;
1207 
1208 		/* Special case - vmbus channel protocol msg */
1209 		if (relid == 0)
1210 			continue;
1211 
1212 		rcu_read_lock();
1213 
1214 		/* Find channel based on relid */
1215 		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1216 			if (channel->offermsg.child_relid != relid)
1217 				continue;
1218 
1219 			if (channel->rescind)
1220 				continue;
1221 
1222 			trace_vmbus_chan_sched(channel);
1223 
1224 			++channel->interrupts;
1225 
1226 			switch (channel->callback_mode) {
1227 			case HV_CALL_ISR:
1228 				vmbus_channel_isr(channel);
1229 				break;
1230 
1231 			case HV_CALL_BATCHED:
1232 				hv_begin_read(&channel->inbound);
1233 				/* fallthrough */
1234 			case HV_CALL_DIRECT:
1235 				tasklet_schedule(&channel->callback_event);
1236 			}
1237 		}
1238 
1239 		rcu_read_unlock();
1240 	}
1241 }
1242 
1243 static void vmbus_isr(void)
1244 {
1245 	struct hv_per_cpu_context *hv_cpu
1246 		= this_cpu_ptr(hv_context.cpu_context);
1247 	void *page_addr = hv_cpu->synic_event_page;
1248 	struct hv_message *msg;
1249 	union hv_synic_event_flags *event;
1250 	bool handled = false;
1251 
1252 	if (unlikely(page_addr == NULL))
1253 		return;
1254 
1255 	event = (union hv_synic_event_flags *)page_addr +
1256 					 VMBUS_MESSAGE_SINT;
1257 	/*
1258 	 * Check for events before checking for messages. This is the order
1259 	 * in which events and messages are checked in Windows guests on
1260 	 * Hyper-V, and the Windows team suggested we do the same.
1261 	 */
1262 
1263 	if ((vmbus_proto_version == VERSION_WS2008) ||
1264 		(vmbus_proto_version == VERSION_WIN7)) {
1265 
1266 		/* Since we are a child, we only need to check bit 0 */
1267 		if (sync_test_and_clear_bit(0, event->flags))
1268 			handled = true;
1269 	} else {
1270 		/*
1271 		 * Our host is win8 or above. The signaling mechanism
1272 		 * has changed and we can directly look at the event page.
1273 		 * If bit n is set then we have an interrup on the channel
1274 		 * whose id is n.
1275 		 */
1276 		handled = true;
1277 	}
1278 
1279 	if (handled)
1280 		vmbus_chan_sched(hv_cpu);
1281 
1282 	page_addr = hv_cpu->synic_message_page;
1283 	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1284 
1285 	/* Check if there are actual msgs to be processed */
1286 	if (msg->header.message_type != HVMSG_NONE) {
1287 		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1288 			hv_stimer0_isr();
1289 			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1290 		} else
1291 			tasklet_schedule(&hv_cpu->msg_dpc);
1292 	}
1293 
1294 	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1295 }
1296 
1297 /*
1298  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1299  * buffer and call into Hyper-V to transfer the data.
1300  */
1301 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1302 			 enum kmsg_dump_reason reason)
1303 {
1304 	size_t bytes_written;
1305 	phys_addr_t panic_pa;
1306 
1307 	/* We are only interested in panics. */
1308 	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1309 		return;
1310 
1311 	panic_pa = virt_to_phys(hv_panic_page);
1312 
1313 	/*
1314 	 * Write dump contents to the page. No need to synchronize; panic should
1315 	 * be single-threaded.
1316 	 */
1317 	kmsg_dump_get_buffer(dumper, true, hv_panic_page, HV_HYP_PAGE_SIZE,
1318 			     &bytes_written);
1319 	if (bytes_written)
1320 		hyperv_report_panic_msg(panic_pa, bytes_written);
1321 }
1322 
1323 static struct kmsg_dumper hv_kmsg_dumper = {
1324 	.dump = hv_kmsg_dump,
1325 };
1326 
1327 static struct ctl_table_header *hv_ctl_table_hdr;
1328 
1329 /*
1330  * sysctl option to allow the user to control whether kmsg data should be
1331  * reported to Hyper-V on panic.
1332  */
1333 static struct ctl_table hv_ctl_table[] = {
1334 	{
1335 		.procname       = "hyperv_record_panic_msg",
1336 		.data           = &sysctl_record_panic_msg,
1337 		.maxlen         = sizeof(int),
1338 		.mode           = 0644,
1339 		.proc_handler   = proc_dointvec_minmax,
1340 		.extra1		= SYSCTL_ZERO,
1341 		.extra2		= SYSCTL_ONE
1342 	},
1343 	{}
1344 };
1345 
1346 static struct ctl_table hv_root_table[] = {
1347 	{
1348 		.procname	= "kernel",
1349 		.mode		= 0555,
1350 		.child		= hv_ctl_table
1351 	},
1352 	{}
1353 };
1354 
1355 /*
1356  * vmbus_bus_init -Main vmbus driver initialization routine.
1357  *
1358  * Here, we
1359  *	- initialize the vmbus driver context
1360  *	- invoke the vmbus hv main init routine
1361  *	- retrieve the channel offers
1362  */
1363 static int vmbus_bus_init(void)
1364 {
1365 	int ret;
1366 
1367 	/* Hypervisor initialization...setup hypercall page..etc */
1368 	ret = hv_init();
1369 	if (ret != 0) {
1370 		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1371 		return ret;
1372 	}
1373 
1374 	ret = bus_register(&hv_bus);
1375 	if (ret)
1376 		return ret;
1377 
1378 	hv_setup_vmbus_irq(vmbus_isr);
1379 
1380 	ret = hv_synic_alloc();
1381 	if (ret)
1382 		goto err_alloc;
1383 
1384 	/*
1385 	 * Initialize the per-cpu interrupt state and stimer state.
1386 	 * Then connect to the host.
1387 	 */
1388 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1389 				hv_synic_init, hv_synic_cleanup);
1390 	if (ret < 0)
1391 		goto err_cpuhp;
1392 	hyperv_cpuhp_online = ret;
1393 
1394 	ret = vmbus_connect();
1395 	if (ret)
1396 		goto err_connect;
1397 
1398 	/*
1399 	 * Only register if the crash MSRs are available
1400 	 */
1401 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1402 		u64 hyperv_crash_ctl;
1403 		/*
1404 		 * Sysctl registration is not fatal, since by default
1405 		 * reporting is enabled.
1406 		 */
1407 		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1408 		if (!hv_ctl_table_hdr)
1409 			pr_err("Hyper-V: sysctl table register error");
1410 
1411 		/*
1412 		 * Register for panic kmsg callback only if the right
1413 		 * capability is supported by the hypervisor.
1414 		 */
1415 		hv_get_crash_ctl(hyperv_crash_ctl);
1416 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1417 			hv_panic_page = (void *)hv_alloc_hyperv_zeroed_page();
1418 			if (hv_panic_page) {
1419 				ret = kmsg_dump_register(&hv_kmsg_dumper);
1420 				if (ret) {
1421 					pr_err("Hyper-V: kmsg dump register "
1422 						"error 0x%x\n", ret);
1423 					hv_free_hyperv_page(
1424 					    (unsigned long)hv_panic_page);
1425 					hv_panic_page = NULL;
1426 				}
1427 			} else
1428 				pr_err("Hyper-V: panic message page memory "
1429 					"allocation failed");
1430 		}
1431 
1432 		register_die_notifier(&hyperv_die_block);
1433 	}
1434 
1435 	/*
1436 	 * Always register the panic notifier because we need to unload
1437 	 * the VMbus channel connection to prevent any VMbus
1438 	 * activity after the VM panics.
1439 	 */
1440 	atomic_notifier_chain_register(&panic_notifier_list,
1441 			       &hyperv_panic_block);
1442 
1443 	vmbus_request_offers();
1444 
1445 	return 0;
1446 
1447 err_connect:
1448 	cpuhp_remove_state(hyperv_cpuhp_online);
1449 err_cpuhp:
1450 	hv_synic_free();
1451 err_alloc:
1452 	hv_remove_vmbus_irq();
1453 
1454 	bus_unregister(&hv_bus);
1455 	unregister_sysctl_table(hv_ctl_table_hdr);
1456 	hv_ctl_table_hdr = NULL;
1457 	return ret;
1458 }
1459 
1460 /**
1461  * __vmbus_child_driver_register() - Register a vmbus's driver
1462  * @hv_driver: Pointer to driver structure you want to register
1463  * @owner: owner module of the drv
1464  * @mod_name: module name string
1465  *
1466  * Registers the given driver with Linux through the 'driver_register()' call
1467  * and sets up the hyper-v vmbus handling for this driver.
1468  * It will return the state of the 'driver_register()' call.
1469  *
1470  */
1471 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1472 {
1473 	int ret;
1474 
1475 	pr_info("registering driver %s\n", hv_driver->name);
1476 
1477 	ret = vmbus_exists();
1478 	if (ret < 0)
1479 		return ret;
1480 
1481 	hv_driver->driver.name = hv_driver->name;
1482 	hv_driver->driver.owner = owner;
1483 	hv_driver->driver.mod_name = mod_name;
1484 	hv_driver->driver.bus = &hv_bus;
1485 
1486 	spin_lock_init(&hv_driver->dynids.lock);
1487 	INIT_LIST_HEAD(&hv_driver->dynids.list);
1488 
1489 	ret = driver_register(&hv_driver->driver);
1490 
1491 	return ret;
1492 }
1493 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1494 
1495 /**
1496  * vmbus_driver_unregister() - Unregister a vmbus's driver
1497  * @hv_driver: Pointer to driver structure you want to
1498  *             un-register
1499  *
1500  * Un-register the given driver that was previous registered with a call to
1501  * vmbus_driver_register()
1502  */
1503 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1504 {
1505 	pr_info("unregistering driver %s\n", hv_driver->name);
1506 
1507 	if (!vmbus_exists()) {
1508 		driver_unregister(&hv_driver->driver);
1509 		vmbus_free_dynids(hv_driver);
1510 	}
1511 }
1512 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1513 
1514 
1515 /*
1516  * Called when last reference to channel is gone.
1517  */
1518 static void vmbus_chan_release(struct kobject *kobj)
1519 {
1520 	struct vmbus_channel *channel
1521 		= container_of(kobj, struct vmbus_channel, kobj);
1522 
1523 	kfree_rcu(channel, rcu);
1524 }
1525 
1526 struct vmbus_chan_attribute {
1527 	struct attribute attr;
1528 	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1529 	ssize_t (*store)(struct vmbus_channel *chan,
1530 			 const char *buf, size_t count);
1531 };
1532 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1533 	struct vmbus_chan_attribute chan_attr_##_name \
1534 		= __ATTR(_name, _mode, _show, _store)
1535 #define VMBUS_CHAN_ATTR_RW(_name) \
1536 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1537 #define VMBUS_CHAN_ATTR_RO(_name) \
1538 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1539 #define VMBUS_CHAN_ATTR_WO(_name) \
1540 	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1541 
1542 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1543 				    struct attribute *attr, char *buf)
1544 {
1545 	const struct vmbus_chan_attribute *attribute
1546 		= container_of(attr, struct vmbus_chan_attribute, attr);
1547 	struct vmbus_channel *chan
1548 		= container_of(kobj, struct vmbus_channel, kobj);
1549 
1550 	if (!attribute->show)
1551 		return -EIO;
1552 
1553 	return attribute->show(chan, buf);
1554 }
1555 
1556 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1557 	.show = vmbus_chan_attr_show,
1558 };
1559 
1560 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1561 {
1562 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1563 	ssize_t ret;
1564 
1565 	mutex_lock(&rbi->ring_buffer_mutex);
1566 	if (!rbi->ring_buffer) {
1567 		mutex_unlock(&rbi->ring_buffer_mutex);
1568 		return -EINVAL;
1569 	}
1570 
1571 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1572 	mutex_unlock(&rbi->ring_buffer_mutex);
1573 	return ret;
1574 }
1575 static VMBUS_CHAN_ATTR_RO(out_mask);
1576 
1577 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1578 {
1579 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1580 	ssize_t ret;
1581 
1582 	mutex_lock(&rbi->ring_buffer_mutex);
1583 	if (!rbi->ring_buffer) {
1584 		mutex_unlock(&rbi->ring_buffer_mutex);
1585 		return -EINVAL;
1586 	}
1587 
1588 	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1589 	mutex_unlock(&rbi->ring_buffer_mutex);
1590 	return ret;
1591 }
1592 static VMBUS_CHAN_ATTR_RO(in_mask);
1593 
1594 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1595 {
1596 	struct hv_ring_buffer_info *rbi = &channel->inbound;
1597 	ssize_t ret;
1598 
1599 	mutex_lock(&rbi->ring_buffer_mutex);
1600 	if (!rbi->ring_buffer) {
1601 		mutex_unlock(&rbi->ring_buffer_mutex);
1602 		return -EINVAL;
1603 	}
1604 
1605 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1606 	mutex_unlock(&rbi->ring_buffer_mutex);
1607 	return ret;
1608 }
1609 static VMBUS_CHAN_ATTR_RO(read_avail);
1610 
1611 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1612 {
1613 	struct hv_ring_buffer_info *rbi = &channel->outbound;
1614 	ssize_t ret;
1615 
1616 	mutex_lock(&rbi->ring_buffer_mutex);
1617 	if (!rbi->ring_buffer) {
1618 		mutex_unlock(&rbi->ring_buffer_mutex);
1619 		return -EINVAL;
1620 	}
1621 
1622 	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1623 	mutex_unlock(&rbi->ring_buffer_mutex);
1624 	return ret;
1625 }
1626 static VMBUS_CHAN_ATTR_RO(write_avail);
1627 
1628 static ssize_t show_target_cpu(struct vmbus_channel *channel, char *buf)
1629 {
1630 	return sprintf(buf, "%u\n", channel->target_cpu);
1631 }
1632 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1633 
1634 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1635 				    char *buf)
1636 {
1637 	return sprintf(buf, "%d\n",
1638 		       channel_pending(channel,
1639 				       vmbus_connection.monitor_pages[1]));
1640 }
1641 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1642 
1643 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1644 				    char *buf)
1645 {
1646 	return sprintf(buf, "%d\n",
1647 		       channel_latency(channel,
1648 				       vmbus_connection.monitor_pages[1]));
1649 }
1650 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1651 
1652 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1653 {
1654 	return sprintf(buf, "%llu\n", channel->interrupts);
1655 }
1656 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1657 
1658 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1659 {
1660 	return sprintf(buf, "%llu\n", channel->sig_events);
1661 }
1662 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1663 
1664 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1665 					 char *buf)
1666 {
1667 	return sprintf(buf, "%llu\n",
1668 		       (unsigned long long)channel->intr_in_full);
1669 }
1670 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1671 
1672 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1673 					   char *buf)
1674 {
1675 	return sprintf(buf, "%llu\n",
1676 		       (unsigned long long)channel->intr_out_empty);
1677 }
1678 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1679 
1680 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1681 					   char *buf)
1682 {
1683 	return sprintf(buf, "%llu\n",
1684 		       (unsigned long long)channel->out_full_first);
1685 }
1686 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1687 
1688 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1689 					   char *buf)
1690 {
1691 	return sprintf(buf, "%llu\n",
1692 		       (unsigned long long)channel->out_full_total);
1693 }
1694 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1695 
1696 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1697 					  char *buf)
1698 {
1699 	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1700 }
1701 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1702 
1703 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1704 				  char *buf)
1705 {
1706 	return sprintf(buf, "%u\n",
1707 		       channel->offermsg.offer.sub_channel_index);
1708 }
1709 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1710 
1711 static struct attribute *vmbus_chan_attrs[] = {
1712 	&chan_attr_out_mask.attr,
1713 	&chan_attr_in_mask.attr,
1714 	&chan_attr_read_avail.attr,
1715 	&chan_attr_write_avail.attr,
1716 	&chan_attr_cpu.attr,
1717 	&chan_attr_pending.attr,
1718 	&chan_attr_latency.attr,
1719 	&chan_attr_interrupts.attr,
1720 	&chan_attr_events.attr,
1721 	&chan_attr_intr_in_full.attr,
1722 	&chan_attr_intr_out_empty.attr,
1723 	&chan_attr_out_full_first.attr,
1724 	&chan_attr_out_full_total.attr,
1725 	&chan_attr_monitor_id.attr,
1726 	&chan_attr_subchannel_id.attr,
1727 	NULL
1728 };
1729 
1730 /*
1731  * Channel-level attribute_group callback function. Returns the permission for
1732  * each attribute, and returns 0 if an attribute is not visible.
1733  */
1734 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1735 					  struct attribute *attr, int idx)
1736 {
1737 	const struct vmbus_channel *channel =
1738 		container_of(kobj, struct vmbus_channel, kobj);
1739 
1740 	/* Hide the monitor attributes if the monitor mechanism is not used. */
1741 	if (!channel->offermsg.monitor_allocated &&
1742 	    (attr == &chan_attr_pending.attr ||
1743 	     attr == &chan_attr_latency.attr ||
1744 	     attr == &chan_attr_monitor_id.attr))
1745 		return 0;
1746 
1747 	return attr->mode;
1748 }
1749 
1750 static struct attribute_group vmbus_chan_group = {
1751 	.attrs = vmbus_chan_attrs,
1752 	.is_visible = vmbus_chan_attr_is_visible
1753 };
1754 
1755 static struct kobj_type vmbus_chan_ktype = {
1756 	.sysfs_ops = &vmbus_chan_sysfs_ops,
1757 	.release = vmbus_chan_release,
1758 };
1759 
1760 /*
1761  * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1762  */
1763 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1764 {
1765 	const struct device *device = &dev->device;
1766 	struct kobject *kobj = &channel->kobj;
1767 	u32 relid = channel->offermsg.child_relid;
1768 	int ret;
1769 
1770 	kobj->kset = dev->channels_kset;
1771 	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1772 				   "%u", relid);
1773 	if (ret)
1774 		return ret;
1775 
1776 	ret = sysfs_create_group(kobj, &vmbus_chan_group);
1777 
1778 	if (ret) {
1779 		/*
1780 		 * The calling functions' error handling paths will cleanup the
1781 		 * empty channel directory.
1782 		 */
1783 		dev_err(device, "Unable to set up channel sysfs files\n");
1784 		return ret;
1785 	}
1786 
1787 	kobject_uevent(kobj, KOBJ_ADD);
1788 
1789 	return 0;
1790 }
1791 
1792 /*
1793  * vmbus_remove_channel_attr_group - remove the channel's attribute group
1794  */
1795 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1796 {
1797 	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
1798 }
1799 
1800 /*
1801  * vmbus_device_create - Creates and registers a new child device
1802  * on the vmbus.
1803  */
1804 struct hv_device *vmbus_device_create(const guid_t *type,
1805 				      const guid_t *instance,
1806 				      struct vmbus_channel *channel)
1807 {
1808 	struct hv_device *child_device_obj;
1809 
1810 	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1811 	if (!child_device_obj) {
1812 		pr_err("Unable to allocate device object for child device\n");
1813 		return NULL;
1814 	}
1815 
1816 	child_device_obj->channel = channel;
1817 	guid_copy(&child_device_obj->dev_type, type);
1818 	guid_copy(&child_device_obj->dev_instance, instance);
1819 	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1820 
1821 	return child_device_obj;
1822 }
1823 
1824 /*
1825  * vmbus_device_register - Register the child device
1826  */
1827 int vmbus_device_register(struct hv_device *child_device_obj)
1828 {
1829 	struct kobject *kobj = &child_device_obj->device.kobj;
1830 	int ret;
1831 
1832 	dev_set_name(&child_device_obj->device, "%pUl",
1833 		     child_device_obj->channel->offermsg.offer.if_instance.b);
1834 
1835 	child_device_obj->device.bus = &hv_bus;
1836 	child_device_obj->device.parent = &hv_acpi_dev->dev;
1837 	child_device_obj->device.release = vmbus_device_release;
1838 
1839 	/*
1840 	 * Register with the LDM. This will kick off the driver/device
1841 	 * binding...which will eventually call vmbus_match() and vmbus_probe()
1842 	 */
1843 	ret = device_register(&child_device_obj->device);
1844 	if (ret) {
1845 		pr_err("Unable to register child device\n");
1846 		return ret;
1847 	}
1848 
1849 	child_device_obj->channels_kset = kset_create_and_add("channels",
1850 							      NULL, kobj);
1851 	if (!child_device_obj->channels_kset) {
1852 		ret = -ENOMEM;
1853 		goto err_dev_unregister;
1854 	}
1855 
1856 	ret = vmbus_add_channel_kobj(child_device_obj,
1857 				     child_device_obj->channel);
1858 	if (ret) {
1859 		pr_err("Unable to register primary channeln");
1860 		goto err_kset_unregister;
1861 	}
1862 	hv_debug_add_dev_dir(child_device_obj);
1863 
1864 	return 0;
1865 
1866 err_kset_unregister:
1867 	kset_unregister(child_device_obj->channels_kset);
1868 
1869 err_dev_unregister:
1870 	device_unregister(&child_device_obj->device);
1871 	return ret;
1872 }
1873 
1874 /*
1875  * vmbus_device_unregister - Remove the specified child device
1876  * from the vmbus.
1877  */
1878 void vmbus_device_unregister(struct hv_device *device_obj)
1879 {
1880 	pr_debug("child device %s unregistered\n",
1881 		dev_name(&device_obj->device));
1882 
1883 	kset_unregister(device_obj->channels_kset);
1884 
1885 	/*
1886 	 * Kick off the process of unregistering the device.
1887 	 * This will call vmbus_remove() and eventually vmbus_device_release()
1888 	 */
1889 	device_unregister(&device_obj->device);
1890 }
1891 
1892 
1893 /*
1894  * VMBUS is an acpi enumerated device. Get the information we
1895  * need from DSDT.
1896  */
1897 #define VTPM_BASE_ADDRESS 0xfed40000
1898 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1899 {
1900 	resource_size_t start = 0;
1901 	resource_size_t end = 0;
1902 	struct resource *new_res;
1903 	struct resource **old_res = &hyperv_mmio;
1904 	struct resource **prev_res = NULL;
1905 
1906 	switch (res->type) {
1907 
1908 	/*
1909 	 * "Address" descriptors are for bus windows. Ignore
1910 	 * "memory" descriptors, which are for registers on
1911 	 * devices.
1912 	 */
1913 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1914 		start = res->data.address32.address.minimum;
1915 		end = res->data.address32.address.maximum;
1916 		break;
1917 
1918 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1919 		start = res->data.address64.address.minimum;
1920 		end = res->data.address64.address.maximum;
1921 		break;
1922 
1923 	default:
1924 		/* Unused resource type */
1925 		return AE_OK;
1926 
1927 	}
1928 	/*
1929 	 * Ignore ranges that are below 1MB, as they're not
1930 	 * necessary or useful here.
1931 	 */
1932 	if (end < 0x100000)
1933 		return AE_OK;
1934 
1935 	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1936 	if (!new_res)
1937 		return AE_NO_MEMORY;
1938 
1939 	/* If this range overlaps the virtual TPM, truncate it. */
1940 	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1941 		end = VTPM_BASE_ADDRESS;
1942 
1943 	new_res->name = "hyperv mmio";
1944 	new_res->flags = IORESOURCE_MEM;
1945 	new_res->start = start;
1946 	new_res->end = end;
1947 
1948 	/*
1949 	 * If two ranges are adjacent, merge them.
1950 	 */
1951 	do {
1952 		if (!*old_res) {
1953 			*old_res = new_res;
1954 			break;
1955 		}
1956 
1957 		if (((*old_res)->end + 1) == new_res->start) {
1958 			(*old_res)->end = new_res->end;
1959 			kfree(new_res);
1960 			break;
1961 		}
1962 
1963 		if ((*old_res)->start == new_res->end + 1) {
1964 			(*old_res)->start = new_res->start;
1965 			kfree(new_res);
1966 			break;
1967 		}
1968 
1969 		if ((*old_res)->start > new_res->end) {
1970 			new_res->sibling = *old_res;
1971 			if (prev_res)
1972 				(*prev_res)->sibling = new_res;
1973 			*old_res = new_res;
1974 			break;
1975 		}
1976 
1977 		prev_res = old_res;
1978 		old_res = &(*old_res)->sibling;
1979 
1980 	} while (1);
1981 
1982 	return AE_OK;
1983 }
1984 
1985 static int vmbus_acpi_remove(struct acpi_device *device)
1986 {
1987 	struct resource *cur_res;
1988 	struct resource *next_res;
1989 
1990 	if (hyperv_mmio) {
1991 		if (fb_mmio) {
1992 			__release_region(hyperv_mmio, fb_mmio->start,
1993 					 resource_size(fb_mmio));
1994 			fb_mmio = NULL;
1995 		}
1996 
1997 		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1998 			next_res = cur_res->sibling;
1999 			kfree(cur_res);
2000 		}
2001 	}
2002 
2003 	return 0;
2004 }
2005 
2006 static void vmbus_reserve_fb(void)
2007 {
2008 	int size;
2009 	/*
2010 	 * Make a claim for the frame buffer in the resource tree under the
2011 	 * first node, which will be the one below 4GB.  The length seems to
2012 	 * be underreported, particularly in a Generation 1 VM.  So start out
2013 	 * reserving a larger area and make it smaller until it succeeds.
2014 	 */
2015 
2016 	if (screen_info.lfb_base) {
2017 		if (efi_enabled(EFI_BOOT))
2018 			size = max_t(__u32, screen_info.lfb_size, 0x800000);
2019 		else
2020 			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
2021 
2022 		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
2023 			fb_mmio = __request_region(hyperv_mmio,
2024 						   screen_info.lfb_base, size,
2025 						   fb_mmio_name, 0);
2026 		}
2027 	}
2028 }
2029 
2030 /**
2031  * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2032  * @new:		If successful, supplied a pointer to the
2033  *			allocated MMIO space.
2034  * @device_obj:		Identifies the caller
2035  * @min:		Minimum guest physical address of the
2036  *			allocation
2037  * @max:		Maximum guest physical address
2038  * @size:		Size of the range to be allocated
2039  * @align:		Alignment of the range to be allocated
2040  * @fb_overlap_ok:	Whether this allocation can be allowed
2041  *			to overlap the video frame buffer.
2042  *
2043  * This function walks the resources granted to VMBus by the
2044  * _CRS object in the ACPI namespace underneath the parent
2045  * "bridge" whether that's a root PCI bus in the Generation 1
2046  * case or a Module Device in the Generation 2 case.  It then
2047  * attempts to allocate from the global MMIO pool in a way that
2048  * matches the constraints supplied in these parameters and by
2049  * that _CRS.
2050  *
2051  * Return: 0 on success, -errno on failure
2052  */
2053 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2054 			resource_size_t min, resource_size_t max,
2055 			resource_size_t size, resource_size_t align,
2056 			bool fb_overlap_ok)
2057 {
2058 	struct resource *iter, *shadow;
2059 	resource_size_t range_min, range_max, start;
2060 	const char *dev_n = dev_name(&device_obj->device);
2061 	int retval;
2062 
2063 	retval = -ENXIO;
2064 	mutex_lock(&hyperv_mmio_lock);
2065 
2066 	/*
2067 	 * If overlaps with frame buffers are allowed, then first attempt to
2068 	 * make the allocation from within the reserved region.  Because it
2069 	 * is already reserved, no shadow allocation is necessary.
2070 	 */
2071 	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2072 	    !(max < fb_mmio->start)) {
2073 
2074 		range_min = fb_mmio->start;
2075 		range_max = fb_mmio->end;
2076 		start = (range_min + align - 1) & ~(align - 1);
2077 		for (; start + size - 1 <= range_max; start += align) {
2078 			*new = request_mem_region_exclusive(start, size, dev_n);
2079 			if (*new) {
2080 				retval = 0;
2081 				goto exit;
2082 			}
2083 		}
2084 	}
2085 
2086 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2087 		if ((iter->start >= max) || (iter->end <= min))
2088 			continue;
2089 
2090 		range_min = iter->start;
2091 		range_max = iter->end;
2092 		start = (range_min + align - 1) & ~(align - 1);
2093 		for (; start + size - 1 <= range_max; start += align) {
2094 			shadow = __request_region(iter, start, size, NULL,
2095 						  IORESOURCE_BUSY);
2096 			if (!shadow)
2097 				continue;
2098 
2099 			*new = request_mem_region_exclusive(start, size, dev_n);
2100 			if (*new) {
2101 				shadow->name = (char *)*new;
2102 				retval = 0;
2103 				goto exit;
2104 			}
2105 
2106 			__release_region(iter, start, size);
2107 		}
2108 	}
2109 
2110 exit:
2111 	mutex_unlock(&hyperv_mmio_lock);
2112 	return retval;
2113 }
2114 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2115 
2116 /**
2117  * vmbus_free_mmio() - Free a memory-mapped I/O range.
2118  * @start:		Base address of region to release.
2119  * @size:		Size of the range to be allocated
2120  *
2121  * This function releases anything requested by
2122  * vmbus_mmio_allocate().
2123  */
2124 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2125 {
2126 	struct resource *iter;
2127 
2128 	mutex_lock(&hyperv_mmio_lock);
2129 	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2130 		if ((iter->start >= start + size) || (iter->end <= start))
2131 			continue;
2132 
2133 		__release_region(iter, start, size);
2134 	}
2135 	release_mem_region(start, size);
2136 	mutex_unlock(&hyperv_mmio_lock);
2137 
2138 }
2139 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2140 
2141 static int vmbus_acpi_add(struct acpi_device *device)
2142 {
2143 	acpi_status result;
2144 	int ret_val = -ENODEV;
2145 	struct acpi_device *ancestor;
2146 
2147 	hv_acpi_dev = device;
2148 
2149 	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2150 					vmbus_walk_resources, NULL);
2151 
2152 	if (ACPI_FAILURE(result))
2153 		goto acpi_walk_err;
2154 	/*
2155 	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2156 	 * firmware) is the VMOD that has the mmio ranges. Get that.
2157 	 */
2158 	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2159 		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2160 					     vmbus_walk_resources, NULL);
2161 
2162 		if (ACPI_FAILURE(result))
2163 			continue;
2164 		if (hyperv_mmio) {
2165 			vmbus_reserve_fb();
2166 			break;
2167 		}
2168 	}
2169 	ret_val = 0;
2170 
2171 acpi_walk_err:
2172 	complete(&probe_event);
2173 	if (ret_val)
2174 		vmbus_acpi_remove(device);
2175 	return ret_val;
2176 }
2177 
2178 #ifdef CONFIG_PM_SLEEP
2179 static int vmbus_bus_suspend(struct device *dev)
2180 {
2181 	struct vmbus_channel *channel, *sc;
2182 	unsigned long flags;
2183 
2184 	while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
2185 		/*
2186 		 * We wait here until the completion of any channel
2187 		 * offers that are currently in progress.
2188 		 */
2189 		msleep(1);
2190 	}
2191 
2192 	mutex_lock(&vmbus_connection.channel_mutex);
2193 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2194 		if (!is_hvsock_channel(channel))
2195 			continue;
2196 
2197 		vmbus_force_channel_rescinded(channel);
2198 	}
2199 	mutex_unlock(&vmbus_connection.channel_mutex);
2200 
2201 	/*
2202 	 * Wait until all the sub-channels and hv_sock channels have been
2203 	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2204 	 * they would conflict with the new sub-channels that will be created
2205 	 * in the resume path. hv_sock channels should also be destroyed, but
2206 	 * a hv_sock channel of an established hv_sock connection can not be
2207 	 * really destroyed since it may still be referenced by the userspace
2208 	 * application, so we just force the hv_sock channel to be rescinded
2209 	 * by vmbus_force_channel_rescinded(), and the userspace application
2210 	 * will thoroughly destroy the channel after hibernation.
2211 	 *
2212 	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2213 	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2214 	 */
2215 	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2216 		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2217 
2218 	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0);
2219 
2220 	mutex_lock(&vmbus_connection.channel_mutex);
2221 
2222 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2223 		/*
2224 		 * Invalidate the field. Upon resume, vmbus_onoffer() will fix
2225 		 * up the field, and the other fields (if necessary).
2226 		 */
2227 		channel->offermsg.child_relid = INVALID_RELID;
2228 
2229 		if (is_hvsock_channel(channel)) {
2230 			if (!channel->rescind) {
2231 				pr_err("hv_sock channel not rescinded!\n");
2232 				WARN_ON_ONCE(1);
2233 			}
2234 			continue;
2235 		}
2236 
2237 		spin_lock_irqsave(&channel->lock, flags);
2238 		list_for_each_entry(sc, &channel->sc_list, sc_list) {
2239 			pr_err("Sub-channel not deleted!\n");
2240 			WARN_ON_ONCE(1);
2241 		}
2242 		spin_unlock_irqrestore(&channel->lock, flags);
2243 
2244 		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2245 	}
2246 
2247 	mutex_unlock(&vmbus_connection.channel_mutex);
2248 
2249 	vmbus_initiate_unload(false);
2250 
2251 	/* Reset the event for the next resume. */
2252 	reinit_completion(&vmbus_connection.ready_for_resume_event);
2253 
2254 	return 0;
2255 }
2256 
2257 static int vmbus_bus_resume(struct device *dev)
2258 {
2259 	struct vmbus_channel_msginfo *msginfo;
2260 	size_t msgsize;
2261 	int ret;
2262 
2263 	/*
2264 	 * We only use the 'vmbus_proto_version', which was in use before
2265 	 * hibernation, to re-negotiate with the host.
2266 	 */
2267 	if (!vmbus_proto_version) {
2268 		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2269 		return -EINVAL;
2270 	}
2271 
2272 	msgsize = sizeof(*msginfo) +
2273 		  sizeof(struct vmbus_channel_initiate_contact);
2274 
2275 	msginfo = kzalloc(msgsize, GFP_KERNEL);
2276 
2277 	if (msginfo == NULL)
2278 		return -ENOMEM;
2279 
2280 	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2281 
2282 	kfree(msginfo);
2283 
2284 	if (ret != 0)
2285 		return ret;
2286 
2287 	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2288 
2289 	vmbus_request_offers();
2290 
2291 	wait_for_completion(&vmbus_connection.ready_for_resume_event);
2292 
2293 	/* Reset the event for the next suspend. */
2294 	reinit_completion(&vmbus_connection.ready_for_suspend_event);
2295 
2296 	return 0;
2297 }
2298 #else
2299 #define vmbus_bus_suspend NULL
2300 #define vmbus_bus_resume NULL
2301 #endif /* CONFIG_PM_SLEEP */
2302 
2303 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2304 	{"VMBUS", 0},
2305 	{"VMBus", 0},
2306 	{"", 0},
2307 };
2308 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2309 
2310 /*
2311  * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2312  * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2313  * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2314  * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2315  * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2316  * resume callback must also run via the "noirq" ops.
2317  *
2318  * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2319  * earlier in this file before vmbus_pm.
2320  */
2321 
2322 static const struct dev_pm_ops vmbus_bus_pm = {
2323 	.suspend_noirq	= NULL,
2324 	.resume_noirq	= NULL,
2325 	.freeze_noirq	= vmbus_bus_suspend,
2326 	.thaw_noirq	= vmbus_bus_resume,
2327 	.poweroff_noirq	= vmbus_bus_suspend,
2328 	.restore_noirq	= vmbus_bus_resume
2329 };
2330 
2331 static struct acpi_driver vmbus_acpi_driver = {
2332 	.name = "vmbus",
2333 	.ids = vmbus_acpi_device_ids,
2334 	.ops = {
2335 		.add = vmbus_acpi_add,
2336 		.remove = vmbus_acpi_remove,
2337 	},
2338 	.drv.pm = &vmbus_bus_pm,
2339 };
2340 
2341 static void hv_kexec_handler(void)
2342 {
2343 	hv_stimer_global_cleanup();
2344 	vmbus_initiate_unload(false);
2345 	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
2346 	mb();
2347 	cpuhp_remove_state(hyperv_cpuhp_online);
2348 	hyperv_cleanup();
2349 };
2350 
2351 static void hv_crash_handler(struct pt_regs *regs)
2352 {
2353 	int cpu;
2354 
2355 	vmbus_initiate_unload(true);
2356 	/*
2357 	 * In crash handler we can't schedule synic cleanup for all CPUs,
2358 	 * doing the cleanup for current CPU only. This should be sufficient
2359 	 * for kdump.
2360 	 */
2361 	cpu = smp_processor_id();
2362 	hv_stimer_cleanup(cpu);
2363 	hv_synic_disable_regs(cpu);
2364 	hyperv_cleanup();
2365 };
2366 
2367 static int hv_synic_suspend(void)
2368 {
2369 	/*
2370 	 * When we reach here, all the non-boot CPUs have been offlined.
2371 	 * If we're in a legacy configuration where stimer Direct Mode is
2372 	 * not enabled, the stimers on the non-boot CPUs have been unbound
2373 	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2374 	 * hv_stimer_cleanup() -> clockevents_unbind_device().
2375 	 *
2376 	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2377 	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2378 	 * 1) it's unnecessary as interrupts remain disabled between
2379 	 * syscore_suspend() and syscore_resume(): see create_image() and
2380 	 * resume_target_kernel()
2381 	 * 2) the stimer on CPU0 is automatically disabled later by
2382 	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2383 	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2384 	 * 3) a warning would be triggered if we call
2385 	 * clockevents_unbind_device(), which may sleep, in an
2386 	 * interrupts-disabled context.
2387 	 */
2388 
2389 	hv_synic_disable_regs(0);
2390 
2391 	return 0;
2392 }
2393 
2394 static void hv_synic_resume(void)
2395 {
2396 	hv_synic_enable_regs(0);
2397 
2398 	/*
2399 	 * Note: we don't need to call hv_stimer_init(0), because the timer
2400 	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2401 	 * automatically re-enabled in timekeeping_resume().
2402 	 */
2403 }
2404 
2405 /* The callbacks run only on CPU0, with irqs_disabled. */
2406 static struct syscore_ops hv_synic_syscore_ops = {
2407 	.suspend = hv_synic_suspend,
2408 	.resume = hv_synic_resume,
2409 };
2410 
2411 static int __init hv_acpi_init(void)
2412 {
2413 	int ret, t;
2414 
2415 	if (!hv_is_hyperv_initialized())
2416 		return -ENODEV;
2417 
2418 	init_completion(&probe_event);
2419 
2420 	/*
2421 	 * Get ACPI resources first.
2422 	 */
2423 	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2424 
2425 	if (ret)
2426 		return ret;
2427 
2428 	t = wait_for_completion_timeout(&probe_event, 5*HZ);
2429 	if (t == 0) {
2430 		ret = -ETIMEDOUT;
2431 		goto cleanup;
2432 	}
2433 	hv_debug_init();
2434 
2435 	ret = vmbus_bus_init();
2436 	if (ret)
2437 		goto cleanup;
2438 
2439 	hv_setup_kexec_handler(hv_kexec_handler);
2440 	hv_setup_crash_handler(hv_crash_handler);
2441 
2442 	register_syscore_ops(&hv_synic_syscore_ops);
2443 
2444 	return 0;
2445 
2446 cleanup:
2447 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2448 	hv_acpi_dev = NULL;
2449 	return ret;
2450 }
2451 
2452 static void __exit vmbus_exit(void)
2453 {
2454 	int cpu;
2455 
2456 	unregister_syscore_ops(&hv_synic_syscore_ops);
2457 
2458 	hv_remove_kexec_handler();
2459 	hv_remove_crash_handler();
2460 	vmbus_connection.conn_state = DISCONNECTED;
2461 	hv_stimer_global_cleanup();
2462 	vmbus_disconnect();
2463 	hv_remove_vmbus_irq();
2464 	for_each_online_cpu(cpu) {
2465 		struct hv_per_cpu_context *hv_cpu
2466 			= per_cpu_ptr(hv_context.cpu_context, cpu);
2467 
2468 		tasklet_kill(&hv_cpu->msg_dpc);
2469 	}
2470 	hv_debug_rm_all_dir();
2471 
2472 	vmbus_free_channels();
2473 
2474 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2475 		kmsg_dump_unregister(&hv_kmsg_dumper);
2476 		unregister_die_notifier(&hyperv_die_block);
2477 		atomic_notifier_chain_unregister(&panic_notifier_list,
2478 						 &hyperv_panic_block);
2479 	}
2480 
2481 	free_page((unsigned long)hv_panic_page);
2482 	unregister_sysctl_table(hv_ctl_table_hdr);
2483 	hv_ctl_table_hdr = NULL;
2484 	bus_unregister(&hv_bus);
2485 
2486 	cpuhp_remove_state(hyperv_cpuhp_online);
2487 	hv_synic_free();
2488 	acpi_bus_unregister_driver(&vmbus_acpi_driver);
2489 }
2490 
2491 
2492 MODULE_LICENSE("GPL");
2493 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2494 
2495 subsys_initcall(hv_acpi_init);
2496 module_exit(vmbus_exit);
2497