1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 15 * Place - Suite 330, Boston, MA 02111-1307 USA. 16 * 17 * Authors: 18 * Haiyang Zhang <haiyangz@microsoft.com> 19 * Hank Janssen <hjanssen@microsoft.com> 20 * K. Y. Srinivasan <kys@microsoft.com> 21 * 22 */ 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/device.h> 28 #include <linux/interrupt.h> 29 #include <linux/sysctl.h> 30 #include <linux/slab.h> 31 #include <linux/acpi.h> 32 #include <linux/completion.h> 33 #include <linux/hyperv.h> 34 #include <linux/kernel_stat.h> 35 #include <linux/clockchips.h> 36 #include <linux/cpu.h> 37 #include <asm/hyperv.h> 38 #include <asm/hypervisor.h> 39 #include <asm/mshyperv.h> 40 #include <linux/notifier.h> 41 #include <linux/ptrace.h> 42 #include <linux/screen_info.h> 43 #include <linux/kdebug.h> 44 #include <linux/efi.h> 45 #include "hyperv_vmbus.h" 46 47 static struct acpi_device *hv_acpi_dev; 48 49 static struct completion probe_event; 50 51 52 static void hyperv_report_panic(struct pt_regs *regs) 53 { 54 static bool panic_reported; 55 56 /* 57 * We prefer to report panic on 'die' chain as we have proper 58 * registers to report, but if we miss it (e.g. on BUG()) we need 59 * to report it on 'panic'. 60 */ 61 if (panic_reported) 62 return; 63 panic_reported = true; 64 65 wrmsrl(HV_X64_MSR_CRASH_P0, regs->ip); 66 wrmsrl(HV_X64_MSR_CRASH_P1, regs->ax); 67 wrmsrl(HV_X64_MSR_CRASH_P2, regs->bx); 68 wrmsrl(HV_X64_MSR_CRASH_P3, regs->cx); 69 wrmsrl(HV_X64_MSR_CRASH_P4, regs->dx); 70 71 /* 72 * Let Hyper-V know there is crash data available 73 */ 74 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY); 75 } 76 77 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val, 78 void *args) 79 { 80 struct pt_regs *regs; 81 82 regs = current_pt_regs(); 83 84 hyperv_report_panic(regs); 85 return NOTIFY_DONE; 86 } 87 88 static int hyperv_die_event(struct notifier_block *nb, unsigned long val, 89 void *args) 90 { 91 struct die_args *die = (struct die_args *)args; 92 struct pt_regs *regs = die->regs; 93 94 hyperv_report_panic(regs); 95 return NOTIFY_DONE; 96 } 97 98 static struct notifier_block hyperv_die_block = { 99 .notifier_call = hyperv_die_event, 100 }; 101 static struct notifier_block hyperv_panic_block = { 102 .notifier_call = hyperv_panic_event, 103 }; 104 105 static const char *fb_mmio_name = "fb_range"; 106 static struct resource *fb_mmio; 107 struct resource *hyperv_mmio; 108 DEFINE_SEMAPHORE(hyperv_mmio_lock); 109 110 static int vmbus_exists(void) 111 { 112 if (hv_acpi_dev == NULL) 113 return -ENODEV; 114 115 return 0; 116 } 117 118 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2) 119 static void print_alias_name(struct hv_device *hv_dev, char *alias_name) 120 { 121 int i; 122 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2) 123 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]); 124 } 125 126 static u8 channel_monitor_group(struct vmbus_channel *channel) 127 { 128 return (u8)channel->offermsg.monitorid / 32; 129 } 130 131 static u8 channel_monitor_offset(struct vmbus_channel *channel) 132 { 133 return (u8)channel->offermsg.monitorid % 32; 134 } 135 136 static u32 channel_pending(struct vmbus_channel *channel, 137 struct hv_monitor_page *monitor_page) 138 { 139 u8 monitor_group = channel_monitor_group(channel); 140 return monitor_page->trigger_group[monitor_group].pending; 141 } 142 143 static u32 channel_latency(struct vmbus_channel *channel, 144 struct hv_monitor_page *monitor_page) 145 { 146 u8 monitor_group = channel_monitor_group(channel); 147 u8 monitor_offset = channel_monitor_offset(channel); 148 return monitor_page->latency[monitor_group][monitor_offset]; 149 } 150 151 static u32 channel_conn_id(struct vmbus_channel *channel, 152 struct hv_monitor_page *monitor_page) 153 { 154 u8 monitor_group = channel_monitor_group(channel); 155 u8 monitor_offset = channel_monitor_offset(channel); 156 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id; 157 } 158 159 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr, 160 char *buf) 161 { 162 struct hv_device *hv_dev = device_to_hv_device(dev); 163 164 if (!hv_dev->channel) 165 return -ENODEV; 166 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid); 167 } 168 static DEVICE_ATTR_RO(id); 169 170 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr, 171 char *buf) 172 { 173 struct hv_device *hv_dev = device_to_hv_device(dev); 174 175 if (!hv_dev->channel) 176 return -ENODEV; 177 return sprintf(buf, "%d\n", hv_dev->channel->state); 178 } 179 static DEVICE_ATTR_RO(state); 180 181 static ssize_t monitor_id_show(struct device *dev, 182 struct device_attribute *dev_attr, char *buf) 183 { 184 struct hv_device *hv_dev = device_to_hv_device(dev); 185 186 if (!hv_dev->channel) 187 return -ENODEV; 188 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid); 189 } 190 static DEVICE_ATTR_RO(monitor_id); 191 192 static ssize_t class_id_show(struct device *dev, 193 struct device_attribute *dev_attr, char *buf) 194 { 195 struct hv_device *hv_dev = device_to_hv_device(dev); 196 197 if (!hv_dev->channel) 198 return -ENODEV; 199 return sprintf(buf, "{%pUl}\n", 200 hv_dev->channel->offermsg.offer.if_type.b); 201 } 202 static DEVICE_ATTR_RO(class_id); 203 204 static ssize_t device_id_show(struct device *dev, 205 struct device_attribute *dev_attr, char *buf) 206 { 207 struct hv_device *hv_dev = device_to_hv_device(dev); 208 209 if (!hv_dev->channel) 210 return -ENODEV; 211 return sprintf(buf, "{%pUl}\n", 212 hv_dev->channel->offermsg.offer.if_instance.b); 213 } 214 static DEVICE_ATTR_RO(device_id); 215 216 static ssize_t modalias_show(struct device *dev, 217 struct device_attribute *dev_attr, char *buf) 218 { 219 struct hv_device *hv_dev = device_to_hv_device(dev); 220 char alias_name[VMBUS_ALIAS_LEN + 1]; 221 222 print_alias_name(hv_dev, alias_name); 223 return sprintf(buf, "vmbus:%s\n", alias_name); 224 } 225 static DEVICE_ATTR_RO(modalias); 226 227 static ssize_t server_monitor_pending_show(struct device *dev, 228 struct device_attribute *dev_attr, 229 char *buf) 230 { 231 struct hv_device *hv_dev = device_to_hv_device(dev); 232 233 if (!hv_dev->channel) 234 return -ENODEV; 235 return sprintf(buf, "%d\n", 236 channel_pending(hv_dev->channel, 237 vmbus_connection.monitor_pages[1])); 238 } 239 static DEVICE_ATTR_RO(server_monitor_pending); 240 241 static ssize_t client_monitor_pending_show(struct device *dev, 242 struct device_attribute *dev_attr, 243 char *buf) 244 { 245 struct hv_device *hv_dev = device_to_hv_device(dev); 246 247 if (!hv_dev->channel) 248 return -ENODEV; 249 return sprintf(buf, "%d\n", 250 channel_pending(hv_dev->channel, 251 vmbus_connection.monitor_pages[1])); 252 } 253 static DEVICE_ATTR_RO(client_monitor_pending); 254 255 static ssize_t server_monitor_latency_show(struct device *dev, 256 struct device_attribute *dev_attr, 257 char *buf) 258 { 259 struct hv_device *hv_dev = device_to_hv_device(dev); 260 261 if (!hv_dev->channel) 262 return -ENODEV; 263 return sprintf(buf, "%d\n", 264 channel_latency(hv_dev->channel, 265 vmbus_connection.monitor_pages[0])); 266 } 267 static DEVICE_ATTR_RO(server_monitor_latency); 268 269 static ssize_t client_monitor_latency_show(struct device *dev, 270 struct device_attribute *dev_attr, 271 char *buf) 272 { 273 struct hv_device *hv_dev = device_to_hv_device(dev); 274 275 if (!hv_dev->channel) 276 return -ENODEV; 277 return sprintf(buf, "%d\n", 278 channel_latency(hv_dev->channel, 279 vmbus_connection.monitor_pages[1])); 280 } 281 static DEVICE_ATTR_RO(client_monitor_latency); 282 283 static ssize_t server_monitor_conn_id_show(struct device *dev, 284 struct device_attribute *dev_attr, 285 char *buf) 286 { 287 struct hv_device *hv_dev = device_to_hv_device(dev); 288 289 if (!hv_dev->channel) 290 return -ENODEV; 291 return sprintf(buf, "%d\n", 292 channel_conn_id(hv_dev->channel, 293 vmbus_connection.monitor_pages[0])); 294 } 295 static DEVICE_ATTR_RO(server_monitor_conn_id); 296 297 static ssize_t client_monitor_conn_id_show(struct device *dev, 298 struct device_attribute *dev_attr, 299 char *buf) 300 { 301 struct hv_device *hv_dev = device_to_hv_device(dev); 302 303 if (!hv_dev->channel) 304 return -ENODEV; 305 return sprintf(buf, "%d\n", 306 channel_conn_id(hv_dev->channel, 307 vmbus_connection.monitor_pages[1])); 308 } 309 static DEVICE_ATTR_RO(client_monitor_conn_id); 310 311 static ssize_t out_intr_mask_show(struct device *dev, 312 struct device_attribute *dev_attr, char *buf) 313 { 314 struct hv_device *hv_dev = device_to_hv_device(dev); 315 struct hv_ring_buffer_debug_info outbound; 316 317 if (!hv_dev->channel) 318 return -ENODEV; 319 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 320 return sprintf(buf, "%d\n", outbound.current_interrupt_mask); 321 } 322 static DEVICE_ATTR_RO(out_intr_mask); 323 324 static ssize_t out_read_index_show(struct device *dev, 325 struct device_attribute *dev_attr, char *buf) 326 { 327 struct hv_device *hv_dev = device_to_hv_device(dev); 328 struct hv_ring_buffer_debug_info outbound; 329 330 if (!hv_dev->channel) 331 return -ENODEV; 332 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 333 return sprintf(buf, "%d\n", outbound.current_read_index); 334 } 335 static DEVICE_ATTR_RO(out_read_index); 336 337 static ssize_t out_write_index_show(struct device *dev, 338 struct device_attribute *dev_attr, 339 char *buf) 340 { 341 struct hv_device *hv_dev = device_to_hv_device(dev); 342 struct hv_ring_buffer_debug_info outbound; 343 344 if (!hv_dev->channel) 345 return -ENODEV; 346 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 347 return sprintf(buf, "%d\n", outbound.current_write_index); 348 } 349 static DEVICE_ATTR_RO(out_write_index); 350 351 static ssize_t out_read_bytes_avail_show(struct device *dev, 352 struct device_attribute *dev_attr, 353 char *buf) 354 { 355 struct hv_device *hv_dev = device_to_hv_device(dev); 356 struct hv_ring_buffer_debug_info outbound; 357 358 if (!hv_dev->channel) 359 return -ENODEV; 360 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 361 return sprintf(buf, "%d\n", outbound.bytes_avail_toread); 362 } 363 static DEVICE_ATTR_RO(out_read_bytes_avail); 364 365 static ssize_t out_write_bytes_avail_show(struct device *dev, 366 struct device_attribute *dev_attr, 367 char *buf) 368 { 369 struct hv_device *hv_dev = device_to_hv_device(dev); 370 struct hv_ring_buffer_debug_info outbound; 371 372 if (!hv_dev->channel) 373 return -ENODEV; 374 hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound); 375 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite); 376 } 377 static DEVICE_ATTR_RO(out_write_bytes_avail); 378 379 static ssize_t in_intr_mask_show(struct device *dev, 380 struct device_attribute *dev_attr, char *buf) 381 { 382 struct hv_device *hv_dev = device_to_hv_device(dev); 383 struct hv_ring_buffer_debug_info inbound; 384 385 if (!hv_dev->channel) 386 return -ENODEV; 387 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 388 return sprintf(buf, "%d\n", inbound.current_interrupt_mask); 389 } 390 static DEVICE_ATTR_RO(in_intr_mask); 391 392 static ssize_t in_read_index_show(struct device *dev, 393 struct device_attribute *dev_attr, char *buf) 394 { 395 struct hv_device *hv_dev = device_to_hv_device(dev); 396 struct hv_ring_buffer_debug_info inbound; 397 398 if (!hv_dev->channel) 399 return -ENODEV; 400 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 401 return sprintf(buf, "%d\n", inbound.current_read_index); 402 } 403 static DEVICE_ATTR_RO(in_read_index); 404 405 static ssize_t in_write_index_show(struct device *dev, 406 struct device_attribute *dev_attr, char *buf) 407 { 408 struct hv_device *hv_dev = device_to_hv_device(dev); 409 struct hv_ring_buffer_debug_info inbound; 410 411 if (!hv_dev->channel) 412 return -ENODEV; 413 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 414 return sprintf(buf, "%d\n", inbound.current_write_index); 415 } 416 static DEVICE_ATTR_RO(in_write_index); 417 418 static ssize_t in_read_bytes_avail_show(struct device *dev, 419 struct device_attribute *dev_attr, 420 char *buf) 421 { 422 struct hv_device *hv_dev = device_to_hv_device(dev); 423 struct hv_ring_buffer_debug_info inbound; 424 425 if (!hv_dev->channel) 426 return -ENODEV; 427 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 428 return sprintf(buf, "%d\n", inbound.bytes_avail_toread); 429 } 430 static DEVICE_ATTR_RO(in_read_bytes_avail); 431 432 static ssize_t in_write_bytes_avail_show(struct device *dev, 433 struct device_attribute *dev_attr, 434 char *buf) 435 { 436 struct hv_device *hv_dev = device_to_hv_device(dev); 437 struct hv_ring_buffer_debug_info inbound; 438 439 if (!hv_dev->channel) 440 return -ENODEV; 441 hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound); 442 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite); 443 } 444 static DEVICE_ATTR_RO(in_write_bytes_avail); 445 446 static ssize_t channel_vp_mapping_show(struct device *dev, 447 struct device_attribute *dev_attr, 448 char *buf) 449 { 450 struct hv_device *hv_dev = device_to_hv_device(dev); 451 struct vmbus_channel *channel = hv_dev->channel, *cur_sc; 452 unsigned long flags; 453 int buf_size = PAGE_SIZE, n_written, tot_written; 454 struct list_head *cur; 455 456 if (!channel) 457 return -ENODEV; 458 459 tot_written = snprintf(buf, buf_size, "%u:%u\n", 460 channel->offermsg.child_relid, channel->target_cpu); 461 462 spin_lock_irqsave(&channel->lock, flags); 463 464 list_for_each(cur, &channel->sc_list) { 465 if (tot_written >= buf_size - 1) 466 break; 467 468 cur_sc = list_entry(cur, struct vmbus_channel, sc_list); 469 n_written = scnprintf(buf + tot_written, 470 buf_size - tot_written, 471 "%u:%u\n", 472 cur_sc->offermsg.child_relid, 473 cur_sc->target_cpu); 474 tot_written += n_written; 475 } 476 477 spin_unlock_irqrestore(&channel->lock, flags); 478 479 return tot_written; 480 } 481 static DEVICE_ATTR_RO(channel_vp_mapping); 482 483 static ssize_t vendor_show(struct device *dev, 484 struct device_attribute *dev_attr, 485 char *buf) 486 { 487 struct hv_device *hv_dev = device_to_hv_device(dev); 488 return sprintf(buf, "0x%x\n", hv_dev->vendor_id); 489 } 490 static DEVICE_ATTR_RO(vendor); 491 492 static ssize_t device_show(struct device *dev, 493 struct device_attribute *dev_attr, 494 char *buf) 495 { 496 struct hv_device *hv_dev = device_to_hv_device(dev); 497 return sprintf(buf, "0x%x\n", hv_dev->device_id); 498 } 499 static DEVICE_ATTR_RO(device); 500 501 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */ 502 static struct attribute *vmbus_attrs[] = { 503 &dev_attr_id.attr, 504 &dev_attr_state.attr, 505 &dev_attr_monitor_id.attr, 506 &dev_attr_class_id.attr, 507 &dev_attr_device_id.attr, 508 &dev_attr_modalias.attr, 509 &dev_attr_server_monitor_pending.attr, 510 &dev_attr_client_monitor_pending.attr, 511 &dev_attr_server_monitor_latency.attr, 512 &dev_attr_client_monitor_latency.attr, 513 &dev_attr_server_monitor_conn_id.attr, 514 &dev_attr_client_monitor_conn_id.attr, 515 &dev_attr_out_intr_mask.attr, 516 &dev_attr_out_read_index.attr, 517 &dev_attr_out_write_index.attr, 518 &dev_attr_out_read_bytes_avail.attr, 519 &dev_attr_out_write_bytes_avail.attr, 520 &dev_attr_in_intr_mask.attr, 521 &dev_attr_in_read_index.attr, 522 &dev_attr_in_write_index.attr, 523 &dev_attr_in_read_bytes_avail.attr, 524 &dev_attr_in_write_bytes_avail.attr, 525 &dev_attr_channel_vp_mapping.attr, 526 &dev_attr_vendor.attr, 527 &dev_attr_device.attr, 528 NULL, 529 }; 530 ATTRIBUTE_GROUPS(vmbus); 531 532 /* 533 * vmbus_uevent - add uevent for our device 534 * 535 * This routine is invoked when a device is added or removed on the vmbus to 536 * generate a uevent to udev in the userspace. The udev will then look at its 537 * rule and the uevent generated here to load the appropriate driver 538 * 539 * The alias string will be of the form vmbus:guid where guid is the string 540 * representation of the device guid (each byte of the guid will be 541 * represented with two hex characters. 542 */ 543 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env) 544 { 545 struct hv_device *dev = device_to_hv_device(device); 546 int ret; 547 char alias_name[VMBUS_ALIAS_LEN + 1]; 548 549 print_alias_name(dev, alias_name); 550 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name); 551 return ret; 552 } 553 554 static const uuid_le null_guid; 555 556 static inline bool is_null_guid(const uuid_le *guid) 557 { 558 if (uuid_le_cmp(*guid, null_guid)) 559 return false; 560 return true; 561 } 562 563 /* 564 * Return a matching hv_vmbus_device_id pointer. 565 * If there is no match, return NULL. 566 */ 567 static const struct hv_vmbus_device_id *hv_vmbus_get_id( 568 const struct hv_vmbus_device_id *id, 569 const uuid_le *guid) 570 { 571 for (; !is_null_guid(&id->guid); id++) 572 if (!uuid_le_cmp(id->guid, *guid)) 573 return id; 574 575 return NULL; 576 } 577 578 579 580 /* 581 * vmbus_match - Attempt to match the specified device to the specified driver 582 */ 583 static int vmbus_match(struct device *device, struct device_driver *driver) 584 { 585 struct hv_driver *drv = drv_to_hv_drv(driver); 586 struct hv_device *hv_dev = device_to_hv_device(device); 587 588 /* The hv_sock driver handles all hv_sock offers. */ 589 if (is_hvsock_channel(hv_dev->channel)) 590 return drv->hvsock; 591 592 if (hv_vmbus_get_id(drv->id_table, &hv_dev->dev_type)) 593 return 1; 594 595 return 0; 596 } 597 598 /* 599 * vmbus_probe - Add the new vmbus's child device 600 */ 601 static int vmbus_probe(struct device *child_device) 602 { 603 int ret = 0; 604 struct hv_driver *drv = 605 drv_to_hv_drv(child_device->driver); 606 struct hv_device *dev = device_to_hv_device(child_device); 607 const struct hv_vmbus_device_id *dev_id; 608 609 dev_id = hv_vmbus_get_id(drv->id_table, &dev->dev_type); 610 if (drv->probe) { 611 ret = drv->probe(dev, dev_id); 612 if (ret != 0) 613 pr_err("probe failed for device %s (%d)\n", 614 dev_name(child_device), ret); 615 616 } else { 617 pr_err("probe not set for driver %s\n", 618 dev_name(child_device)); 619 ret = -ENODEV; 620 } 621 return ret; 622 } 623 624 /* 625 * vmbus_remove - Remove a vmbus device 626 */ 627 static int vmbus_remove(struct device *child_device) 628 { 629 struct hv_driver *drv; 630 struct hv_device *dev = device_to_hv_device(child_device); 631 632 if (child_device->driver) { 633 drv = drv_to_hv_drv(child_device->driver); 634 if (drv->remove) 635 drv->remove(dev); 636 } 637 638 return 0; 639 } 640 641 642 /* 643 * vmbus_shutdown - Shutdown a vmbus device 644 */ 645 static void vmbus_shutdown(struct device *child_device) 646 { 647 struct hv_driver *drv; 648 struct hv_device *dev = device_to_hv_device(child_device); 649 650 651 /* The device may not be attached yet */ 652 if (!child_device->driver) 653 return; 654 655 drv = drv_to_hv_drv(child_device->driver); 656 657 if (drv->shutdown) 658 drv->shutdown(dev); 659 660 return; 661 } 662 663 664 /* 665 * vmbus_device_release - Final callback release of the vmbus child device 666 */ 667 static void vmbus_device_release(struct device *device) 668 { 669 struct hv_device *hv_dev = device_to_hv_device(device); 670 struct vmbus_channel *channel = hv_dev->channel; 671 672 hv_process_channel_removal(channel, 673 channel->offermsg.child_relid); 674 kfree(hv_dev); 675 676 } 677 678 /* The one and only one */ 679 static struct bus_type hv_bus = { 680 .name = "vmbus", 681 .match = vmbus_match, 682 .shutdown = vmbus_shutdown, 683 .remove = vmbus_remove, 684 .probe = vmbus_probe, 685 .uevent = vmbus_uevent, 686 .dev_groups = vmbus_groups, 687 }; 688 689 struct onmessage_work_context { 690 struct work_struct work; 691 struct hv_message msg; 692 }; 693 694 static void vmbus_onmessage_work(struct work_struct *work) 695 { 696 struct onmessage_work_context *ctx; 697 698 /* Do not process messages if we're in DISCONNECTED state */ 699 if (vmbus_connection.conn_state == DISCONNECTED) 700 return; 701 702 ctx = container_of(work, struct onmessage_work_context, 703 work); 704 vmbus_onmessage(&ctx->msg); 705 kfree(ctx); 706 } 707 708 static void hv_process_timer_expiration(struct hv_message *msg, int cpu) 709 { 710 struct clock_event_device *dev = hv_context.clk_evt[cpu]; 711 712 if (dev->event_handler) 713 dev->event_handler(dev); 714 715 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED); 716 } 717 718 void vmbus_on_msg_dpc(unsigned long data) 719 { 720 int cpu = smp_processor_id(); 721 void *page_addr = hv_context.synic_message_page[cpu]; 722 struct hv_message *msg = (struct hv_message *)page_addr + 723 VMBUS_MESSAGE_SINT; 724 struct vmbus_channel_message_header *hdr; 725 struct vmbus_channel_message_table_entry *entry; 726 struct onmessage_work_context *ctx; 727 u32 message_type = msg->header.message_type; 728 729 if (message_type == HVMSG_NONE) 730 /* no msg */ 731 return; 732 733 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 734 735 if (hdr->msgtype >= CHANNELMSG_COUNT) { 736 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype); 737 goto msg_handled; 738 } 739 740 entry = &channel_message_table[hdr->msgtype]; 741 if (entry->handler_type == VMHT_BLOCKING) { 742 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 743 if (ctx == NULL) 744 return; 745 746 INIT_WORK(&ctx->work, vmbus_onmessage_work); 747 memcpy(&ctx->msg, msg, sizeof(*msg)); 748 749 queue_work(vmbus_connection.work_queue, &ctx->work); 750 } else 751 entry->message_handler(hdr); 752 753 msg_handled: 754 vmbus_signal_eom(msg, message_type); 755 } 756 757 static void vmbus_isr(void) 758 { 759 int cpu = smp_processor_id(); 760 void *page_addr; 761 struct hv_message *msg; 762 union hv_synic_event_flags *event; 763 bool handled = false; 764 765 page_addr = hv_context.synic_event_page[cpu]; 766 if (page_addr == NULL) 767 return; 768 769 event = (union hv_synic_event_flags *)page_addr + 770 VMBUS_MESSAGE_SINT; 771 /* 772 * Check for events before checking for messages. This is the order 773 * in which events and messages are checked in Windows guests on 774 * Hyper-V, and the Windows team suggested we do the same. 775 */ 776 777 if ((vmbus_proto_version == VERSION_WS2008) || 778 (vmbus_proto_version == VERSION_WIN7)) { 779 780 /* Since we are a child, we only need to check bit 0 */ 781 if (sync_test_and_clear_bit(0, 782 (unsigned long *) &event->flags32[0])) { 783 handled = true; 784 } 785 } else { 786 /* 787 * Our host is win8 or above. The signaling mechanism 788 * has changed and we can directly look at the event page. 789 * If bit n is set then we have an interrup on the channel 790 * whose id is n. 791 */ 792 handled = true; 793 } 794 795 if (handled) 796 tasklet_schedule(hv_context.event_dpc[cpu]); 797 798 799 page_addr = hv_context.synic_message_page[cpu]; 800 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 801 802 /* Check if there are actual msgs to be processed */ 803 if (msg->header.message_type != HVMSG_NONE) { 804 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) 805 hv_process_timer_expiration(msg, cpu); 806 else 807 tasklet_schedule(hv_context.msg_dpc[cpu]); 808 } 809 } 810 811 812 /* 813 * vmbus_bus_init -Main vmbus driver initialization routine. 814 * 815 * Here, we 816 * - initialize the vmbus driver context 817 * - invoke the vmbus hv main init routine 818 * - retrieve the channel offers 819 */ 820 static int vmbus_bus_init(void) 821 { 822 int ret; 823 824 /* Hypervisor initialization...setup hypercall page..etc */ 825 ret = hv_init(); 826 if (ret != 0) { 827 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret); 828 return ret; 829 } 830 831 ret = bus_register(&hv_bus); 832 if (ret) 833 goto err_cleanup; 834 835 hv_setup_vmbus_irq(vmbus_isr); 836 837 ret = hv_synic_alloc(); 838 if (ret) 839 goto err_alloc; 840 /* 841 * Initialize the per-cpu interrupt state and 842 * connect to the host. 843 */ 844 on_each_cpu(hv_synic_init, NULL, 1); 845 ret = vmbus_connect(); 846 if (ret) 847 goto err_connect; 848 849 if (vmbus_proto_version > VERSION_WIN7) 850 cpu_hotplug_disable(); 851 852 /* 853 * Only register if the crash MSRs are available 854 */ 855 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 856 register_die_notifier(&hyperv_die_block); 857 atomic_notifier_chain_register(&panic_notifier_list, 858 &hyperv_panic_block); 859 } 860 861 vmbus_request_offers(); 862 863 return 0; 864 865 err_connect: 866 on_each_cpu(hv_synic_cleanup, NULL, 1); 867 err_alloc: 868 hv_synic_free(); 869 hv_remove_vmbus_irq(); 870 871 bus_unregister(&hv_bus); 872 873 err_cleanup: 874 hv_cleanup(); 875 876 return ret; 877 } 878 879 /** 880 * __vmbus_child_driver_register() - Register a vmbus's driver 881 * @hv_driver: Pointer to driver structure you want to register 882 * @owner: owner module of the drv 883 * @mod_name: module name string 884 * 885 * Registers the given driver with Linux through the 'driver_register()' call 886 * and sets up the hyper-v vmbus handling for this driver. 887 * It will return the state of the 'driver_register()' call. 888 * 889 */ 890 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name) 891 { 892 int ret; 893 894 pr_info("registering driver %s\n", hv_driver->name); 895 896 ret = vmbus_exists(); 897 if (ret < 0) 898 return ret; 899 900 hv_driver->driver.name = hv_driver->name; 901 hv_driver->driver.owner = owner; 902 hv_driver->driver.mod_name = mod_name; 903 hv_driver->driver.bus = &hv_bus; 904 905 ret = driver_register(&hv_driver->driver); 906 907 return ret; 908 } 909 EXPORT_SYMBOL_GPL(__vmbus_driver_register); 910 911 /** 912 * vmbus_driver_unregister() - Unregister a vmbus's driver 913 * @hv_driver: Pointer to driver structure you want to 914 * un-register 915 * 916 * Un-register the given driver that was previous registered with a call to 917 * vmbus_driver_register() 918 */ 919 void vmbus_driver_unregister(struct hv_driver *hv_driver) 920 { 921 pr_info("unregistering driver %s\n", hv_driver->name); 922 923 if (!vmbus_exists()) 924 driver_unregister(&hv_driver->driver); 925 } 926 EXPORT_SYMBOL_GPL(vmbus_driver_unregister); 927 928 /* 929 * vmbus_device_create - Creates and registers a new child device 930 * on the vmbus. 931 */ 932 struct hv_device *vmbus_device_create(const uuid_le *type, 933 const uuid_le *instance, 934 struct vmbus_channel *channel) 935 { 936 struct hv_device *child_device_obj; 937 938 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL); 939 if (!child_device_obj) { 940 pr_err("Unable to allocate device object for child device\n"); 941 return NULL; 942 } 943 944 child_device_obj->channel = channel; 945 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le)); 946 memcpy(&child_device_obj->dev_instance, instance, 947 sizeof(uuid_le)); 948 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */ 949 950 951 return child_device_obj; 952 } 953 954 /* 955 * vmbus_device_register - Register the child device 956 */ 957 int vmbus_device_register(struct hv_device *child_device_obj) 958 { 959 int ret = 0; 960 961 dev_set_name(&child_device_obj->device, "vmbus_%d", 962 child_device_obj->channel->id); 963 964 child_device_obj->device.bus = &hv_bus; 965 child_device_obj->device.parent = &hv_acpi_dev->dev; 966 child_device_obj->device.release = vmbus_device_release; 967 968 /* 969 * Register with the LDM. This will kick off the driver/device 970 * binding...which will eventually call vmbus_match() and vmbus_probe() 971 */ 972 ret = device_register(&child_device_obj->device); 973 974 if (ret) 975 pr_err("Unable to register child device\n"); 976 else 977 pr_debug("child device %s registered\n", 978 dev_name(&child_device_obj->device)); 979 980 return ret; 981 } 982 983 /* 984 * vmbus_device_unregister - Remove the specified child device 985 * from the vmbus. 986 */ 987 void vmbus_device_unregister(struct hv_device *device_obj) 988 { 989 pr_debug("child device %s unregistered\n", 990 dev_name(&device_obj->device)); 991 992 /* 993 * Kick off the process of unregistering the device. 994 * This will call vmbus_remove() and eventually vmbus_device_release() 995 */ 996 device_unregister(&device_obj->device); 997 } 998 999 1000 /* 1001 * VMBUS is an acpi enumerated device. Get the information we 1002 * need from DSDT. 1003 */ 1004 #define VTPM_BASE_ADDRESS 0xfed40000 1005 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx) 1006 { 1007 resource_size_t start = 0; 1008 resource_size_t end = 0; 1009 struct resource *new_res; 1010 struct resource **old_res = &hyperv_mmio; 1011 struct resource **prev_res = NULL; 1012 1013 switch (res->type) { 1014 1015 /* 1016 * "Address" descriptors are for bus windows. Ignore 1017 * "memory" descriptors, which are for registers on 1018 * devices. 1019 */ 1020 case ACPI_RESOURCE_TYPE_ADDRESS32: 1021 start = res->data.address32.address.minimum; 1022 end = res->data.address32.address.maximum; 1023 break; 1024 1025 case ACPI_RESOURCE_TYPE_ADDRESS64: 1026 start = res->data.address64.address.minimum; 1027 end = res->data.address64.address.maximum; 1028 break; 1029 1030 default: 1031 /* Unused resource type */ 1032 return AE_OK; 1033 1034 } 1035 /* 1036 * Ignore ranges that are below 1MB, as they're not 1037 * necessary or useful here. 1038 */ 1039 if (end < 0x100000) 1040 return AE_OK; 1041 1042 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC); 1043 if (!new_res) 1044 return AE_NO_MEMORY; 1045 1046 /* If this range overlaps the virtual TPM, truncate it. */ 1047 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS) 1048 end = VTPM_BASE_ADDRESS; 1049 1050 new_res->name = "hyperv mmio"; 1051 new_res->flags = IORESOURCE_MEM; 1052 new_res->start = start; 1053 new_res->end = end; 1054 1055 /* 1056 * If two ranges are adjacent, merge them. 1057 */ 1058 do { 1059 if (!*old_res) { 1060 *old_res = new_res; 1061 break; 1062 } 1063 1064 if (((*old_res)->end + 1) == new_res->start) { 1065 (*old_res)->end = new_res->end; 1066 kfree(new_res); 1067 break; 1068 } 1069 1070 if ((*old_res)->start == new_res->end + 1) { 1071 (*old_res)->start = new_res->start; 1072 kfree(new_res); 1073 break; 1074 } 1075 1076 if ((*old_res)->start > new_res->end) { 1077 new_res->sibling = *old_res; 1078 if (prev_res) 1079 (*prev_res)->sibling = new_res; 1080 *old_res = new_res; 1081 break; 1082 } 1083 1084 prev_res = old_res; 1085 old_res = &(*old_res)->sibling; 1086 1087 } while (1); 1088 1089 return AE_OK; 1090 } 1091 1092 static int vmbus_acpi_remove(struct acpi_device *device) 1093 { 1094 struct resource *cur_res; 1095 struct resource *next_res; 1096 1097 if (hyperv_mmio) { 1098 if (fb_mmio) { 1099 __release_region(hyperv_mmio, fb_mmio->start, 1100 resource_size(fb_mmio)); 1101 fb_mmio = NULL; 1102 } 1103 1104 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) { 1105 next_res = cur_res->sibling; 1106 kfree(cur_res); 1107 } 1108 } 1109 1110 return 0; 1111 } 1112 1113 static void vmbus_reserve_fb(void) 1114 { 1115 int size; 1116 /* 1117 * Make a claim for the frame buffer in the resource tree under the 1118 * first node, which will be the one below 4GB. The length seems to 1119 * be underreported, particularly in a Generation 1 VM. So start out 1120 * reserving a larger area and make it smaller until it succeeds. 1121 */ 1122 1123 if (screen_info.lfb_base) { 1124 if (efi_enabled(EFI_BOOT)) 1125 size = max_t(__u32, screen_info.lfb_size, 0x800000); 1126 else 1127 size = max_t(__u32, screen_info.lfb_size, 0x4000000); 1128 1129 for (; !fb_mmio && (size >= 0x100000); size >>= 1) { 1130 fb_mmio = __request_region(hyperv_mmio, 1131 screen_info.lfb_base, size, 1132 fb_mmio_name, 0); 1133 } 1134 } 1135 } 1136 1137 /** 1138 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range. 1139 * @new: If successful, supplied a pointer to the 1140 * allocated MMIO space. 1141 * @device_obj: Identifies the caller 1142 * @min: Minimum guest physical address of the 1143 * allocation 1144 * @max: Maximum guest physical address 1145 * @size: Size of the range to be allocated 1146 * @align: Alignment of the range to be allocated 1147 * @fb_overlap_ok: Whether this allocation can be allowed 1148 * to overlap the video frame buffer. 1149 * 1150 * This function walks the resources granted to VMBus by the 1151 * _CRS object in the ACPI namespace underneath the parent 1152 * "bridge" whether that's a root PCI bus in the Generation 1 1153 * case or a Module Device in the Generation 2 case. It then 1154 * attempts to allocate from the global MMIO pool in a way that 1155 * matches the constraints supplied in these parameters and by 1156 * that _CRS. 1157 * 1158 * Return: 0 on success, -errno on failure 1159 */ 1160 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1161 resource_size_t min, resource_size_t max, 1162 resource_size_t size, resource_size_t align, 1163 bool fb_overlap_ok) 1164 { 1165 struct resource *iter, *shadow; 1166 resource_size_t range_min, range_max, start; 1167 const char *dev_n = dev_name(&device_obj->device); 1168 int retval; 1169 1170 retval = -ENXIO; 1171 down(&hyperv_mmio_lock); 1172 1173 /* 1174 * If overlaps with frame buffers are allowed, then first attempt to 1175 * make the allocation from within the reserved region. Because it 1176 * is already reserved, no shadow allocation is necessary. 1177 */ 1178 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) && 1179 !(max < fb_mmio->start)) { 1180 1181 range_min = fb_mmio->start; 1182 range_max = fb_mmio->end; 1183 start = (range_min + align - 1) & ~(align - 1); 1184 for (; start + size - 1 <= range_max; start += align) { 1185 *new = request_mem_region_exclusive(start, size, dev_n); 1186 if (*new) { 1187 retval = 0; 1188 goto exit; 1189 } 1190 } 1191 } 1192 1193 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1194 if ((iter->start >= max) || (iter->end <= min)) 1195 continue; 1196 1197 range_min = iter->start; 1198 range_max = iter->end; 1199 start = (range_min + align - 1) & ~(align - 1); 1200 for (; start + size - 1 <= range_max; start += align) { 1201 shadow = __request_region(iter, start, size, NULL, 1202 IORESOURCE_BUSY); 1203 if (!shadow) 1204 continue; 1205 1206 *new = request_mem_region_exclusive(start, size, dev_n); 1207 if (*new) { 1208 shadow->name = (char *)*new; 1209 retval = 0; 1210 goto exit; 1211 } 1212 1213 __release_region(iter, start, size); 1214 } 1215 } 1216 1217 exit: 1218 up(&hyperv_mmio_lock); 1219 return retval; 1220 } 1221 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio); 1222 1223 /** 1224 * vmbus_free_mmio() - Free a memory-mapped I/O range. 1225 * @start: Base address of region to release. 1226 * @size: Size of the range to be allocated 1227 * 1228 * This function releases anything requested by 1229 * vmbus_mmio_allocate(). 1230 */ 1231 void vmbus_free_mmio(resource_size_t start, resource_size_t size) 1232 { 1233 struct resource *iter; 1234 1235 down(&hyperv_mmio_lock); 1236 for (iter = hyperv_mmio; iter; iter = iter->sibling) { 1237 if ((iter->start >= start + size) || (iter->end <= start)) 1238 continue; 1239 1240 __release_region(iter, start, size); 1241 } 1242 release_mem_region(start, size); 1243 up(&hyperv_mmio_lock); 1244 1245 } 1246 EXPORT_SYMBOL_GPL(vmbus_free_mmio); 1247 1248 /** 1249 * vmbus_cpu_number_to_vp_number() - Map CPU to VP. 1250 * @cpu_number: CPU number in Linux terms 1251 * 1252 * This function returns the mapping between the Linux processor 1253 * number and the hypervisor's virtual processor number, useful 1254 * in making hypercalls and such that talk about specific 1255 * processors. 1256 * 1257 * Return: Virtual processor number in Hyper-V terms 1258 */ 1259 int vmbus_cpu_number_to_vp_number(int cpu_number) 1260 { 1261 return hv_context.vp_index[cpu_number]; 1262 } 1263 EXPORT_SYMBOL_GPL(vmbus_cpu_number_to_vp_number); 1264 1265 static int vmbus_acpi_add(struct acpi_device *device) 1266 { 1267 acpi_status result; 1268 int ret_val = -ENODEV; 1269 struct acpi_device *ancestor; 1270 1271 hv_acpi_dev = device; 1272 1273 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS, 1274 vmbus_walk_resources, NULL); 1275 1276 if (ACPI_FAILURE(result)) 1277 goto acpi_walk_err; 1278 /* 1279 * Some ancestor of the vmbus acpi device (Gen1 or Gen2 1280 * firmware) is the VMOD that has the mmio ranges. Get that. 1281 */ 1282 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) { 1283 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS, 1284 vmbus_walk_resources, NULL); 1285 1286 if (ACPI_FAILURE(result)) 1287 continue; 1288 if (hyperv_mmio) { 1289 vmbus_reserve_fb(); 1290 break; 1291 } 1292 } 1293 ret_val = 0; 1294 1295 acpi_walk_err: 1296 complete(&probe_event); 1297 if (ret_val) 1298 vmbus_acpi_remove(device); 1299 return ret_val; 1300 } 1301 1302 static const struct acpi_device_id vmbus_acpi_device_ids[] = { 1303 {"VMBUS", 0}, 1304 {"VMBus", 0}, 1305 {"", 0}, 1306 }; 1307 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids); 1308 1309 static struct acpi_driver vmbus_acpi_driver = { 1310 .name = "vmbus", 1311 .ids = vmbus_acpi_device_ids, 1312 .ops = { 1313 .add = vmbus_acpi_add, 1314 .remove = vmbus_acpi_remove, 1315 }, 1316 }; 1317 1318 static void hv_kexec_handler(void) 1319 { 1320 int cpu; 1321 1322 hv_synic_clockevents_cleanup(); 1323 vmbus_initiate_unload(false); 1324 for_each_online_cpu(cpu) 1325 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1); 1326 hv_cleanup(); 1327 }; 1328 1329 static void hv_crash_handler(struct pt_regs *regs) 1330 { 1331 vmbus_initiate_unload(true); 1332 /* 1333 * In crash handler we can't schedule synic cleanup for all CPUs, 1334 * doing the cleanup for current CPU only. This should be sufficient 1335 * for kdump. 1336 */ 1337 hv_synic_cleanup(NULL); 1338 hv_cleanup(); 1339 }; 1340 1341 static int __init hv_acpi_init(void) 1342 { 1343 int ret, t; 1344 1345 if (x86_hyper != &x86_hyper_ms_hyperv) 1346 return -ENODEV; 1347 1348 init_completion(&probe_event); 1349 1350 /* 1351 * Get ACPI resources first. 1352 */ 1353 ret = acpi_bus_register_driver(&vmbus_acpi_driver); 1354 1355 if (ret) 1356 return ret; 1357 1358 t = wait_for_completion_timeout(&probe_event, 5*HZ); 1359 if (t == 0) { 1360 ret = -ETIMEDOUT; 1361 goto cleanup; 1362 } 1363 1364 ret = vmbus_bus_init(); 1365 if (ret) 1366 goto cleanup; 1367 1368 hv_setup_kexec_handler(hv_kexec_handler); 1369 hv_setup_crash_handler(hv_crash_handler); 1370 1371 return 0; 1372 1373 cleanup: 1374 acpi_bus_unregister_driver(&vmbus_acpi_driver); 1375 hv_acpi_dev = NULL; 1376 return ret; 1377 } 1378 1379 static void __exit vmbus_exit(void) 1380 { 1381 int cpu; 1382 1383 hv_remove_kexec_handler(); 1384 hv_remove_crash_handler(); 1385 vmbus_connection.conn_state = DISCONNECTED; 1386 hv_synic_clockevents_cleanup(); 1387 vmbus_disconnect(); 1388 hv_remove_vmbus_irq(); 1389 for_each_online_cpu(cpu) 1390 tasklet_kill(hv_context.msg_dpc[cpu]); 1391 vmbus_free_channels(); 1392 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { 1393 unregister_die_notifier(&hyperv_die_block); 1394 atomic_notifier_chain_unregister(&panic_notifier_list, 1395 &hyperv_panic_block); 1396 } 1397 bus_unregister(&hv_bus); 1398 hv_cleanup(); 1399 for_each_online_cpu(cpu) { 1400 tasklet_kill(hv_context.event_dpc[cpu]); 1401 smp_call_function_single(cpu, hv_synic_cleanup, NULL, 1); 1402 } 1403 hv_synic_free(); 1404 acpi_bus_unregister_driver(&vmbus_acpi_driver); 1405 if (vmbus_proto_version > VERSION_WIN7) 1406 cpu_hotplug_enable(); 1407 } 1408 1409 1410 MODULE_LICENSE("GPL"); 1411 1412 subsys_initcall(hv_acpi_init); 1413 module_exit(vmbus_exit); 1414