1 /* 2 * 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26 #include <linux/kernel.h> 27 #include <linux/mm.h> 28 #include <linux/hyperv.h> 29 #include <linux/uio.h> 30 #include <linux/vmalloc.h> 31 #include <linux/slab.h> 32 #include <linux/prefetch.h> 33 34 #include "hyperv_vmbus.h" 35 36 #define VMBUS_PKT_TRAILER 8 37 38 /* 39 * When we write to the ring buffer, check if the host needs to 40 * be signaled. Here is the details of this protocol: 41 * 42 * 1. The host guarantees that while it is draining the 43 * ring buffer, it will set the interrupt_mask to 44 * indicate it does not need to be interrupted when 45 * new data is placed. 46 * 47 * 2. The host guarantees that it will completely drain 48 * the ring buffer before exiting the read loop. Further, 49 * once the ring buffer is empty, it will clear the 50 * interrupt_mask and re-check to see if new data has 51 * arrived. 52 * 53 * KYS: Oct. 30, 2016: 54 * It looks like Windows hosts have logic to deal with DOS attacks that 55 * can be triggered if it receives interrupts when it is not expecting 56 * the interrupt. The host expects interrupts only when the ring 57 * transitions from empty to non-empty (or full to non full on the guest 58 * to host ring). 59 * So, base the signaling decision solely on the ring state until the 60 * host logic is fixed. 61 */ 62 63 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel) 64 { 65 struct hv_ring_buffer_info *rbi = &channel->outbound; 66 67 virt_mb(); 68 if (READ_ONCE(rbi->ring_buffer->interrupt_mask)) 69 return; 70 71 /* check interrupt_mask before read_index */ 72 virt_rmb(); 73 /* 74 * This is the only case we need to signal when the 75 * ring transitions from being empty to non-empty. 76 */ 77 if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) { 78 ++channel->intr_out_empty; 79 vmbus_setevent(channel); 80 } 81 } 82 83 /* Get the next write location for the specified ring buffer. */ 84 static inline u32 85 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info) 86 { 87 u32 next = ring_info->ring_buffer->write_index; 88 89 return next; 90 } 91 92 /* Set the next write location for the specified ring buffer. */ 93 static inline void 94 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info, 95 u32 next_write_location) 96 { 97 ring_info->ring_buffer->write_index = next_write_location; 98 } 99 100 /* Set the next read location for the specified ring buffer. */ 101 static inline void 102 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info, 103 u32 next_read_location) 104 { 105 ring_info->ring_buffer->read_index = next_read_location; 106 ring_info->priv_read_index = next_read_location; 107 } 108 109 /* Get the size of the ring buffer. */ 110 static inline u32 111 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info) 112 { 113 return ring_info->ring_datasize; 114 } 115 116 /* Get the read and write indices as u64 of the specified ring buffer. */ 117 static inline u64 118 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info) 119 { 120 return (u64)ring_info->ring_buffer->write_index << 32; 121 } 122 123 /* 124 * Helper routine to copy from source to ring buffer. 125 * Assume there is enough room. Handles wrap-around in dest case only!! 126 */ 127 static u32 hv_copyto_ringbuffer( 128 struct hv_ring_buffer_info *ring_info, 129 u32 start_write_offset, 130 const void *src, 131 u32 srclen) 132 { 133 void *ring_buffer = hv_get_ring_buffer(ring_info); 134 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); 135 136 memcpy(ring_buffer + start_write_offset, src, srclen); 137 138 start_write_offset += srclen; 139 if (start_write_offset >= ring_buffer_size) 140 start_write_offset -= ring_buffer_size; 141 142 return start_write_offset; 143 } 144 145 /* 146 * 147 * hv_get_ringbuffer_availbytes() 148 * 149 * Get number of bytes available to read and to write to 150 * for the specified ring buffer 151 */ 152 static void 153 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi, 154 u32 *read, u32 *write) 155 { 156 u32 read_loc, write_loc, dsize; 157 158 /* Capture the read/write indices before they changed */ 159 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 160 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 161 dsize = rbi->ring_datasize; 162 163 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 164 read_loc - write_loc; 165 *read = dsize - *write; 166 } 167 168 /* Get various debug metrics for the specified ring buffer. */ 169 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 170 struct hv_ring_buffer_debug_info *debug_info) 171 { 172 u32 bytes_avail_towrite; 173 u32 bytes_avail_toread; 174 175 mutex_lock(&ring_info->ring_buffer_mutex); 176 177 if (!ring_info->ring_buffer) { 178 mutex_unlock(&ring_info->ring_buffer_mutex); 179 return -EINVAL; 180 } 181 182 hv_get_ringbuffer_availbytes(ring_info, 183 &bytes_avail_toread, 184 &bytes_avail_towrite); 185 debug_info->bytes_avail_toread = bytes_avail_toread; 186 debug_info->bytes_avail_towrite = bytes_avail_towrite; 187 debug_info->current_read_index = ring_info->ring_buffer->read_index; 188 debug_info->current_write_index = ring_info->ring_buffer->write_index; 189 debug_info->current_interrupt_mask 190 = ring_info->ring_buffer->interrupt_mask; 191 mutex_unlock(&ring_info->ring_buffer_mutex); 192 193 return 0; 194 } 195 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo); 196 197 /* Initialize a channel's ring buffer info mutex locks */ 198 void hv_ringbuffer_pre_init(struct vmbus_channel *channel) 199 { 200 mutex_init(&channel->inbound.ring_buffer_mutex); 201 mutex_init(&channel->outbound.ring_buffer_mutex); 202 } 203 204 /* Initialize the ring buffer. */ 205 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info, 206 struct page *pages, u32 page_cnt) 207 { 208 int i; 209 struct page **pages_wraparound; 210 211 BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE)); 212 213 /* 214 * First page holds struct hv_ring_buffer, do wraparound mapping for 215 * the rest. 216 */ 217 pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *), 218 GFP_KERNEL); 219 if (!pages_wraparound) 220 return -ENOMEM; 221 222 pages_wraparound[0] = pages; 223 for (i = 0; i < 2 * (page_cnt - 1); i++) 224 pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1]; 225 226 ring_info->ring_buffer = (struct hv_ring_buffer *) 227 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL); 228 229 kfree(pages_wraparound); 230 231 232 if (!ring_info->ring_buffer) 233 return -ENOMEM; 234 235 ring_info->ring_buffer->read_index = 236 ring_info->ring_buffer->write_index = 0; 237 238 /* Set the feature bit for enabling flow control. */ 239 ring_info->ring_buffer->feature_bits.value = 1; 240 241 ring_info->ring_size = page_cnt << PAGE_SHIFT; 242 ring_info->ring_size_div10_reciprocal = 243 reciprocal_value(ring_info->ring_size / 10); 244 ring_info->ring_datasize = ring_info->ring_size - 245 sizeof(struct hv_ring_buffer); 246 ring_info->priv_read_index = 0; 247 248 spin_lock_init(&ring_info->ring_lock); 249 250 return 0; 251 } 252 253 /* Cleanup the ring buffer. */ 254 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info) 255 { 256 mutex_lock(&ring_info->ring_buffer_mutex); 257 vunmap(ring_info->ring_buffer); 258 ring_info->ring_buffer = NULL; 259 mutex_unlock(&ring_info->ring_buffer_mutex); 260 } 261 262 /* Write to the ring buffer. */ 263 int hv_ringbuffer_write(struct vmbus_channel *channel, 264 const struct kvec *kv_list, u32 kv_count) 265 { 266 int i; 267 u32 bytes_avail_towrite; 268 u32 totalbytes_towrite = sizeof(u64); 269 u32 next_write_location; 270 u32 old_write; 271 u64 prev_indices; 272 unsigned long flags; 273 struct hv_ring_buffer_info *outring_info = &channel->outbound; 274 275 if (channel->rescind) 276 return -ENODEV; 277 278 for (i = 0; i < kv_count; i++) 279 totalbytes_towrite += kv_list[i].iov_len; 280 281 spin_lock_irqsave(&outring_info->ring_lock, flags); 282 283 bytes_avail_towrite = hv_get_bytes_to_write(outring_info); 284 285 /* 286 * If there is only room for the packet, assume it is full. 287 * Otherwise, the next time around, we think the ring buffer 288 * is empty since the read index == write index. 289 */ 290 if (bytes_avail_towrite <= totalbytes_towrite) { 291 ++channel->out_full_total; 292 293 if (!channel->out_full_flag) { 294 ++channel->out_full_first; 295 channel->out_full_flag = true; 296 } 297 298 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 299 return -EAGAIN; 300 } 301 302 channel->out_full_flag = false; 303 304 /* Write to the ring buffer */ 305 next_write_location = hv_get_next_write_location(outring_info); 306 307 old_write = next_write_location; 308 309 for (i = 0; i < kv_count; i++) { 310 next_write_location = hv_copyto_ringbuffer(outring_info, 311 next_write_location, 312 kv_list[i].iov_base, 313 kv_list[i].iov_len); 314 } 315 316 /* Set previous packet start */ 317 prev_indices = hv_get_ring_bufferindices(outring_info); 318 319 next_write_location = hv_copyto_ringbuffer(outring_info, 320 next_write_location, 321 &prev_indices, 322 sizeof(u64)); 323 324 /* Issue a full memory barrier before updating the write index */ 325 virt_mb(); 326 327 /* Now, update the write location */ 328 hv_set_next_write_location(outring_info, next_write_location); 329 330 331 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 332 333 hv_signal_on_write(old_write, channel); 334 335 if (channel->rescind) 336 return -ENODEV; 337 338 return 0; 339 } 340 341 int hv_ringbuffer_read(struct vmbus_channel *channel, 342 void *buffer, u32 buflen, u32 *buffer_actual_len, 343 u64 *requestid, bool raw) 344 { 345 struct vmpacket_descriptor *desc; 346 u32 packetlen, offset; 347 348 if (unlikely(buflen == 0)) 349 return -EINVAL; 350 351 *buffer_actual_len = 0; 352 *requestid = 0; 353 354 /* Make sure there is something to read */ 355 desc = hv_pkt_iter_first(channel); 356 if (desc == NULL) { 357 /* 358 * No error is set when there is even no header, drivers are 359 * supposed to analyze buffer_actual_len. 360 */ 361 return 0; 362 } 363 364 offset = raw ? 0 : (desc->offset8 << 3); 365 packetlen = (desc->len8 << 3) - offset; 366 *buffer_actual_len = packetlen; 367 *requestid = desc->trans_id; 368 369 if (unlikely(packetlen > buflen)) 370 return -ENOBUFS; 371 372 /* since ring is double mapped, only one copy is necessary */ 373 memcpy(buffer, (const char *)desc + offset, packetlen); 374 375 /* Advance ring index to next packet descriptor */ 376 __hv_pkt_iter_next(channel, desc); 377 378 /* Notify host of update */ 379 hv_pkt_iter_close(channel); 380 381 return 0; 382 } 383 384 /* 385 * Determine number of bytes available in ring buffer after 386 * the current iterator (priv_read_index) location. 387 * 388 * This is similar to hv_get_bytes_to_read but with private 389 * read index instead. 390 */ 391 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi) 392 { 393 u32 priv_read_loc = rbi->priv_read_index; 394 u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 395 396 if (write_loc >= priv_read_loc) 397 return write_loc - priv_read_loc; 398 else 399 return (rbi->ring_datasize - priv_read_loc) + write_loc; 400 } 401 402 /* 403 * Get first vmbus packet from ring buffer after read_index 404 * 405 * If ring buffer is empty, returns NULL and no other action needed. 406 */ 407 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel) 408 { 409 struct hv_ring_buffer_info *rbi = &channel->inbound; 410 struct vmpacket_descriptor *desc; 411 412 if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor)) 413 return NULL; 414 415 desc = hv_get_ring_buffer(rbi) + rbi->priv_read_index; 416 if (desc) 417 prefetch((char *)desc + (desc->len8 << 3)); 418 419 return desc; 420 } 421 EXPORT_SYMBOL_GPL(hv_pkt_iter_first); 422 423 /* 424 * Get next vmbus packet from ring buffer. 425 * 426 * Advances the current location (priv_read_index) and checks for more 427 * data. If the end of the ring buffer is reached, then return NULL. 428 */ 429 struct vmpacket_descriptor * 430 __hv_pkt_iter_next(struct vmbus_channel *channel, 431 const struct vmpacket_descriptor *desc) 432 { 433 struct hv_ring_buffer_info *rbi = &channel->inbound; 434 u32 packetlen = desc->len8 << 3; 435 u32 dsize = rbi->ring_datasize; 436 437 /* bump offset to next potential packet */ 438 rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER; 439 if (rbi->priv_read_index >= dsize) 440 rbi->priv_read_index -= dsize; 441 442 /* more data? */ 443 return hv_pkt_iter_first(channel); 444 } 445 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next); 446 447 /* How many bytes were read in this iterator cycle */ 448 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi, 449 u32 start_read_index) 450 { 451 if (rbi->priv_read_index >= start_read_index) 452 return rbi->priv_read_index - start_read_index; 453 else 454 return rbi->ring_datasize - start_read_index + 455 rbi->priv_read_index; 456 } 457 458 /* 459 * Update host ring buffer after iterating over packets. If the host has 460 * stopped queuing new entries because it found the ring buffer full, and 461 * sufficient space is being freed up, signal the host. But be careful to 462 * only signal the host when necessary, both for performance reasons and 463 * because Hyper-V protects itself by throttling guests that signal 464 * inappropriately. 465 * 466 * Determining when to signal is tricky. There are three key data inputs 467 * that must be handled in this order to avoid race conditions: 468 * 469 * 1. Update the read_index 470 * 2. Read the pending_send_sz 471 * 3. Read the current write_index 472 * 473 * The interrupt_mask is not used to determine when to signal. The 474 * interrupt_mask is used only on the guest->host ring buffer when 475 * sending requests to the host. The host does not use it on the host-> 476 * guest ring buffer to indicate whether it should be signaled. 477 */ 478 void hv_pkt_iter_close(struct vmbus_channel *channel) 479 { 480 struct hv_ring_buffer_info *rbi = &channel->inbound; 481 u32 curr_write_sz, pending_sz, bytes_read, start_read_index; 482 483 /* 484 * Make sure all reads are done before we update the read index since 485 * the writer may start writing to the read area once the read index 486 * is updated. 487 */ 488 virt_rmb(); 489 start_read_index = rbi->ring_buffer->read_index; 490 rbi->ring_buffer->read_index = rbi->priv_read_index; 491 492 /* 493 * Older versions of Hyper-V (before WS2102 and Win8) do not 494 * implement pending_send_sz and simply poll if the host->guest 495 * ring buffer is full. No signaling is needed or expected. 496 */ 497 if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz) 498 return; 499 500 /* 501 * Issue a full memory barrier before making the signaling decision. 502 * If reading pending_send_sz were to be reordered and happen 503 * before we commit the new read_index, a race could occur. If the 504 * host were to set the pending_send_sz after we have sampled 505 * pending_send_sz, and the ring buffer blocks before we commit the 506 * read index, we could miss sending the interrupt. Issue a full 507 * memory barrier to address this. 508 */ 509 virt_mb(); 510 511 /* 512 * If the pending_send_sz is zero, then the ring buffer is not 513 * blocked and there is no need to signal. This is far by the 514 * most common case, so exit quickly for best performance. 515 */ 516 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz); 517 if (!pending_sz) 518 return; 519 520 /* 521 * Ensure the read of write_index in hv_get_bytes_to_write() 522 * happens after the read of pending_send_sz. 523 */ 524 virt_rmb(); 525 curr_write_sz = hv_get_bytes_to_write(rbi); 526 bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index); 527 528 /* 529 * We want to signal the host only if we're transitioning 530 * from a "not enough free space" state to a "enough free 531 * space" state. For example, it's possible that this function 532 * could run and free up enough space to signal the host, and then 533 * run again and free up additional space before the host has a 534 * chance to clear the pending_send_sz. The 2nd invocation would 535 * be a null transition from "enough free space" to "enough free 536 * space", which doesn't warrant a signal. 537 * 538 * Exactly filling the ring buffer is treated as "not enough 539 * space". The ring buffer always must have at least one byte 540 * empty so the empty and full conditions are distinguishable. 541 * hv_get_bytes_to_write() doesn't fully tell the truth in 542 * this regard. 543 * 544 * So first check if we were in the "enough free space" state 545 * before we began the iteration. If so, the host was not 546 * blocked, and there's no need to signal. 547 */ 548 if (curr_write_sz - bytes_read > pending_sz) 549 return; 550 551 /* 552 * Similarly, if the new state is "not enough space", then 553 * there's no need to signal. 554 */ 555 if (curr_write_sz <= pending_sz) 556 return; 557 558 ++channel->intr_in_full; 559 vmbus_setevent(channel); 560 } 561 EXPORT_SYMBOL_GPL(hv_pkt_iter_close); 562