1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright (c) 2009, Microsoft Corporation. 5 * 6 * Authors: 7 * Haiyang Zhang <haiyangz@microsoft.com> 8 * Hank Janssen <hjanssen@microsoft.com> 9 * K. Y. Srinivasan <kys@microsoft.com> 10 */ 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/hyperv.h> 16 #include <linux/uio.h> 17 #include <linux/vmalloc.h> 18 #include <linux/slab.h> 19 #include <linux/prefetch.h> 20 #include <linux/io.h> 21 #include <asm/mshyperv.h> 22 23 #include "hyperv_vmbus.h" 24 25 #define VMBUS_PKT_TRAILER 8 26 27 /* 28 * When we write to the ring buffer, check if the host needs to 29 * be signaled. Here is the details of this protocol: 30 * 31 * 1. The host guarantees that while it is draining the 32 * ring buffer, it will set the interrupt_mask to 33 * indicate it does not need to be interrupted when 34 * new data is placed. 35 * 36 * 2. The host guarantees that it will completely drain 37 * the ring buffer before exiting the read loop. Further, 38 * once the ring buffer is empty, it will clear the 39 * interrupt_mask and re-check to see if new data has 40 * arrived. 41 * 42 * KYS: Oct. 30, 2016: 43 * It looks like Windows hosts have logic to deal with DOS attacks that 44 * can be triggered if it receives interrupts when it is not expecting 45 * the interrupt. The host expects interrupts only when the ring 46 * transitions from empty to non-empty (or full to non full on the guest 47 * to host ring). 48 * So, base the signaling decision solely on the ring state until the 49 * host logic is fixed. 50 */ 51 52 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel) 53 { 54 struct hv_ring_buffer_info *rbi = &channel->outbound; 55 56 virt_mb(); 57 if (READ_ONCE(rbi->ring_buffer->interrupt_mask)) 58 return; 59 60 /* check interrupt_mask before read_index */ 61 virt_rmb(); 62 /* 63 * This is the only case we need to signal when the 64 * ring transitions from being empty to non-empty. 65 */ 66 if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) { 67 ++channel->intr_out_empty; 68 vmbus_setevent(channel); 69 } 70 } 71 72 /* Get the next write location for the specified ring buffer. */ 73 static inline u32 74 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info) 75 { 76 u32 next = ring_info->ring_buffer->write_index; 77 78 return next; 79 } 80 81 /* Set the next write location for the specified ring buffer. */ 82 static inline void 83 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info, 84 u32 next_write_location) 85 { 86 ring_info->ring_buffer->write_index = next_write_location; 87 } 88 89 /* Get the size of the ring buffer. */ 90 static inline u32 91 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info) 92 { 93 return ring_info->ring_datasize; 94 } 95 96 /* Get the read and write indices as u64 of the specified ring buffer. */ 97 static inline u64 98 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info) 99 { 100 return (u64)ring_info->ring_buffer->write_index << 32; 101 } 102 103 /* 104 * Helper routine to copy from source to ring buffer. 105 * Assume there is enough room. Handles wrap-around in dest case only!! 106 */ 107 static u32 hv_copyto_ringbuffer( 108 struct hv_ring_buffer_info *ring_info, 109 u32 start_write_offset, 110 const void *src, 111 u32 srclen) 112 { 113 void *ring_buffer = hv_get_ring_buffer(ring_info); 114 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); 115 116 memcpy(ring_buffer + start_write_offset, src, srclen); 117 118 start_write_offset += srclen; 119 if (start_write_offset >= ring_buffer_size) 120 start_write_offset -= ring_buffer_size; 121 122 return start_write_offset; 123 } 124 125 /* 126 * 127 * hv_get_ringbuffer_availbytes() 128 * 129 * Get number of bytes available to read and to write to 130 * for the specified ring buffer 131 */ 132 static void 133 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi, 134 u32 *read, u32 *write) 135 { 136 u32 read_loc, write_loc, dsize; 137 138 /* Capture the read/write indices before they changed */ 139 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 140 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 141 dsize = rbi->ring_datasize; 142 143 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 144 read_loc - write_loc; 145 *read = dsize - *write; 146 } 147 148 /* Get various debug metrics for the specified ring buffer. */ 149 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 150 struct hv_ring_buffer_debug_info *debug_info) 151 { 152 u32 bytes_avail_towrite; 153 u32 bytes_avail_toread; 154 155 mutex_lock(&ring_info->ring_buffer_mutex); 156 157 if (!ring_info->ring_buffer) { 158 mutex_unlock(&ring_info->ring_buffer_mutex); 159 return -EINVAL; 160 } 161 162 hv_get_ringbuffer_availbytes(ring_info, 163 &bytes_avail_toread, 164 &bytes_avail_towrite); 165 debug_info->bytes_avail_toread = bytes_avail_toread; 166 debug_info->bytes_avail_towrite = bytes_avail_towrite; 167 debug_info->current_read_index = ring_info->ring_buffer->read_index; 168 debug_info->current_write_index = ring_info->ring_buffer->write_index; 169 debug_info->current_interrupt_mask 170 = ring_info->ring_buffer->interrupt_mask; 171 mutex_unlock(&ring_info->ring_buffer_mutex); 172 173 return 0; 174 } 175 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo); 176 177 /* Initialize a channel's ring buffer info mutex locks */ 178 void hv_ringbuffer_pre_init(struct vmbus_channel *channel) 179 { 180 mutex_init(&channel->inbound.ring_buffer_mutex); 181 mutex_init(&channel->outbound.ring_buffer_mutex); 182 } 183 184 /* Initialize the ring buffer. */ 185 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info, 186 struct page *pages, u32 page_cnt, u32 max_pkt_size) 187 { 188 struct page **pages_wraparound; 189 unsigned long *pfns_wraparound; 190 u64 pfn; 191 int i; 192 193 BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE)); 194 195 /* 196 * First page holds struct hv_ring_buffer, do wraparound mapping for 197 * the rest. 198 */ 199 if (hv_isolation_type_snp()) { 200 pfn = page_to_pfn(pages) + 201 PFN_DOWN(ms_hyperv.shared_gpa_boundary); 202 203 pfns_wraparound = kcalloc(page_cnt * 2 - 1, 204 sizeof(unsigned long), GFP_KERNEL); 205 if (!pfns_wraparound) 206 return -ENOMEM; 207 208 pfns_wraparound[0] = pfn; 209 for (i = 0; i < 2 * (page_cnt - 1); i++) 210 pfns_wraparound[i + 1] = pfn + i % (page_cnt - 1) + 1; 211 212 ring_info->ring_buffer = (struct hv_ring_buffer *) 213 vmap_pfn(pfns_wraparound, page_cnt * 2 - 1, 214 pgprot_decrypted(PAGE_KERNEL)); 215 kfree(pfns_wraparound); 216 217 if (!ring_info->ring_buffer) 218 return -ENOMEM; 219 220 /* Zero ring buffer after setting memory host visibility. */ 221 memset(ring_info->ring_buffer, 0x00, PAGE_SIZE * page_cnt); 222 } else { 223 pages_wraparound = kcalloc(page_cnt * 2 - 1, 224 sizeof(struct page *), 225 GFP_KERNEL); 226 if (!pages_wraparound) 227 return -ENOMEM; 228 229 pages_wraparound[0] = pages; 230 for (i = 0; i < 2 * (page_cnt - 1); i++) 231 pages_wraparound[i + 1] = 232 &pages[i % (page_cnt - 1) + 1]; 233 234 ring_info->ring_buffer = (struct hv_ring_buffer *) 235 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, 236 PAGE_KERNEL); 237 238 kfree(pages_wraparound); 239 if (!ring_info->ring_buffer) 240 return -ENOMEM; 241 } 242 243 244 ring_info->ring_buffer->read_index = 245 ring_info->ring_buffer->write_index = 0; 246 247 /* Set the feature bit for enabling flow control. */ 248 ring_info->ring_buffer->feature_bits.value = 1; 249 250 ring_info->ring_size = page_cnt << PAGE_SHIFT; 251 ring_info->ring_size_div10_reciprocal = 252 reciprocal_value(ring_info->ring_size / 10); 253 ring_info->ring_datasize = ring_info->ring_size - 254 sizeof(struct hv_ring_buffer); 255 ring_info->priv_read_index = 0; 256 257 /* Initialize buffer that holds copies of incoming packets */ 258 if (max_pkt_size) { 259 ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL); 260 if (!ring_info->pkt_buffer) 261 return -ENOMEM; 262 ring_info->pkt_buffer_size = max_pkt_size; 263 } 264 265 spin_lock_init(&ring_info->ring_lock); 266 267 return 0; 268 } 269 270 /* Cleanup the ring buffer. */ 271 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info) 272 { 273 mutex_lock(&ring_info->ring_buffer_mutex); 274 vunmap(ring_info->ring_buffer); 275 ring_info->ring_buffer = NULL; 276 mutex_unlock(&ring_info->ring_buffer_mutex); 277 278 kfree(ring_info->pkt_buffer); 279 ring_info->pkt_buffer = NULL; 280 ring_info->pkt_buffer_size = 0; 281 } 282 283 /* 284 * Check if the ring buffer spinlock is available to take or not; used on 285 * atomic contexts, like panic path (see the Hyper-V framebuffer driver). 286 */ 287 288 bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel) 289 { 290 struct hv_ring_buffer_info *rinfo = &channel->outbound; 291 292 return spin_is_locked(&rinfo->ring_lock); 293 } 294 EXPORT_SYMBOL_GPL(hv_ringbuffer_spinlock_busy); 295 296 /* Write to the ring buffer. */ 297 int hv_ringbuffer_write(struct vmbus_channel *channel, 298 const struct kvec *kv_list, u32 kv_count, 299 u64 requestid, u64 *trans_id) 300 { 301 int i; 302 u32 bytes_avail_towrite; 303 u32 totalbytes_towrite = sizeof(u64); 304 u32 next_write_location; 305 u32 old_write; 306 u64 prev_indices; 307 unsigned long flags; 308 struct hv_ring_buffer_info *outring_info = &channel->outbound; 309 struct vmpacket_descriptor *desc = kv_list[0].iov_base; 310 u64 __trans_id, rqst_id = VMBUS_NO_RQSTOR; 311 312 if (channel->rescind) 313 return -ENODEV; 314 315 for (i = 0; i < kv_count; i++) 316 totalbytes_towrite += kv_list[i].iov_len; 317 318 spin_lock_irqsave(&outring_info->ring_lock, flags); 319 320 bytes_avail_towrite = hv_get_bytes_to_write(outring_info); 321 322 /* 323 * If there is only room for the packet, assume it is full. 324 * Otherwise, the next time around, we think the ring buffer 325 * is empty since the read index == write index. 326 */ 327 if (bytes_avail_towrite <= totalbytes_towrite) { 328 ++channel->out_full_total; 329 330 if (!channel->out_full_flag) { 331 ++channel->out_full_first; 332 channel->out_full_flag = true; 333 } 334 335 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 336 return -EAGAIN; 337 } 338 339 channel->out_full_flag = false; 340 341 /* Write to the ring buffer */ 342 next_write_location = hv_get_next_write_location(outring_info); 343 344 old_write = next_write_location; 345 346 for (i = 0; i < kv_count; i++) { 347 next_write_location = hv_copyto_ringbuffer(outring_info, 348 next_write_location, 349 kv_list[i].iov_base, 350 kv_list[i].iov_len); 351 } 352 353 /* 354 * Allocate the request ID after the data has been copied into the 355 * ring buffer. Once this request ID is allocated, the completion 356 * path could find the data and free it. 357 */ 358 359 if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) { 360 if (channel->next_request_id_callback != NULL) { 361 rqst_id = channel->next_request_id_callback(channel, requestid); 362 if (rqst_id == VMBUS_RQST_ERROR) { 363 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 364 return -EAGAIN; 365 } 366 } 367 } 368 desc = hv_get_ring_buffer(outring_info) + old_write; 369 __trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id; 370 /* 371 * Ensure the compiler doesn't generate code that reads the value of 372 * the transaction ID from the ring buffer, which is shared with the 373 * Hyper-V host and subject to being changed at any time. 374 */ 375 WRITE_ONCE(desc->trans_id, __trans_id); 376 if (trans_id) 377 *trans_id = __trans_id; 378 379 /* Set previous packet start */ 380 prev_indices = hv_get_ring_bufferindices(outring_info); 381 382 next_write_location = hv_copyto_ringbuffer(outring_info, 383 next_write_location, 384 &prev_indices, 385 sizeof(u64)); 386 387 /* Issue a full memory barrier before updating the write index */ 388 virt_mb(); 389 390 /* Now, update the write location */ 391 hv_set_next_write_location(outring_info, next_write_location); 392 393 394 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 395 396 hv_signal_on_write(old_write, channel); 397 398 if (channel->rescind) { 399 if (rqst_id != VMBUS_NO_RQSTOR) { 400 /* Reclaim request ID to avoid leak of IDs */ 401 if (channel->request_addr_callback != NULL) 402 channel->request_addr_callback(channel, rqst_id); 403 } 404 return -ENODEV; 405 } 406 407 return 0; 408 } 409 410 int hv_ringbuffer_read(struct vmbus_channel *channel, 411 void *buffer, u32 buflen, u32 *buffer_actual_len, 412 u64 *requestid, bool raw) 413 { 414 struct vmpacket_descriptor *desc; 415 u32 packetlen, offset; 416 417 if (unlikely(buflen == 0)) 418 return -EINVAL; 419 420 *buffer_actual_len = 0; 421 *requestid = 0; 422 423 /* Make sure there is something to read */ 424 desc = hv_pkt_iter_first(channel); 425 if (desc == NULL) { 426 /* 427 * No error is set when there is even no header, drivers are 428 * supposed to analyze buffer_actual_len. 429 */ 430 return 0; 431 } 432 433 offset = raw ? 0 : (desc->offset8 << 3); 434 packetlen = (desc->len8 << 3) - offset; 435 *buffer_actual_len = packetlen; 436 *requestid = desc->trans_id; 437 438 if (unlikely(packetlen > buflen)) 439 return -ENOBUFS; 440 441 /* since ring is double mapped, only one copy is necessary */ 442 memcpy(buffer, (const char *)desc + offset, packetlen); 443 444 /* Advance ring index to next packet descriptor */ 445 __hv_pkt_iter_next(channel, desc); 446 447 /* Notify host of update */ 448 hv_pkt_iter_close(channel); 449 450 return 0; 451 } 452 453 /* 454 * Determine number of bytes available in ring buffer after 455 * the current iterator (priv_read_index) location. 456 * 457 * This is similar to hv_get_bytes_to_read but with private 458 * read index instead. 459 */ 460 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi) 461 { 462 u32 priv_read_loc = rbi->priv_read_index; 463 u32 write_loc; 464 465 /* 466 * The Hyper-V host writes the packet data, then uses 467 * store_release() to update the write_index. Use load_acquire() 468 * here to prevent loads of the packet data from being re-ordered 469 * before the read of the write_index and potentially getting 470 * stale data. 471 */ 472 write_loc = virt_load_acquire(&rbi->ring_buffer->write_index); 473 474 if (write_loc >= priv_read_loc) 475 return write_loc - priv_read_loc; 476 else 477 return (rbi->ring_datasize - priv_read_loc) + write_loc; 478 } 479 480 /* 481 * Get first vmbus packet from ring buffer after read_index 482 * 483 * If ring buffer is empty, returns NULL and no other action needed. 484 */ 485 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel) 486 { 487 struct hv_ring_buffer_info *rbi = &channel->inbound; 488 struct vmpacket_descriptor *desc, *desc_copy; 489 u32 bytes_avail, pkt_len, pkt_offset; 490 491 hv_debug_delay_test(channel, MESSAGE_DELAY); 492 493 bytes_avail = hv_pkt_iter_avail(rbi); 494 if (bytes_avail < sizeof(struct vmpacket_descriptor)) 495 return NULL; 496 bytes_avail = min(rbi->pkt_buffer_size, bytes_avail); 497 498 desc = (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index); 499 500 /* 501 * Ensure the compiler does not use references to incoming Hyper-V values (which 502 * could change at any moment) when reading local variables later in the code 503 */ 504 pkt_len = READ_ONCE(desc->len8) << 3; 505 pkt_offset = READ_ONCE(desc->offset8) << 3; 506 507 /* 508 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and 509 * rbi->pkt_buffer_size 510 */ 511 if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail) 512 pkt_len = bytes_avail; 513 514 /* 515 * If pkt_offset is invalid, arbitrarily set it to 516 * the size of vmpacket_descriptor 517 */ 518 if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len) 519 pkt_offset = sizeof(struct vmpacket_descriptor); 520 521 /* Copy the Hyper-V packet out of the ring buffer */ 522 desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer; 523 memcpy(desc_copy, desc, pkt_len); 524 525 /* 526 * Hyper-V could still change len8 and offset8 after the earlier read. 527 * Ensure that desc_copy has legal values for len8 and offset8 that 528 * are consistent with the copy we just made 529 */ 530 desc_copy->len8 = pkt_len >> 3; 531 desc_copy->offset8 = pkt_offset >> 3; 532 533 return desc_copy; 534 } 535 EXPORT_SYMBOL_GPL(hv_pkt_iter_first); 536 537 /* 538 * Get next vmbus packet from ring buffer. 539 * 540 * Advances the current location (priv_read_index) and checks for more 541 * data. If the end of the ring buffer is reached, then return NULL. 542 */ 543 struct vmpacket_descriptor * 544 __hv_pkt_iter_next(struct vmbus_channel *channel, 545 const struct vmpacket_descriptor *desc) 546 { 547 struct hv_ring_buffer_info *rbi = &channel->inbound; 548 u32 packetlen = desc->len8 << 3; 549 u32 dsize = rbi->ring_datasize; 550 551 hv_debug_delay_test(channel, MESSAGE_DELAY); 552 /* bump offset to next potential packet */ 553 rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER; 554 if (rbi->priv_read_index >= dsize) 555 rbi->priv_read_index -= dsize; 556 557 /* more data? */ 558 return hv_pkt_iter_first(channel); 559 } 560 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next); 561 562 /* How many bytes were read in this iterator cycle */ 563 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi, 564 u32 start_read_index) 565 { 566 if (rbi->priv_read_index >= start_read_index) 567 return rbi->priv_read_index - start_read_index; 568 else 569 return rbi->ring_datasize - start_read_index + 570 rbi->priv_read_index; 571 } 572 573 /* 574 * Update host ring buffer after iterating over packets. If the host has 575 * stopped queuing new entries because it found the ring buffer full, and 576 * sufficient space is being freed up, signal the host. But be careful to 577 * only signal the host when necessary, both for performance reasons and 578 * because Hyper-V protects itself by throttling guests that signal 579 * inappropriately. 580 * 581 * Determining when to signal is tricky. There are three key data inputs 582 * that must be handled in this order to avoid race conditions: 583 * 584 * 1. Update the read_index 585 * 2. Read the pending_send_sz 586 * 3. Read the current write_index 587 * 588 * The interrupt_mask is not used to determine when to signal. The 589 * interrupt_mask is used only on the guest->host ring buffer when 590 * sending requests to the host. The host does not use it on the host-> 591 * guest ring buffer to indicate whether it should be signaled. 592 */ 593 void hv_pkt_iter_close(struct vmbus_channel *channel) 594 { 595 struct hv_ring_buffer_info *rbi = &channel->inbound; 596 u32 curr_write_sz, pending_sz, bytes_read, start_read_index; 597 598 /* 599 * Make sure all reads are done before we update the read index since 600 * the writer may start writing to the read area once the read index 601 * is updated. 602 */ 603 virt_rmb(); 604 start_read_index = rbi->ring_buffer->read_index; 605 rbi->ring_buffer->read_index = rbi->priv_read_index; 606 607 /* 608 * Older versions of Hyper-V (before WS2102 and Win8) do not 609 * implement pending_send_sz and simply poll if the host->guest 610 * ring buffer is full. No signaling is needed or expected. 611 */ 612 if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz) 613 return; 614 615 /* 616 * Issue a full memory barrier before making the signaling decision. 617 * If reading pending_send_sz were to be reordered and happen 618 * before we commit the new read_index, a race could occur. If the 619 * host were to set the pending_send_sz after we have sampled 620 * pending_send_sz, and the ring buffer blocks before we commit the 621 * read index, we could miss sending the interrupt. Issue a full 622 * memory barrier to address this. 623 */ 624 virt_mb(); 625 626 /* 627 * If the pending_send_sz is zero, then the ring buffer is not 628 * blocked and there is no need to signal. This is far by the 629 * most common case, so exit quickly for best performance. 630 */ 631 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz); 632 if (!pending_sz) 633 return; 634 635 /* 636 * Ensure the read of write_index in hv_get_bytes_to_write() 637 * happens after the read of pending_send_sz. 638 */ 639 virt_rmb(); 640 curr_write_sz = hv_get_bytes_to_write(rbi); 641 bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index); 642 643 /* 644 * We want to signal the host only if we're transitioning 645 * from a "not enough free space" state to a "enough free 646 * space" state. For example, it's possible that this function 647 * could run and free up enough space to signal the host, and then 648 * run again and free up additional space before the host has a 649 * chance to clear the pending_send_sz. The 2nd invocation would 650 * be a null transition from "enough free space" to "enough free 651 * space", which doesn't warrant a signal. 652 * 653 * Exactly filling the ring buffer is treated as "not enough 654 * space". The ring buffer always must have at least one byte 655 * empty so the empty and full conditions are distinguishable. 656 * hv_get_bytes_to_write() doesn't fully tell the truth in 657 * this regard. 658 * 659 * So first check if we were in the "enough free space" state 660 * before we began the iteration. If so, the host was not 661 * blocked, and there's no need to signal. 662 */ 663 if (curr_write_sz - bytes_read > pending_sz) 664 return; 665 666 /* 667 * Similarly, if the new state is "not enough space", then 668 * there's no need to signal. 669 */ 670 if (curr_write_sz <= pending_sz) 671 return; 672 673 ++channel->intr_in_full; 674 vmbus_setevent(channel); 675 } 676 EXPORT_SYMBOL_GPL(hv_pkt_iter_close); 677