1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright (c) 2009, Microsoft Corporation. 5 * 6 * Authors: 7 * Haiyang Zhang <haiyangz@microsoft.com> 8 * Hank Janssen <hjanssen@microsoft.com> 9 * K. Y. Srinivasan <kys@microsoft.com> 10 */ 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/hyperv.h> 16 #include <linux/uio.h> 17 #include <linux/vmalloc.h> 18 #include <linux/slab.h> 19 #include <linux/prefetch.h> 20 21 #include "hyperv_vmbus.h" 22 23 #define VMBUS_PKT_TRAILER 8 24 25 /* 26 * When we write to the ring buffer, check if the host needs to 27 * be signaled. Here is the details of this protocol: 28 * 29 * 1. The host guarantees that while it is draining the 30 * ring buffer, it will set the interrupt_mask to 31 * indicate it does not need to be interrupted when 32 * new data is placed. 33 * 34 * 2. The host guarantees that it will completely drain 35 * the ring buffer before exiting the read loop. Further, 36 * once the ring buffer is empty, it will clear the 37 * interrupt_mask and re-check to see if new data has 38 * arrived. 39 * 40 * KYS: Oct. 30, 2016: 41 * It looks like Windows hosts have logic to deal with DOS attacks that 42 * can be triggered if it receives interrupts when it is not expecting 43 * the interrupt. The host expects interrupts only when the ring 44 * transitions from empty to non-empty (or full to non full on the guest 45 * to host ring). 46 * So, base the signaling decision solely on the ring state until the 47 * host logic is fixed. 48 */ 49 50 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel) 51 { 52 struct hv_ring_buffer_info *rbi = &channel->outbound; 53 54 virt_mb(); 55 if (READ_ONCE(rbi->ring_buffer->interrupt_mask)) 56 return; 57 58 /* check interrupt_mask before read_index */ 59 virt_rmb(); 60 /* 61 * This is the only case we need to signal when the 62 * ring transitions from being empty to non-empty. 63 */ 64 if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) { 65 ++channel->intr_out_empty; 66 vmbus_setevent(channel); 67 } 68 } 69 70 /* Get the next write location for the specified ring buffer. */ 71 static inline u32 72 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info) 73 { 74 u32 next = ring_info->ring_buffer->write_index; 75 76 return next; 77 } 78 79 /* Set the next write location for the specified ring buffer. */ 80 static inline void 81 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info, 82 u32 next_write_location) 83 { 84 ring_info->ring_buffer->write_index = next_write_location; 85 } 86 87 /* Get the size of the ring buffer. */ 88 static inline u32 89 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info) 90 { 91 return ring_info->ring_datasize; 92 } 93 94 /* Get the read and write indices as u64 of the specified ring buffer. */ 95 static inline u64 96 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info) 97 { 98 return (u64)ring_info->ring_buffer->write_index << 32; 99 } 100 101 /* 102 * Helper routine to copy from source to ring buffer. 103 * Assume there is enough room. Handles wrap-around in dest case only!! 104 */ 105 static u32 hv_copyto_ringbuffer( 106 struct hv_ring_buffer_info *ring_info, 107 u32 start_write_offset, 108 const void *src, 109 u32 srclen) 110 { 111 void *ring_buffer = hv_get_ring_buffer(ring_info); 112 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); 113 114 memcpy(ring_buffer + start_write_offset, src, srclen); 115 116 start_write_offset += srclen; 117 if (start_write_offset >= ring_buffer_size) 118 start_write_offset -= ring_buffer_size; 119 120 return start_write_offset; 121 } 122 123 /* 124 * 125 * hv_get_ringbuffer_availbytes() 126 * 127 * Get number of bytes available to read and to write to 128 * for the specified ring buffer 129 */ 130 static void 131 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi, 132 u32 *read, u32 *write) 133 { 134 u32 read_loc, write_loc, dsize; 135 136 /* Capture the read/write indices before they changed */ 137 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 138 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 139 dsize = rbi->ring_datasize; 140 141 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 142 read_loc - write_loc; 143 *read = dsize - *write; 144 } 145 146 /* Get various debug metrics for the specified ring buffer. */ 147 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 148 struct hv_ring_buffer_debug_info *debug_info) 149 { 150 u32 bytes_avail_towrite; 151 u32 bytes_avail_toread; 152 153 mutex_lock(&ring_info->ring_buffer_mutex); 154 155 if (!ring_info->ring_buffer) { 156 mutex_unlock(&ring_info->ring_buffer_mutex); 157 return -EINVAL; 158 } 159 160 hv_get_ringbuffer_availbytes(ring_info, 161 &bytes_avail_toread, 162 &bytes_avail_towrite); 163 debug_info->bytes_avail_toread = bytes_avail_toread; 164 debug_info->bytes_avail_towrite = bytes_avail_towrite; 165 debug_info->current_read_index = ring_info->ring_buffer->read_index; 166 debug_info->current_write_index = ring_info->ring_buffer->write_index; 167 debug_info->current_interrupt_mask 168 = ring_info->ring_buffer->interrupt_mask; 169 mutex_unlock(&ring_info->ring_buffer_mutex); 170 171 return 0; 172 } 173 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo); 174 175 /* Initialize a channel's ring buffer info mutex locks */ 176 void hv_ringbuffer_pre_init(struct vmbus_channel *channel) 177 { 178 mutex_init(&channel->inbound.ring_buffer_mutex); 179 mutex_init(&channel->outbound.ring_buffer_mutex); 180 } 181 182 /* Initialize the ring buffer. */ 183 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info, 184 struct page *pages, u32 page_cnt) 185 { 186 int i; 187 struct page **pages_wraparound; 188 189 BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE)); 190 191 /* 192 * First page holds struct hv_ring_buffer, do wraparound mapping for 193 * the rest. 194 */ 195 pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *), 196 GFP_KERNEL); 197 if (!pages_wraparound) 198 return -ENOMEM; 199 200 pages_wraparound[0] = pages; 201 for (i = 0; i < 2 * (page_cnt - 1); i++) 202 pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1]; 203 204 ring_info->ring_buffer = (struct hv_ring_buffer *) 205 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL); 206 207 kfree(pages_wraparound); 208 209 210 if (!ring_info->ring_buffer) 211 return -ENOMEM; 212 213 ring_info->ring_buffer->read_index = 214 ring_info->ring_buffer->write_index = 0; 215 216 /* Set the feature bit for enabling flow control. */ 217 ring_info->ring_buffer->feature_bits.value = 1; 218 219 ring_info->ring_size = page_cnt << PAGE_SHIFT; 220 ring_info->ring_size_div10_reciprocal = 221 reciprocal_value(ring_info->ring_size / 10); 222 ring_info->ring_datasize = ring_info->ring_size - 223 sizeof(struct hv_ring_buffer); 224 ring_info->priv_read_index = 0; 225 226 spin_lock_init(&ring_info->ring_lock); 227 228 return 0; 229 } 230 231 /* Cleanup the ring buffer. */ 232 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info) 233 { 234 mutex_lock(&ring_info->ring_buffer_mutex); 235 vunmap(ring_info->ring_buffer); 236 ring_info->ring_buffer = NULL; 237 mutex_unlock(&ring_info->ring_buffer_mutex); 238 } 239 240 /* Write to the ring buffer. */ 241 int hv_ringbuffer_write(struct vmbus_channel *channel, 242 const struct kvec *kv_list, u32 kv_count, 243 u64 requestid) 244 { 245 int i; 246 u32 bytes_avail_towrite; 247 u32 totalbytes_towrite = sizeof(u64); 248 u32 next_write_location; 249 u32 old_write; 250 u64 prev_indices; 251 unsigned long flags; 252 struct hv_ring_buffer_info *outring_info = &channel->outbound; 253 struct vmpacket_descriptor *desc = kv_list[0].iov_base; 254 u64 rqst_id = VMBUS_NO_RQSTOR; 255 256 if (channel->rescind) 257 return -ENODEV; 258 259 for (i = 0; i < kv_count; i++) 260 totalbytes_towrite += kv_list[i].iov_len; 261 262 spin_lock_irqsave(&outring_info->ring_lock, flags); 263 264 bytes_avail_towrite = hv_get_bytes_to_write(outring_info); 265 266 /* 267 * If there is only room for the packet, assume it is full. 268 * Otherwise, the next time around, we think the ring buffer 269 * is empty since the read index == write index. 270 */ 271 if (bytes_avail_towrite <= totalbytes_towrite) { 272 ++channel->out_full_total; 273 274 if (!channel->out_full_flag) { 275 ++channel->out_full_first; 276 channel->out_full_flag = true; 277 } 278 279 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 280 return -EAGAIN; 281 } 282 283 channel->out_full_flag = false; 284 285 /* Write to the ring buffer */ 286 next_write_location = hv_get_next_write_location(outring_info); 287 288 old_write = next_write_location; 289 290 for (i = 0; i < kv_count; i++) { 291 next_write_location = hv_copyto_ringbuffer(outring_info, 292 next_write_location, 293 kv_list[i].iov_base, 294 kv_list[i].iov_len); 295 } 296 297 /* 298 * Allocate the request ID after the data has been copied into the 299 * ring buffer. Once this request ID is allocated, the completion 300 * path could find the data and free it. 301 */ 302 303 if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) { 304 rqst_id = vmbus_next_request_id(&channel->requestor, requestid); 305 if (rqst_id == VMBUS_RQST_ERROR) { 306 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 307 return -EAGAIN; 308 } 309 } 310 desc = hv_get_ring_buffer(outring_info) + old_write; 311 desc->trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id; 312 313 /* Set previous packet start */ 314 prev_indices = hv_get_ring_bufferindices(outring_info); 315 316 next_write_location = hv_copyto_ringbuffer(outring_info, 317 next_write_location, 318 &prev_indices, 319 sizeof(u64)); 320 321 /* Issue a full memory barrier before updating the write index */ 322 virt_mb(); 323 324 /* Now, update the write location */ 325 hv_set_next_write_location(outring_info, next_write_location); 326 327 328 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 329 330 hv_signal_on_write(old_write, channel); 331 332 if (channel->rescind) { 333 if (rqst_id != VMBUS_NO_RQSTOR) { 334 /* Reclaim request ID to avoid leak of IDs */ 335 vmbus_request_addr(&channel->requestor, rqst_id); 336 } 337 return -ENODEV; 338 } 339 340 return 0; 341 } 342 343 int hv_ringbuffer_read(struct vmbus_channel *channel, 344 void *buffer, u32 buflen, u32 *buffer_actual_len, 345 u64 *requestid, bool raw) 346 { 347 struct vmpacket_descriptor *desc; 348 u32 packetlen, offset; 349 350 if (unlikely(buflen == 0)) 351 return -EINVAL; 352 353 *buffer_actual_len = 0; 354 *requestid = 0; 355 356 /* Make sure there is something to read */ 357 desc = hv_pkt_iter_first(channel); 358 if (desc == NULL) { 359 /* 360 * No error is set when there is even no header, drivers are 361 * supposed to analyze buffer_actual_len. 362 */ 363 return 0; 364 } 365 366 offset = raw ? 0 : (desc->offset8 << 3); 367 packetlen = (desc->len8 << 3) - offset; 368 *buffer_actual_len = packetlen; 369 *requestid = desc->trans_id; 370 371 if (unlikely(packetlen > buflen)) 372 return -ENOBUFS; 373 374 /* since ring is double mapped, only one copy is necessary */ 375 memcpy(buffer, (const char *)desc + offset, packetlen); 376 377 /* Advance ring index to next packet descriptor */ 378 __hv_pkt_iter_next(channel, desc); 379 380 /* Notify host of update */ 381 hv_pkt_iter_close(channel); 382 383 return 0; 384 } 385 386 /* 387 * Determine number of bytes available in ring buffer after 388 * the current iterator (priv_read_index) location. 389 * 390 * This is similar to hv_get_bytes_to_read but with private 391 * read index instead. 392 */ 393 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi) 394 { 395 u32 priv_read_loc = rbi->priv_read_index; 396 u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 397 398 if (write_loc >= priv_read_loc) 399 return write_loc - priv_read_loc; 400 else 401 return (rbi->ring_datasize - priv_read_loc) + write_loc; 402 } 403 404 /* 405 * Get first vmbus packet from ring buffer after read_index 406 * 407 * If ring buffer is empty, returns NULL and no other action needed. 408 */ 409 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel) 410 { 411 struct hv_ring_buffer_info *rbi = &channel->inbound; 412 struct vmpacket_descriptor *desc; 413 414 hv_debug_delay_test(channel, MESSAGE_DELAY); 415 if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor)) 416 return NULL; 417 418 desc = hv_get_ring_buffer(rbi) + rbi->priv_read_index; 419 if (desc) 420 prefetch((char *)desc + (desc->len8 << 3)); 421 422 return desc; 423 } 424 EXPORT_SYMBOL_GPL(hv_pkt_iter_first); 425 426 /* 427 * Get next vmbus packet from ring buffer. 428 * 429 * Advances the current location (priv_read_index) and checks for more 430 * data. If the end of the ring buffer is reached, then return NULL. 431 */ 432 struct vmpacket_descriptor * 433 __hv_pkt_iter_next(struct vmbus_channel *channel, 434 const struct vmpacket_descriptor *desc) 435 { 436 struct hv_ring_buffer_info *rbi = &channel->inbound; 437 u32 packetlen = desc->len8 << 3; 438 u32 dsize = rbi->ring_datasize; 439 440 hv_debug_delay_test(channel, MESSAGE_DELAY); 441 /* bump offset to next potential packet */ 442 rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER; 443 if (rbi->priv_read_index >= dsize) 444 rbi->priv_read_index -= dsize; 445 446 /* more data? */ 447 return hv_pkt_iter_first(channel); 448 } 449 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next); 450 451 /* How many bytes were read in this iterator cycle */ 452 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi, 453 u32 start_read_index) 454 { 455 if (rbi->priv_read_index >= start_read_index) 456 return rbi->priv_read_index - start_read_index; 457 else 458 return rbi->ring_datasize - start_read_index + 459 rbi->priv_read_index; 460 } 461 462 /* 463 * Update host ring buffer after iterating over packets. If the host has 464 * stopped queuing new entries because it found the ring buffer full, and 465 * sufficient space is being freed up, signal the host. But be careful to 466 * only signal the host when necessary, both for performance reasons and 467 * because Hyper-V protects itself by throttling guests that signal 468 * inappropriately. 469 * 470 * Determining when to signal is tricky. There are three key data inputs 471 * that must be handled in this order to avoid race conditions: 472 * 473 * 1. Update the read_index 474 * 2. Read the pending_send_sz 475 * 3. Read the current write_index 476 * 477 * The interrupt_mask is not used to determine when to signal. The 478 * interrupt_mask is used only on the guest->host ring buffer when 479 * sending requests to the host. The host does not use it on the host-> 480 * guest ring buffer to indicate whether it should be signaled. 481 */ 482 void hv_pkt_iter_close(struct vmbus_channel *channel) 483 { 484 struct hv_ring_buffer_info *rbi = &channel->inbound; 485 u32 curr_write_sz, pending_sz, bytes_read, start_read_index; 486 487 /* 488 * Make sure all reads are done before we update the read index since 489 * the writer may start writing to the read area once the read index 490 * is updated. 491 */ 492 virt_rmb(); 493 start_read_index = rbi->ring_buffer->read_index; 494 rbi->ring_buffer->read_index = rbi->priv_read_index; 495 496 /* 497 * Older versions of Hyper-V (before WS2102 and Win8) do not 498 * implement pending_send_sz and simply poll if the host->guest 499 * ring buffer is full. No signaling is needed or expected. 500 */ 501 if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz) 502 return; 503 504 /* 505 * Issue a full memory barrier before making the signaling decision. 506 * If reading pending_send_sz were to be reordered and happen 507 * before we commit the new read_index, a race could occur. If the 508 * host were to set the pending_send_sz after we have sampled 509 * pending_send_sz, and the ring buffer blocks before we commit the 510 * read index, we could miss sending the interrupt. Issue a full 511 * memory barrier to address this. 512 */ 513 virt_mb(); 514 515 /* 516 * If the pending_send_sz is zero, then the ring buffer is not 517 * blocked and there is no need to signal. This is far by the 518 * most common case, so exit quickly for best performance. 519 */ 520 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz); 521 if (!pending_sz) 522 return; 523 524 /* 525 * Ensure the read of write_index in hv_get_bytes_to_write() 526 * happens after the read of pending_send_sz. 527 */ 528 virt_rmb(); 529 curr_write_sz = hv_get_bytes_to_write(rbi); 530 bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index); 531 532 /* 533 * We want to signal the host only if we're transitioning 534 * from a "not enough free space" state to a "enough free 535 * space" state. For example, it's possible that this function 536 * could run and free up enough space to signal the host, and then 537 * run again and free up additional space before the host has a 538 * chance to clear the pending_send_sz. The 2nd invocation would 539 * be a null transition from "enough free space" to "enough free 540 * space", which doesn't warrant a signal. 541 * 542 * Exactly filling the ring buffer is treated as "not enough 543 * space". The ring buffer always must have at least one byte 544 * empty so the empty and full conditions are distinguishable. 545 * hv_get_bytes_to_write() doesn't fully tell the truth in 546 * this regard. 547 * 548 * So first check if we were in the "enough free space" state 549 * before we began the iteration. If so, the host was not 550 * blocked, and there's no need to signal. 551 */ 552 if (curr_write_sz - bytes_read > pending_sz) 553 return; 554 555 /* 556 * Similarly, if the new state is "not enough space", then 557 * there's no need to signal. 558 */ 559 if (curr_write_sz <= pending_sz) 560 return; 561 562 ++channel->intr_in_full; 563 vmbus_setevent(channel); 564 } 565 EXPORT_SYMBOL_GPL(hv_pkt_iter_close); 566