xref: /openbmc/linux/drivers/hv/ring_buffer.c (revision 56d06fa2)
1 /*
2  *
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <haiyangz@microsoft.com>
20  *   Hank Janssen  <hjanssen@microsoft.com>
21  *   K. Y. Srinivasan <kys@microsoft.com>
22  *
23  */
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/hyperv.h>
29 #include <linux/uio.h>
30 
31 #include "hyperv_vmbus.h"
32 
33 void hv_begin_read(struct hv_ring_buffer_info *rbi)
34 {
35 	rbi->ring_buffer->interrupt_mask = 1;
36 	mb();
37 }
38 
39 u32 hv_end_read(struct hv_ring_buffer_info *rbi)
40 {
41 	u32 read;
42 	u32 write;
43 
44 	rbi->ring_buffer->interrupt_mask = 0;
45 	mb();
46 
47 	/*
48 	 * Now check to see if the ring buffer is still empty.
49 	 * If it is not, we raced and we need to process new
50 	 * incoming messages.
51 	 */
52 	hv_get_ringbuffer_availbytes(rbi, &read, &write);
53 
54 	return read;
55 }
56 
57 /*
58  * When we write to the ring buffer, check if the host needs to
59  * be signaled. Here is the details of this protocol:
60  *
61  *	1. The host guarantees that while it is draining the
62  *	   ring buffer, it will set the interrupt_mask to
63  *	   indicate it does not need to be interrupted when
64  *	   new data is placed.
65  *
66  *	2. The host guarantees that it will completely drain
67  *	   the ring buffer before exiting the read loop. Further,
68  *	   once the ring buffer is empty, it will clear the
69  *	   interrupt_mask and re-check to see if new data has
70  *	   arrived.
71  */
72 
73 static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi)
74 {
75 	mb();
76 	if (rbi->ring_buffer->interrupt_mask)
77 		return false;
78 
79 	/* check interrupt_mask before read_index */
80 	rmb();
81 	/*
82 	 * This is the only case we need to signal when the
83 	 * ring transitions from being empty to non-empty.
84 	 */
85 	if (old_write == rbi->ring_buffer->read_index)
86 		return true;
87 
88 	return false;
89 }
90 
91 /*
92  * To optimize the flow management on the send-side,
93  * when the sender is blocked because of lack of
94  * sufficient space in the ring buffer, potential the
95  * consumer of the ring buffer can signal the producer.
96  * This is controlled by the following parameters:
97  *
98  * 1. pending_send_sz: This is the size in bytes that the
99  *    producer is trying to send.
100  * 2. The feature bit feat_pending_send_sz set to indicate if
101  *    the consumer of the ring will signal when the ring
102  *    state transitions from being full to a state where
103  *    there is room for the producer to send the pending packet.
104  */
105 
106 static bool hv_need_to_signal_on_read(struct hv_ring_buffer_info *rbi)
107 {
108 	u32 cur_write_sz;
109 	u32 r_size;
110 	u32 write_loc;
111 	u32 read_loc = rbi->ring_buffer->read_index;
112 	u32 pending_sz;
113 
114 	/*
115 	 * Issue a full memory barrier before making the signaling decision.
116 	 * Here is the reason for having this barrier:
117 	 * If the reading of the pend_sz (in this function)
118 	 * were to be reordered and read before we commit the new read
119 	 * index (in the calling function)  we could
120 	 * have a problem. If the host were to set the pending_sz after we
121 	 * have sampled pending_sz and go to sleep before we commit the
122 	 * read index, we could miss sending the interrupt. Issue a full
123 	 * memory barrier to address this.
124 	 */
125 	mb();
126 
127 	pending_sz = rbi->ring_buffer->pending_send_sz;
128 	write_loc = rbi->ring_buffer->write_index;
129 	/* If the other end is not blocked on write don't bother. */
130 	if (pending_sz == 0)
131 		return false;
132 
133 	r_size = rbi->ring_datasize;
134 	cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) :
135 			read_loc - write_loc;
136 
137 	if (cur_write_sz >= pending_sz)
138 		return true;
139 
140 	return false;
141 }
142 
143 /* Get the next write location for the specified ring buffer. */
144 static inline u32
145 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
146 {
147 	u32 next = ring_info->ring_buffer->write_index;
148 
149 	return next;
150 }
151 
152 /* Set the next write location for the specified ring buffer. */
153 static inline void
154 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
155 		     u32 next_write_location)
156 {
157 	ring_info->ring_buffer->write_index = next_write_location;
158 }
159 
160 /* Get the next read location for the specified ring buffer. */
161 static inline u32
162 hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
163 {
164 	u32 next = ring_info->ring_buffer->read_index;
165 
166 	return next;
167 }
168 
169 /*
170  * Get the next read location + offset for the specified ring buffer.
171  * This allows the caller to skip.
172  */
173 static inline u32
174 hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
175 				 u32 offset)
176 {
177 	u32 next = ring_info->ring_buffer->read_index;
178 
179 	next += offset;
180 	next %= ring_info->ring_datasize;
181 
182 	return next;
183 }
184 
185 /* Set the next read location for the specified ring buffer. */
186 static inline void
187 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
188 		    u32 next_read_location)
189 {
190 	ring_info->ring_buffer->read_index = next_read_location;
191 }
192 
193 
194 /* Get the start of the ring buffer. */
195 static inline void *
196 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
197 {
198 	return (void *)ring_info->ring_buffer->buffer;
199 }
200 
201 
202 /* Get the size of the ring buffer. */
203 static inline u32
204 hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
205 {
206 	return ring_info->ring_datasize;
207 }
208 
209 /* Get the read and write indices as u64 of the specified ring buffer. */
210 static inline u64
211 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
212 {
213 	return (u64)ring_info->ring_buffer->write_index << 32;
214 }
215 
216 /*
217  * Helper routine to copy to source from ring buffer.
218  * Assume there is enough room. Handles wrap-around in src case only!!
219  */
220 static u32 hv_copyfrom_ringbuffer(
221 	struct hv_ring_buffer_info	*ring_info,
222 	void				*dest,
223 	u32				destlen,
224 	u32				start_read_offset)
225 {
226 	void *ring_buffer = hv_get_ring_buffer(ring_info);
227 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
228 
229 	u32 frag_len;
230 
231 	/* wrap-around detected at the src */
232 	if (destlen > ring_buffer_size - start_read_offset) {
233 		frag_len = ring_buffer_size - start_read_offset;
234 
235 		memcpy(dest, ring_buffer + start_read_offset, frag_len);
236 		memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
237 	} else
238 
239 		memcpy(dest, ring_buffer + start_read_offset, destlen);
240 
241 
242 	start_read_offset += destlen;
243 	start_read_offset %= ring_buffer_size;
244 
245 	return start_read_offset;
246 }
247 
248 
249 /*
250  * Helper routine to copy from source to ring buffer.
251  * Assume there is enough room. Handles wrap-around in dest case only!!
252  */
253 static u32 hv_copyto_ringbuffer(
254 	struct hv_ring_buffer_info	*ring_info,
255 	u32				start_write_offset,
256 	void				*src,
257 	u32				srclen)
258 {
259 	void *ring_buffer = hv_get_ring_buffer(ring_info);
260 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
261 	u32 frag_len;
262 
263 	/* wrap-around detected! */
264 	if (srclen > ring_buffer_size - start_write_offset) {
265 		frag_len = ring_buffer_size - start_write_offset;
266 		memcpy(ring_buffer + start_write_offset, src, frag_len);
267 		memcpy(ring_buffer, src + frag_len, srclen - frag_len);
268 	} else
269 		memcpy(ring_buffer + start_write_offset, src, srclen);
270 
271 	start_write_offset += srclen;
272 	start_write_offset %= ring_buffer_size;
273 
274 	return start_write_offset;
275 }
276 
277 /* Get various debug metrics for the specified ring buffer. */
278 void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
279 			    struct hv_ring_buffer_debug_info *debug_info)
280 {
281 	u32 bytes_avail_towrite;
282 	u32 bytes_avail_toread;
283 
284 	if (ring_info->ring_buffer) {
285 		hv_get_ringbuffer_availbytes(ring_info,
286 					&bytes_avail_toread,
287 					&bytes_avail_towrite);
288 
289 		debug_info->bytes_avail_toread = bytes_avail_toread;
290 		debug_info->bytes_avail_towrite = bytes_avail_towrite;
291 		debug_info->current_read_index =
292 			ring_info->ring_buffer->read_index;
293 		debug_info->current_write_index =
294 			ring_info->ring_buffer->write_index;
295 		debug_info->current_interrupt_mask =
296 			ring_info->ring_buffer->interrupt_mask;
297 	}
298 }
299 
300 /* Initialize the ring buffer. */
301 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
302 		   void *buffer, u32 buflen)
303 {
304 	if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
305 		return -EINVAL;
306 
307 	memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
308 
309 	ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
310 	ring_info->ring_buffer->read_index =
311 		ring_info->ring_buffer->write_index = 0;
312 
313 	/* Set the feature bit for enabling flow control. */
314 	ring_info->ring_buffer->feature_bits.value = 1;
315 
316 	ring_info->ring_size = buflen;
317 	ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
318 
319 	spin_lock_init(&ring_info->ring_lock);
320 
321 	return 0;
322 }
323 
324 /* Cleanup the ring buffer. */
325 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
326 {
327 }
328 
329 /* Write to the ring buffer. */
330 int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
331 		    struct kvec *kv_list, u32 kv_count, bool *signal, bool lock)
332 {
333 	int i = 0;
334 	u32 bytes_avail_towrite;
335 	u32 bytes_avail_toread;
336 	u32 totalbytes_towrite = 0;
337 
338 	u32 next_write_location;
339 	u32 old_write;
340 	u64 prev_indices = 0;
341 	unsigned long flags = 0;
342 
343 	for (i = 0; i < kv_count; i++)
344 		totalbytes_towrite += kv_list[i].iov_len;
345 
346 	totalbytes_towrite += sizeof(u64);
347 
348 	if (lock)
349 		spin_lock_irqsave(&outring_info->ring_lock, flags);
350 
351 	hv_get_ringbuffer_availbytes(outring_info,
352 				&bytes_avail_toread,
353 				&bytes_avail_towrite);
354 
355 	/*
356 	 * If there is only room for the packet, assume it is full.
357 	 * Otherwise, the next time around, we think the ring buffer
358 	 * is empty since the read index == write index.
359 	 */
360 	if (bytes_avail_towrite <= totalbytes_towrite) {
361 		if (lock)
362 			spin_unlock_irqrestore(&outring_info->ring_lock, flags);
363 		return -EAGAIN;
364 	}
365 
366 	/* Write to the ring buffer */
367 	next_write_location = hv_get_next_write_location(outring_info);
368 
369 	old_write = next_write_location;
370 
371 	for (i = 0; i < kv_count; i++) {
372 		next_write_location = hv_copyto_ringbuffer(outring_info,
373 						     next_write_location,
374 						     kv_list[i].iov_base,
375 						     kv_list[i].iov_len);
376 	}
377 
378 	/* Set previous packet start */
379 	prev_indices = hv_get_ring_bufferindices(outring_info);
380 
381 	next_write_location = hv_copyto_ringbuffer(outring_info,
382 					     next_write_location,
383 					     &prev_indices,
384 					     sizeof(u64));
385 
386 	/* Issue a full memory barrier before updating the write index */
387 	mb();
388 
389 	/* Now, update the write location */
390 	hv_set_next_write_location(outring_info, next_write_location);
391 
392 
393 	if (lock)
394 		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
395 
396 	*signal = hv_need_to_signal(old_write, outring_info);
397 	return 0;
398 }
399 
400 int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info,
401 		       void *buffer, u32 buflen, u32 *buffer_actual_len,
402 		       u64 *requestid, bool *signal, bool raw)
403 {
404 	u32 bytes_avail_towrite;
405 	u32 bytes_avail_toread;
406 	u32 next_read_location = 0;
407 	u64 prev_indices = 0;
408 	struct vmpacket_descriptor desc;
409 	u32 offset;
410 	u32 packetlen;
411 	int ret = 0;
412 
413 	if (buflen <= 0)
414 		return -EINVAL;
415 
416 
417 	*buffer_actual_len = 0;
418 	*requestid = 0;
419 
420 	hv_get_ringbuffer_availbytes(inring_info,
421 				&bytes_avail_toread,
422 				&bytes_avail_towrite);
423 
424 	/* Make sure there is something to read */
425 	if (bytes_avail_toread < sizeof(desc)) {
426 		/*
427 		 * No error is set when there is even no header, drivers are
428 		 * supposed to analyze buffer_actual_len.
429 		 */
430 		return ret;
431 	}
432 
433 	next_read_location = hv_get_next_read_location(inring_info);
434 	next_read_location = hv_copyfrom_ringbuffer(inring_info, &desc,
435 						    sizeof(desc),
436 						    next_read_location);
437 
438 	offset = raw ? 0 : (desc.offset8 << 3);
439 	packetlen = (desc.len8 << 3) - offset;
440 	*buffer_actual_len = packetlen;
441 	*requestid = desc.trans_id;
442 
443 	if (bytes_avail_toread < packetlen + offset)
444 		return -EAGAIN;
445 
446 	if (packetlen > buflen)
447 		return -ENOBUFS;
448 
449 	next_read_location =
450 		hv_get_next_readlocation_withoffset(inring_info, offset);
451 
452 	next_read_location = hv_copyfrom_ringbuffer(inring_info,
453 						buffer,
454 						packetlen,
455 						next_read_location);
456 
457 	next_read_location = hv_copyfrom_ringbuffer(inring_info,
458 						&prev_indices,
459 						sizeof(u64),
460 						next_read_location);
461 
462 	/*
463 	 * Make sure all reads are done before we update the read index since
464 	 * the writer may start writing to the read area once the read index
465 	 * is updated.
466 	 */
467 	mb();
468 
469 	/* Update the read index */
470 	hv_set_next_read_location(inring_info, next_read_location);
471 
472 	*signal = hv_need_to_signal_on_read(inring_info);
473 
474 	return ret;
475 }
476