xref: /openbmc/linux/drivers/hv/ring_buffer.c (revision 3e26a691)
1 /*
2  *
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <haiyangz@microsoft.com>
20  *   Hank Janssen  <hjanssen@microsoft.com>
21  *   K. Y. Srinivasan <kys@microsoft.com>
22  *
23  */
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/hyperv.h>
29 #include <linux/uio.h>
30 
31 #include "hyperv_vmbus.h"
32 
33 void hv_begin_read(struct hv_ring_buffer_info *rbi)
34 {
35 	rbi->ring_buffer->interrupt_mask = 1;
36 	mb();
37 }
38 
39 u32 hv_end_read(struct hv_ring_buffer_info *rbi)
40 {
41 	u32 read;
42 	u32 write;
43 
44 	rbi->ring_buffer->interrupt_mask = 0;
45 	mb();
46 
47 	/*
48 	 * Now check to see if the ring buffer is still empty.
49 	 * If it is not, we raced and we need to process new
50 	 * incoming messages.
51 	 */
52 	hv_get_ringbuffer_availbytes(rbi, &read, &write);
53 
54 	return read;
55 }
56 
57 /*
58  * When we write to the ring buffer, check if the host needs to
59  * be signaled. Here is the details of this protocol:
60  *
61  *	1. The host guarantees that while it is draining the
62  *	   ring buffer, it will set the interrupt_mask to
63  *	   indicate it does not need to be interrupted when
64  *	   new data is placed.
65  *
66  *	2. The host guarantees that it will completely drain
67  *	   the ring buffer before exiting the read loop. Further,
68  *	   once the ring buffer is empty, it will clear the
69  *	   interrupt_mask and re-check to see if new data has
70  *	   arrived.
71  */
72 
73 static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi)
74 {
75 	mb();
76 	if (rbi->ring_buffer->interrupt_mask)
77 		return false;
78 
79 	/* check interrupt_mask before read_index */
80 	rmb();
81 	/*
82 	 * This is the only case we need to signal when the
83 	 * ring transitions from being empty to non-empty.
84 	 */
85 	if (old_write == rbi->ring_buffer->read_index)
86 		return true;
87 
88 	return false;
89 }
90 
91 /*
92  * To optimize the flow management on the send-side,
93  * when the sender is blocked because of lack of
94  * sufficient space in the ring buffer, potential the
95  * consumer of the ring buffer can signal the producer.
96  * This is controlled by the following parameters:
97  *
98  * 1. pending_send_sz: This is the size in bytes that the
99  *    producer is trying to send.
100  * 2. The feature bit feat_pending_send_sz set to indicate if
101  *    the consumer of the ring will signal when the ring
102  *    state transitions from being full to a state where
103  *    there is room for the producer to send the pending packet.
104  */
105 
106 static bool hv_need_to_signal_on_read(u32 prev_write_sz,
107 				      struct hv_ring_buffer_info *rbi)
108 {
109 	u32 cur_write_sz;
110 	u32 r_size;
111 	u32 write_loc = rbi->ring_buffer->write_index;
112 	u32 read_loc = rbi->ring_buffer->read_index;
113 	u32 pending_sz = rbi->ring_buffer->pending_send_sz;
114 
115 	/* If the other end is not blocked on write don't bother. */
116 	if (pending_sz == 0)
117 		return false;
118 
119 	r_size = rbi->ring_datasize;
120 	cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) :
121 			read_loc - write_loc;
122 
123 	if ((prev_write_sz < pending_sz) && (cur_write_sz >= pending_sz))
124 		return true;
125 
126 	return false;
127 }
128 
129 /* Get the next write location for the specified ring buffer. */
130 static inline u32
131 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
132 {
133 	u32 next = ring_info->ring_buffer->write_index;
134 
135 	return next;
136 }
137 
138 /* Set the next write location for the specified ring buffer. */
139 static inline void
140 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
141 		     u32 next_write_location)
142 {
143 	ring_info->ring_buffer->write_index = next_write_location;
144 }
145 
146 /* Get the next read location for the specified ring buffer. */
147 static inline u32
148 hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
149 {
150 	u32 next = ring_info->ring_buffer->read_index;
151 
152 	return next;
153 }
154 
155 /*
156  * Get the next read location + offset for the specified ring buffer.
157  * This allows the caller to skip.
158  */
159 static inline u32
160 hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
161 				 u32 offset)
162 {
163 	u32 next = ring_info->ring_buffer->read_index;
164 
165 	next += offset;
166 	next %= ring_info->ring_datasize;
167 
168 	return next;
169 }
170 
171 /* Set the next read location for the specified ring buffer. */
172 static inline void
173 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
174 		    u32 next_read_location)
175 {
176 	ring_info->ring_buffer->read_index = next_read_location;
177 }
178 
179 
180 /* Get the start of the ring buffer. */
181 static inline void *
182 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
183 {
184 	return (void *)ring_info->ring_buffer->buffer;
185 }
186 
187 
188 /* Get the size of the ring buffer. */
189 static inline u32
190 hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
191 {
192 	return ring_info->ring_datasize;
193 }
194 
195 /* Get the read and write indices as u64 of the specified ring buffer. */
196 static inline u64
197 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
198 {
199 	return (u64)ring_info->ring_buffer->write_index << 32;
200 }
201 
202 /*
203  * Helper routine to copy to source from ring buffer.
204  * Assume there is enough room. Handles wrap-around in src case only!!
205  */
206 static u32 hv_copyfrom_ringbuffer(
207 	struct hv_ring_buffer_info	*ring_info,
208 	void				*dest,
209 	u32				destlen,
210 	u32				start_read_offset)
211 {
212 	void *ring_buffer = hv_get_ring_buffer(ring_info);
213 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
214 
215 	u32 frag_len;
216 
217 	/* wrap-around detected at the src */
218 	if (destlen > ring_buffer_size - start_read_offset) {
219 		frag_len = ring_buffer_size - start_read_offset;
220 
221 		memcpy(dest, ring_buffer + start_read_offset, frag_len);
222 		memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
223 	} else
224 
225 		memcpy(dest, ring_buffer + start_read_offset, destlen);
226 
227 
228 	start_read_offset += destlen;
229 	start_read_offset %= ring_buffer_size;
230 
231 	return start_read_offset;
232 }
233 
234 
235 /*
236  * Helper routine to copy from source to ring buffer.
237  * Assume there is enough room. Handles wrap-around in dest case only!!
238  */
239 static u32 hv_copyto_ringbuffer(
240 	struct hv_ring_buffer_info	*ring_info,
241 	u32				start_write_offset,
242 	void				*src,
243 	u32				srclen)
244 {
245 	void *ring_buffer = hv_get_ring_buffer(ring_info);
246 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
247 	u32 frag_len;
248 
249 	/* wrap-around detected! */
250 	if (srclen > ring_buffer_size - start_write_offset) {
251 		frag_len = ring_buffer_size - start_write_offset;
252 		memcpy(ring_buffer + start_write_offset, src, frag_len);
253 		memcpy(ring_buffer, src + frag_len, srclen - frag_len);
254 	} else
255 		memcpy(ring_buffer + start_write_offset, src, srclen);
256 
257 	start_write_offset += srclen;
258 	start_write_offset %= ring_buffer_size;
259 
260 	return start_write_offset;
261 }
262 
263 /* Get various debug metrics for the specified ring buffer. */
264 void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
265 			    struct hv_ring_buffer_debug_info *debug_info)
266 {
267 	u32 bytes_avail_towrite;
268 	u32 bytes_avail_toread;
269 
270 	if (ring_info->ring_buffer) {
271 		hv_get_ringbuffer_availbytes(ring_info,
272 					&bytes_avail_toread,
273 					&bytes_avail_towrite);
274 
275 		debug_info->bytes_avail_toread = bytes_avail_toread;
276 		debug_info->bytes_avail_towrite = bytes_avail_towrite;
277 		debug_info->current_read_index =
278 			ring_info->ring_buffer->read_index;
279 		debug_info->current_write_index =
280 			ring_info->ring_buffer->write_index;
281 		debug_info->current_interrupt_mask =
282 			ring_info->ring_buffer->interrupt_mask;
283 	}
284 }
285 
286 /* Initialize the ring buffer. */
287 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
288 		   void *buffer, u32 buflen)
289 {
290 	if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
291 		return -EINVAL;
292 
293 	memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
294 
295 	ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
296 	ring_info->ring_buffer->read_index =
297 		ring_info->ring_buffer->write_index = 0;
298 
299 	/* Set the feature bit for enabling flow control. */
300 	ring_info->ring_buffer->feature_bits.value = 1;
301 
302 	ring_info->ring_size = buflen;
303 	ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
304 
305 	spin_lock_init(&ring_info->ring_lock);
306 
307 	return 0;
308 }
309 
310 /* Cleanup the ring buffer. */
311 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
312 {
313 }
314 
315 /* Write to the ring buffer. */
316 int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
317 		    struct kvec *kv_list, u32 kv_count, bool *signal, bool lock)
318 {
319 	int i = 0;
320 	u32 bytes_avail_towrite;
321 	u32 bytes_avail_toread;
322 	u32 totalbytes_towrite = 0;
323 
324 	u32 next_write_location;
325 	u32 old_write;
326 	u64 prev_indices = 0;
327 	unsigned long flags = 0;
328 
329 	for (i = 0; i < kv_count; i++)
330 		totalbytes_towrite += kv_list[i].iov_len;
331 
332 	totalbytes_towrite += sizeof(u64);
333 
334 	if (lock)
335 		spin_lock_irqsave(&outring_info->ring_lock, flags);
336 
337 	hv_get_ringbuffer_availbytes(outring_info,
338 				&bytes_avail_toread,
339 				&bytes_avail_towrite);
340 
341 	/*
342 	 * If there is only room for the packet, assume it is full.
343 	 * Otherwise, the next time around, we think the ring buffer
344 	 * is empty since the read index == write index.
345 	 */
346 	if (bytes_avail_towrite <= totalbytes_towrite) {
347 		if (lock)
348 			spin_unlock_irqrestore(&outring_info->ring_lock, flags);
349 		return -EAGAIN;
350 	}
351 
352 	/* Write to the ring buffer */
353 	next_write_location = hv_get_next_write_location(outring_info);
354 
355 	old_write = next_write_location;
356 
357 	for (i = 0; i < kv_count; i++) {
358 		next_write_location = hv_copyto_ringbuffer(outring_info,
359 						     next_write_location,
360 						     kv_list[i].iov_base,
361 						     kv_list[i].iov_len);
362 	}
363 
364 	/* Set previous packet start */
365 	prev_indices = hv_get_ring_bufferindices(outring_info);
366 
367 	next_write_location = hv_copyto_ringbuffer(outring_info,
368 					     next_write_location,
369 					     &prev_indices,
370 					     sizeof(u64));
371 
372 	/* Issue a full memory barrier before updating the write index */
373 	mb();
374 
375 	/* Now, update the write location */
376 	hv_set_next_write_location(outring_info, next_write_location);
377 
378 
379 	if (lock)
380 		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
381 
382 	*signal = hv_need_to_signal(old_write, outring_info);
383 	return 0;
384 }
385 
386 int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info,
387 		       void *buffer, u32 buflen, u32 *buffer_actual_len,
388 		       u64 *requestid, bool *signal, bool raw)
389 {
390 	u32 bytes_avail_towrite;
391 	u32 bytes_avail_toread;
392 	u32 next_read_location = 0;
393 	u64 prev_indices = 0;
394 	struct vmpacket_descriptor desc;
395 	u32 offset;
396 	u32 packetlen;
397 	int ret = 0;
398 
399 	if (buflen <= 0)
400 		return -EINVAL;
401 
402 
403 	*buffer_actual_len = 0;
404 	*requestid = 0;
405 
406 	hv_get_ringbuffer_availbytes(inring_info,
407 				&bytes_avail_toread,
408 				&bytes_avail_towrite);
409 
410 	/* Make sure there is something to read */
411 	if (bytes_avail_toread < sizeof(desc)) {
412 		/*
413 		 * No error is set when there is even no header, drivers are
414 		 * supposed to analyze buffer_actual_len.
415 		 */
416 		return ret;
417 	}
418 
419 	next_read_location = hv_get_next_read_location(inring_info);
420 	next_read_location = hv_copyfrom_ringbuffer(inring_info, &desc,
421 						    sizeof(desc),
422 						    next_read_location);
423 
424 	offset = raw ? 0 : (desc.offset8 << 3);
425 	packetlen = (desc.len8 << 3) - offset;
426 	*buffer_actual_len = packetlen;
427 	*requestid = desc.trans_id;
428 
429 	if (bytes_avail_toread < packetlen + offset)
430 		return -EAGAIN;
431 
432 	if (packetlen > buflen)
433 		return -ENOBUFS;
434 
435 	next_read_location =
436 		hv_get_next_readlocation_withoffset(inring_info, offset);
437 
438 	next_read_location = hv_copyfrom_ringbuffer(inring_info,
439 						buffer,
440 						packetlen,
441 						next_read_location);
442 
443 	next_read_location = hv_copyfrom_ringbuffer(inring_info,
444 						&prev_indices,
445 						sizeof(u64),
446 						next_read_location);
447 
448 	/*
449 	 * Make sure all reads are done before we update the read index since
450 	 * the writer may start writing to the read area once the read index
451 	 * is updated.
452 	 */
453 	mb();
454 
455 	/* Update the read index */
456 	hv_set_next_read_location(inring_info, next_read_location);
457 
458 	*signal = hv_need_to_signal_on_read(bytes_avail_towrite, inring_info);
459 
460 	return ret;
461 }
462