1 /* 2 * 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26 #include <linux/kernel.h> 27 #include <linux/mm.h> 28 #include <linux/hyperv.h> 29 30 #include "hyperv_vmbus.h" 31 32 void hv_begin_read(struct hv_ring_buffer_info *rbi) 33 { 34 rbi->ring_buffer->interrupt_mask = 1; 35 smp_mb(); 36 } 37 38 u32 hv_end_read(struct hv_ring_buffer_info *rbi) 39 { 40 u32 read; 41 u32 write; 42 43 rbi->ring_buffer->interrupt_mask = 0; 44 smp_mb(); 45 46 /* 47 * Now check to see if the ring buffer is still empty. 48 * If it is not, we raced and we need to process new 49 * incoming messages. 50 */ 51 hv_get_ringbuffer_availbytes(rbi, &read, &write); 52 53 return read; 54 } 55 56 /* 57 * When we write to the ring buffer, check if the host needs to 58 * be signaled. Here is the details of this protocol: 59 * 60 * 1. The host guarantees that while it is draining the 61 * ring buffer, it will set the interrupt_mask to 62 * indicate it does not need to be interrupted when 63 * new data is placed. 64 * 65 * 2. The host guarantees that it will completely drain 66 * the ring buffer before exiting the read loop. Further, 67 * once the ring buffer is empty, it will clear the 68 * interrupt_mask and re-check to see if new data has 69 * arrived. 70 */ 71 72 static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi) 73 { 74 smp_mb(); 75 if (rbi->ring_buffer->interrupt_mask) 76 return false; 77 78 /* 79 * This is the only case we need to signal when the 80 * ring transitions from being empty to non-empty. 81 */ 82 if (old_write == rbi->ring_buffer->read_index) 83 return true; 84 85 return false; 86 } 87 88 /* 89 * To optimize the flow management on the send-side, 90 * when the sender is blocked because of lack of 91 * sufficient space in the ring buffer, potential the 92 * consumer of the ring buffer can signal the producer. 93 * This is controlled by the following parameters: 94 * 95 * 1. pending_send_sz: This is the size in bytes that the 96 * producer is trying to send. 97 * 2. The feature bit feat_pending_send_sz set to indicate if 98 * the consumer of the ring will signal when the ring 99 * state transitions from being full to a state where 100 * there is room for the producer to send the pending packet. 101 */ 102 103 static bool hv_need_to_signal_on_read(u32 old_rd, 104 struct hv_ring_buffer_info *rbi) 105 { 106 u32 prev_write_sz; 107 u32 cur_write_sz; 108 u32 r_size; 109 u32 write_loc = rbi->ring_buffer->write_index; 110 u32 read_loc = rbi->ring_buffer->read_index; 111 u32 pending_sz = rbi->ring_buffer->pending_send_sz; 112 113 /* 114 * If the other end is not blocked on write don't bother. 115 */ 116 if (pending_sz == 0) 117 return false; 118 119 r_size = rbi->ring_datasize; 120 cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) : 121 read_loc - write_loc; 122 123 prev_write_sz = write_loc >= old_rd ? r_size - (write_loc - old_rd) : 124 old_rd - write_loc; 125 126 127 if ((prev_write_sz < pending_sz) && (cur_write_sz >= pending_sz)) 128 return true; 129 130 return false; 131 } 132 133 /* 134 * hv_get_next_write_location() 135 * 136 * Get the next write location for the specified ring buffer 137 * 138 */ 139 static inline u32 140 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info) 141 { 142 u32 next = ring_info->ring_buffer->write_index; 143 144 return next; 145 } 146 147 /* 148 * hv_set_next_write_location() 149 * 150 * Set the next write location for the specified ring buffer 151 * 152 */ 153 static inline void 154 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info, 155 u32 next_write_location) 156 { 157 ring_info->ring_buffer->write_index = next_write_location; 158 } 159 160 /* 161 * hv_get_next_read_location() 162 * 163 * Get the next read location for the specified ring buffer 164 */ 165 static inline u32 166 hv_get_next_read_location(struct hv_ring_buffer_info *ring_info) 167 { 168 u32 next = ring_info->ring_buffer->read_index; 169 170 return next; 171 } 172 173 /* 174 * hv_get_next_readlocation_withoffset() 175 * 176 * Get the next read location + offset for the specified ring buffer. 177 * This allows the caller to skip 178 */ 179 static inline u32 180 hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info, 181 u32 offset) 182 { 183 u32 next = ring_info->ring_buffer->read_index; 184 185 next += offset; 186 next %= ring_info->ring_datasize; 187 188 return next; 189 } 190 191 /* 192 * 193 * hv_set_next_read_location() 194 * 195 * Set the next read location for the specified ring buffer 196 * 197 */ 198 static inline void 199 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info, 200 u32 next_read_location) 201 { 202 ring_info->ring_buffer->read_index = next_read_location; 203 } 204 205 206 /* 207 * 208 * hv_get_ring_buffer() 209 * 210 * Get the start of the ring buffer 211 */ 212 static inline void * 213 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info) 214 { 215 return (void *)ring_info->ring_buffer->buffer; 216 } 217 218 219 /* 220 * 221 * hv_get_ring_buffersize() 222 * 223 * Get the size of the ring buffer 224 */ 225 static inline u32 226 hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info) 227 { 228 return ring_info->ring_datasize; 229 } 230 231 /* 232 * 233 * hv_get_ring_bufferindices() 234 * 235 * Get the read and write indices as u64 of the specified ring buffer 236 * 237 */ 238 static inline u64 239 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info) 240 { 241 return (u64)ring_info->ring_buffer->write_index << 32; 242 } 243 244 /* 245 * 246 * hv_copyfrom_ringbuffer() 247 * 248 * Helper routine to copy to source from ring buffer. 249 * Assume there is enough room. Handles wrap-around in src case only!! 250 * 251 */ 252 static u32 hv_copyfrom_ringbuffer( 253 struct hv_ring_buffer_info *ring_info, 254 void *dest, 255 u32 destlen, 256 u32 start_read_offset) 257 { 258 void *ring_buffer = hv_get_ring_buffer(ring_info); 259 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); 260 261 u32 frag_len; 262 263 /* wrap-around detected at the src */ 264 if (destlen > ring_buffer_size - start_read_offset) { 265 frag_len = ring_buffer_size - start_read_offset; 266 267 memcpy(dest, ring_buffer + start_read_offset, frag_len); 268 memcpy(dest + frag_len, ring_buffer, destlen - frag_len); 269 } else 270 271 memcpy(dest, ring_buffer + start_read_offset, destlen); 272 273 274 start_read_offset += destlen; 275 start_read_offset %= ring_buffer_size; 276 277 return start_read_offset; 278 } 279 280 281 /* 282 * 283 * hv_copyto_ringbuffer() 284 * 285 * Helper routine to copy from source to ring buffer. 286 * Assume there is enough room. Handles wrap-around in dest case only!! 287 * 288 */ 289 static u32 hv_copyto_ringbuffer( 290 struct hv_ring_buffer_info *ring_info, 291 u32 start_write_offset, 292 void *src, 293 u32 srclen) 294 { 295 void *ring_buffer = hv_get_ring_buffer(ring_info); 296 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); 297 u32 frag_len; 298 299 /* wrap-around detected! */ 300 if (srclen > ring_buffer_size - start_write_offset) { 301 frag_len = ring_buffer_size - start_write_offset; 302 memcpy(ring_buffer + start_write_offset, src, frag_len); 303 memcpy(ring_buffer, src + frag_len, srclen - frag_len); 304 } else 305 memcpy(ring_buffer + start_write_offset, src, srclen); 306 307 start_write_offset += srclen; 308 start_write_offset %= ring_buffer_size; 309 310 return start_write_offset; 311 } 312 313 /* 314 * 315 * hv_ringbuffer_get_debuginfo() 316 * 317 * Get various debug metrics for the specified ring buffer 318 * 319 */ 320 void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 321 struct hv_ring_buffer_debug_info *debug_info) 322 { 323 u32 bytes_avail_towrite; 324 u32 bytes_avail_toread; 325 326 if (ring_info->ring_buffer) { 327 hv_get_ringbuffer_availbytes(ring_info, 328 &bytes_avail_toread, 329 &bytes_avail_towrite); 330 331 debug_info->bytes_avail_toread = bytes_avail_toread; 332 debug_info->bytes_avail_towrite = bytes_avail_towrite; 333 debug_info->current_read_index = 334 ring_info->ring_buffer->read_index; 335 debug_info->current_write_index = 336 ring_info->ring_buffer->write_index; 337 debug_info->current_interrupt_mask = 338 ring_info->ring_buffer->interrupt_mask; 339 } 340 } 341 342 /* 343 * 344 * hv_ringbuffer_init() 345 * 346 *Initialize the ring buffer 347 * 348 */ 349 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info, 350 void *buffer, u32 buflen) 351 { 352 if (sizeof(struct hv_ring_buffer) != PAGE_SIZE) 353 return -EINVAL; 354 355 memset(ring_info, 0, sizeof(struct hv_ring_buffer_info)); 356 357 ring_info->ring_buffer = (struct hv_ring_buffer *)buffer; 358 ring_info->ring_buffer->read_index = 359 ring_info->ring_buffer->write_index = 0; 360 361 ring_info->ring_size = buflen; 362 ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer); 363 364 spin_lock_init(&ring_info->ring_lock); 365 366 return 0; 367 } 368 369 /* 370 * 371 * hv_ringbuffer_cleanup() 372 * 373 * Cleanup the ring buffer 374 * 375 */ 376 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info) 377 { 378 } 379 380 /* 381 * 382 * hv_ringbuffer_write() 383 * 384 * Write to the ring buffer 385 * 386 */ 387 int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info, 388 struct scatterlist *sglist, u32 sgcount, bool *signal) 389 { 390 int i = 0; 391 u32 bytes_avail_towrite; 392 u32 bytes_avail_toread; 393 u32 totalbytes_towrite = 0; 394 395 struct scatterlist *sg; 396 u32 next_write_location; 397 u32 old_write; 398 u64 prev_indices = 0; 399 unsigned long flags; 400 401 for_each_sg(sglist, sg, sgcount, i) 402 { 403 totalbytes_towrite += sg->length; 404 } 405 406 totalbytes_towrite += sizeof(u64); 407 408 spin_lock_irqsave(&outring_info->ring_lock, flags); 409 410 hv_get_ringbuffer_availbytes(outring_info, 411 &bytes_avail_toread, 412 &bytes_avail_towrite); 413 414 415 /* If there is only room for the packet, assume it is full. */ 416 /* Otherwise, the next time around, we think the ring buffer */ 417 /* is empty since the read index == write index */ 418 if (bytes_avail_towrite <= totalbytes_towrite) { 419 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 420 return -EAGAIN; 421 } 422 423 /* Write to the ring buffer */ 424 next_write_location = hv_get_next_write_location(outring_info); 425 426 old_write = next_write_location; 427 428 for_each_sg(sglist, sg, sgcount, i) 429 { 430 next_write_location = hv_copyto_ringbuffer(outring_info, 431 next_write_location, 432 sg_virt(sg), 433 sg->length); 434 } 435 436 /* Set previous packet start */ 437 prev_indices = hv_get_ring_bufferindices(outring_info); 438 439 next_write_location = hv_copyto_ringbuffer(outring_info, 440 next_write_location, 441 &prev_indices, 442 sizeof(u64)); 443 444 /* Issue a full memory barrier before updating the write index */ 445 smp_mb(); 446 447 /* Now, update the write location */ 448 hv_set_next_write_location(outring_info, next_write_location); 449 450 451 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 452 453 *signal = hv_need_to_signal(old_write, outring_info); 454 return 0; 455 } 456 457 458 /* 459 * 460 * hv_ringbuffer_peek() 461 * 462 * Read without advancing the read index 463 * 464 */ 465 int hv_ringbuffer_peek(struct hv_ring_buffer_info *Inring_info, 466 void *Buffer, u32 buflen) 467 { 468 u32 bytes_avail_towrite; 469 u32 bytes_avail_toread; 470 u32 next_read_location = 0; 471 unsigned long flags; 472 473 spin_lock_irqsave(&Inring_info->ring_lock, flags); 474 475 hv_get_ringbuffer_availbytes(Inring_info, 476 &bytes_avail_toread, 477 &bytes_avail_towrite); 478 479 /* Make sure there is something to read */ 480 if (bytes_avail_toread < buflen) { 481 482 spin_unlock_irqrestore(&Inring_info->ring_lock, flags); 483 484 return -EAGAIN; 485 } 486 487 /* Convert to byte offset */ 488 next_read_location = hv_get_next_read_location(Inring_info); 489 490 next_read_location = hv_copyfrom_ringbuffer(Inring_info, 491 Buffer, 492 buflen, 493 next_read_location); 494 495 spin_unlock_irqrestore(&Inring_info->ring_lock, flags); 496 497 return 0; 498 } 499 500 501 /* 502 * 503 * hv_ringbuffer_read() 504 * 505 * Read and advance the read index 506 * 507 */ 508 int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, void *buffer, 509 u32 buflen, u32 offset, bool *signal) 510 { 511 u32 bytes_avail_towrite; 512 u32 bytes_avail_toread; 513 u32 next_read_location = 0; 514 u64 prev_indices = 0; 515 unsigned long flags; 516 u32 old_read; 517 518 if (buflen <= 0) 519 return -EINVAL; 520 521 spin_lock_irqsave(&inring_info->ring_lock, flags); 522 523 hv_get_ringbuffer_availbytes(inring_info, 524 &bytes_avail_toread, 525 &bytes_avail_towrite); 526 527 old_read = bytes_avail_toread; 528 529 /* Make sure there is something to read */ 530 if (bytes_avail_toread < buflen) { 531 spin_unlock_irqrestore(&inring_info->ring_lock, flags); 532 533 return -EAGAIN; 534 } 535 536 next_read_location = 537 hv_get_next_readlocation_withoffset(inring_info, offset); 538 539 next_read_location = hv_copyfrom_ringbuffer(inring_info, 540 buffer, 541 buflen, 542 next_read_location); 543 544 next_read_location = hv_copyfrom_ringbuffer(inring_info, 545 &prev_indices, 546 sizeof(u64), 547 next_read_location); 548 549 /* Make sure all reads are done before we update the read index since */ 550 /* the writer may start writing to the read area once the read index */ 551 /*is updated */ 552 smp_mb(); 553 554 /* Update the read index */ 555 hv_set_next_read_location(inring_info, next_read_location); 556 557 spin_unlock_irqrestore(&inring_info->ring_lock, flags); 558 559 *signal = hv_need_to_signal_on_read(old_read, inring_info); 560 561 return 0; 562 } 563