xref: /openbmc/linux/drivers/hv/ring_buffer.c (revision 339031bafe6b281cf2dcb8364217288b9fdab555)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (c) 2009, Microsoft Corporation.
5  *
6  * Authors:
7  *   Haiyang Zhang <haiyangz@microsoft.com>
8  *   Hank Janssen  <hjanssen@microsoft.com>
9  *   K. Y. Srinivasan <kys@microsoft.com>
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/hyperv.h>
16 #include <linux/uio.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/prefetch.h>
20 
21 #include "hyperv_vmbus.h"
22 
23 #define VMBUS_PKT_TRAILER	8
24 
25 /*
26  * When we write to the ring buffer, check if the host needs to
27  * be signaled. Here is the details of this protocol:
28  *
29  *	1. The host guarantees that while it is draining the
30  *	   ring buffer, it will set the interrupt_mask to
31  *	   indicate it does not need to be interrupted when
32  *	   new data is placed.
33  *
34  *	2. The host guarantees that it will completely drain
35  *	   the ring buffer before exiting the read loop. Further,
36  *	   once the ring buffer is empty, it will clear the
37  *	   interrupt_mask and re-check to see if new data has
38  *	   arrived.
39  *
40  * KYS: Oct. 30, 2016:
41  * It looks like Windows hosts have logic to deal with DOS attacks that
42  * can be triggered if it receives interrupts when it is not expecting
43  * the interrupt. The host expects interrupts only when the ring
44  * transitions from empty to non-empty (or full to non full on the guest
45  * to host ring).
46  * So, base the signaling decision solely on the ring state until the
47  * host logic is fixed.
48  */
49 
50 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
51 {
52 	struct hv_ring_buffer_info *rbi = &channel->outbound;
53 
54 	virt_mb();
55 	if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
56 		return;
57 
58 	/* check interrupt_mask before read_index */
59 	virt_rmb();
60 	/*
61 	 * This is the only case we need to signal when the
62 	 * ring transitions from being empty to non-empty.
63 	 */
64 	if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
65 		++channel->intr_out_empty;
66 		vmbus_setevent(channel);
67 	}
68 }
69 
70 /* Get the next write location for the specified ring buffer. */
71 static inline u32
72 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
73 {
74 	u32 next = ring_info->ring_buffer->write_index;
75 
76 	return next;
77 }
78 
79 /* Set the next write location for the specified ring buffer. */
80 static inline void
81 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
82 		     u32 next_write_location)
83 {
84 	ring_info->ring_buffer->write_index = next_write_location;
85 }
86 
87 /* Get the size of the ring buffer. */
88 static inline u32
89 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
90 {
91 	return ring_info->ring_datasize;
92 }
93 
94 /* Get the read and write indices as u64 of the specified ring buffer. */
95 static inline u64
96 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
97 {
98 	return (u64)ring_info->ring_buffer->write_index << 32;
99 }
100 
101 /*
102  * Helper routine to copy from source to ring buffer.
103  * Assume there is enough room. Handles wrap-around in dest case only!!
104  */
105 static u32 hv_copyto_ringbuffer(
106 	struct hv_ring_buffer_info	*ring_info,
107 	u32				start_write_offset,
108 	const void			*src,
109 	u32				srclen)
110 {
111 	void *ring_buffer = hv_get_ring_buffer(ring_info);
112 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
113 
114 	memcpy(ring_buffer + start_write_offset, src, srclen);
115 
116 	start_write_offset += srclen;
117 	if (start_write_offset >= ring_buffer_size)
118 		start_write_offset -= ring_buffer_size;
119 
120 	return start_write_offset;
121 }
122 
123 /*
124  *
125  * hv_get_ringbuffer_availbytes()
126  *
127  * Get number of bytes available to read and to write to
128  * for the specified ring buffer
129  */
130 static void
131 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
132 			     u32 *read, u32 *write)
133 {
134 	u32 read_loc, write_loc, dsize;
135 
136 	/* Capture the read/write indices before they changed */
137 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
138 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
139 	dsize = rbi->ring_datasize;
140 
141 	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
142 		read_loc - write_loc;
143 	*read = dsize - *write;
144 }
145 
146 /* Get various debug metrics for the specified ring buffer. */
147 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
148 				struct hv_ring_buffer_debug_info *debug_info)
149 {
150 	u32 bytes_avail_towrite;
151 	u32 bytes_avail_toread;
152 
153 	mutex_lock(&ring_info->ring_buffer_mutex);
154 
155 	if (!ring_info->ring_buffer) {
156 		mutex_unlock(&ring_info->ring_buffer_mutex);
157 		return -EINVAL;
158 	}
159 
160 	hv_get_ringbuffer_availbytes(ring_info,
161 				     &bytes_avail_toread,
162 				     &bytes_avail_towrite);
163 	debug_info->bytes_avail_toread = bytes_avail_toread;
164 	debug_info->bytes_avail_towrite = bytes_avail_towrite;
165 	debug_info->current_read_index = ring_info->ring_buffer->read_index;
166 	debug_info->current_write_index = ring_info->ring_buffer->write_index;
167 	debug_info->current_interrupt_mask
168 		= ring_info->ring_buffer->interrupt_mask;
169 	mutex_unlock(&ring_info->ring_buffer_mutex);
170 
171 	return 0;
172 }
173 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
174 
175 /* Initialize a channel's ring buffer info mutex locks */
176 void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
177 {
178 	mutex_init(&channel->inbound.ring_buffer_mutex);
179 	mutex_init(&channel->outbound.ring_buffer_mutex);
180 }
181 
182 /* Initialize the ring buffer. */
183 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
184 		       struct page *pages, u32 page_cnt, u32 max_pkt_size)
185 {
186 	int i;
187 	struct page **pages_wraparound;
188 
189 	BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
190 
191 	/*
192 	 * First page holds struct hv_ring_buffer, do wraparound mapping for
193 	 * the rest.
194 	 */
195 	pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *),
196 				   GFP_KERNEL);
197 	if (!pages_wraparound)
198 		return -ENOMEM;
199 
200 	pages_wraparound[0] = pages;
201 	for (i = 0; i < 2 * (page_cnt - 1); i++)
202 		pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
203 
204 	ring_info->ring_buffer = (struct hv_ring_buffer *)
205 		vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
206 
207 	kfree(pages_wraparound);
208 
209 
210 	if (!ring_info->ring_buffer)
211 		return -ENOMEM;
212 
213 	ring_info->ring_buffer->read_index =
214 		ring_info->ring_buffer->write_index = 0;
215 
216 	/* Set the feature bit for enabling flow control. */
217 	ring_info->ring_buffer->feature_bits.value = 1;
218 
219 	ring_info->ring_size = page_cnt << PAGE_SHIFT;
220 	ring_info->ring_size_div10_reciprocal =
221 		reciprocal_value(ring_info->ring_size / 10);
222 	ring_info->ring_datasize = ring_info->ring_size -
223 		sizeof(struct hv_ring_buffer);
224 	ring_info->priv_read_index = 0;
225 
226 	/* Initialize buffer that holds copies of incoming packets */
227 	if (max_pkt_size) {
228 		ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL);
229 		if (!ring_info->pkt_buffer)
230 			return -ENOMEM;
231 		ring_info->pkt_buffer_size = max_pkt_size;
232 	}
233 
234 	spin_lock_init(&ring_info->ring_lock);
235 
236 	return 0;
237 }
238 
239 /* Cleanup the ring buffer. */
240 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
241 {
242 	mutex_lock(&ring_info->ring_buffer_mutex);
243 	vunmap(ring_info->ring_buffer);
244 	ring_info->ring_buffer = NULL;
245 	mutex_unlock(&ring_info->ring_buffer_mutex);
246 
247 	kfree(ring_info->pkt_buffer);
248 	ring_info->pkt_buffer = NULL;
249 	ring_info->pkt_buffer_size = 0;
250 }
251 
252 /* Write to the ring buffer. */
253 int hv_ringbuffer_write(struct vmbus_channel *channel,
254 			const struct kvec *kv_list, u32 kv_count,
255 			u64 requestid)
256 {
257 	int i;
258 	u32 bytes_avail_towrite;
259 	u32 totalbytes_towrite = sizeof(u64);
260 	u32 next_write_location;
261 	u32 old_write;
262 	u64 prev_indices;
263 	unsigned long flags;
264 	struct hv_ring_buffer_info *outring_info = &channel->outbound;
265 	struct vmpacket_descriptor *desc = kv_list[0].iov_base;
266 	u64 rqst_id = VMBUS_NO_RQSTOR;
267 
268 	if (channel->rescind)
269 		return -ENODEV;
270 
271 	for (i = 0; i < kv_count; i++)
272 		totalbytes_towrite += kv_list[i].iov_len;
273 
274 	spin_lock_irqsave(&outring_info->ring_lock, flags);
275 
276 	bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
277 
278 	/*
279 	 * If there is only room for the packet, assume it is full.
280 	 * Otherwise, the next time around, we think the ring buffer
281 	 * is empty since the read index == write index.
282 	 */
283 	if (bytes_avail_towrite <= totalbytes_towrite) {
284 		++channel->out_full_total;
285 
286 		if (!channel->out_full_flag) {
287 			++channel->out_full_first;
288 			channel->out_full_flag = true;
289 		}
290 
291 		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
292 		return -EAGAIN;
293 	}
294 
295 	channel->out_full_flag = false;
296 
297 	/* Write to the ring buffer */
298 	next_write_location = hv_get_next_write_location(outring_info);
299 
300 	old_write = next_write_location;
301 
302 	for (i = 0; i < kv_count; i++) {
303 		next_write_location = hv_copyto_ringbuffer(outring_info,
304 						     next_write_location,
305 						     kv_list[i].iov_base,
306 						     kv_list[i].iov_len);
307 	}
308 
309 	/*
310 	 * Allocate the request ID after the data has been copied into the
311 	 * ring buffer.  Once this request ID is allocated, the completion
312 	 * path could find the data and free it.
313 	 */
314 
315 	if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
316 		if (channel->next_request_id_callback != NULL) {
317 			rqst_id = channel->next_request_id_callback(channel, requestid);
318 			if (rqst_id == VMBUS_RQST_ERROR) {
319 				spin_unlock_irqrestore(&outring_info->ring_lock, flags);
320 				return -EAGAIN;
321 			}
322 		}
323 	}
324 	desc = hv_get_ring_buffer(outring_info) + old_write;
325 	desc->trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
326 
327 	/* Set previous packet start */
328 	prev_indices = hv_get_ring_bufferindices(outring_info);
329 
330 	next_write_location = hv_copyto_ringbuffer(outring_info,
331 					     next_write_location,
332 					     &prev_indices,
333 					     sizeof(u64));
334 
335 	/* Issue a full memory barrier before updating the write index */
336 	virt_mb();
337 
338 	/* Now, update the write location */
339 	hv_set_next_write_location(outring_info, next_write_location);
340 
341 
342 	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
343 
344 	hv_signal_on_write(old_write, channel);
345 
346 	if (channel->rescind) {
347 		if (rqst_id != VMBUS_NO_RQSTOR) {
348 			/* Reclaim request ID to avoid leak of IDs */
349 			if (channel->request_addr_callback != NULL)
350 				channel->request_addr_callback(channel, rqst_id);
351 		}
352 		return -ENODEV;
353 	}
354 
355 	return 0;
356 }
357 
358 int hv_ringbuffer_read(struct vmbus_channel *channel,
359 		       void *buffer, u32 buflen, u32 *buffer_actual_len,
360 		       u64 *requestid, bool raw)
361 {
362 	struct vmpacket_descriptor *desc;
363 	u32 packetlen, offset;
364 
365 	if (unlikely(buflen == 0))
366 		return -EINVAL;
367 
368 	*buffer_actual_len = 0;
369 	*requestid = 0;
370 
371 	/* Make sure there is something to read */
372 	desc = hv_pkt_iter_first(channel);
373 	if (desc == NULL) {
374 		/*
375 		 * No error is set when there is even no header, drivers are
376 		 * supposed to analyze buffer_actual_len.
377 		 */
378 		return 0;
379 	}
380 
381 	offset = raw ? 0 : (desc->offset8 << 3);
382 	packetlen = (desc->len8 << 3) - offset;
383 	*buffer_actual_len = packetlen;
384 	*requestid = desc->trans_id;
385 
386 	if (unlikely(packetlen > buflen))
387 		return -ENOBUFS;
388 
389 	/* since ring is double mapped, only one copy is necessary */
390 	memcpy(buffer, (const char *)desc + offset, packetlen);
391 
392 	/* Advance ring index to next packet descriptor */
393 	__hv_pkt_iter_next(channel, desc, true);
394 
395 	/* Notify host of update */
396 	hv_pkt_iter_close(channel);
397 
398 	return 0;
399 }
400 
401 /*
402  * Determine number of bytes available in ring buffer after
403  * the current iterator (priv_read_index) location.
404  *
405  * This is similar to hv_get_bytes_to_read but with private
406  * read index instead.
407  */
408 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
409 {
410 	u32 priv_read_loc = rbi->priv_read_index;
411 	u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
412 
413 	if (write_loc >= priv_read_loc)
414 		return write_loc - priv_read_loc;
415 	else
416 		return (rbi->ring_datasize - priv_read_loc) + write_loc;
417 }
418 
419 /*
420  * Get first vmbus packet without copying it out of the ring buffer
421  */
422 struct vmpacket_descriptor *hv_pkt_iter_first_raw(struct vmbus_channel *channel)
423 {
424 	struct hv_ring_buffer_info *rbi = &channel->inbound;
425 
426 	hv_debug_delay_test(channel, MESSAGE_DELAY);
427 
428 	if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
429 		return NULL;
430 
431 	return (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
432 }
433 EXPORT_SYMBOL_GPL(hv_pkt_iter_first_raw);
434 
435 /*
436  * Get first vmbus packet from ring buffer after read_index
437  *
438  * If ring buffer is empty, returns NULL and no other action needed.
439  */
440 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
441 {
442 	struct hv_ring_buffer_info *rbi = &channel->inbound;
443 	struct vmpacket_descriptor *desc, *desc_copy;
444 	u32 bytes_avail, pkt_len, pkt_offset;
445 
446 	desc = hv_pkt_iter_first_raw(channel);
447 	if (!desc)
448 		return NULL;
449 
450 	bytes_avail = min(rbi->pkt_buffer_size, hv_pkt_iter_avail(rbi));
451 
452 	/*
453 	 * Ensure the compiler does not use references to incoming Hyper-V values (which
454 	 * could change at any moment) when reading local variables later in the code
455 	 */
456 	pkt_len = READ_ONCE(desc->len8) << 3;
457 	pkt_offset = READ_ONCE(desc->offset8) << 3;
458 
459 	/*
460 	 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and
461 	 * rbi->pkt_buffer_size
462 	 */
463 	if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail)
464 		pkt_len = bytes_avail;
465 
466 	/*
467 	 * If pkt_offset is invalid, arbitrarily set it to
468 	 * the size of vmpacket_descriptor
469 	 */
470 	if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len)
471 		pkt_offset = sizeof(struct vmpacket_descriptor);
472 
473 	/* Copy the Hyper-V packet out of the ring buffer */
474 	desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer;
475 	memcpy(desc_copy, desc, pkt_len);
476 
477 	/*
478 	 * Hyper-V could still change len8 and offset8 after the earlier read.
479 	 * Ensure that desc_copy has legal values for len8 and offset8 that
480 	 * are consistent with the copy we just made
481 	 */
482 	desc_copy->len8 = pkt_len >> 3;
483 	desc_copy->offset8 = pkt_offset >> 3;
484 
485 	return desc_copy;
486 }
487 EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
488 
489 /*
490  * Get next vmbus packet from ring buffer.
491  *
492  * Advances the current location (priv_read_index) and checks for more
493  * data. If the end of the ring buffer is reached, then return NULL.
494  */
495 struct vmpacket_descriptor *
496 __hv_pkt_iter_next(struct vmbus_channel *channel,
497 		   const struct vmpacket_descriptor *desc,
498 		   bool copy)
499 {
500 	struct hv_ring_buffer_info *rbi = &channel->inbound;
501 	u32 packetlen = desc->len8 << 3;
502 	u32 dsize = rbi->ring_datasize;
503 
504 	hv_debug_delay_test(channel, MESSAGE_DELAY);
505 	/* bump offset to next potential packet */
506 	rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
507 	if (rbi->priv_read_index >= dsize)
508 		rbi->priv_read_index -= dsize;
509 
510 	/* more data? */
511 	return copy ? hv_pkt_iter_first(channel) : hv_pkt_iter_first_raw(channel);
512 }
513 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
514 
515 /* How many bytes were read in this iterator cycle */
516 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
517 					u32 start_read_index)
518 {
519 	if (rbi->priv_read_index >= start_read_index)
520 		return rbi->priv_read_index - start_read_index;
521 	else
522 		return rbi->ring_datasize - start_read_index +
523 			rbi->priv_read_index;
524 }
525 
526 /*
527  * Update host ring buffer after iterating over packets. If the host has
528  * stopped queuing new entries because it found the ring buffer full, and
529  * sufficient space is being freed up, signal the host. But be careful to
530  * only signal the host when necessary, both for performance reasons and
531  * because Hyper-V protects itself by throttling guests that signal
532  * inappropriately.
533  *
534  * Determining when to signal is tricky. There are three key data inputs
535  * that must be handled in this order to avoid race conditions:
536  *
537  * 1. Update the read_index
538  * 2. Read the pending_send_sz
539  * 3. Read the current write_index
540  *
541  * The interrupt_mask is not used to determine when to signal. The
542  * interrupt_mask is used only on the guest->host ring buffer when
543  * sending requests to the host. The host does not use it on the host->
544  * guest ring buffer to indicate whether it should be signaled.
545  */
546 void hv_pkt_iter_close(struct vmbus_channel *channel)
547 {
548 	struct hv_ring_buffer_info *rbi = &channel->inbound;
549 	u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
550 
551 	/*
552 	 * Make sure all reads are done before we update the read index since
553 	 * the writer may start writing to the read area once the read index
554 	 * is updated.
555 	 */
556 	virt_rmb();
557 	start_read_index = rbi->ring_buffer->read_index;
558 	rbi->ring_buffer->read_index = rbi->priv_read_index;
559 
560 	/*
561 	 * Older versions of Hyper-V (before WS2102 and Win8) do not
562 	 * implement pending_send_sz and simply poll if the host->guest
563 	 * ring buffer is full.  No signaling is needed or expected.
564 	 */
565 	if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
566 		return;
567 
568 	/*
569 	 * Issue a full memory barrier before making the signaling decision.
570 	 * If reading pending_send_sz were to be reordered and happen
571 	 * before we commit the new read_index, a race could occur.  If the
572 	 * host were to set the pending_send_sz after we have sampled
573 	 * pending_send_sz, and the ring buffer blocks before we commit the
574 	 * read index, we could miss sending the interrupt. Issue a full
575 	 * memory barrier to address this.
576 	 */
577 	virt_mb();
578 
579 	/*
580 	 * If the pending_send_sz is zero, then the ring buffer is not
581 	 * blocked and there is no need to signal.  This is far by the
582 	 * most common case, so exit quickly for best performance.
583 	 */
584 	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
585 	if (!pending_sz)
586 		return;
587 
588 	/*
589 	 * Ensure the read of write_index in hv_get_bytes_to_write()
590 	 * happens after the read of pending_send_sz.
591 	 */
592 	virt_rmb();
593 	curr_write_sz = hv_get_bytes_to_write(rbi);
594 	bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
595 
596 	/*
597 	 * We want to signal the host only if we're transitioning
598 	 * from a "not enough free space" state to a "enough free
599 	 * space" state.  For example, it's possible that this function
600 	 * could run and free up enough space to signal the host, and then
601 	 * run again and free up additional space before the host has a
602 	 * chance to clear the pending_send_sz.  The 2nd invocation would
603 	 * be a null transition from "enough free space" to "enough free
604 	 * space", which doesn't warrant a signal.
605 	 *
606 	 * Exactly filling the ring buffer is treated as "not enough
607 	 * space". The ring buffer always must have at least one byte
608 	 * empty so the empty and full conditions are distinguishable.
609 	 * hv_get_bytes_to_write() doesn't fully tell the truth in
610 	 * this regard.
611 	 *
612 	 * So first check if we were in the "enough free space" state
613 	 * before we began the iteration. If so, the host was not
614 	 * blocked, and there's no need to signal.
615 	 */
616 	if (curr_write_sz - bytes_read > pending_sz)
617 		return;
618 
619 	/*
620 	 * Similarly, if the new state is "not enough space", then
621 	 * there's no need to signal.
622 	 */
623 	if (curr_write_sz <= pending_sz)
624 		return;
625 
626 	++channel->intr_in_full;
627 	vmbus_setevent(channel);
628 }
629 EXPORT_SYMBOL_GPL(hv_pkt_iter_close);
630