1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright (c) 2009, Microsoft Corporation. 5 * 6 * Authors: 7 * Haiyang Zhang <haiyangz@microsoft.com> 8 * Hank Janssen <hjanssen@microsoft.com> 9 * K. Y. Srinivasan <kys@microsoft.com> 10 */ 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/hyperv.h> 16 #include <linux/uio.h> 17 #include <linux/vmalloc.h> 18 #include <linux/slab.h> 19 #include <linux/prefetch.h> 20 21 #include "hyperv_vmbus.h" 22 23 #define VMBUS_PKT_TRAILER 8 24 25 /* 26 * When we write to the ring buffer, check if the host needs to 27 * be signaled. Here is the details of this protocol: 28 * 29 * 1. The host guarantees that while it is draining the 30 * ring buffer, it will set the interrupt_mask to 31 * indicate it does not need to be interrupted when 32 * new data is placed. 33 * 34 * 2. The host guarantees that it will completely drain 35 * the ring buffer before exiting the read loop. Further, 36 * once the ring buffer is empty, it will clear the 37 * interrupt_mask and re-check to see if new data has 38 * arrived. 39 * 40 * KYS: Oct. 30, 2016: 41 * It looks like Windows hosts have logic to deal with DOS attacks that 42 * can be triggered if it receives interrupts when it is not expecting 43 * the interrupt. The host expects interrupts only when the ring 44 * transitions from empty to non-empty (or full to non full on the guest 45 * to host ring). 46 * So, base the signaling decision solely on the ring state until the 47 * host logic is fixed. 48 */ 49 50 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel) 51 { 52 struct hv_ring_buffer_info *rbi = &channel->outbound; 53 54 virt_mb(); 55 if (READ_ONCE(rbi->ring_buffer->interrupt_mask)) 56 return; 57 58 /* check interrupt_mask before read_index */ 59 virt_rmb(); 60 /* 61 * This is the only case we need to signal when the 62 * ring transitions from being empty to non-empty. 63 */ 64 if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) { 65 ++channel->intr_out_empty; 66 vmbus_setevent(channel); 67 } 68 } 69 70 /* Get the next write location for the specified ring buffer. */ 71 static inline u32 72 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info) 73 { 74 u32 next = ring_info->ring_buffer->write_index; 75 76 return next; 77 } 78 79 /* Set the next write location for the specified ring buffer. */ 80 static inline void 81 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info, 82 u32 next_write_location) 83 { 84 ring_info->ring_buffer->write_index = next_write_location; 85 } 86 87 /* Get the size of the ring buffer. */ 88 static inline u32 89 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info) 90 { 91 return ring_info->ring_datasize; 92 } 93 94 /* Get the read and write indices as u64 of the specified ring buffer. */ 95 static inline u64 96 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info) 97 { 98 return (u64)ring_info->ring_buffer->write_index << 32; 99 } 100 101 /* 102 * Helper routine to copy from source to ring buffer. 103 * Assume there is enough room. Handles wrap-around in dest case only!! 104 */ 105 static u32 hv_copyto_ringbuffer( 106 struct hv_ring_buffer_info *ring_info, 107 u32 start_write_offset, 108 const void *src, 109 u32 srclen) 110 { 111 void *ring_buffer = hv_get_ring_buffer(ring_info); 112 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); 113 114 memcpy(ring_buffer + start_write_offset, src, srclen); 115 116 start_write_offset += srclen; 117 if (start_write_offset >= ring_buffer_size) 118 start_write_offset -= ring_buffer_size; 119 120 return start_write_offset; 121 } 122 123 /* 124 * 125 * hv_get_ringbuffer_availbytes() 126 * 127 * Get number of bytes available to read and to write to 128 * for the specified ring buffer 129 */ 130 static void 131 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi, 132 u32 *read, u32 *write) 133 { 134 u32 read_loc, write_loc, dsize; 135 136 /* Capture the read/write indices before they changed */ 137 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 138 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 139 dsize = rbi->ring_datasize; 140 141 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 142 read_loc - write_loc; 143 *read = dsize - *write; 144 } 145 146 /* Get various debug metrics for the specified ring buffer. */ 147 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 148 struct hv_ring_buffer_debug_info *debug_info) 149 { 150 u32 bytes_avail_towrite; 151 u32 bytes_avail_toread; 152 153 mutex_lock(&ring_info->ring_buffer_mutex); 154 155 if (!ring_info->ring_buffer) { 156 mutex_unlock(&ring_info->ring_buffer_mutex); 157 return -EINVAL; 158 } 159 160 hv_get_ringbuffer_availbytes(ring_info, 161 &bytes_avail_toread, 162 &bytes_avail_towrite); 163 debug_info->bytes_avail_toread = bytes_avail_toread; 164 debug_info->bytes_avail_towrite = bytes_avail_towrite; 165 debug_info->current_read_index = ring_info->ring_buffer->read_index; 166 debug_info->current_write_index = ring_info->ring_buffer->write_index; 167 debug_info->current_interrupt_mask 168 = ring_info->ring_buffer->interrupt_mask; 169 mutex_unlock(&ring_info->ring_buffer_mutex); 170 171 return 0; 172 } 173 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo); 174 175 /* Initialize a channel's ring buffer info mutex locks */ 176 void hv_ringbuffer_pre_init(struct vmbus_channel *channel) 177 { 178 mutex_init(&channel->inbound.ring_buffer_mutex); 179 mutex_init(&channel->outbound.ring_buffer_mutex); 180 } 181 182 /* Initialize the ring buffer. */ 183 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info, 184 struct page *pages, u32 page_cnt, u32 max_pkt_size) 185 { 186 int i; 187 struct page **pages_wraparound; 188 189 BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE)); 190 191 /* 192 * First page holds struct hv_ring_buffer, do wraparound mapping for 193 * the rest. 194 */ 195 pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *), 196 GFP_KERNEL); 197 if (!pages_wraparound) 198 return -ENOMEM; 199 200 pages_wraparound[0] = pages; 201 for (i = 0; i < 2 * (page_cnt - 1); i++) 202 pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1]; 203 204 ring_info->ring_buffer = (struct hv_ring_buffer *) 205 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL); 206 207 kfree(pages_wraparound); 208 209 210 if (!ring_info->ring_buffer) 211 return -ENOMEM; 212 213 ring_info->ring_buffer->read_index = 214 ring_info->ring_buffer->write_index = 0; 215 216 /* Set the feature bit for enabling flow control. */ 217 ring_info->ring_buffer->feature_bits.value = 1; 218 219 ring_info->ring_size = page_cnt << PAGE_SHIFT; 220 ring_info->ring_size_div10_reciprocal = 221 reciprocal_value(ring_info->ring_size / 10); 222 ring_info->ring_datasize = ring_info->ring_size - 223 sizeof(struct hv_ring_buffer); 224 ring_info->priv_read_index = 0; 225 226 /* Initialize buffer that holds copies of incoming packets */ 227 if (max_pkt_size) { 228 ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL); 229 if (!ring_info->pkt_buffer) 230 return -ENOMEM; 231 ring_info->pkt_buffer_size = max_pkt_size; 232 } 233 234 spin_lock_init(&ring_info->ring_lock); 235 236 return 0; 237 } 238 239 /* Cleanup the ring buffer. */ 240 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info) 241 { 242 mutex_lock(&ring_info->ring_buffer_mutex); 243 vunmap(ring_info->ring_buffer); 244 ring_info->ring_buffer = NULL; 245 mutex_unlock(&ring_info->ring_buffer_mutex); 246 247 kfree(ring_info->pkt_buffer); 248 ring_info->pkt_buffer = NULL; 249 ring_info->pkt_buffer_size = 0; 250 } 251 252 /* Write to the ring buffer. */ 253 int hv_ringbuffer_write(struct vmbus_channel *channel, 254 const struct kvec *kv_list, u32 kv_count, 255 u64 requestid) 256 { 257 int i; 258 u32 bytes_avail_towrite; 259 u32 totalbytes_towrite = sizeof(u64); 260 u32 next_write_location; 261 u32 old_write; 262 u64 prev_indices; 263 unsigned long flags; 264 struct hv_ring_buffer_info *outring_info = &channel->outbound; 265 struct vmpacket_descriptor *desc = kv_list[0].iov_base; 266 u64 rqst_id = VMBUS_NO_RQSTOR; 267 268 if (channel->rescind) 269 return -ENODEV; 270 271 for (i = 0; i < kv_count; i++) 272 totalbytes_towrite += kv_list[i].iov_len; 273 274 spin_lock_irqsave(&outring_info->ring_lock, flags); 275 276 bytes_avail_towrite = hv_get_bytes_to_write(outring_info); 277 278 /* 279 * If there is only room for the packet, assume it is full. 280 * Otherwise, the next time around, we think the ring buffer 281 * is empty since the read index == write index. 282 */ 283 if (bytes_avail_towrite <= totalbytes_towrite) { 284 ++channel->out_full_total; 285 286 if (!channel->out_full_flag) { 287 ++channel->out_full_first; 288 channel->out_full_flag = true; 289 } 290 291 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 292 return -EAGAIN; 293 } 294 295 channel->out_full_flag = false; 296 297 /* Write to the ring buffer */ 298 next_write_location = hv_get_next_write_location(outring_info); 299 300 old_write = next_write_location; 301 302 for (i = 0; i < kv_count; i++) { 303 next_write_location = hv_copyto_ringbuffer(outring_info, 304 next_write_location, 305 kv_list[i].iov_base, 306 kv_list[i].iov_len); 307 } 308 309 /* 310 * Allocate the request ID after the data has been copied into the 311 * ring buffer. Once this request ID is allocated, the completion 312 * path could find the data and free it. 313 */ 314 315 if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) { 316 if (channel->next_request_id_callback != NULL) { 317 rqst_id = channel->next_request_id_callback(channel, requestid); 318 if (rqst_id == VMBUS_RQST_ERROR) { 319 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 320 return -EAGAIN; 321 } 322 } 323 } 324 desc = hv_get_ring_buffer(outring_info) + old_write; 325 desc->trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id; 326 327 /* Set previous packet start */ 328 prev_indices = hv_get_ring_bufferindices(outring_info); 329 330 next_write_location = hv_copyto_ringbuffer(outring_info, 331 next_write_location, 332 &prev_indices, 333 sizeof(u64)); 334 335 /* Issue a full memory barrier before updating the write index */ 336 virt_mb(); 337 338 /* Now, update the write location */ 339 hv_set_next_write_location(outring_info, next_write_location); 340 341 342 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 343 344 hv_signal_on_write(old_write, channel); 345 346 if (channel->rescind) { 347 if (rqst_id != VMBUS_NO_RQSTOR) { 348 /* Reclaim request ID to avoid leak of IDs */ 349 if (channel->request_addr_callback != NULL) 350 channel->request_addr_callback(channel, rqst_id); 351 } 352 return -ENODEV; 353 } 354 355 return 0; 356 } 357 358 int hv_ringbuffer_read(struct vmbus_channel *channel, 359 void *buffer, u32 buflen, u32 *buffer_actual_len, 360 u64 *requestid, bool raw) 361 { 362 struct vmpacket_descriptor *desc; 363 u32 packetlen, offset; 364 365 if (unlikely(buflen == 0)) 366 return -EINVAL; 367 368 *buffer_actual_len = 0; 369 *requestid = 0; 370 371 /* Make sure there is something to read */ 372 desc = hv_pkt_iter_first(channel); 373 if (desc == NULL) { 374 /* 375 * No error is set when there is even no header, drivers are 376 * supposed to analyze buffer_actual_len. 377 */ 378 return 0; 379 } 380 381 offset = raw ? 0 : (desc->offset8 << 3); 382 packetlen = (desc->len8 << 3) - offset; 383 *buffer_actual_len = packetlen; 384 *requestid = desc->trans_id; 385 386 if (unlikely(packetlen > buflen)) 387 return -ENOBUFS; 388 389 /* since ring is double mapped, only one copy is necessary */ 390 memcpy(buffer, (const char *)desc + offset, packetlen); 391 392 /* Advance ring index to next packet descriptor */ 393 __hv_pkt_iter_next(channel, desc, true); 394 395 /* Notify host of update */ 396 hv_pkt_iter_close(channel); 397 398 return 0; 399 } 400 401 /* 402 * Determine number of bytes available in ring buffer after 403 * the current iterator (priv_read_index) location. 404 * 405 * This is similar to hv_get_bytes_to_read but with private 406 * read index instead. 407 */ 408 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi) 409 { 410 u32 priv_read_loc = rbi->priv_read_index; 411 u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 412 413 if (write_loc >= priv_read_loc) 414 return write_loc - priv_read_loc; 415 else 416 return (rbi->ring_datasize - priv_read_loc) + write_loc; 417 } 418 419 /* 420 * Get first vmbus packet without copying it out of the ring buffer 421 */ 422 struct vmpacket_descriptor *hv_pkt_iter_first_raw(struct vmbus_channel *channel) 423 { 424 struct hv_ring_buffer_info *rbi = &channel->inbound; 425 426 hv_debug_delay_test(channel, MESSAGE_DELAY); 427 428 if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor)) 429 return NULL; 430 431 return (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index); 432 } 433 EXPORT_SYMBOL_GPL(hv_pkt_iter_first_raw); 434 435 /* 436 * Get first vmbus packet from ring buffer after read_index 437 * 438 * If ring buffer is empty, returns NULL and no other action needed. 439 */ 440 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel) 441 { 442 struct hv_ring_buffer_info *rbi = &channel->inbound; 443 struct vmpacket_descriptor *desc, *desc_copy; 444 u32 bytes_avail, pkt_len, pkt_offset; 445 446 desc = hv_pkt_iter_first_raw(channel); 447 if (!desc) 448 return NULL; 449 450 bytes_avail = min(rbi->pkt_buffer_size, hv_pkt_iter_avail(rbi)); 451 452 /* 453 * Ensure the compiler does not use references to incoming Hyper-V values (which 454 * could change at any moment) when reading local variables later in the code 455 */ 456 pkt_len = READ_ONCE(desc->len8) << 3; 457 pkt_offset = READ_ONCE(desc->offset8) << 3; 458 459 /* 460 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and 461 * rbi->pkt_buffer_size 462 */ 463 if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail) 464 pkt_len = bytes_avail; 465 466 /* 467 * If pkt_offset is invalid, arbitrarily set it to 468 * the size of vmpacket_descriptor 469 */ 470 if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len) 471 pkt_offset = sizeof(struct vmpacket_descriptor); 472 473 /* Copy the Hyper-V packet out of the ring buffer */ 474 desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer; 475 memcpy(desc_copy, desc, pkt_len); 476 477 /* 478 * Hyper-V could still change len8 and offset8 after the earlier read. 479 * Ensure that desc_copy has legal values for len8 and offset8 that 480 * are consistent with the copy we just made 481 */ 482 desc_copy->len8 = pkt_len >> 3; 483 desc_copy->offset8 = pkt_offset >> 3; 484 485 return desc_copy; 486 } 487 EXPORT_SYMBOL_GPL(hv_pkt_iter_first); 488 489 /* 490 * Get next vmbus packet from ring buffer. 491 * 492 * Advances the current location (priv_read_index) and checks for more 493 * data. If the end of the ring buffer is reached, then return NULL. 494 */ 495 struct vmpacket_descriptor * 496 __hv_pkt_iter_next(struct vmbus_channel *channel, 497 const struct vmpacket_descriptor *desc, 498 bool copy) 499 { 500 struct hv_ring_buffer_info *rbi = &channel->inbound; 501 u32 packetlen = desc->len8 << 3; 502 u32 dsize = rbi->ring_datasize; 503 504 hv_debug_delay_test(channel, MESSAGE_DELAY); 505 /* bump offset to next potential packet */ 506 rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER; 507 if (rbi->priv_read_index >= dsize) 508 rbi->priv_read_index -= dsize; 509 510 /* more data? */ 511 return copy ? hv_pkt_iter_first(channel) : hv_pkt_iter_first_raw(channel); 512 } 513 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next); 514 515 /* How many bytes were read in this iterator cycle */ 516 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi, 517 u32 start_read_index) 518 { 519 if (rbi->priv_read_index >= start_read_index) 520 return rbi->priv_read_index - start_read_index; 521 else 522 return rbi->ring_datasize - start_read_index + 523 rbi->priv_read_index; 524 } 525 526 /* 527 * Update host ring buffer after iterating over packets. If the host has 528 * stopped queuing new entries because it found the ring buffer full, and 529 * sufficient space is being freed up, signal the host. But be careful to 530 * only signal the host when necessary, both for performance reasons and 531 * because Hyper-V protects itself by throttling guests that signal 532 * inappropriately. 533 * 534 * Determining when to signal is tricky. There are three key data inputs 535 * that must be handled in this order to avoid race conditions: 536 * 537 * 1. Update the read_index 538 * 2. Read the pending_send_sz 539 * 3. Read the current write_index 540 * 541 * The interrupt_mask is not used to determine when to signal. The 542 * interrupt_mask is used only on the guest->host ring buffer when 543 * sending requests to the host. The host does not use it on the host-> 544 * guest ring buffer to indicate whether it should be signaled. 545 */ 546 void hv_pkt_iter_close(struct vmbus_channel *channel) 547 { 548 struct hv_ring_buffer_info *rbi = &channel->inbound; 549 u32 curr_write_sz, pending_sz, bytes_read, start_read_index; 550 551 /* 552 * Make sure all reads are done before we update the read index since 553 * the writer may start writing to the read area once the read index 554 * is updated. 555 */ 556 virt_rmb(); 557 start_read_index = rbi->ring_buffer->read_index; 558 rbi->ring_buffer->read_index = rbi->priv_read_index; 559 560 /* 561 * Older versions of Hyper-V (before WS2102 and Win8) do not 562 * implement pending_send_sz and simply poll if the host->guest 563 * ring buffer is full. No signaling is needed or expected. 564 */ 565 if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz) 566 return; 567 568 /* 569 * Issue a full memory barrier before making the signaling decision. 570 * If reading pending_send_sz were to be reordered and happen 571 * before we commit the new read_index, a race could occur. If the 572 * host were to set the pending_send_sz after we have sampled 573 * pending_send_sz, and the ring buffer blocks before we commit the 574 * read index, we could miss sending the interrupt. Issue a full 575 * memory barrier to address this. 576 */ 577 virt_mb(); 578 579 /* 580 * If the pending_send_sz is zero, then the ring buffer is not 581 * blocked and there is no need to signal. This is far by the 582 * most common case, so exit quickly for best performance. 583 */ 584 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz); 585 if (!pending_sz) 586 return; 587 588 /* 589 * Ensure the read of write_index in hv_get_bytes_to_write() 590 * happens after the read of pending_send_sz. 591 */ 592 virt_rmb(); 593 curr_write_sz = hv_get_bytes_to_write(rbi); 594 bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index); 595 596 /* 597 * We want to signal the host only if we're transitioning 598 * from a "not enough free space" state to a "enough free 599 * space" state. For example, it's possible that this function 600 * could run and free up enough space to signal the host, and then 601 * run again and free up additional space before the host has a 602 * chance to clear the pending_send_sz. The 2nd invocation would 603 * be a null transition from "enough free space" to "enough free 604 * space", which doesn't warrant a signal. 605 * 606 * Exactly filling the ring buffer is treated as "not enough 607 * space". The ring buffer always must have at least one byte 608 * empty so the empty and full conditions are distinguishable. 609 * hv_get_bytes_to_write() doesn't fully tell the truth in 610 * this regard. 611 * 612 * So first check if we were in the "enough free space" state 613 * before we began the iteration. If so, the host was not 614 * blocked, and there's no need to signal. 615 */ 616 if (curr_write_sz - bytes_read > pending_sz) 617 return; 618 619 /* 620 * Similarly, if the new state is "not enough space", then 621 * there's no need to signal. 622 */ 623 if (curr_write_sz <= pending_sz) 624 return; 625 626 ++channel->intr_in_full; 627 vmbus_setevent(channel); 628 } 629 EXPORT_SYMBOL_GPL(hv_pkt_iter_close); 630