1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright (c) 2009, Microsoft Corporation. 5 * 6 * Authors: 7 * Haiyang Zhang <haiyangz@microsoft.com> 8 * Hank Janssen <hjanssen@microsoft.com> 9 * K. Y. Srinivasan <kys@microsoft.com> 10 */ 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/mm.h> 15 #include <linux/hyperv.h> 16 #include <linux/uio.h> 17 #include <linux/vmalloc.h> 18 #include <linux/slab.h> 19 #include <linux/prefetch.h> 20 #include <linux/io.h> 21 #include <asm/mshyperv.h> 22 23 #include "hyperv_vmbus.h" 24 25 #define VMBUS_PKT_TRAILER 8 26 27 /* 28 * When we write to the ring buffer, check if the host needs to 29 * be signaled. Here is the details of this protocol: 30 * 31 * 1. The host guarantees that while it is draining the 32 * ring buffer, it will set the interrupt_mask to 33 * indicate it does not need to be interrupted when 34 * new data is placed. 35 * 36 * 2. The host guarantees that it will completely drain 37 * the ring buffer before exiting the read loop. Further, 38 * once the ring buffer is empty, it will clear the 39 * interrupt_mask and re-check to see if new data has 40 * arrived. 41 * 42 * KYS: Oct. 30, 2016: 43 * It looks like Windows hosts have logic to deal with DOS attacks that 44 * can be triggered if it receives interrupts when it is not expecting 45 * the interrupt. The host expects interrupts only when the ring 46 * transitions from empty to non-empty (or full to non full on the guest 47 * to host ring). 48 * So, base the signaling decision solely on the ring state until the 49 * host logic is fixed. 50 */ 51 52 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel) 53 { 54 struct hv_ring_buffer_info *rbi = &channel->outbound; 55 56 virt_mb(); 57 if (READ_ONCE(rbi->ring_buffer->interrupt_mask)) 58 return; 59 60 /* check interrupt_mask before read_index */ 61 virt_rmb(); 62 /* 63 * This is the only case we need to signal when the 64 * ring transitions from being empty to non-empty. 65 */ 66 if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) { 67 ++channel->intr_out_empty; 68 vmbus_setevent(channel); 69 } 70 } 71 72 /* Get the next write location for the specified ring buffer. */ 73 static inline u32 74 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info) 75 { 76 u32 next = ring_info->ring_buffer->write_index; 77 78 return next; 79 } 80 81 /* Set the next write location for the specified ring buffer. */ 82 static inline void 83 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info, 84 u32 next_write_location) 85 { 86 ring_info->ring_buffer->write_index = next_write_location; 87 } 88 89 /* Get the size of the ring buffer. */ 90 static inline u32 91 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info) 92 { 93 return ring_info->ring_datasize; 94 } 95 96 /* Get the read and write indices as u64 of the specified ring buffer. */ 97 static inline u64 98 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info) 99 { 100 return (u64)ring_info->ring_buffer->write_index << 32; 101 } 102 103 /* 104 * Helper routine to copy from source to ring buffer. 105 * Assume there is enough room. Handles wrap-around in dest case only!! 106 */ 107 static u32 hv_copyto_ringbuffer( 108 struct hv_ring_buffer_info *ring_info, 109 u32 start_write_offset, 110 const void *src, 111 u32 srclen) 112 { 113 void *ring_buffer = hv_get_ring_buffer(ring_info); 114 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); 115 116 memcpy(ring_buffer + start_write_offset, src, srclen); 117 118 start_write_offset += srclen; 119 if (start_write_offset >= ring_buffer_size) 120 start_write_offset -= ring_buffer_size; 121 122 return start_write_offset; 123 } 124 125 /* 126 * 127 * hv_get_ringbuffer_availbytes() 128 * 129 * Get number of bytes available to read and to write to 130 * for the specified ring buffer 131 */ 132 static void 133 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi, 134 u32 *read, u32 *write) 135 { 136 u32 read_loc, write_loc, dsize; 137 138 /* Capture the read/write indices before they changed */ 139 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 140 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 141 dsize = rbi->ring_datasize; 142 143 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 144 read_loc - write_loc; 145 *read = dsize - *write; 146 } 147 148 /* Get various debug metrics for the specified ring buffer. */ 149 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 150 struct hv_ring_buffer_debug_info *debug_info) 151 { 152 u32 bytes_avail_towrite; 153 u32 bytes_avail_toread; 154 155 mutex_lock(&ring_info->ring_buffer_mutex); 156 157 if (!ring_info->ring_buffer) { 158 mutex_unlock(&ring_info->ring_buffer_mutex); 159 return -EINVAL; 160 } 161 162 hv_get_ringbuffer_availbytes(ring_info, 163 &bytes_avail_toread, 164 &bytes_avail_towrite); 165 debug_info->bytes_avail_toread = bytes_avail_toread; 166 debug_info->bytes_avail_towrite = bytes_avail_towrite; 167 debug_info->current_read_index = ring_info->ring_buffer->read_index; 168 debug_info->current_write_index = ring_info->ring_buffer->write_index; 169 debug_info->current_interrupt_mask 170 = ring_info->ring_buffer->interrupt_mask; 171 mutex_unlock(&ring_info->ring_buffer_mutex); 172 173 return 0; 174 } 175 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo); 176 177 /* Initialize a channel's ring buffer info mutex locks */ 178 void hv_ringbuffer_pre_init(struct vmbus_channel *channel) 179 { 180 mutex_init(&channel->inbound.ring_buffer_mutex); 181 mutex_init(&channel->outbound.ring_buffer_mutex); 182 } 183 184 /* Initialize the ring buffer. */ 185 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info, 186 struct page *pages, u32 page_cnt, u32 max_pkt_size) 187 { 188 struct page **pages_wraparound; 189 int i; 190 191 BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE)); 192 193 /* 194 * First page holds struct hv_ring_buffer, do wraparound mapping for 195 * the rest. 196 */ 197 pages_wraparound = kcalloc(page_cnt * 2 - 1, 198 sizeof(struct page *), 199 GFP_KERNEL); 200 if (!pages_wraparound) 201 return -ENOMEM; 202 203 pages_wraparound[0] = pages; 204 for (i = 0; i < 2 * (page_cnt - 1); i++) 205 pages_wraparound[i + 1] = 206 &pages[i % (page_cnt - 1) + 1]; 207 208 ring_info->ring_buffer = (struct hv_ring_buffer *) 209 vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, 210 pgprot_decrypted(PAGE_KERNEL)); 211 212 kfree(pages_wraparound); 213 if (!ring_info->ring_buffer) 214 return -ENOMEM; 215 216 /* 217 * Ensure the header page is zero'ed since 218 * encryption status may have changed. 219 */ 220 memset(ring_info->ring_buffer, 0, HV_HYP_PAGE_SIZE); 221 222 ring_info->ring_buffer->read_index = 223 ring_info->ring_buffer->write_index = 0; 224 225 /* Set the feature bit for enabling flow control. */ 226 ring_info->ring_buffer->feature_bits.value = 1; 227 228 ring_info->ring_size = page_cnt << PAGE_SHIFT; 229 ring_info->ring_size_div10_reciprocal = 230 reciprocal_value(ring_info->ring_size / 10); 231 ring_info->ring_datasize = ring_info->ring_size - 232 sizeof(struct hv_ring_buffer); 233 ring_info->priv_read_index = 0; 234 235 /* Initialize buffer that holds copies of incoming packets */ 236 if (max_pkt_size) { 237 ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL); 238 if (!ring_info->pkt_buffer) 239 return -ENOMEM; 240 ring_info->pkt_buffer_size = max_pkt_size; 241 } 242 243 spin_lock_init(&ring_info->ring_lock); 244 245 return 0; 246 } 247 248 /* Cleanup the ring buffer. */ 249 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info) 250 { 251 mutex_lock(&ring_info->ring_buffer_mutex); 252 vunmap(ring_info->ring_buffer); 253 ring_info->ring_buffer = NULL; 254 mutex_unlock(&ring_info->ring_buffer_mutex); 255 256 kfree(ring_info->pkt_buffer); 257 ring_info->pkt_buffer = NULL; 258 ring_info->pkt_buffer_size = 0; 259 } 260 261 /* 262 * Check if the ring buffer spinlock is available to take or not; used on 263 * atomic contexts, like panic path (see the Hyper-V framebuffer driver). 264 */ 265 266 bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel) 267 { 268 struct hv_ring_buffer_info *rinfo = &channel->outbound; 269 270 return spin_is_locked(&rinfo->ring_lock); 271 } 272 EXPORT_SYMBOL_GPL(hv_ringbuffer_spinlock_busy); 273 274 /* Write to the ring buffer. */ 275 int hv_ringbuffer_write(struct vmbus_channel *channel, 276 const struct kvec *kv_list, u32 kv_count, 277 u64 requestid, u64 *trans_id) 278 { 279 int i; 280 u32 bytes_avail_towrite; 281 u32 totalbytes_towrite = sizeof(u64); 282 u32 next_write_location; 283 u32 old_write; 284 u64 prev_indices; 285 unsigned long flags; 286 struct hv_ring_buffer_info *outring_info = &channel->outbound; 287 struct vmpacket_descriptor *desc = kv_list[0].iov_base; 288 u64 __trans_id, rqst_id = VMBUS_NO_RQSTOR; 289 290 if (channel->rescind) 291 return -ENODEV; 292 293 for (i = 0; i < kv_count; i++) 294 totalbytes_towrite += kv_list[i].iov_len; 295 296 spin_lock_irqsave(&outring_info->ring_lock, flags); 297 298 bytes_avail_towrite = hv_get_bytes_to_write(outring_info); 299 300 /* 301 * If there is only room for the packet, assume it is full. 302 * Otherwise, the next time around, we think the ring buffer 303 * is empty since the read index == write index. 304 */ 305 if (bytes_avail_towrite <= totalbytes_towrite) { 306 ++channel->out_full_total; 307 308 if (!channel->out_full_flag) { 309 ++channel->out_full_first; 310 channel->out_full_flag = true; 311 } 312 313 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 314 return -EAGAIN; 315 } 316 317 channel->out_full_flag = false; 318 319 /* Write to the ring buffer */ 320 next_write_location = hv_get_next_write_location(outring_info); 321 322 old_write = next_write_location; 323 324 for (i = 0; i < kv_count; i++) { 325 next_write_location = hv_copyto_ringbuffer(outring_info, 326 next_write_location, 327 kv_list[i].iov_base, 328 kv_list[i].iov_len); 329 } 330 331 /* 332 * Allocate the request ID after the data has been copied into the 333 * ring buffer. Once this request ID is allocated, the completion 334 * path could find the data and free it. 335 */ 336 337 if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) { 338 if (channel->next_request_id_callback != NULL) { 339 rqst_id = channel->next_request_id_callback(channel, requestid); 340 if (rqst_id == VMBUS_RQST_ERROR) { 341 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 342 return -EAGAIN; 343 } 344 } 345 } 346 desc = hv_get_ring_buffer(outring_info) + old_write; 347 __trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id; 348 /* 349 * Ensure the compiler doesn't generate code that reads the value of 350 * the transaction ID from the ring buffer, which is shared with the 351 * Hyper-V host and subject to being changed at any time. 352 */ 353 WRITE_ONCE(desc->trans_id, __trans_id); 354 if (trans_id) 355 *trans_id = __trans_id; 356 357 /* Set previous packet start */ 358 prev_indices = hv_get_ring_bufferindices(outring_info); 359 360 next_write_location = hv_copyto_ringbuffer(outring_info, 361 next_write_location, 362 &prev_indices, 363 sizeof(u64)); 364 365 /* Issue a full memory barrier before updating the write index */ 366 virt_mb(); 367 368 /* Now, update the write location */ 369 hv_set_next_write_location(outring_info, next_write_location); 370 371 372 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 373 374 hv_signal_on_write(old_write, channel); 375 376 if (channel->rescind) { 377 if (rqst_id != VMBUS_NO_RQSTOR) { 378 /* Reclaim request ID to avoid leak of IDs */ 379 if (channel->request_addr_callback != NULL) 380 channel->request_addr_callback(channel, rqst_id); 381 } 382 return -ENODEV; 383 } 384 385 return 0; 386 } 387 388 int hv_ringbuffer_read(struct vmbus_channel *channel, 389 void *buffer, u32 buflen, u32 *buffer_actual_len, 390 u64 *requestid, bool raw) 391 { 392 struct vmpacket_descriptor *desc; 393 u32 packetlen, offset; 394 395 if (unlikely(buflen == 0)) 396 return -EINVAL; 397 398 *buffer_actual_len = 0; 399 *requestid = 0; 400 401 /* Make sure there is something to read */ 402 desc = hv_pkt_iter_first(channel); 403 if (desc == NULL) { 404 /* 405 * No error is set when there is even no header, drivers are 406 * supposed to analyze buffer_actual_len. 407 */ 408 return 0; 409 } 410 411 offset = raw ? 0 : (desc->offset8 << 3); 412 packetlen = (desc->len8 << 3) - offset; 413 *buffer_actual_len = packetlen; 414 *requestid = desc->trans_id; 415 416 if (unlikely(packetlen > buflen)) 417 return -ENOBUFS; 418 419 /* since ring is double mapped, only one copy is necessary */ 420 memcpy(buffer, (const char *)desc + offset, packetlen); 421 422 /* Advance ring index to next packet descriptor */ 423 __hv_pkt_iter_next(channel, desc); 424 425 /* Notify host of update */ 426 hv_pkt_iter_close(channel); 427 428 return 0; 429 } 430 431 /* 432 * Determine number of bytes available in ring buffer after 433 * the current iterator (priv_read_index) location. 434 * 435 * This is similar to hv_get_bytes_to_read but with private 436 * read index instead. 437 */ 438 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi) 439 { 440 u32 priv_read_loc = rbi->priv_read_index; 441 u32 write_loc; 442 443 /* 444 * The Hyper-V host writes the packet data, then uses 445 * store_release() to update the write_index. Use load_acquire() 446 * here to prevent loads of the packet data from being re-ordered 447 * before the read of the write_index and potentially getting 448 * stale data. 449 */ 450 write_loc = virt_load_acquire(&rbi->ring_buffer->write_index); 451 452 if (write_loc >= priv_read_loc) 453 return write_loc - priv_read_loc; 454 else 455 return (rbi->ring_datasize - priv_read_loc) + write_loc; 456 } 457 458 /* 459 * Get first vmbus packet from ring buffer after read_index 460 * 461 * If ring buffer is empty, returns NULL and no other action needed. 462 */ 463 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel) 464 { 465 struct hv_ring_buffer_info *rbi = &channel->inbound; 466 struct vmpacket_descriptor *desc, *desc_copy; 467 u32 bytes_avail, pkt_len, pkt_offset; 468 469 hv_debug_delay_test(channel, MESSAGE_DELAY); 470 471 bytes_avail = hv_pkt_iter_avail(rbi); 472 if (bytes_avail < sizeof(struct vmpacket_descriptor)) 473 return NULL; 474 bytes_avail = min(rbi->pkt_buffer_size, bytes_avail); 475 476 desc = (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index); 477 478 /* 479 * Ensure the compiler does not use references to incoming Hyper-V values (which 480 * could change at any moment) when reading local variables later in the code 481 */ 482 pkt_len = READ_ONCE(desc->len8) << 3; 483 pkt_offset = READ_ONCE(desc->offset8) << 3; 484 485 /* 486 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and 487 * rbi->pkt_buffer_size 488 */ 489 if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail) 490 pkt_len = bytes_avail; 491 492 /* 493 * If pkt_offset is invalid, arbitrarily set it to 494 * the size of vmpacket_descriptor 495 */ 496 if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len) 497 pkt_offset = sizeof(struct vmpacket_descriptor); 498 499 /* Copy the Hyper-V packet out of the ring buffer */ 500 desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer; 501 memcpy(desc_copy, desc, pkt_len); 502 503 /* 504 * Hyper-V could still change len8 and offset8 after the earlier read. 505 * Ensure that desc_copy has legal values for len8 and offset8 that 506 * are consistent with the copy we just made 507 */ 508 desc_copy->len8 = pkt_len >> 3; 509 desc_copy->offset8 = pkt_offset >> 3; 510 511 return desc_copy; 512 } 513 EXPORT_SYMBOL_GPL(hv_pkt_iter_first); 514 515 /* 516 * Get next vmbus packet from ring buffer. 517 * 518 * Advances the current location (priv_read_index) and checks for more 519 * data. If the end of the ring buffer is reached, then return NULL. 520 */ 521 struct vmpacket_descriptor * 522 __hv_pkt_iter_next(struct vmbus_channel *channel, 523 const struct vmpacket_descriptor *desc) 524 { 525 struct hv_ring_buffer_info *rbi = &channel->inbound; 526 u32 packetlen = desc->len8 << 3; 527 u32 dsize = rbi->ring_datasize; 528 529 hv_debug_delay_test(channel, MESSAGE_DELAY); 530 /* bump offset to next potential packet */ 531 rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER; 532 if (rbi->priv_read_index >= dsize) 533 rbi->priv_read_index -= dsize; 534 535 /* more data? */ 536 return hv_pkt_iter_first(channel); 537 } 538 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next); 539 540 /* How many bytes were read in this iterator cycle */ 541 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi, 542 u32 start_read_index) 543 { 544 if (rbi->priv_read_index >= start_read_index) 545 return rbi->priv_read_index - start_read_index; 546 else 547 return rbi->ring_datasize - start_read_index + 548 rbi->priv_read_index; 549 } 550 551 /* 552 * Update host ring buffer after iterating over packets. If the host has 553 * stopped queuing new entries because it found the ring buffer full, and 554 * sufficient space is being freed up, signal the host. But be careful to 555 * only signal the host when necessary, both for performance reasons and 556 * because Hyper-V protects itself by throttling guests that signal 557 * inappropriately. 558 * 559 * Determining when to signal is tricky. There are three key data inputs 560 * that must be handled in this order to avoid race conditions: 561 * 562 * 1. Update the read_index 563 * 2. Read the pending_send_sz 564 * 3. Read the current write_index 565 * 566 * The interrupt_mask is not used to determine when to signal. The 567 * interrupt_mask is used only on the guest->host ring buffer when 568 * sending requests to the host. The host does not use it on the host-> 569 * guest ring buffer to indicate whether it should be signaled. 570 */ 571 void hv_pkt_iter_close(struct vmbus_channel *channel) 572 { 573 struct hv_ring_buffer_info *rbi = &channel->inbound; 574 u32 curr_write_sz, pending_sz, bytes_read, start_read_index; 575 576 /* 577 * Make sure all reads are done before we update the read index since 578 * the writer may start writing to the read area once the read index 579 * is updated. 580 */ 581 virt_rmb(); 582 start_read_index = rbi->ring_buffer->read_index; 583 rbi->ring_buffer->read_index = rbi->priv_read_index; 584 585 /* 586 * Older versions of Hyper-V (before WS2102 and Win8) do not 587 * implement pending_send_sz and simply poll if the host->guest 588 * ring buffer is full. No signaling is needed or expected. 589 */ 590 if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz) 591 return; 592 593 /* 594 * Issue a full memory barrier before making the signaling decision. 595 * If reading pending_send_sz were to be reordered and happen 596 * before we commit the new read_index, a race could occur. If the 597 * host were to set the pending_send_sz after we have sampled 598 * pending_send_sz, and the ring buffer blocks before we commit the 599 * read index, we could miss sending the interrupt. Issue a full 600 * memory barrier to address this. 601 */ 602 virt_mb(); 603 604 /* 605 * If the pending_send_sz is zero, then the ring buffer is not 606 * blocked and there is no need to signal. This is far by the 607 * most common case, so exit quickly for best performance. 608 */ 609 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz); 610 if (!pending_sz) 611 return; 612 613 /* 614 * Ensure the read of write_index in hv_get_bytes_to_write() 615 * happens after the read of pending_send_sz. 616 */ 617 virt_rmb(); 618 curr_write_sz = hv_get_bytes_to_write(rbi); 619 bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index); 620 621 /* 622 * We want to signal the host only if we're transitioning 623 * from a "not enough free space" state to a "enough free 624 * space" state. For example, it's possible that this function 625 * could run and free up enough space to signal the host, and then 626 * run again and free up additional space before the host has a 627 * chance to clear the pending_send_sz. The 2nd invocation would 628 * be a null transition from "enough free space" to "enough free 629 * space", which doesn't warrant a signal. 630 * 631 * Exactly filling the ring buffer is treated as "not enough 632 * space". The ring buffer always must have at least one byte 633 * empty so the empty and full conditions are distinguishable. 634 * hv_get_bytes_to_write() doesn't fully tell the truth in 635 * this regard. 636 * 637 * So first check if we were in the "enough free space" state 638 * before we began the iteration. If so, the host was not 639 * blocked, and there's no need to signal. 640 */ 641 if (curr_write_sz - bytes_read > pending_sz) 642 return; 643 644 /* 645 * Similarly, if the new state is "not enough space", then 646 * there's no need to signal. 647 */ 648 if (curr_write_sz <= pending_sz) 649 return; 650 651 ++channel->intr_in_full; 652 vmbus_setevent(channel); 653 } 654 EXPORT_SYMBOL_GPL(hv_pkt_iter_close); 655