1 /* 2 * 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26 #include <linux/kernel.h> 27 #include <linux/mm.h> 28 #include <linux/hyperv.h> 29 #include <linux/uio.h> 30 31 #include "hyperv_vmbus.h" 32 33 void hv_begin_read(struct hv_ring_buffer_info *rbi) 34 { 35 rbi->ring_buffer->interrupt_mask = 1; 36 mb(); 37 } 38 39 u32 hv_end_read(struct hv_ring_buffer_info *rbi) 40 { 41 u32 read; 42 u32 write; 43 44 rbi->ring_buffer->interrupt_mask = 0; 45 mb(); 46 47 /* 48 * Now check to see if the ring buffer is still empty. 49 * If it is not, we raced and we need to process new 50 * incoming messages. 51 */ 52 hv_get_ringbuffer_availbytes(rbi, &read, &write); 53 54 return read; 55 } 56 57 /* 58 * When we write to the ring buffer, check if the host needs to 59 * be signaled. Here is the details of this protocol: 60 * 61 * 1. The host guarantees that while it is draining the 62 * ring buffer, it will set the interrupt_mask to 63 * indicate it does not need to be interrupted when 64 * new data is placed. 65 * 66 * 2. The host guarantees that it will completely drain 67 * the ring buffer before exiting the read loop. Further, 68 * once the ring buffer is empty, it will clear the 69 * interrupt_mask and re-check to see if new data has 70 * arrived. 71 */ 72 73 static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi) 74 { 75 mb(); 76 if (rbi->ring_buffer->interrupt_mask) 77 return false; 78 79 /* check interrupt_mask before read_index */ 80 rmb(); 81 /* 82 * This is the only case we need to signal when the 83 * ring transitions from being empty to non-empty. 84 */ 85 if (old_write == rbi->ring_buffer->read_index) 86 return true; 87 88 return false; 89 } 90 91 /* 92 * To optimize the flow management on the send-side, 93 * when the sender is blocked because of lack of 94 * sufficient space in the ring buffer, potential the 95 * consumer of the ring buffer can signal the producer. 96 * This is controlled by the following parameters: 97 * 98 * 1. pending_send_sz: This is the size in bytes that the 99 * producer is trying to send. 100 * 2. The feature bit feat_pending_send_sz set to indicate if 101 * the consumer of the ring will signal when the ring 102 * state transitions from being full to a state where 103 * there is room for the producer to send the pending packet. 104 */ 105 106 static bool hv_need_to_signal_on_read(u32 old_rd, 107 struct hv_ring_buffer_info *rbi) 108 { 109 u32 prev_write_sz; 110 u32 cur_write_sz; 111 u32 r_size; 112 u32 write_loc = rbi->ring_buffer->write_index; 113 u32 read_loc = rbi->ring_buffer->read_index; 114 u32 pending_sz = rbi->ring_buffer->pending_send_sz; 115 116 /* 117 * If the other end is not blocked on write don't bother. 118 */ 119 if (pending_sz == 0) 120 return false; 121 122 r_size = rbi->ring_datasize; 123 cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) : 124 read_loc - write_loc; 125 126 prev_write_sz = write_loc >= old_rd ? r_size - (write_loc - old_rd) : 127 old_rd - write_loc; 128 129 130 if ((prev_write_sz < pending_sz) && (cur_write_sz >= pending_sz)) 131 return true; 132 133 return false; 134 } 135 136 /* 137 * hv_get_next_write_location() 138 * 139 * Get the next write location for the specified ring buffer 140 * 141 */ 142 static inline u32 143 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info) 144 { 145 u32 next = ring_info->ring_buffer->write_index; 146 147 return next; 148 } 149 150 /* 151 * hv_set_next_write_location() 152 * 153 * Set the next write location for the specified ring buffer 154 * 155 */ 156 static inline void 157 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info, 158 u32 next_write_location) 159 { 160 ring_info->ring_buffer->write_index = next_write_location; 161 } 162 163 /* 164 * hv_get_next_read_location() 165 * 166 * Get the next read location for the specified ring buffer 167 */ 168 static inline u32 169 hv_get_next_read_location(struct hv_ring_buffer_info *ring_info) 170 { 171 u32 next = ring_info->ring_buffer->read_index; 172 173 return next; 174 } 175 176 /* 177 * hv_get_next_readlocation_withoffset() 178 * 179 * Get the next read location + offset for the specified ring buffer. 180 * This allows the caller to skip 181 */ 182 static inline u32 183 hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info, 184 u32 offset) 185 { 186 u32 next = ring_info->ring_buffer->read_index; 187 188 next += offset; 189 next %= ring_info->ring_datasize; 190 191 return next; 192 } 193 194 /* 195 * 196 * hv_set_next_read_location() 197 * 198 * Set the next read location for the specified ring buffer 199 * 200 */ 201 static inline void 202 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info, 203 u32 next_read_location) 204 { 205 ring_info->ring_buffer->read_index = next_read_location; 206 } 207 208 209 /* 210 * 211 * hv_get_ring_buffer() 212 * 213 * Get the start of the ring buffer 214 */ 215 static inline void * 216 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info) 217 { 218 return (void *)ring_info->ring_buffer->buffer; 219 } 220 221 222 /* 223 * 224 * hv_get_ring_buffersize() 225 * 226 * Get the size of the ring buffer 227 */ 228 static inline u32 229 hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info) 230 { 231 return ring_info->ring_datasize; 232 } 233 234 /* 235 * 236 * hv_get_ring_bufferindices() 237 * 238 * Get the read and write indices as u64 of the specified ring buffer 239 * 240 */ 241 static inline u64 242 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info) 243 { 244 return (u64)ring_info->ring_buffer->write_index << 32; 245 } 246 247 /* 248 * 249 * hv_copyfrom_ringbuffer() 250 * 251 * Helper routine to copy to source from ring buffer. 252 * Assume there is enough room. Handles wrap-around in src case only!! 253 * 254 */ 255 static u32 hv_copyfrom_ringbuffer( 256 struct hv_ring_buffer_info *ring_info, 257 void *dest, 258 u32 destlen, 259 u32 start_read_offset) 260 { 261 void *ring_buffer = hv_get_ring_buffer(ring_info); 262 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); 263 264 u32 frag_len; 265 266 /* wrap-around detected at the src */ 267 if (destlen > ring_buffer_size - start_read_offset) { 268 frag_len = ring_buffer_size - start_read_offset; 269 270 memcpy(dest, ring_buffer + start_read_offset, frag_len); 271 memcpy(dest + frag_len, ring_buffer, destlen - frag_len); 272 } else 273 274 memcpy(dest, ring_buffer + start_read_offset, destlen); 275 276 277 start_read_offset += destlen; 278 start_read_offset %= ring_buffer_size; 279 280 return start_read_offset; 281 } 282 283 284 /* 285 * 286 * hv_copyto_ringbuffer() 287 * 288 * Helper routine to copy from source to ring buffer. 289 * Assume there is enough room. Handles wrap-around in dest case only!! 290 * 291 */ 292 static u32 hv_copyto_ringbuffer( 293 struct hv_ring_buffer_info *ring_info, 294 u32 start_write_offset, 295 void *src, 296 u32 srclen) 297 { 298 void *ring_buffer = hv_get_ring_buffer(ring_info); 299 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); 300 u32 frag_len; 301 302 /* wrap-around detected! */ 303 if (srclen > ring_buffer_size - start_write_offset) { 304 frag_len = ring_buffer_size - start_write_offset; 305 memcpy(ring_buffer + start_write_offset, src, frag_len); 306 memcpy(ring_buffer, src + frag_len, srclen - frag_len); 307 } else 308 memcpy(ring_buffer + start_write_offset, src, srclen); 309 310 start_write_offset += srclen; 311 start_write_offset %= ring_buffer_size; 312 313 return start_write_offset; 314 } 315 316 /* 317 * 318 * hv_ringbuffer_get_debuginfo() 319 * 320 * Get various debug metrics for the specified ring buffer 321 * 322 */ 323 void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 324 struct hv_ring_buffer_debug_info *debug_info) 325 { 326 u32 bytes_avail_towrite; 327 u32 bytes_avail_toread; 328 329 if (ring_info->ring_buffer) { 330 hv_get_ringbuffer_availbytes(ring_info, 331 &bytes_avail_toread, 332 &bytes_avail_towrite); 333 334 debug_info->bytes_avail_toread = bytes_avail_toread; 335 debug_info->bytes_avail_towrite = bytes_avail_towrite; 336 debug_info->current_read_index = 337 ring_info->ring_buffer->read_index; 338 debug_info->current_write_index = 339 ring_info->ring_buffer->write_index; 340 debug_info->current_interrupt_mask = 341 ring_info->ring_buffer->interrupt_mask; 342 } 343 } 344 345 /* 346 * 347 * hv_ringbuffer_init() 348 * 349 *Initialize the ring buffer 350 * 351 */ 352 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info, 353 void *buffer, u32 buflen) 354 { 355 if (sizeof(struct hv_ring_buffer) != PAGE_SIZE) 356 return -EINVAL; 357 358 memset(ring_info, 0, sizeof(struct hv_ring_buffer_info)); 359 360 ring_info->ring_buffer = (struct hv_ring_buffer *)buffer; 361 ring_info->ring_buffer->read_index = 362 ring_info->ring_buffer->write_index = 0; 363 364 /* 365 * Set the feature bit for enabling flow control. 366 */ 367 ring_info->ring_buffer->feature_bits.value = 1; 368 369 ring_info->ring_size = buflen; 370 ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer); 371 372 spin_lock_init(&ring_info->ring_lock); 373 374 return 0; 375 } 376 377 /* 378 * 379 * hv_ringbuffer_cleanup() 380 * 381 * Cleanup the ring buffer 382 * 383 */ 384 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info) 385 { 386 } 387 388 /* 389 * 390 * hv_ringbuffer_write() 391 * 392 * Write to the ring buffer 393 * 394 */ 395 int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info, 396 struct kvec *kv_list, u32 kv_count, bool *signal) 397 { 398 int i = 0; 399 u32 bytes_avail_towrite; 400 u32 bytes_avail_toread; 401 u32 totalbytes_towrite = 0; 402 403 u32 next_write_location; 404 u32 old_write; 405 u64 prev_indices = 0; 406 unsigned long flags; 407 408 for (i = 0; i < kv_count; i++) 409 totalbytes_towrite += kv_list[i].iov_len; 410 411 totalbytes_towrite += sizeof(u64); 412 413 spin_lock_irqsave(&outring_info->ring_lock, flags); 414 415 hv_get_ringbuffer_availbytes(outring_info, 416 &bytes_avail_toread, 417 &bytes_avail_towrite); 418 419 420 /* If there is only room for the packet, assume it is full. */ 421 /* Otherwise, the next time around, we think the ring buffer */ 422 /* is empty since the read index == write index */ 423 if (bytes_avail_towrite <= totalbytes_towrite) { 424 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 425 return -EAGAIN; 426 } 427 428 /* Write to the ring buffer */ 429 next_write_location = hv_get_next_write_location(outring_info); 430 431 old_write = next_write_location; 432 433 for (i = 0; i < kv_count; i++) { 434 next_write_location = hv_copyto_ringbuffer(outring_info, 435 next_write_location, 436 kv_list[i].iov_base, 437 kv_list[i].iov_len); 438 } 439 440 /* Set previous packet start */ 441 prev_indices = hv_get_ring_bufferindices(outring_info); 442 443 next_write_location = hv_copyto_ringbuffer(outring_info, 444 next_write_location, 445 &prev_indices, 446 sizeof(u64)); 447 448 /* Issue a full memory barrier before updating the write index */ 449 mb(); 450 451 /* Now, update the write location */ 452 hv_set_next_write_location(outring_info, next_write_location); 453 454 455 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 456 457 *signal = hv_need_to_signal(old_write, outring_info); 458 return 0; 459 } 460 461 462 /* 463 * 464 * hv_ringbuffer_peek() 465 * 466 * Read without advancing the read index 467 * 468 */ 469 int hv_ringbuffer_peek(struct hv_ring_buffer_info *Inring_info, 470 void *Buffer, u32 buflen) 471 { 472 u32 bytes_avail_towrite; 473 u32 bytes_avail_toread; 474 u32 next_read_location = 0; 475 unsigned long flags; 476 477 spin_lock_irqsave(&Inring_info->ring_lock, flags); 478 479 hv_get_ringbuffer_availbytes(Inring_info, 480 &bytes_avail_toread, 481 &bytes_avail_towrite); 482 483 /* Make sure there is something to read */ 484 if (bytes_avail_toread < buflen) { 485 486 spin_unlock_irqrestore(&Inring_info->ring_lock, flags); 487 488 return -EAGAIN; 489 } 490 491 /* Convert to byte offset */ 492 next_read_location = hv_get_next_read_location(Inring_info); 493 494 next_read_location = hv_copyfrom_ringbuffer(Inring_info, 495 Buffer, 496 buflen, 497 next_read_location); 498 499 spin_unlock_irqrestore(&Inring_info->ring_lock, flags); 500 501 return 0; 502 } 503 504 505 /* 506 * 507 * hv_ringbuffer_read() 508 * 509 * Read and advance the read index 510 * 511 */ 512 int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, void *buffer, 513 u32 buflen, u32 offset, bool *signal) 514 { 515 u32 bytes_avail_towrite; 516 u32 bytes_avail_toread; 517 u32 next_read_location = 0; 518 u64 prev_indices = 0; 519 unsigned long flags; 520 u32 old_read; 521 522 if (buflen <= 0) 523 return -EINVAL; 524 525 spin_lock_irqsave(&inring_info->ring_lock, flags); 526 527 hv_get_ringbuffer_availbytes(inring_info, 528 &bytes_avail_toread, 529 &bytes_avail_towrite); 530 531 old_read = bytes_avail_toread; 532 533 /* Make sure there is something to read */ 534 if (bytes_avail_toread < buflen) { 535 spin_unlock_irqrestore(&inring_info->ring_lock, flags); 536 537 return -EAGAIN; 538 } 539 540 next_read_location = 541 hv_get_next_readlocation_withoffset(inring_info, offset); 542 543 next_read_location = hv_copyfrom_ringbuffer(inring_info, 544 buffer, 545 buflen, 546 next_read_location); 547 548 next_read_location = hv_copyfrom_ringbuffer(inring_info, 549 &prev_indices, 550 sizeof(u64), 551 next_read_location); 552 553 /* Make sure all reads are done before we update the read index since */ 554 /* the writer may start writing to the read area once the read index */ 555 /*is updated */ 556 mb(); 557 558 /* Update the read index */ 559 hv_set_next_read_location(inring_info, next_read_location); 560 561 spin_unlock_irqrestore(&inring_info->ring_lock, flags); 562 563 *signal = hv_need_to_signal_on_read(old_read, inring_info); 564 565 return 0; 566 } 567