xref: /openbmc/linux/drivers/hv/ring_buffer.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  *
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16  * Place - Suite 330, Boston, MA 02111-1307 USA.
17  *
18  * Authors:
19  *   Haiyang Zhang <haiyangz@microsoft.com>
20  *   Hank Janssen  <hjanssen@microsoft.com>
21  *   K. Y. Srinivasan <kys@microsoft.com>
22  *
23  */
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/hyperv.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <linux/slab.h>
32 #include <linux/prefetch.h>
33 
34 #include "hyperv_vmbus.h"
35 
36 #define VMBUS_PKT_TRAILER	8
37 
38 /*
39  * When we write to the ring buffer, check if the host needs to
40  * be signaled. Here is the details of this protocol:
41  *
42  *	1. The host guarantees that while it is draining the
43  *	   ring buffer, it will set the interrupt_mask to
44  *	   indicate it does not need to be interrupted when
45  *	   new data is placed.
46  *
47  *	2. The host guarantees that it will completely drain
48  *	   the ring buffer before exiting the read loop. Further,
49  *	   once the ring buffer is empty, it will clear the
50  *	   interrupt_mask and re-check to see if new data has
51  *	   arrived.
52  *
53  * KYS: Oct. 30, 2016:
54  * It looks like Windows hosts have logic to deal with DOS attacks that
55  * can be triggered if it receives interrupts when it is not expecting
56  * the interrupt. The host expects interrupts only when the ring
57  * transitions from empty to non-empty (or full to non full on the guest
58  * to host ring).
59  * So, base the signaling decision solely on the ring state until the
60  * host logic is fixed.
61  */
62 
63 static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
64 {
65 	struct hv_ring_buffer_info *rbi = &channel->outbound;
66 
67 	virt_mb();
68 	if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
69 		return;
70 
71 	/* check interrupt_mask before read_index */
72 	virt_rmb();
73 	/*
74 	 * This is the only case we need to signal when the
75 	 * ring transitions from being empty to non-empty.
76 	 */
77 	if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
78 		++channel->intr_out_empty;
79 		vmbus_setevent(channel);
80 	}
81 }
82 
83 /* Get the next write location for the specified ring buffer. */
84 static inline u32
85 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
86 {
87 	u32 next = ring_info->ring_buffer->write_index;
88 
89 	return next;
90 }
91 
92 /* Set the next write location for the specified ring buffer. */
93 static inline void
94 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
95 		     u32 next_write_location)
96 {
97 	ring_info->ring_buffer->write_index = next_write_location;
98 }
99 
100 /* Set the next read location for the specified ring buffer. */
101 static inline void
102 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
103 		    u32 next_read_location)
104 {
105 	ring_info->ring_buffer->read_index = next_read_location;
106 	ring_info->priv_read_index = next_read_location;
107 }
108 
109 /* Get the size of the ring buffer. */
110 static inline u32
111 hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
112 {
113 	return ring_info->ring_datasize;
114 }
115 
116 /* Get the read and write indices as u64 of the specified ring buffer. */
117 static inline u64
118 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
119 {
120 	return (u64)ring_info->ring_buffer->write_index << 32;
121 }
122 
123 /*
124  * Helper routine to copy from source to ring buffer.
125  * Assume there is enough room. Handles wrap-around in dest case only!!
126  */
127 static u32 hv_copyto_ringbuffer(
128 	struct hv_ring_buffer_info	*ring_info,
129 	u32				start_write_offset,
130 	const void			*src,
131 	u32				srclen)
132 {
133 	void *ring_buffer = hv_get_ring_buffer(ring_info);
134 	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
135 
136 	memcpy(ring_buffer + start_write_offset, src, srclen);
137 
138 	start_write_offset += srclen;
139 	if (start_write_offset >= ring_buffer_size)
140 		start_write_offset -= ring_buffer_size;
141 
142 	return start_write_offset;
143 }
144 
145 /*
146  *
147  * hv_get_ringbuffer_availbytes()
148  *
149  * Get number of bytes available to read and to write to
150  * for the specified ring buffer
151  */
152 static void
153 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
154 			     u32 *read, u32 *write)
155 {
156 	u32 read_loc, write_loc, dsize;
157 
158 	/* Capture the read/write indices before they changed */
159 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
160 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
161 	dsize = rbi->ring_datasize;
162 
163 	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
164 		read_loc - write_loc;
165 	*read = dsize - *write;
166 }
167 
168 /* Get various debug metrics for the specified ring buffer. */
169 int hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info *ring_info,
170 				struct hv_ring_buffer_debug_info *debug_info)
171 {
172 	u32 bytes_avail_towrite;
173 	u32 bytes_avail_toread;
174 
175 	if (!ring_info->ring_buffer)
176 		return -EINVAL;
177 
178 	hv_get_ringbuffer_availbytes(ring_info,
179 				     &bytes_avail_toread,
180 				     &bytes_avail_towrite);
181 	debug_info->bytes_avail_toread = bytes_avail_toread;
182 	debug_info->bytes_avail_towrite = bytes_avail_towrite;
183 	debug_info->current_read_index = ring_info->ring_buffer->read_index;
184 	debug_info->current_write_index = ring_info->ring_buffer->write_index;
185 	debug_info->current_interrupt_mask
186 		= ring_info->ring_buffer->interrupt_mask;
187 	return 0;
188 }
189 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
190 
191 /* Initialize the ring buffer. */
192 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
193 		       struct page *pages, u32 page_cnt)
194 {
195 	int i;
196 	struct page **pages_wraparound;
197 
198 	BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
199 
200 	memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
201 
202 	/*
203 	 * First page holds struct hv_ring_buffer, do wraparound mapping for
204 	 * the rest.
205 	 */
206 	pages_wraparound = kcalloc(page_cnt * 2 - 1, sizeof(struct page *),
207 				   GFP_KERNEL);
208 	if (!pages_wraparound)
209 		return -ENOMEM;
210 
211 	pages_wraparound[0] = pages;
212 	for (i = 0; i < 2 * (page_cnt - 1); i++)
213 		pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
214 
215 	ring_info->ring_buffer = (struct hv_ring_buffer *)
216 		vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
217 
218 	kfree(pages_wraparound);
219 
220 
221 	if (!ring_info->ring_buffer)
222 		return -ENOMEM;
223 
224 	ring_info->ring_buffer->read_index =
225 		ring_info->ring_buffer->write_index = 0;
226 
227 	/* Set the feature bit for enabling flow control. */
228 	ring_info->ring_buffer->feature_bits.value = 1;
229 
230 	ring_info->ring_size = page_cnt << PAGE_SHIFT;
231 	ring_info->ring_size_div10_reciprocal =
232 		reciprocal_value(ring_info->ring_size / 10);
233 	ring_info->ring_datasize = ring_info->ring_size -
234 		sizeof(struct hv_ring_buffer);
235 
236 	spin_lock_init(&ring_info->ring_lock);
237 
238 	return 0;
239 }
240 
241 /* Cleanup the ring buffer. */
242 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
243 {
244 	vunmap(ring_info->ring_buffer);
245 	ring_info->ring_buffer = NULL;
246 }
247 
248 /* Write to the ring buffer. */
249 int hv_ringbuffer_write(struct vmbus_channel *channel,
250 			const struct kvec *kv_list, u32 kv_count)
251 {
252 	int i;
253 	u32 bytes_avail_towrite;
254 	u32 totalbytes_towrite = sizeof(u64);
255 	u32 next_write_location;
256 	u32 old_write;
257 	u64 prev_indices;
258 	unsigned long flags;
259 	struct hv_ring_buffer_info *outring_info = &channel->outbound;
260 
261 	if (channel->rescind)
262 		return -ENODEV;
263 
264 	for (i = 0; i < kv_count; i++)
265 		totalbytes_towrite += kv_list[i].iov_len;
266 
267 	spin_lock_irqsave(&outring_info->ring_lock, flags);
268 
269 	bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
270 
271 	/*
272 	 * If there is only room for the packet, assume it is full.
273 	 * Otherwise, the next time around, we think the ring buffer
274 	 * is empty since the read index == write index.
275 	 */
276 	if (bytes_avail_towrite <= totalbytes_towrite) {
277 		++channel->out_full_total;
278 
279 		if (!channel->out_full_flag) {
280 			++channel->out_full_first;
281 			channel->out_full_flag = true;
282 		}
283 
284 		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
285 		return -EAGAIN;
286 	}
287 
288 	channel->out_full_flag = false;
289 
290 	/* Write to the ring buffer */
291 	next_write_location = hv_get_next_write_location(outring_info);
292 
293 	old_write = next_write_location;
294 
295 	for (i = 0; i < kv_count; i++) {
296 		next_write_location = hv_copyto_ringbuffer(outring_info,
297 						     next_write_location,
298 						     kv_list[i].iov_base,
299 						     kv_list[i].iov_len);
300 	}
301 
302 	/* Set previous packet start */
303 	prev_indices = hv_get_ring_bufferindices(outring_info);
304 
305 	next_write_location = hv_copyto_ringbuffer(outring_info,
306 					     next_write_location,
307 					     &prev_indices,
308 					     sizeof(u64));
309 
310 	/* Issue a full memory barrier before updating the write index */
311 	virt_mb();
312 
313 	/* Now, update the write location */
314 	hv_set_next_write_location(outring_info, next_write_location);
315 
316 
317 	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
318 
319 	hv_signal_on_write(old_write, channel);
320 
321 	if (channel->rescind)
322 		return -ENODEV;
323 
324 	return 0;
325 }
326 
327 int hv_ringbuffer_read(struct vmbus_channel *channel,
328 		       void *buffer, u32 buflen, u32 *buffer_actual_len,
329 		       u64 *requestid, bool raw)
330 {
331 	struct vmpacket_descriptor *desc;
332 	u32 packetlen, offset;
333 
334 	if (unlikely(buflen == 0))
335 		return -EINVAL;
336 
337 	*buffer_actual_len = 0;
338 	*requestid = 0;
339 
340 	/* Make sure there is something to read */
341 	desc = hv_pkt_iter_first(channel);
342 	if (desc == NULL) {
343 		/*
344 		 * No error is set when there is even no header, drivers are
345 		 * supposed to analyze buffer_actual_len.
346 		 */
347 		return 0;
348 	}
349 
350 	offset = raw ? 0 : (desc->offset8 << 3);
351 	packetlen = (desc->len8 << 3) - offset;
352 	*buffer_actual_len = packetlen;
353 	*requestid = desc->trans_id;
354 
355 	if (unlikely(packetlen > buflen))
356 		return -ENOBUFS;
357 
358 	/* since ring is double mapped, only one copy is necessary */
359 	memcpy(buffer, (const char *)desc + offset, packetlen);
360 
361 	/* Advance ring index to next packet descriptor */
362 	__hv_pkt_iter_next(channel, desc);
363 
364 	/* Notify host of update */
365 	hv_pkt_iter_close(channel);
366 
367 	return 0;
368 }
369 
370 /*
371  * Determine number of bytes available in ring buffer after
372  * the current iterator (priv_read_index) location.
373  *
374  * This is similar to hv_get_bytes_to_read but with private
375  * read index instead.
376  */
377 static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
378 {
379 	u32 priv_read_loc = rbi->priv_read_index;
380 	u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
381 
382 	if (write_loc >= priv_read_loc)
383 		return write_loc - priv_read_loc;
384 	else
385 		return (rbi->ring_datasize - priv_read_loc) + write_loc;
386 }
387 
388 /*
389  * Get first vmbus packet from ring buffer after read_index
390  *
391  * If ring buffer is empty, returns NULL and no other action needed.
392  */
393 struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
394 {
395 	struct hv_ring_buffer_info *rbi = &channel->inbound;
396 	struct vmpacket_descriptor *desc;
397 
398 	if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
399 		return NULL;
400 
401 	desc = hv_get_ring_buffer(rbi) + rbi->priv_read_index;
402 	if (desc)
403 		prefetch((char *)desc + (desc->len8 << 3));
404 
405 	return desc;
406 }
407 EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
408 
409 /*
410  * Get next vmbus packet from ring buffer.
411  *
412  * Advances the current location (priv_read_index) and checks for more
413  * data. If the end of the ring buffer is reached, then return NULL.
414  */
415 struct vmpacket_descriptor *
416 __hv_pkt_iter_next(struct vmbus_channel *channel,
417 		   const struct vmpacket_descriptor *desc)
418 {
419 	struct hv_ring_buffer_info *rbi = &channel->inbound;
420 	u32 packetlen = desc->len8 << 3;
421 	u32 dsize = rbi->ring_datasize;
422 
423 	/* bump offset to next potential packet */
424 	rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
425 	if (rbi->priv_read_index >= dsize)
426 		rbi->priv_read_index -= dsize;
427 
428 	/* more data? */
429 	return hv_pkt_iter_first(channel);
430 }
431 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
432 
433 /* How many bytes were read in this iterator cycle */
434 static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
435 					u32 start_read_index)
436 {
437 	if (rbi->priv_read_index >= start_read_index)
438 		return rbi->priv_read_index - start_read_index;
439 	else
440 		return rbi->ring_datasize - start_read_index +
441 			rbi->priv_read_index;
442 }
443 
444 /*
445  * Update host ring buffer after iterating over packets. If the host has
446  * stopped queuing new entries because it found the ring buffer full, and
447  * sufficient space is being freed up, signal the host. But be careful to
448  * only signal the host when necessary, both for performance reasons and
449  * because Hyper-V protects itself by throttling guests that signal
450  * inappropriately.
451  *
452  * Determining when to signal is tricky. There are three key data inputs
453  * that must be handled in this order to avoid race conditions:
454  *
455  * 1. Update the read_index
456  * 2. Read the pending_send_sz
457  * 3. Read the current write_index
458  *
459  * The interrupt_mask is not used to determine when to signal. The
460  * interrupt_mask is used only on the guest->host ring buffer when
461  * sending requests to the host. The host does not use it on the host->
462  * guest ring buffer to indicate whether it should be signaled.
463  */
464 void hv_pkt_iter_close(struct vmbus_channel *channel)
465 {
466 	struct hv_ring_buffer_info *rbi = &channel->inbound;
467 	u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
468 
469 	/*
470 	 * Make sure all reads are done before we update the read index since
471 	 * the writer may start writing to the read area once the read index
472 	 * is updated.
473 	 */
474 	virt_rmb();
475 	start_read_index = rbi->ring_buffer->read_index;
476 	rbi->ring_buffer->read_index = rbi->priv_read_index;
477 
478 	/*
479 	 * Older versions of Hyper-V (before WS2102 and Win8) do not
480 	 * implement pending_send_sz and simply poll if the host->guest
481 	 * ring buffer is full.  No signaling is needed or expected.
482 	 */
483 	if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
484 		return;
485 
486 	/*
487 	 * Issue a full memory barrier before making the signaling decision.
488 	 * If reading pending_send_sz were to be reordered and happen
489 	 * before we commit the new read_index, a race could occur.  If the
490 	 * host were to set the pending_send_sz after we have sampled
491 	 * pending_send_sz, and the ring buffer blocks before we commit the
492 	 * read index, we could miss sending the interrupt. Issue a full
493 	 * memory barrier to address this.
494 	 */
495 	virt_mb();
496 
497 	/*
498 	 * If the pending_send_sz is zero, then the ring buffer is not
499 	 * blocked and there is no need to signal.  This is far by the
500 	 * most common case, so exit quickly for best performance.
501 	 */
502 	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
503 	if (!pending_sz)
504 		return;
505 
506 	/*
507 	 * Ensure the read of write_index in hv_get_bytes_to_write()
508 	 * happens after the read of pending_send_sz.
509 	 */
510 	virt_rmb();
511 	curr_write_sz = hv_get_bytes_to_write(rbi);
512 	bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
513 
514 	/*
515 	 * We want to signal the host only if we're transitioning
516 	 * from a "not enough free space" state to a "enough free
517 	 * space" state.  For example, it's possible that this function
518 	 * could run and free up enough space to signal the host, and then
519 	 * run again and free up additional space before the host has a
520 	 * chance to clear the pending_send_sz.  The 2nd invocation would
521 	 * be a null transition from "enough free space" to "enough free
522 	 * space", which doesn't warrant a signal.
523 	 *
524 	 * Exactly filling the ring buffer is treated as "not enough
525 	 * space". The ring buffer always must have at least one byte
526 	 * empty so the empty and full conditions are distinguishable.
527 	 * hv_get_bytes_to_write() doesn't fully tell the truth in
528 	 * this regard.
529 	 *
530 	 * So first check if we were in the "enough free space" state
531 	 * before we began the iteration. If so, the host was not
532 	 * blocked, and there's no need to signal.
533 	 */
534 	if (curr_write_sz - bytes_read > pending_sz)
535 		return;
536 
537 	/*
538 	 * Similarly, if the new state is "not enough space", then
539 	 * there's no need to signal.
540 	 */
541 	if (curr_write_sz <= pending_sz)
542 		return;
543 
544 	++channel->intr_in_full;
545 	vmbus_setevent(channel);
546 }
547 EXPORT_SYMBOL_GPL(hv_pkt_iter_close);
548