xref: /openbmc/linux/drivers/hv/hv_util.c (revision 74be2d3b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2010, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/sysctl.h>
16 #include <linux/reboot.h>
17 #include <linux/hyperv.h>
18 #include <linux/clockchips.h>
19 #include <linux/ptp_clock_kernel.h>
20 #include <clocksource/hyperv_timer.h>
21 #include <asm/mshyperv.h>
22 
23 #include "hyperv_vmbus.h"
24 
25 #define SD_MAJOR	3
26 #define SD_MINOR	0
27 #define SD_MINOR_1	1
28 #define SD_MINOR_2	2
29 #define SD_VERSION_3_1	(SD_MAJOR << 16 | SD_MINOR_1)
30 #define SD_VERSION_3_2	(SD_MAJOR << 16 | SD_MINOR_2)
31 #define SD_VERSION	(SD_MAJOR << 16 | SD_MINOR)
32 
33 #define SD_MAJOR_1	1
34 #define SD_VERSION_1	(SD_MAJOR_1 << 16 | SD_MINOR)
35 
36 #define TS_MAJOR	4
37 #define TS_MINOR	0
38 #define TS_VERSION	(TS_MAJOR << 16 | TS_MINOR)
39 
40 #define TS_MAJOR_1	1
41 #define TS_VERSION_1	(TS_MAJOR_1 << 16 | TS_MINOR)
42 
43 #define TS_MAJOR_3	3
44 #define TS_VERSION_3	(TS_MAJOR_3 << 16 | TS_MINOR)
45 
46 #define HB_MAJOR	3
47 #define HB_MINOR	0
48 #define HB_VERSION	(HB_MAJOR << 16 | HB_MINOR)
49 
50 #define HB_MAJOR_1	1
51 #define HB_VERSION_1	(HB_MAJOR_1 << 16 | HB_MINOR)
52 
53 static int sd_srv_version;
54 static int ts_srv_version;
55 static int hb_srv_version;
56 
57 #define SD_VER_COUNT 4
58 static const int sd_versions[] = {
59 	SD_VERSION_3_2,
60 	SD_VERSION_3_1,
61 	SD_VERSION,
62 	SD_VERSION_1
63 };
64 
65 #define TS_VER_COUNT 3
66 static const int ts_versions[] = {
67 	TS_VERSION,
68 	TS_VERSION_3,
69 	TS_VERSION_1
70 };
71 
72 #define HB_VER_COUNT 2
73 static const int hb_versions[] = {
74 	HB_VERSION,
75 	HB_VERSION_1
76 };
77 
78 #define FW_VER_COUNT 2
79 static const int fw_versions[] = {
80 	UTIL_FW_VERSION,
81 	UTIL_WS2K8_FW_VERSION
82 };
83 
84 /*
85  * Send the "hibernate" udev event in a thread context.
86  */
87 struct hibernate_work_context {
88 	struct work_struct work;
89 	struct hv_device *dev;
90 };
91 
92 static struct hibernate_work_context hibernate_context;
93 static bool hibernation_supported;
94 
95 static void send_hibernate_uevent(struct work_struct *work)
96 {
97 	char *uevent_env[2] = { "EVENT=hibernate", NULL };
98 	struct hibernate_work_context *ctx;
99 
100 	ctx = container_of(work, struct hibernate_work_context, work);
101 
102 	kobject_uevent_env(&ctx->dev->device.kobj, KOBJ_CHANGE, uevent_env);
103 
104 	pr_info("Sent hibernation uevent\n");
105 }
106 
107 static int hv_shutdown_init(struct hv_util_service *srv)
108 {
109 	struct vmbus_channel *channel = srv->channel;
110 
111 	INIT_WORK(&hibernate_context.work, send_hibernate_uevent);
112 	hibernate_context.dev = channel->device_obj;
113 
114 	hibernation_supported = hv_is_hibernation_supported();
115 
116 	return 0;
117 }
118 
119 static void shutdown_onchannelcallback(void *context);
120 static struct hv_util_service util_shutdown = {
121 	.util_cb = shutdown_onchannelcallback,
122 	.util_init = hv_shutdown_init,
123 };
124 
125 static int hv_timesync_init(struct hv_util_service *srv);
126 static int hv_timesync_pre_suspend(void);
127 static void hv_timesync_deinit(void);
128 
129 static void timesync_onchannelcallback(void *context);
130 static struct hv_util_service util_timesynch = {
131 	.util_cb = timesync_onchannelcallback,
132 	.util_init = hv_timesync_init,
133 	.util_pre_suspend = hv_timesync_pre_suspend,
134 	.util_deinit = hv_timesync_deinit,
135 };
136 
137 static void heartbeat_onchannelcallback(void *context);
138 static struct hv_util_service util_heartbeat = {
139 	.util_cb = heartbeat_onchannelcallback,
140 };
141 
142 static struct hv_util_service util_kvp = {
143 	.util_cb = hv_kvp_onchannelcallback,
144 	.util_init = hv_kvp_init,
145 	.util_pre_suspend = hv_kvp_pre_suspend,
146 	.util_pre_resume = hv_kvp_pre_resume,
147 	.util_deinit = hv_kvp_deinit,
148 };
149 
150 static struct hv_util_service util_vss = {
151 	.util_cb = hv_vss_onchannelcallback,
152 	.util_init = hv_vss_init,
153 	.util_pre_suspend = hv_vss_pre_suspend,
154 	.util_pre_resume = hv_vss_pre_resume,
155 	.util_deinit = hv_vss_deinit,
156 };
157 
158 static struct hv_util_service util_fcopy = {
159 	.util_cb = hv_fcopy_onchannelcallback,
160 	.util_init = hv_fcopy_init,
161 	.util_pre_suspend = hv_fcopy_pre_suspend,
162 	.util_pre_resume = hv_fcopy_pre_resume,
163 	.util_deinit = hv_fcopy_deinit,
164 };
165 
166 static void perform_shutdown(struct work_struct *dummy)
167 {
168 	orderly_poweroff(true);
169 }
170 
171 static void perform_restart(struct work_struct *dummy)
172 {
173 	orderly_reboot();
174 }
175 
176 /*
177  * Perform the shutdown operation in a thread context.
178  */
179 static DECLARE_WORK(shutdown_work, perform_shutdown);
180 
181 /*
182  * Perform the restart operation in a thread context.
183  */
184 static DECLARE_WORK(restart_work, perform_restart);
185 
186 static void shutdown_onchannelcallback(void *context)
187 {
188 	struct vmbus_channel *channel = context;
189 	struct work_struct *work = NULL;
190 	u32 recvlen;
191 	u64 requestid;
192 	u8  *shut_txf_buf = util_shutdown.recv_buffer;
193 
194 	struct shutdown_msg_data *shutdown_msg;
195 
196 	struct icmsg_hdr *icmsghdrp;
197 
198 	vmbus_recvpacket(channel, shut_txf_buf,
199 			 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
200 
201 	if (recvlen > 0) {
202 		icmsghdrp = (struct icmsg_hdr *)&shut_txf_buf[
203 			sizeof(struct vmbuspipe_hdr)];
204 
205 		if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) {
206 			if (vmbus_prep_negotiate_resp(icmsghdrp, shut_txf_buf,
207 					fw_versions, FW_VER_COUNT,
208 					sd_versions, SD_VER_COUNT,
209 					NULL, &sd_srv_version)) {
210 				pr_info("Shutdown IC version %d.%d\n",
211 					sd_srv_version >> 16,
212 					sd_srv_version & 0xFFFF);
213 			}
214 		} else {
215 			shutdown_msg =
216 				(struct shutdown_msg_data *)&shut_txf_buf[
217 					sizeof(struct vmbuspipe_hdr) +
218 					sizeof(struct icmsg_hdr)];
219 
220 			/*
221 			 * shutdown_msg->flags can be 0(shut down), 2(reboot),
222 			 * or 4(hibernate). It may bitwise-OR 1, which means
223 			 * performing the request by force. Linux always tries
224 			 * to perform the request by force.
225 			 */
226 			switch (shutdown_msg->flags) {
227 			case 0:
228 			case 1:
229 				icmsghdrp->status = HV_S_OK;
230 				work = &shutdown_work;
231 				pr_info("Shutdown request received -"
232 					    " graceful shutdown initiated\n");
233 				break;
234 			case 2:
235 			case 3:
236 				icmsghdrp->status = HV_S_OK;
237 				work = &restart_work;
238 				pr_info("Restart request received -"
239 					    " graceful restart initiated\n");
240 				break;
241 			case 4:
242 			case 5:
243 				pr_info("Hibernation request received\n");
244 				icmsghdrp->status = hibernation_supported ?
245 					HV_S_OK : HV_E_FAIL;
246 				if (hibernation_supported)
247 					work = &hibernate_context.work;
248 				break;
249 			default:
250 				icmsghdrp->status = HV_E_FAIL;
251 				pr_info("Shutdown request received -"
252 					    " Invalid request\n");
253 				break;
254 			}
255 		}
256 
257 		icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION
258 			| ICMSGHDRFLAG_RESPONSE;
259 
260 		vmbus_sendpacket(channel, shut_txf_buf,
261 				       recvlen, requestid,
262 				       VM_PKT_DATA_INBAND, 0);
263 	}
264 
265 	if (work)
266 		schedule_work(work);
267 }
268 
269 /*
270  * Set the host time in a process context.
271  */
272 static struct work_struct adj_time_work;
273 
274 /*
275  * The last time sample, received from the host. PTP device responds to
276  * requests by using this data and the current partition-wide time reference
277  * count.
278  */
279 static struct {
280 	u64				host_time;
281 	u64				ref_time;
282 	spinlock_t			lock;
283 } host_ts;
284 
285 static struct timespec64 hv_get_adj_host_time(void)
286 {
287 	struct timespec64 ts;
288 	u64 newtime, reftime;
289 	unsigned long flags;
290 
291 	spin_lock_irqsave(&host_ts.lock, flags);
292 	reftime = hv_read_reference_counter();
293 	newtime = host_ts.host_time + (reftime - host_ts.ref_time);
294 	ts = ns_to_timespec64((newtime - WLTIMEDELTA) * 100);
295 	spin_unlock_irqrestore(&host_ts.lock, flags);
296 
297 	return ts;
298 }
299 
300 static void hv_set_host_time(struct work_struct *work)
301 {
302 	struct timespec64 ts = hv_get_adj_host_time();
303 
304 	do_settimeofday64(&ts);
305 }
306 
307 /*
308  * Synchronize time with host after reboot, restore, etc.
309  *
310  * ICTIMESYNCFLAG_SYNC flag bit indicates reboot, restore events of the VM.
311  * After reboot the flag ICTIMESYNCFLAG_SYNC is included in the first time
312  * message after the timesync channel is opened. Since the hv_utils module is
313  * loaded after hv_vmbus, the first message is usually missed. This bit is
314  * considered a hard request to discipline the clock.
315  *
316  * ICTIMESYNCFLAG_SAMPLE bit indicates a time sample from host. This is
317  * typically used as a hint to the guest. The guest is under no obligation
318  * to discipline the clock.
319  */
320 static inline void adj_guesttime(u64 hosttime, u64 reftime, u8 adj_flags)
321 {
322 	unsigned long flags;
323 	u64 cur_reftime;
324 
325 	/*
326 	 * Save the adjusted time sample from the host and the snapshot
327 	 * of the current system time.
328 	 */
329 	spin_lock_irqsave(&host_ts.lock, flags);
330 
331 	cur_reftime = hv_read_reference_counter();
332 	host_ts.host_time = hosttime;
333 	host_ts.ref_time = cur_reftime;
334 
335 	/*
336 	 * TimeSync v4 messages contain reference time (guest's Hyper-V
337 	 * clocksource read when the time sample was generated), we can
338 	 * improve the precision by adding the delta between now and the
339 	 * time of generation. For older protocols we set
340 	 * reftime == cur_reftime on call.
341 	 */
342 	host_ts.host_time += (cur_reftime - reftime);
343 
344 	spin_unlock_irqrestore(&host_ts.lock, flags);
345 
346 	/* Schedule work to do do_settimeofday64() */
347 	if (adj_flags & ICTIMESYNCFLAG_SYNC)
348 		schedule_work(&adj_time_work);
349 }
350 
351 /*
352  * Time Sync Channel message handler.
353  */
354 static void timesync_onchannelcallback(void *context)
355 {
356 	struct vmbus_channel *channel = context;
357 	u32 recvlen;
358 	u64 requestid;
359 	struct icmsg_hdr *icmsghdrp;
360 	struct ictimesync_data *timedatap;
361 	struct ictimesync_ref_data *refdata;
362 	u8 *time_txf_buf = util_timesynch.recv_buffer;
363 
364 	vmbus_recvpacket(channel, time_txf_buf,
365 			 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
366 
367 	if (recvlen > 0) {
368 		icmsghdrp = (struct icmsg_hdr *)&time_txf_buf[
369 				sizeof(struct vmbuspipe_hdr)];
370 
371 		if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) {
372 			if (vmbus_prep_negotiate_resp(icmsghdrp, time_txf_buf,
373 						fw_versions, FW_VER_COUNT,
374 						ts_versions, TS_VER_COUNT,
375 						NULL, &ts_srv_version)) {
376 				pr_info("TimeSync IC version %d.%d\n",
377 					ts_srv_version >> 16,
378 					ts_srv_version & 0xFFFF);
379 			}
380 		} else {
381 			if (ts_srv_version > TS_VERSION_3) {
382 				refdata = (struct ictimesync_ref_data *)
383 					&time_txf_buf[
384 					sizeof(struct vmbuspipe_hdr) +
385 					sizeof(struct icmsg_hdr)];
386 
387 				adj_guesttime(refdata->parenttime,
388 						refdata->vmreferencetime,
389 						refdata->flags);
390 			} else {
391 				timedatap = (struct ictimesync_data *)
392 					&time_txf_buf[
393 					sizeof(struct vmbuspipe_hdr) +
394 					sizeof(struct icmsg_hdr)];
395 				adj_guesttime(timedatap->parenttime,
396 					      hv_read_reference_counter(),
397 					      timedatap->flags);
398 			}
399 		}
400 
401 		icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION
402 			| ICMSGHDRFLAG_RESPONSE;
403 
404 		vmbus_sendpacket(channel, time_txf_buf,
405 				recvlen, requestid,
406 				VM_PKT_DATA_INBAND, 0);
407 	}
408 }
409 
410 /*
411  * Heartbeat functionality.
412  * Every two seconds, Hyper-V send us a heartbeat request message.
413  * we respond to this message, and Hyper-V knows we are alive.
414  */
415 static void heartbeat_onchannelcallback(void *context)
416 {
417 	struct vmbus_channel *channel = context;
418 	u32 recvlen;
419 	u64 requestid;
420 	struct icmsg_hdr *icmsghdrp;
421 	struct heartbeat_msg_data *heartbeat_msg;
422 	u8 *hbeat_txf_buf = util_heartbeat.recv_buffer;
423 
424 	while (1) {
425 
426 		vmbus_recvpacket(channel, hbeat_txf_buf,
427 				 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
428 
429 		if (!recvlen)
430 			break;
431 
432 		icmsghdrp = (struct icmsg_hdr *)&hbeat_txf_buf[
433 				sizeof(struct vmbuspipe_hdr)];
434 
435 		if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) {
436 			if (vmbus_prep_negotiate_resp(icmsghdrp,
437 					hbeat_txf_buf,
438 					fw_versions, FW_VER_COUNT,
439 					hb_versions, HB_VER_COUNT,
440 					NULL, &hb_srv_version)) {
441 
442 				pr_info("Heartbeat IC version %d.%d\n",
443 					hb_srv_version >> 16,
444 					hb_srv_version & 0xFFFF);
445 			}
446 		} else {
447 			heartbeat_msg =
448 				(struct heartbeat_msg_data *)&hbeat_txf_buf[
449 					sizeof(struct vmbuspipe_hdr) +
450 					sizeof(struct icmsg_hdr)];
451 
452 			heartbeat_msg->seq_num += 1;
453 		}
454 
455 		icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION
456 			| ICMSGHDRFLAG_RESPONSE;
457 
458 		vmbus_sendpacket(channel, hbeat_txf_buf,
459 				       recvlen, requestid,
460 				       VM_PKT_DATA_INBAND, 0);
461 	}
462 }
463 
464 static int util_probe(struct hv_device *dev,
465 			const struct hv_vmbus_device_id *dev_id)
466 {
467 	struct hv_util_service *srv =
468 		(struct hv_util_service *)dev_id->driver_data;
469 	int ret;
470 
471 	srv->recv_buffer = kmalloc(HV_HYP_PAGE_SIZE * 4, GFP_KERNEL);
472 	if (!srv->recv_buffer)
473 		return -ENOMEM;
474 	srv->channel = dev->channel;
475 	if (srv->util_init) {
476 		ret = srv->util_init(srv);
477 		if (ret) {
478 			ret = -ENODEV;
479 			goto error1;
480 		}
481 	}
482 
483 	/*
484 	 * The set of services managed by the util driver are not performance
485 	 * critical and do not need batched reading. Furthermore, some services
486 	 * such as KVP can only handle one message from the host at a time.
487 	 * Turn off batched reading for all util drivers before we open the
488 	 * channel.
489 	 */
490 	set_channel_read_mode(dev->channel, HV_CALL_DIRECT);
491 
492 	hv_set_drvdata(dev, srv);
493 
494 	ret = vmbus_open(dev->channel, 4 * HV_HYP_PAGE_SIZE,
495 			 4 * HV_HYP_PAGE_SIZE, NULL, 0, srv->util_cb,
496 			 dev->channel);
497 	if (ret)
498 		goto error;
499 
500 	return 0;
501 
502 error:
503 	if (srv->util_deinit)
504 		srv->util_deinit();
505 error1:
506 	kfree(srv->recv_buffer);
507 	return ret;
508 }
509 
510 static int util_remove(struct hv_device *dev)
511 {
512 	struct hv_util_service *srv = hv_get_drvdata(dev);
513 
514 	if (srv->util_deinit)
515 		srv->util_deinit();
516 	vmbus_close(dev->channel);
517 	kfree(srv->recv_buffer);
518 
519 	return 0;
520 }
521 
522 /*
523  * When we're in util_suspend(), all the userspace processes have been frozen
524  * (refer to hibernate() -> freeze_processes()). The userspace is thawed only
525  * after the whole resume procedure, including util_resume(), finishes.
526  */
527 static int util_suspend(struct hv_device *dev)
528 {
529 	struct hv_util_service *srv = hv_get_drvdata(dev);
530 	int ret = 0;
531 
532 	if (srv->util_pre_suspend) {
533 		ret = srv->util_pre_suspend();
534 		if (ret)
535 			return ret;
536 	}
537 
538 	vmbus_close(dev->channel);
539 
540 	return 0;
541 }
542 
543 static int util_resume(struct hv_device *dev)
544 {
545 	struct hv_util_service *srv = hv_get_drvdata(dev);
546 	int ret = 0;
547 
548 	if (srv->util_pre_resume) {
549 		ret = srv->util_pre_resume();
550 		if (ret)
551 			return ret;
552 	}
553 
554 	ret = vmbus_open(dev->channel, 4 * HV_HYP_PAGE_SIZE,
555 			 4 * HV_HYP_PAGE_SIZE, NULL, 0, srv->util_cb,
556 			 dev->channel);
557 	return ret;
558 }
559 
560 static const struct hv_vmbus_device_id id_table[] = {
561 	/* Shutdown guid */
562 	{ HV_SHUTDOWN_GUID,
563 	  .driver_data = (unsigned long)&util_shutdown
564 	},
565 	/* Time synch guid */
566 	{ HV_TS_GUID,
567 	  .driver_data = (unsigned long)&util_timesynch
568 	},
569 	/* Heartbeat guid */
570 	{ HV_HEART_BEAT_GUID,
571 	  .driver_data = (unsigned long)&util_heartbeat
572 	},
573 	/* KVP guid */
574 	{ HV_KVP_GUID,
575 	  .driver_data = (unsigned long)&util_kvp
576 	},
577 	/* VSS GUID */
578 	{ HV_VSS_GUID,
579 	  .driver_data = (unsigned long)&util_vss
580 	},
581 	/* File copy GUID */
582 	{ HV_FCOPY_GUID,
583 	  .driver_data = (unsigned long)&util_fcopy
584 	},
585 	{ },
586 };
587 
588 MODULE_DEVICE_TABLE(vmbus, id_table);
589 
590 /* The one and only one */
591 static  struct hv_driver util_drv = {
592 	.name = "hv_utils",
593 	.id_table = id_table,
594 	.probe =  util_probe,
595 	.remove =  util_remove,
596 	.suspend = util_suspend,
597 	.resume =  util_resume,
598 	.driver = {
599 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
600 	},
601 };
602 
603 static int hv_ptp_enable(struct ptp_clock_info *info,
604 			 struct ptp_clock_request *request, int on)
605 {
606 	return -EOPNOTSUPP;
607 }
608 
609 static int hv_ptp_settime(struct ptp_clock_info *p, const struct timespec64 *ts)
610 {
611 	return -EOPNOTSUPP;
612 }
613 
614 static int hv_ptp_adjfreq(struct ptp_clock_info *ptp, s32 delta)
615 {
616 	return -EOPNOTSUPP;
617 }
618 static int hv_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
619 {
620 	return -EOPNOTSUPP;
621 }
622 
623 static int hv_ptp_gettime(struct ptp_clock_info *info, struct timespec64 *ts)
624 {
625 	*ts = hv_get_adj_host_time();
626 
627 	return 0;
628 }
629 
630 static struct ptp_clock_info ptp_hyperv_info = {
631 	.name		= "hyperv",
632 	.enable         = hv_ptp_enable,
633 	.adjtime        = hv_ptp_adjtime,
634 	.adjfreq        = hv_ptp_adjfreq,
635 	.gettime64      = hv_ptp_gettime,
636 	.settime64      = hv_ptp_settime,
637 	.owner		= THIS_MODULE,
638 };
639 
640 static struct ptp_clock *hv_ptp_clock;
641 
642 static int hv_timesync_init(struct hv_util_service *srv)
643 {
644 	/* TimeSync requires Hyper-V clocksource. */
645 	if (!hv_read_reference_counter)
646 		return -ENODEV;
647 
648 	spin_lock_init(&host_ts.lock);
649 
650 	INIT_WORK(&adj_time_work, hv_set_host_time);
651 
652 	/*
653 	 * ptp_clock_register() returns NULL when CONFIG_PTP_1588_CLOCK is
654 	 * disabled but the driver is still useful without the PTP device
655 	 * as it still handles the ICTIMESYNCFLAG_SYNC case.
656 	 */
657 	hv_ptp_clock = ptp_clock_register(&ptp_hyperv_info, NULL);
658 	if (IS_ERR_OR_NULL(hv_ptp_clock)) {
659 		pr_err("cannot register PTP clock: %ld\n",
660 		       PTR_ERR(hv_ptp_clock));
661 		hv_ptp_clock = NULL;
662 	}
663 
664 	return 0;
665 }
666 
667 static void hv_timesync_cancel_work(void)
668 {
669 	cancel_work_sync(&adj_time_work);
670 }
671 
672 static int hv_timesync_pre_suspend(void)
673 {
674 	hv_timesync_cancel_work();
675 	return 0;
676 }
677 
678 static void hv_timesync_deinit(void)
679 {
680 	if (hv_ptp_clock)
681 		ptp_clock_unregister(hv_ptp_clock);
682 
683 	hv_timesync_cancel_work();
684 }
685 
686 static int __init init_hyperv_utils(void)
687 {
688 	pr_info("Registering HyperV Utility Driver\n");
689 
690 	return vmbus_driver_register(&util_drv);
691 }
692 
693 static void exit_hyperv_utils(void)
694 {
695 	pr_info("De-Registered HyperV Utility Driver\n");
696 
697 	vmbus_driver_unregister(&util_drv);
698 }
699 
700 module_init(init_hyperv_utils);
701 module_exit(exit_hyperv_utils);
702 
703 MODULE_DESCRIPTION("Hyper-V Utilities");
704 MODULE_LICENSE("GPL");
705