1 /* 2 * An implementation of key value pair (KVP) functionality for Linux. 3 * 4 * 5 * Copyright (C) 2010, Novell, Inc. 6 * Author : K. Y. Srinivasan <ksrinivasan@novell.com> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published 10 * by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, but 13 * WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 15 * NON INFRINGEMENT. See the GNU General Public License for more 16 * details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 21 * 22 */ 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/net.h> 26 #include <linux/nls.h> 27 #include <linux/connector.h> 28 #include <linux/workqueue.h> 29 #include <linux/hyperv.h> 30 31 #include "hyperv_vmbus.h" 32 #include "hv_utils_transport.h" 33 34 /* 35 * Pre win8 version numbers used in ws2008 and ws 2008 r2 (win7) 36 */ 37 #define WS2008_SRV_MAJOR 1 38 #define WS2008_SRV_MINOR 0 39 #define WS2008_SRV_VERSION (WS2008_SRV_MAJOR << 16 | WS2008_SRV_MINOR) 40 41 #define WIN7_SRV_MAJOR 3 42 #define WIN7_SRV_MINOR 0 43 #define WIN7_SRV_VERSION (WIN7_SRV_MAJOR << 16 | WIN7_SRV_MINOR) 44 45 #define WIN8_SRV_MAJOR 4 46 #define WIN8_SRV_MINOR 0 47 #define WIN8_SRV_VERSION (WIN8_SRV_MAJOR << 16 | WIN8_SRV_MINOR) 48 49 #define KVP_VER_COUNT 3 50 static const int kvp_versions[] = { 51 WIN8_SRV_VERSION, 52 WIN7_SRV_VERSION, 53 WS2008_SRV_VERSION 54 }; 55 56 #define FW_VER_COUNT 2 57 static const int fw_versions[] = { 58 UTIL_FW_VERSION, 59 UTIL_WS2K8_FW_VERSION 60 }; 61 62 /* 63 * Global state maintained for transaction that is being processed. For a class 64 * of integration services, including the "KVP service", the specified protocol 65 * is a "request/response" protocol which means that there can only be single 66 * outstanding transaction from the host at any given point in time. We use 67 * this to simplify memory management in this driver - we cache and process 68 * only one message at a time. 69 * 70 * While the request/response protocol is guaranteed by the host, we further 71 * ensure this by serializing packet processing in this driver - we do not 72 * read additional packets from the VMBUS until the current packet is fully 73 * handled. 74 */ 75 76 static struct { 77 int state; /* hvutil_device_state */ 78 int recv_len; /* number of bytes received. */ 79 struct hv_kvp_msg *kvp_msg; /* current message */ 80 struct vmbus_channel *recv_channel; /* chn we got the request */ 81 u64 recv_req_id; /* request ID. */ 82 } kvp_transaction; 83 84 /* 85 * This state maintains the version number registered by the daemon. 86 */ 87 static int dm_reg_value; 88 89 static void kvp_send_key(struct work_struct *dummy); 90 91 92 static void kvp_respond_to_host(struct hv_kvp_msg *msg, int error); 93 static void kvp_timeout_func(struct work_struct *dummy); 94 static void kvp_host_handshake_func(struct work_struct *dummy); 95 static void kvp_register(int); 96 97 static DECLARE_DELAYED_WORK(kvp_timeout_work, kvp_timeout_func); 98 static DECLARE_DELAYED_WORK(kvp_host_handshake_work, kvp_host_handshake_func); 99 static DECLARE_WORK(kvp_sendkey_work, kvp_send_key); 100 101 static const char kvp_devname[] = "vmbus/hv_kvp"; 102 static u8 *recv_buffer; 103 static struct hvutil_transport *hvt; 104 /* 105 * Register the kernel component with the user-level daemon. 106 * As part of this registration, pass the LIC version number. 107 * This number has no meaning, it satisfies the registration protocol. 108 */ 109 #define HV_DRV_VERSION "3.1" 110 111 static void kvp_poll_wrapper(void *channel) 112 { 113 /* Transaction is finished, reset the state here to avoid races. */ 114 kvp_transaction.state = HVUTIL_READY; 115 tasklet_schedule(&((struct vmbus_channel *)channel)->callback_event); 116 } 117 118 static void kvp_register_done(void) 119 { 120 /* 121 * If we're still negotiating with the host cancel the timeout 122 * work to not poll the channel twice. 123 */ 124 pr_debug("KVP: userspace daemon registered\n"); 125 cancel_delayed_work_sync(&kvp_host_handshake_work); 126 hv_poll_channel(kvp_transaction.recv_channel, kvp_poll_wrapper); 127 } 128 129 static void 130 kvp_register(int reg_value) 131 { 132 133 struct hv_kvp_msg *kvp_msg; 134 char *version; 135 136 kvp_msg = kzalloc(sizeof(*kvp_msg), GFP_KERNEL); 137 138 if (kvp_msg) { 139 version = kvp_msg->body.kvp_register.version; 140 kvp_msg->kvp_hdr.operation = reg_value; 141 strcpy(version, HV_DRV_VERSION); 142 143 hvutil_transport_send(hvt, kvp_msg, sizeof(*kvp_msg), 144 kvp_register_done); 145 kfree(kvp_msg); 146 } 147 } 148 149 static void kvp_timeout_func(struct work_struct *dummy) 150 { 151 /* 152 * If the timer fires, the user-mode component has not responded; 153 * process the pending transaction. 154 */ 155 kvp_respond_to_host(NULL, HV_E_FAIL); 156 157 hv_poll_channel(kvp_transaction.recv_channel, kvp_poll_wrapper); 158 } 159 160 static void kvp_host_handshake_func(struct work_struct *dummy) 161 { 162 tasklet_schedule(&kvp_transaction.recv_channel->callback_event); 163 } 164 165 static int kvp_handle_handshake(struct hv_kvp_msg *msg) 166 { 167 switch (msg->kvp_hdr.operation) { 168 case KVP_OP_REGISTER: 169 dm_reg_value = KVP_OP_REGISTER; 170 pr_info("KVP: IP injection functionality not available\n"); 171 pr_info("KVP: Upgrade the KVP daemon\n"); 172 break; 173 case KVP_OP_REGISTER1: 174 dm_reg_value = KVP_OP_REGISTER1; 175 break; 176 default: 177 pr_info("KVP: incompatible daemon\n"); 178 pr_info("KVP: KVP version: %d, Daemon version: %d\n", 179 KVP_OP_REGISTER1, msg->kvp_hdr.operation); 180 return -EINVAL; 181 } 182 183 /* 184 * We have a compatible daemon; complete the handshake. 185 */ 186 pr_debug("KVP: userspace daemon ver. %d connected\n", 187 msg->kvp_hdr.operation); 188 kvp_register(dm_reg_value); 189 190 return 0; 191 } 192 193 194 /* 195 * Callback when data is received from user mode. 196 */ 197 198 static int kvp_on_msg(void *msg, int len) 199 { 200 struct hv_kvp_msg *message = (struct hv_kvp_msg *)msg; 201 struct hv_kvp_msg_enumerate *data; 202 int error = 0; 203 204 if (len < sizeof(*message)) 205 return -EINVAL; 206 207 /* 208 * If we are negotiating the version information 209 * with the daemon; handle that first. 210 */ 211 212 if (kvp_transaction.state < HVUTIL_READY) { 213 return kvp_handle_handshake(message); 214 } 215 216 /* We didn't send anything to userspace so the reply is spurious */ 217 if (kvp_transaction.state < HVUTIL_USERSPACE_REQ) 218 return -EINVAL; 219 220 kvp_transaction.state = HVUTIL_USERSPACE_RECV; 221 222 /* 223 * Based on the version of the daemon, we propagate errors from the 224 * daemon differently. 225 */ 226 227 data = &message->body.kvp_enum_data; 228 229 switch (dm_reg_value) { 230 case KVP_OP_REGISTER: 231 /* 232 * Null string is used to pass back error condition. 233 */ 234 if (data->data.key[0] == 0) 235 error = HV_S_CONT; 236 break; 237 238 case KVP_OP_REGISTER1: 239 /* 240 * We use the message header information from 241 * the user level daemon to transmit errors. 242 */ 243 error = message->error; 244 break; 245 } 246 247 /* 248 * Complete the transaction by forwarding the key value 249 * to the host. But first, cancel the timeout. 250 */ 251 if (cancel_delayed_work_sync(&kvp_timeout_work)) { 252 kvp_respond_to_host(message, error); 253 hv_poll_channel(kvp_transaction.recv_channel, kvp_poll_wrapper); 254 } 255 256 return 0; 257 } 258 259 260 static int process_ob_ipinfo(void *in_msg, void *out_msg, int op) 261 { 262 struct hv_kvp_msg *in = in_msg; 263 struct hv_kvp_ip_msg *out = out_msg; 264 int len; 265 266 switch (op) { 267 case KVP_OP_GET_IP_INFO: 268 /* 269 * Transform all parameters into utf16 encoding. 270 */ 271 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.ip_addr, 272 strlen((char *)in->body.kvp_ip_val.ip_addr), 273 UTF16_HOST_ENDIAN, 274 (wchar_t *)out->kvp_ip_val.ip_addr, 275 MAX_IP_ADDR_SIZE); 276 if (len < 0) 277 return len; 278 279 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.sub_net, 280 strlen((char *)in->body.kvp_ip_val.sub_net), 281 UTF16_HOST_ENDIAN, 282 (wchar_t *)out->kvp_ip_val.sub_net, 283 MAX_IP_ADDR_SIZE); 284 if (len < 0) 285 return len; 286 287 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.gate_way, 288 strlen((char *)in->body.kvp_ip_val.gate_way), 289 UTF16_HOST_ENDIAN, 290 (wchar_t *)out->kvp_ip_val.gate_way, 291 MAX_GATEWAY_SIZE); 292 if (len < 0) 293 return len; 294 295 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.dns_addr, 296 strlen((char *)in->body.kvp_ip_val.dns_addr), 297 UTF16_HOST_ENDIAN, 298 (wchar_t *)out->kvp_ip_val.dns_addr, 299 MAX_IP_ADDR_SIZE); 300 if (len < 0) 301 return len; 302 303 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.adapter_id, 304 strlen((char *)in->body.kvp_ip_val.adapter_id), 305 UTF16_HOST_ENDIAN, 306 (wchar_t *)out->kvp_ip_val.adapter_id, 307 MAX_IP_ADDR_SIZE); 308 if (len < 0) 309 return len; 310 311 out->kvp_ip_val.dhcp_enabled = 312 in->body.kvp_ip_val.dhcp_enabled; 313 out->kvp_ip_val.addr_family = 314 in->body.kvp_ip_val.addr_family; 315 } 316 317 return 0; 318 } 319 320 static void process_ib_ipinfo(void *in_msg, void *out_msg, int op) 321 { 322 struct hv_kvp_ip_msg *in = in_msg; 323 struct hv_kvp_msg *out = out_msg; 324 325 switch (op) { 326 case KVP_OP_SET_IP_INFO: 327 /* 328 * Transform all parameters into utf8 encoding. 329 */ 330 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.ip_addr, 331 MAX_IP_ADDR_SIZE, 332 UTF16_LITTLE_ENDIAN, 333 (__u8 *)out->body.kvp_ip_val.ip_addr, 334 MAX_IP_ADDR_SIZE); 335 336 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.sub_net, 337 MAX_IP_ADDR_SIZE, 338 UTF16_LITTLE_ENDIAN, 339 (__u8 *)out->body.kvp_ip_val.sub_net, 340 MAX_IP_ADDR_SIZE); 341 342 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.gate_way, 343 MAX_GATEWAY_SIZE, 344 UTF16_LITTLE_ENDIAN, 345 (__u8 *)out->body.kvp_ip_val.gate_way, 346 MAX_GATEWAY_SIZE); 347 348 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.dns_addr, 349 MAX_IP_ADDR_SIZE, 350 UTF16_LITTLE_ENDIAN, 351 (__u8 *)out->body.kvp_ip_val.dns_addr, 352 MAX_IP_ADDR_SIZE); 353 354 out->body.kvp_ip_val.dhcp_enabled = in->kvp_ip_val.dhcp_enabled; 355 356 default: 357 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.adapter_id, 358 MAX_ADAPTER_ID_SIZE, 359 UTF16_LITTLE_ENDIAN, 360 (__u8 *)out->body.kvp_ip_val.adapter_id, 361 MAX_ADAPTER_ID_SIZE); 362 363 out->body.kvp_ip_val.addr_family = in->kvp_ip_val.addr_family; 364 } 365 } 366 367 368 369 370 static void 371 kvp_send_key(struct work_struct *dummy) 372 { 373 struct hv_kvp_msg *message; 374 struct hv_kvp_msg *in_msg; 375 __u8 operation = kvp_transaction.kvp_msg->kvp_hdr.operation; 376 __u8 pool = kvp_transaction.kvp_msg->kvp_hdr.pool; 377 __u32 val32; 378 __u64 val64; 379 int rc; 380 381 /* The transaction state is wrong. */ 382 if (kvp_transaction.state != HVUTIL_HOSTMSG_RECEIVED) 383 return; 384 385 message = kzalloc(sizeof(*message), GFP_KERNEL); 386 if (!message) 387 return; 388 389 message->kvp_hdr.operation = operation; 390 message->kvp_hdr.pool = pool; 391 in_msg = kvp_transaction.kvp_msg; 392 393 /* 394 * The key/value strings sent from the host are encoded in 395 * in utf16; convert it to utf8 strings. 396 * The host assures us that the utf16 strings will not exceed 397 * the max lengths specified. We will however, reserve room 398 * for the string terminating character - in the utf16s_utf8s() 399 * function we limit the size of the buffer where the converted 400 * string is placed to HV_KVP_EXCHANGE_MAX_*_SIZE -1 to guarantee 401 * that the strings can be properly terminated! 402 */ 403 404 switch (message->kvp_hdr.operation) { 405 case KVP_OP_SET_IP_INFO: 406 process_ib_ipinfo(in_msg, message, KVP_OP_SET_IP_INFO); 407 break; 408 case KVP_OP_GET_IP_INFO: 409 process_ib_ipinfo(in_msg, message, KVP_OP_GET_IP_INFO); 410 break; 411 case KVP_OP_SET: 412 switch (in_msg->body.kvp_set.data.value_type) { 413 case REG_SZ: 414 /* 415 * The value is a string - utf16 encoding. 416 */ 417 message->body.kvp_set.data.value_size = 418 utf16s_to_utf8s( 419 (wchar_t *)in_msg->body.kvp_set.data.value, 420 in_msg->body.kvp_set.data.value_size, 421 UTF16_LITTLE_ENDIAN, 422 message->body.kvp_set.data.value, 423 HV_KVP_EXCHANGE_MAX_VALUE_SIZE - 1) + 1; 424 break; 425 426 case REG_U32: 427 /* 428 * The value is a 32 bit scalar. 429 * We save this as a utf8 string. 430 */ 431 val32 = in_msg->body.kvp_set.data.value_u32; 432 message->body.kvp_set.data.value_size = 433 sprintf(message->body.kvp_set.data.value, 434 "%d", val32) + 1; 435 break; 436 437 case REG_U64: 438 /* 439 * The value is a 64 bit scalar. 440 * We save this as a utf8 string. 441 */ 442 val64 = in_msg->body.kvp_set.data.value_u64; 443 message->body.kvp_set.data.value_size = 444 sprintf(message->body.kvp_set.data.value, 445 "%llu", val64) + 1; 446 break; 447 448 } 449 case KVP_OP_GET: 450 message->body.kvp_set.data.key_size = 451 utf16s_to_utf8s( 452 (wchar_t *)in_msg->body.kvp_set.data.key, 453 in_msg->body.kvp_set.data.key_size, 454 UTF16_LITTLE_ENDIAN, 455 message->body.kvp_set.data.key, 456 HV_KVP_EXCHANGE_MAX_KEY_SIZE - 1) + 1; 457 break; 458 459 case KVP_OP_DELETE: 460 message->body.kvp_delete.key_size = 461 utf16s_to_utf8s( 462 (wchar_t *)in_msg->body.kvp_delete.key, 463 in_msg->body.kvp_delete.key_size, 464 UTF16_LITTLE_ENDIAN, 465 message->body.kvp_delete.key, 466 HV_KVP_EXCHANGE_MAX_KEY_SIZE - 1) + 1; 467 break; 468 469 case KVP_OP_ENUMERATE: 470 message->body.kvp_enum_data.index = 471 in_msg->body.kvp_enum_data.index; 472 break; 473 } 474 475 kvp_transaction.state = HVUTIL_USERSPACE_REQ; 476 rc = hvutil_transport_send(hvt, message, sizeof(*message), NULL); 477 if (rc) { 478 pr_debug("KVP: failed to communicate to the daemon: %d\n", rc); 479 if (cancel_delayed_work_sync(&kvp_timeout_work)) { 480 kvp_respond_to_host(message, HV_E_FAIL); 481 kvp_transaction.state = HVUTIL_READY; 482 } 483 } 484 485 kfree(message); 486 } 487 488 /* 489 * Send a response back to the host. 490 */ 491 492 static void 493 kvp_respond_to_host(struct hv_kvp_msg *msg_to_host, int error) 494 { 495 struct hv_kvp_msg *kvp_msg; 496 struct hv_kvp_exchg_msg_value *kvp_data; 497 char *key_name; 498 char *value; 499 struct icmsg_hdr *icmsghdrp; 500 int keylen = 0; 501 int valuelen = 0; 502 u32 buf_len; 503 struct vmbus_channel *channel; 504 u64 req_id; 505 int ret; 506 507 /* 508 * Copy the global state for completing the transaction. Note that 509 * only one transaction can be active at a time. 510 */ 511 512 buf_len = kvp_transaction.recv_len; 513 channel = kvp_transaction.recv_channel; 514 req_id = kvp_transaction.recv_req_id; 515 516 icmsghdrp = (struct icmsg_hdr *) 517 &recv_buffer[sizeof(struct vmbuspipe_hdr)]; 518 519 if (channel->onchannel_callback == NULL) 520 /* 521 * We have raced with util driver being unloaded; 522 * silently return. 523 */ 524 return; 525 526 icmsghdrp->status = error; 527 528 /* 529 * If the error parameter is set, terminate the host's enumeration 530 * on this pool. 531 */ 532 if (error) { 533 /* 534 * Something failed or we have timed out; 535 * terminate the current host-side iteration. 536 */ 537 goto response_done; 538 } 539 540 kvp_msg = (struct hv_kvp_msg *) 541 &recv_buffer[sizeof(struct vmbuspipe_hdr) + 542 sizeof(struct icmsg_hdr)]; 543 544 switch (kvp_transaction.kvp_msg->kvp_hdr.operation) { 545 case KVP_OP_GET_IP_INFO: 546 ret = process_ob_ipinfo(msg_to_host, 547 (struct hv_kvp_ip_msg *)kvp_msg, 548 KVP_OP_GET_IP_INFO); 549 if (ret < 0) 550 icmsghdrp->status = HV_E_FAIL; 551 552 goto response_done; 553 case KVP_OP_SET_IP_INFO: 554 goto response_done; 555 case KVP_OP_GET: 556 kvp_data = &kvp_msg->body.kvp_get.data; 557 goto copy_value; 558 559 case KVP_OP_SET: 560 case KVP_OP_DELETE: 561 goto response_done; 562 563 default: 564 break; 565 } 566 567 kvp_data = &kvp_msg->body.kvp_enum_data.data; 568 key_name = msg_to_host->body.kvp_enum_data.data.key; 569 570 /* 571 * The windows host expects the key/value pair to be encoded 572 * in utf16. Ensure that the key/value size reported to the host 573 * will be less than or equal to the MAX size (including the 574 * terminating character). 575 */ 576 keylen = utf8s_to_utf16s(key_name, strlen(key_name), UTF16_HOST_ENDIAN, 577 (wchar_t *) kvp_data->key, 578 (HV_KVP_EXCHANGE_MAX_KEY_SIZE / 2) - 2); 579 kvp_data->key_size = 2*(keylen + 1); /* utf16 encoding */ 580 581 copy_value: 582 value = msg_to_host->body.kvp_enum_data.data.value; 583 valuelen = utf8s_to_utf16s(value, strlen(value), UTF16_HOST_ENDIAN, 584 (wchar_t *) kvp_data->value, 585 (HV_KVP_EXCHANGE_MAX_VALUE_SIZE / 2) - 2); 586 kvp_data->value_size = 2*(valuelen + 1); /* utf16 encoding */ 587 588 /* 589 * If the utf8s to utf16s conversion failed; notify host 590 * of the error. 591 */ 592 if ((keylen < 0) || (valuelen < 0)) 593 icmsghdrp->status = HV_E_FAIL; 594 595 kvp_data->value_type = REG_SZ; /* all our values are strings */ 596 597 response_done: 598 icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION | ICMSGHDRFLAG_RESPONSE; 599 600 vmbus_sendpacket(channel, recv_buffer, buf_len, req_id, 601 VM_PKT_DATA_INBAND, 0); 602 } 603 604 /* 605 * This callback is invoked when we get a KVP message from the host. 606 * The host ensures that only one KVP transaction can be active at a time. 607 * KVP implementation in Linux needs to forward the key to a user-mde 608 * component to retrieve the corresponding value. Consequently, we cannot 609 * respond to the host in the context of this callback. Since the host 610 * guarantees that at most only one transaction can be active at a time, 611 * we stash away the transaction state in a set of global variables. 612 */ 613 614 void hv_kvp_onchannelcallback(void *context) 615 { 616 struct vmbus_channel *channel = context; 617 u32 recvlen; 618 u64 requestid; 619 620 struct hv_kvp_msg *kvp_msg; 621 622 struct icmsg_hdr *icmsghdrp; 623 int kvp_srv_version; 624 static enum {NEGO_NOT_STARTED, 625 NEGO_IN_PROGRESS, 626 NEGO_FINISHED} host_negotiatied = NEGO_NOT_STARTED; 627 628 if (kvp_transaction.state < HVUTIL_READY) { 629 /* 630 * If userspace daemon is not connected and host is asking 631 * us to negotiate we need to delay to not lose messages. 632 * This is important for Failover IP setting. 633 */ 634 if (host_negotiatied == NEGO_NOT_STARTED) { 635 host_negotiatied = NEGO_IN_PROGRESS; 636 schedule_delayed_work(&kvp_host_handshake_work, 637 HV_UTIL_NEGO_TIMEOUT * HZ); 638 } 639 return; 640 } 641 if (kvp_transaction.state > HVUTIL_READY) 642 return; 643 644 vmbus_recvpacket(channel, recv_buffer, PAGE_SIZE * 4, &recvlen, 645 &requestid); 646 647 if (recvlen > 0) { 648 icmsghdrp = (struct icmsg_hdr *)&recv_buffer[ 649 sizeof(struct vmbuspipe_hdr)]; 650 651 if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) { 652 if (vmbus_prep_negotiate_resp(icmsghdrp, 653 recv_buffer, fw_versions, FW_VER_COUNT, 654 kvp_versions, KVP_VER_COUNT, 655 NULL, &kvp_srv_version)) { 656 pr_info("KVP IC version %d.%d\n", 657 kvp_srv_version >> 16, 658 kvp_srv_version & 0xFFFF); 659 } 660 } else { 661 kvp_msg = (struct hv_kvp_msg *)&recv_buffer[ 662 sizeof(struct vmbuspipe_hdr) + 663 sizeof(struct icmsg_hdr)]; 664 665 /* 666 * Stash away this global state for completing the 667 * transaction; note transactions are serialized. 668 */ 669 670 kvp_transaction.recv_len = recvlen; 671 kvp_transaction.recv_req_id = requestid; 672 kvp_transaction.kvp_msg = kvp_msg; 673 674 if (kvp_transaction.state < HVUTIL_READY) { 675 /* Userspace is not registered yet */ 676 kvp_respond_to_host(NULL, HV_E_FAIL); 677 return; 678 } 679 kvp_transaction.state = HVUTIL_HOSTMSG_RECEIVED; 680 681 /* 682 * Get the information from the 683 * user-mode component. 684 * component. This transaction will be 685 * completed when we get the value from 686 * the user-mode component. 687 * Set a timeout to deal with 688 * user-mode not responding. 689 */ 690 schedule_work(&kvp_sendkey_work); 691 schedule_delayed_work(&kvp_timeout_work, 692 HV_UTIL_TIMEOUT * HZ); 693 694 return; 695 696 } 697 698 icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION 699 | ICMSGHDRFLAG_RESPONSE; 700 701 vmbus_sendpacket(channel, recv_buffer, 702 recvlen, requestid, 703 VM_PKT_DATA_INBAND, 0); 704 705 host_negotiatied = NEGO_FINISHED; 706 hv_poll_channel(kvp_transaction.recv_channel, kvp_poll_wrapper); 707 } 708 709 } 710 711 static void kvp_on_reset(void) 712 { 713 if (cancel_delayed_work_sync(&kvp_timeout_work)) 714 kvp_respond_to_host(NULL, HV_E_FAIL); 715 kvp_transaction.state = HVUTIL_DEVICE_INIT; 716 } 717 718 int 719 hv_kvp_init(struct hv_util_service *srv) 720 { 721 recv_buffer = srv->recv_buffer; 722 kvp_transaction.recv_channel = srv->channel; 723 724 /* 725 * When this driver loads, the user level daemon that 726 * processes the host requests may not yet be running. 727 * Defer processing channel callbacks until the daemon 728 * has registered. 729 */ 730 kvp_transaction.state = HVUTIL_DEVICE_INIT; 731 732 hvt = hvutil_transport_init(kvp_devname, CN_KVP_IDX, CN_KVP_VAL, 733 kvp_on_msg, kvp_on_reset); 734 if (!hvt) 735 return -EFAULT; 736 737 return 0; 738 } 739 740 void hv_kvp_deinit(void) 741 { 742 kvp_transaction.state = HVUTIL_DEVICE_DYING; 743 cancel_delayed_work_sync(&kvp_host_handshake_work); 744 cancel_delayed_work_sync(&kvp_timeout_work); 745 cancel_work_sync(&kvp_sendkey_work); 746 hvutil_transport_destroy(hvt); 747 } 748