xref: /openbmc/linux/drivers/hv/hv_kvp.c (revision a8da474e)
1 /*
2  * An implementation of key value pair (KVP) functionality for Linux.
3  *
4  *
5  * Copyright (C) 2010, Novell, Inc.
6  * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published
10  * by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  * NON INFRINGEMENT.  See the GNU General Public License for more
16  * details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21  *
22  */
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 
25 #include <linux/net.h>
26 #include <linux/nls.h>
27 #include <linux/connector.h>
28 #include <linux/workqueue.h>
29 #include <linux/hyperv.h>
30 
31 #include "hyperv_vmbus.h"
32 #include "hv_utils_transport.h"
33 
34 /*
35  * Pre win8 version numbers used in ws2008 and ws 2008 r2 (win7)
36  */
37 #define WS2008_SRV_MAJOR	1
38 #define WS2008_SRV_MINOR	0
39 #define WS2008_SRV_VERSION     (WS2008_SRV_MAJOR << 16 | WS2008_SRV_MINOR)
40 
41 #define WIN7_SRV_MAJOR   3
42 #define WIN7_SRV_MINOR   0
43 #define WIN7_SRV_VERSION     (WIN7_SRV_MAJOR << 16 | WIN7_SRV_MINOR)
44 
45 #define WIN8_SRV_MAJOR   4
46 #define WIN8_SRV_MINOR   0
47 #define WIN8_SRV_VERSION     (WIN8_SRV_MAJOR << 16 | WIN8_SRV_MINOR)
48 
49 /*
50  * Global state maintained for transaction that is being processed. For a class
51  * of integration services, including the "KVP service", the specified protocol
52  * is a "request/response" protocol which means that there can only be single
53  * outstanding transaction from the host at any given point in time. We use
54  * this to simplify memory management in this driver - we cache and process
55  * only one message at a time.
56  *
57  * While the request/response protocol is guaranteed by the host, we further
58  * ensure this by serializing packet processing in this driver - we do not
59  * read additional packets from the VMBUs until the current packet is fully
60  * handled.
61  */
62 
63 static struct {
64 	int state;   /* hvutil_device_state */
65 	int recv_len; /* number of bytes received. */
66 	struct hv_kvp_msg  *kvp_msg; /* current message */
67 	struct vmbus_channel *recv_channel; /* chn we got the request */
68 	u64 recv_req_id; /* request ID. */
69 	void *kvp_context; /* for the channel callback */
70 } kvp_transaction;
71 
72 /*
73  * This state maintains the version number registered by the daemon.
74  */
75 static int dm_reg_value;
76 
77 static void kvp_send_key(struct work_struct *dummy);
78 
79 
80 static void kvp_respond_to_host(struct hv_kvp_msg *msg, int error);
81 static void kvp_timeout_func(struct work_struct *dummy);
82 static void kvp_register(int);
83 
84 static DECLARE_DELAYED_WORK(kvp_timeout_work, kvp_timeout_func);
85 static DECLARE_WORK(kvp_sendkey_work, kvp_send_key);
86 
87 static const char kvp_devname[] = "vmbus/hv_kvp";
88 static u8 *recv_buffer;
89 static struct hvutil_transport *hvt;
90 /*
91  * Register the kernel component with the user-level daemon.
92  * As part of this registration, pass the LIC version number.
93  * This number has no meaning, it satisfies the registration protocol.
94  */
95 #define HV_DRV_VERSION           "3.1"
96 
97 static void
98 kvp_register(int reg_value)
99 {
100 
101 	struct hv_kvp_msg *kvp_msg;
102 	char *version;
103 
104 	kvp_msg = kzalloc(sizeof(*kvp_msg), GFP_KERNEL);
105 
106 	if (kvp_msg) {
107 		version = kvp_msg->body.kvp_register.version;
108 		kvp_msg->kvp_hdr.operation = reg_value;
109 		strcpy(version, HV_DRV_VERSION);
110 
111 		hvutil_transport_send(hvt, kvp_msg, sizeof(*kvp_msg));
112 		kfree(kvp_msg);
113 	}
114 }
115 
116 static void kvp_timeout_func(struct work_struct *dummy)
117 {
118 	/*
119 	 * If the timer fires, the user-mode component has not responded;
120 	 * process the pending transaction.
121 	 */
122 	kvp_respond_to_host(NULL, HV_E_FAIL);
123 
124 	/* Transaction is finished, reset the state. */
125 	if (kvp_transaction.state > HVUTIL_READY)
126 		kvp_transaction.state = HVUTIL_READY;
127 
128 	hv_poll_channel(kvp_transaction.kvp_context,
129 			hv_kvp_onchannelcallback);
130 }
131 
132 static int kvp_handle_handshake(struct hv_kvp_msg *msg)
133 {
134 	switch (msg->kvp_hdr.operation) {
135 	case KVP_OP_REGISTER:
136 		dm_reg_value = KVP_OP_REGISTER;
137 		pr_info("KVP: IP injection functionality not available\n");
138 		pr_info("KVP: Upgrade the KVP daemon\n");
139 		break;
140 	case KVP_OP_REGISTER1:
141 		dm_reg_value = KVP_OP_REGISTER1;
142 		break;
143 	default:
144 		pr_info("KVP: incompatible daemon\n");
145 		pr_info("KVP: KVP version: %d, Daemon version: %d\n",
146 			KVP_OP_REGISTER1, msg->kvp_hdr.operation);
147 		return -EINVAL;
148 	}
149 
150 	/*
151 	 * We have a compatible daemon; complete the handshake.
152 	 */
153 	pr_debug("KVP: userspace daemon ver. %d registered\n",
154 		 KVP_OP_REGISTER);
155 	kvp_register(dm_reg_value);
156 	kvp_transaction.state = HVUTIL_READY;
157 
158 	return 0;
159 }
160 
161 
162 /*
163  * Callback when data is received from user mode.
164  */
165 
166 static int kvp_on_msg(void *msg, int len)
167 {
168 	struct hv_kvp_msg *message = (struct hv_kvp_msg *)msg;
169 	struct hv_kvp_msg_enumerate *data;
170 	int	error = 0;
171 
172 	if (len < sizeof(*message))
173 		return -EINVAL;
174 
175 	/*
176 	 * If we are negotiating the version information
177 	 * with the daemon; handle that first.
178 	 */
179 
180 	if (kvp_transaction.state < HVUTIL_READY) {
181 		return kvp_handle_handshake(message);
182 	}
183 
184 	/* We didn't send anything to userspace so the reply is spurious */
185 	if (kvp_transaction.state < HVUTIL_USERSPACE_REQ)
186 		return -EINVAL;
187 
188 	kvp_transaction.state = HVUTIL_USERSPACE_RECV;
189 
190 	/*
191 	 * Based on the version of the daemon, we propagate errors from the
192 	 * daemon differently.
193 	 */
194 
195 	data = &message->body.kvp_enum_data;
196 
197 	switch (dm_reg_value) {
198 	case KVP_OP_REGISTER:
199 		/*
200 		 * Null string is used to pass back error condition.
201 		 */
202 		if (data->data.key[0] == 0)
203 			error = HV_S_CONT;
204 		break;
205 
206 	case KVP_OP_REGISTER1:
207 		/*
208 		 * We use the message header information from
209 		 * the user level daemon to transmit errors.
210 		 */
211 		error = message->error;
212 		break;
213 	}
214 
215 	/*
216 	 * Complete the transaction by forwarding the key value
217 	 * to the host. But first, cancel the timeout.
218 	 */
219 	if (cancel_delayed_work_sync(&kvp_timeout_work)) {
220 		kvp_respond_to_host(message, error);
221 		kvp_transaction.state = HVUTIL_READY;
222 		hv_poll_channel(kvp_transaction.kvp_context,
223 				hv_kvp_onchannelcallback);
224 	}
225 
226 	return 0;
227 }
228 
229 
230 static int process_ob_ipinfo(void *in_msg, void *out_msg, int op)
231 {
232 	struct hv_kvp_msg *in = in_msg;
233 	struct hv_kvp_ip_msg *out = out_msg;
234 	int len;
235 
236 	switch (op) {
237 	case KVP_OP_GET_IP_INFO:
238 		/*
239 		 * Transform all parameters into utf16 encoding.
240 		 */
241 		len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.ip_addr,
242 				strlen((char *)in->body.kvp_ip_val.ip_addr),
243 				UTF16_HOST_ENDIAN,
244 				(wchar_t *)out->kvp_ip_val.ip_addr,
245 				MAX_IP_ADDR_SIZE);
246 		if (len < 0)
247 			return len;
248 
249 		len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.sub_net,
250 				strlen((char *)in->body.kvp_ip_val.sub_net),
251 				UTF16_HOST_ENDIAN,
252 				(wchar_t *)out->kvp_ip_val.sub_net,
253 				MAX_IP_ADDR_SIZE);
254 		if (len < 0)
255 			return len;
256 
257 		len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.gate_way,
258 				strlen((char *)in->body.kvp_ip_val.gate_way),
259 				UTF16_HOST_ENDIAN,
260 				(wchar_t *)out->kvp_ip_val.gate_way,
261 				MAX_GATEWAY_SIZE);
262 		if (len < 0)
263 			return len;
264 
265 		len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.dns_addr,
266 				strlen((char *)in->body.kvp_ip_val.dns_addr),
267 				UTF16_HOST_ENDIAN,
268 				(wchar_t *)out->kvp_ip_val.dns_addr,
269 				MAX_IP_ADDR_SIZE);
270 		if (len < 0)
271 			return len;
272 
273 		len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.adapter_id,
274 				strlen((char *)in->body.kvp_ip_val.adapter_id),
275 				UTF16_HOST_ENDIAN,
276 				(wchar_t *)out->kvp_ip_val.adapter_id,
277 				MAX_IP_ADDR_SIZE);
278 		if (len < 0)
279 			return len;
280 
281 		out->kvp_ip_val.dhcp_enabled =
282 			in->body.kvp_ip_val.dhcp_enabled;
283 		out->kvp_ip_val.addr_family =
284 			in->body.kvp_ip_val.addr_family;
285 	}
286 
287 	return 0;
288 }
289 
290 static void process_ib_ipinfo(void *in_msg, void *out_msg, int op)
291 {
292 	struct hv_kvp_ip_msg *in = in_msg;
293 	struct hv_kvp_msg *out = out_msg;
294 
295 	switch (op) {
296 	case KVP_OP_SET_IP_INFO:
297 		/*
298 		 * Transform all parameters into utf8 encoding.
299 		 */
300 		utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.ip_addr,
301 				MAX_IP_ADDR_SIZE,
302 				UTF16_LITTLE_ENDIAN,
303 				(__u8 *)out->body.kvp_ip_val.ip_addr,
304 				MAX_IP_ADDR_SIZE);
305 
306 		utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.sub_net,
307 				MAX_IP_ADDR_SIZE,
308 				UTF16_LITTLE_ENDIAN,
309 				(__u8 *)out->body.kvp_ip_val.sub_net,
310 				MAX_IP_ADDR_SIZE);
311 
312 		utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.gate_way,
313 				MAX_GATEWAY_SIZE,
314 				UTF16_LITTLE_ENDIAN,
315 				(__u8 *)out->body.kvp_ip_val.gate_way,
316 				MAX_GATEWAY_SIZE);
317 
318 		utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.dns_addr,
319 				MAX_IP_ADDR_SIZE,
320 				UTF16_LITTLE_ENDIAN,
321 				(__u8 *)out->body.kvp_ip_val.dns_addr,
322 				MAX_IP_ADDR_SIZE);
323 
324 		out->body.kvp_ip_val.dhcp_enabled = in->kvp_ip_val.dhcp_enabled;
325 
326 	default:
327 		utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.adapter_id,
328 				MAX_ADAPTER_ID_SIZE,
329 				UTF16_LITTLE_ENDIAN,
330 				(__u8 *)out->body.kvp_ip_val.adapter_id,
331 				MAX_ADAPTER_ID_SIZE);
332 
333 		out->body.kvp_ip_val.addr_family = in->kvp_ip_val.addr_family;
334 	}
335 }
336 
337 
338 
339 
340 static void
341 kvp_send_key(struct work_struct *dummy)
342 {
343 	struct hv_kvp_msg *message;
344 	struct hv_kvp_msg *in_msg;
345 	__u8 operation = kvp_transaction.kvp_msg->kvp_hdr.operation;
346 	__u8 pool = kvp_transaction.kvp_msg->kvp_hdr.pool;
347 	__u32 val32;
348 	__u64 val64;
349 	int rc;
350 
351 	/* The transaction state is wrong. */
352 	if (kvp_transaction.state != HVUTIL_HOSTMSG_RECEIVED)
353 		return;
354 
355 	message = kzalloc(sizeof(*message), GFP_KERNEL);
356 	if (!message)
357 		return;
358 
359 	message->kvp_hdr.operation = operation;
360 	message->kvp_hdr.pool = pool;
361 	in_msg = kvp_transaction.kvp_msg;
362 
363 	/*
364 	 * The key/value strings sent from the host are encoded in
365 	 * in utf16; convert it to utf8 strings.
366 	 * The host assures us that the utf16 strings will not exceed
367 	 * the max lengths specified. We will however, reserve room
368 	 * for the string terminating character - in the utf16s_utf8s()
369 	 * function we limit the size of the buffer where the converted
370 	 * string is placed to HV_KVP_EXCHANGE_MAX_*_SIZE -1 to gaurantee
371 	 * that the strings can be properly terminated!
372 	 */
373 
374 	switch (message->kvp_hdr.operation) {
375 	case KVP_OP_SET_IP_INFO:
376 		process_ib_ipinfo(in_msg, message, KVP_OP_SET_IP_INFO);
377 		break;
378 	case KVP_OP_GET_IP_INFO:
379 		process_ib_ipinfo(in_msg, message, KVP_OP_GET_IP_INFO);
380 		break;
381 	case KVP_OP_SET:
382 		switch (in_msg->body.kvp_set.data.value_type) {
383 		case REG_SZ:
384 			/*
385 			 * The value is a string - utf16 encoding.
386 			 */
387 			message->body.kvp_set.data.value_size =
388 				utf16s_to_utf8s(
389 				(wchar_t *)in_msg->body.kvp_set.data.value,
390 				in_msg->body.kvp_set.data.value_size,
391 				UTF16_LITTLE_ENDIAN,
392 				message->body.kvp_set.data.value,
393 				HV_KVP_EXCHANGE_MAX_VALUE_SIZE - 1) + 1;
394 				break;
395 
396 		case REG_U32:
397 			/*
398 			 * The value is a 32 bit scalar.
399 			 * We save this as a utf8 string.
400 			 */
401 			val32 = in_msg->body.kvp_set.data.value_u32;
402 			message->body.kvp_set.data.value_size =
403 				sprintf(message->body.kvp_set.data.value,
404 					"%d", val32) + 1;
405 			break;
406 
407 		case REG_U64:
408 			/*
409 			 * The value is a 64 bit scalar.
410 			 * We save this as a utf8 string.
411 			 */
412 			val64 = in_msg->body.kvp_set.data.value_u64;
413 			message->body.kvp_set.data.value_size =
414 				sprintf(message->body.kvp_set.data.value,
415 					"%llu", val64) + 1;
416 			break;
417 
418 		}
419 	case KVP_OP_GET:
420 		message->body.kvp_set.data.key_size =
421 			utf16s_to_utf8s(
422 			(wchar_t *)in_msg->body.kvp_set.data.key,
423 			in_msg->body.kvp_set.data.key_size,
424 			UTF16_LITTLE_ENDIAN,
425 			message->body.kvp_set.data.key,
426 			HV_KVP_EXCHANGE_MAX_KEY_SIZE - 1) + 1;
427 			break;
428 
429 	case KVP_OP_DELETE:
430 		message->body.kvp_delete.key_size =
431 			utf16s_to_utf8s(
432 			(wchar_t *)in_msg->body.kvp_delete.key,
433 			in_msg->body.kvp_delete.key_size,
434 			UTF16_LITTLE_ENDIAN,
435 			message->body.kvp_delete.key,
436 			HV_KVP_EXCHANGE_MAX_KEY_SIZE - 1) + 1;
437 			break;
438 
439 	case KVP_OP_ENUMERATE:
440 		message->body.kvp_enum_data.index =
441 			in_msg->body.kvp_enum_data.index;
442 			break;
443 	}
444 
445 	kvp_transaction.state = HVUTIL_USERSPACE_REQ;
446 	rc = hvutil_transport_send(hvt, message, sizeof(*message));
447 	if (rc) {
448 		pr_debug("KVP: failed to communicate to the daemon: %d\n", rc);
449 		if (cancel_delayed_work_sync(&kvp_timeout_work)) {
450 			kvp_respond_to_host(message, HV_E_FAIL);
451 			kvp_transaction.state = HVUTIL_READY;
452 		}
453 	}
454 
455 	kfree(message);
456 
457 	return;
458 }
459 
460 /*
461  * Send a response back to the host.
462  */
463 
464 static void
465 kvp_respond_to_host(struct hv_kvp_msg *msg_to_host, int error)
466 {
467 	struct hv_kvp_msg  *kvp_msg;
468 	struct hv_kvp_exchg_msg_value  *kvp_data;
469 	char	*key_name;
470 	char	*value;
471 	struct icmsg_hdr *icmsghdrp;
472 	int	keylen = 0;
473 	int	valuelen = 0;
474 	u32	buf_len;
475 	struct vmbus_channel *channel;
476 	u64	req_id;
477 	int ret;
478 
479 	/*
480 	 * Copy the global state for completing the transaction. Note that
481 	 * only one transaction can be active at a time.
482 	 */
483 
484 	buf_len = kvp_transaction.recv_len;
485 	channel = kvp_transaction.recv_channel;
486 	req_id = kvp_transaction.recv_req_id;
487 
488 	icmsghdrp = (struct icmsg_hdr *)
489 			&recv_buffer[sizeof(struct vmbuspipe_hdr)];
490 
491 	if (channel->onchannel_callback == NULL)
492 		/*
493 		 * We have raced with util driver being unloaded;
494 		 * silently return.
495 		 */
496 		return;
497 
498 	icmsghdrp->status = error;
499 
500 	/*
501 	 * If the error parameter is set, terminate the host's enumeration
502 	 * on this pool.
503 	 */
504 	if (error) {
505 		/*
506 		 * Something failed or we have timedout;
507 		 * terminate the current host-side iteration.
508 		 */
509 		goto response_done;
510 	}
511 
512 	kvp_msg = (struct hv_kvp_msg *)
513 			&recv_buffer[sizeof(struct vmbuspipe_hdr) +
514 			sizeof(struct icmsg_hdr)];
515 
516 	switch (kvp_transaction.kvp_msg->kvp_hdr.operation) {
517 	case KVP_OP_GET_IP_INFO:
518 		ret = process_ob_ipinfo(msg_to_host,
519 				 (struct hv_kvp_ip_msg *)kvp_msg,
520 				 KVP_OP_GET_IP_INFO);
521 		if (ret < 0)
522 			icmsghdrp->status = HV_E_FAIL;
523 
524 		goto response_done;
525 	case KVP_OP_SET_IP_INFO:
526 		goto response_done;
527 	case KVP_OP_GET:
528 		kvp_data = &kvp_msg->body.kvp_get.data;
529 		goto copy_value;
530 
531 	case KVP_OP_SET:
532 	case KVP_OP_DELETE:
533 		goto response_done;
534 
535 	default:
536 		break;
537 	}
538 
539 	kvp_data = &kvp_msg->body.kvp_enum_data.data;
540 	key_name = msg_to_host->body.kvp_enum_data.data.key;
541 
542 	/*
543 	 * The windows host expects the key/value pair to be encoded
544 	 * in utf16. Ensure that the key/value size reported to the host
545 	 * will be less than or equal to the MAX size (including the
546 	 * terminating character).
547 	 */
548 	keylen = utf8s_to_utf16s(key_name, strlen(key_name), UTF16_HOST_ENDIAN,
549 				(wchar_t *) kvp_data->key,
550 				(HV_KVP_EXCHANGE_MAX_KEY_SIZE / 2) - 2);
551 	kvp_data->key_size = 2*(keylen + 1); /* utf16 encoding */
552 
553 copy_value:
554 	value = msg_to_host->body.kvp_enum_data.data.value;
555 	valuelen = utf8s_to_utf16s(value, strlen(value), UTF16_HOST_ENDIAN,
556 				(wchar_t *) kvp_data->value,
557 				(HV_KVP_EXCHANGE_MAX_VALUE_SIZE / 2) - 2);
558 	kvp_data->value_size = 2*(valuelen + 1); /* utf16 encoding */
559 
560 	/*
561 	 * If the utf8s to utf16s conversion failed; notify host
562 	 * of the error.
563 	 */
564 	if ((keylen < 0) || (valuelen < 0))
565 		icmsghdrp->status = HV_E_FAIL;
566 
567 	kvp_data->value_type = REG_SZ; /* all our values are strings */
568 
569 response_done:
570 	icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION | ICMSGHDRFLAG_RESPONSE;
571 
572 	vmbus_sendpacket(channel, recv_buffer, buf_len, req_id,
573 				VM_PKT_DATA_INBAND, 0);
574 }
575 
576 /*
577  * This callback is invoked when we get a KVP message from the host.
578  * The host ensures that only one KVP transaction can be active at a time.
579  * KVP implementation in Linux needs to forward the key to a user-mde
580  * component to retrive the corresponding value. Consequently, we cannot
581  * respond to the host in the conext of this callback. Since the host
582  * guarantees that at most only one transaction can be active at a time,
583  * we stash away the transaction state in a set of global variables.
584  */
585 
586 void hv_kvp_onchannelcallback(void *context)
587 {
588 	struct vmbus_channel *channel = context;
589 	u32 recvlen;
590 	u64 requestid;
591 
592 	struct hv_kvp_msg *kvp_msg;
593 
594 	struct icmsg_hdr *icmsghdrp;
595 	struct icmsg_negotiate *negop = NULL;
596 	int util_fw_version;
597 	int kvp_srv_version;
598 
599 	if (kvp_transaction.state > HVUTIL_READY) {
600 		/*
601 		 * We will defer processing this callback once
602 		 * the current transaction is complete.
603 		 */
604 		kvp_transaction.kvp_context = context;
605 		return;
606 	}
607 	kvp_transaction.kvp_context = NULL;
608 
609 	vmbus_recvpacket(channel, recv_buffer, PAGE_SIZE * 4, &recvlen,
610 			 &requestid);
611 
612 	if (recvlen > 0) {
613 		icmsghdrp = (struct icmsg_hdr *)&recv_buffer[
614 			sizeof(struct vmbuspipe_hdr)];
615 
616 		if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) {
617 			/*
618 			 * Based on the host, select appropriate
619 			 * framework and service versions we will
620 			 * negotiate.
621 			 */
622 			switch (vmbus_proto_version) {
623 			case (VERSION_WS2008):
624 				util_fw_version = UTIL_WS2K8_FW_VERSION;
625 				kvp_srv_version = WS2008_SRV_VERSION;
626 				break;
627 			case (VERSION_WIN7):
628 				util_fw_version = UTIL_FW_VERSION;
629 				kvp_srv_version = WIN7_SRV_VERSION;
630 				break;
631 			default:
632 				util_fw_version = UTIL_FW_VERSION;
633 				kvp_srv_version = WIN8_SRV_VERSION;
634 			}
635 			vmbus_prep_negotiate_resp(icmsghdrp, negop,
636 				 recv_buffer, util_fw_version,
637 				 kvp_srv_version);
638 
639 		} else {
640 			kvp_msg = (struct hv_kvp_msg *)&recv_buffer[
641 				sizeof(struct vmbuspipe_hdr) +
642 				sizeof(struct icmsg_hdr)];
643 
644 			/*
645 			 * Stash away this global state for completing the
646 			 * transaction; note transactions are serialized.
647 			 */
648 
649 			kvp_transaction.recv_len = recvlen;
650 			kvp_transaction.recv_channel = channel;
651 			kvp_transaction.recv_req_id = requestid;
652 			kvp_transaction.kvp_msg = kvp_msg;
653 
654 			if (kvp_transaction.state < HVUTIL_READY) {
655 				/* Userspace is not registered yet */
656 				kvp_respond_to_host(NULL, HV_E_FAIL);
657 				return;
658 			}
659 			kvp_transaction.state = HVUTIL_HOSTMSG_RECEIVED;
660 
661 			/*
662 			 * Get the information from the
663 			 * user-mode component.
664 			 * component. This transaction will be
665 			 * completed when we get the value from
666 			 * the user-mode component.
667 			 * Set a timeout to deal with
668 			 * user-mode not responding.
669 			 */
670 			schedule_work(&kvp_sendkey_work);
671 			schedule_delayed_work(&kvp_timeout_work, 5*HZ);
672 
673 			return;
674 
675 		}
676 
677 		icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION
678 			| ICMSGHDRFLAG_RESPONSE;
679 
680 		vmbus_sendpacket(channel, recv_buffer,
681 				       recvlen, requestid,
682 				       VM_PKT_DATA_INBAND, 0);
683 	}
684 
685 }
686 
687 static void kvp_on_reset(void)
688 {
689 	if (cancel_delayed_work_sync(&kvp_timeout_work))
690 		kvp_respond_to_host(NULL, HV_E_FAIL);
691 	kvp_transaction.state = HVUTIL_DEVICE_INIT;
692 }
693 
694 int
695 hv_kvp_init(struct hv_util_service *srv)
696 {
697 	recv_buffer = srv->recv_buffer;
698 
699 	/*
700 	 * When this driver loads, the user level daemon that
701 	 * processes the host requests may not yet be running.
702 	 * Defer processing channel callbacks until the daemon
703 	 * has registered.
704 	 */
705 	kvp_transaction.state = HVUTIL_DEVICE_INIT;
706 
707 	hvt = hvutil_transport_init(kvp_devname, CN_KVP_IDX, CN_KVP_VAL,
708 				    kvp_on_msg, kvp_on_reset);
709 	if (!hvt)
710 		return -EFAULT;
711 
712 	return 0;
713 }
714 
715 void hv_kvp_deinit(void)
716 {
717 	kvp_transaction.state = HVUTIL_DEVICE_DYING;
718 	cancel_delayed_work_sync(&kvp_timeout_work);
719 	cancel_work_sync(&kvp_sendkey_work);
720 	hvutil_transport_destroy(hvt);
721 }
722