1 /* 2 * An implementation of key value pair (KVP) functionality for Linux. 3 * 4 * 5 * Copyright (C) 2010, Novell, Inc. 6 * Author : K. Y. Srinivasan <ksrinivasan@novell.com> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published 10 * by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, but 13 * WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 15 * NON INFRINGEMENT. See the GNU General Public License for more 16 * details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 21 * 22 */ 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/net.h> 26 #include <linux/nls.h> 27 #include <linux/connector.h> 28 #include <linux/workqueue.h> 29 #include <linux/hyperv.h> 30 31 #include "hyperv_vmbus.h" 32 #include "hv_utils_transport.h" 33 34 /* 35 * Pre win8 version numbers used in ws2008 and ws 2008 r2 (win7) 36 */ 37 #define WS2008_SRV_MAJOR 1 38 #define WS2008_SRV_MINOR 0 39 #define WS2008_SRV_VERSION (WS2008_SRV_MAJOR << 16 | WS2008_SRV_MINOR) 40 41 #define WIN7_SRV_MAJOR 3 42 #define WIN7_SRV_MINOR 0 43 #define WIN7_SRV_VERSION (WIN7_SRV_MAJOR << 16 | WIN7_SRV_MINOR) 44 45 #define WIN8_SRV_MAJOR 4 46 #define WIN8_SRV_MINOR 0 47 #define WIN8_SRV_VERSION (WIN8_SRV_MAJOR << 16 | WIN8_SRV_MINOR) 48 49 #define KVP_VER_COUNT 3 50 static const int kvp_versions[] = { 51 WIN8_SRV_VERSION, 52 WIN7_SRV_VERSION, 53 WS2008_SRV_VERSION 54 }; 55 56 #define FW_VER_COUNT 2 57 static const int fw_versions[] = { 58 UTIL_FW_VERSION, 59 UTIL_WS2K8_FW_VERSION 60 }; 61 62 /* 63 * Global state maintained for transaction that is being processed. For a class 64 * of integration services, including the "KVP service", the specified protocol 65 * is a "request/response" protocol which means that there can only be single 66 * outstanding transaction from the host at any given point in time. We use 67 * this to simplify memory management in this driver - we cache and process 68 * only one message at a time. 69 * 70 * While the request/response protocol is guaranteed by the host, we further 71 * ensure this by serializing packet processing in this driver - we do not 72 * read additional packets from the VMBUS until the current packet is fully 73 * handled. 74 */ 75 76 static struct { 77 int state; /* hvutil_device_state */ 78 int recv_len; /* number of bytes received. */ 79 struct hv_kvp_msg *kvp_msg; /* current message */ 80 struct vmbus_channel *recv_channel; /* chn we got the request */ 81 u64 recv_req_id; /* request ID. */ 82 } kvp_transaction; 83 84 /* 85 * This state maintains the version number registered by the daemon. 86 */ 87 static int dm_reg_value; 88 89 static void kvp_send_key(struct work_struct *dummy); 90 91 92 static void kvp_respond_to_host(struct hv_kvp_msg *msg, int error); 93 static void kvp_timeout_func(struct work_struct *dummy); 94 static void kvp_host_handshake_func(struct work_struct *dummy); 95 static void kvp_register(int); 96 97 static DECLARE_DELAYED_WORK(kvp_timeout_work, kvp_timeout_func); 98 static DECLARE_DELAYED_WORK(kvp_host_handshake_work, kvp_host_handshake_func); 99 static DECLARE_WORK(kvp_sendkey_work, kvp_send_key); 100 101 static const char kvp_devname[] = "vmbus/hv_kvp"; 102 static u8 *recv_buffer; 103 static struct hvutil_transport *hvt; 104 /* 105 * Register the kernel component with the user-level daemon. 106 * As part of this registration, pass the LIC version number. 107 * This number has no meaning, it satisfies the registration protocol. 108 */ 109 #define HV_DRV_VERSION "3.1" 110 111 static void kvp_poll_wrapper(void *channel) 112 { 113 /* Transaction is finished, reset the state here to avoid races. */ 114 kvp_transaction.state = HVUTIL_READY; 115 tasklet_schedule(&((struct vmbus_channel *)channel)->callback_event); 116 } 117 118 static void kvp_register_done(void) 119 { 120 /* 121 * If we're still negotiating with the host cancel the timeout 122 * work to not poll the channel twice. 123 */ 124 pr_debug("KVP: userspace daemon registered\n"); 125 cancel_delayed_work_sync(&kvp_host_handshake_work); 126 hv_poll_channel(kvp_transaction.recv_channel, kvp_poll_wrapper); 127 } 128 129 static void 130 kvp_register(int reg_value) 131 { 132 133 struct hv_kvp_msg *kvp_msg; 134 char *version; 135 136 kvp_msg = kzalloc(sizeof(*kvp_msg), GFP_KERNEL); 137 138 if (kvp_msg) { 139 version = kvp_msg->body.kvp_register.version; 140 kvp_msg->kvp_hdr.operation = reg_value; 141 strcpy(version, HV_DRV_VERSION); 142 143 hvutil_transport_send(hvt, kvp_msg, sizeof(*kvp_msg), 144 kvp_register_done); 145 kfree(kvp_msg); 146 } 147 } 148 149 static void kvp_timeout_func(struct work_struct *dummy) 150 { 151 /* 152 * If the timer fires, the user-mode component has not responded; 153 * process the pending transaction. 154 */ 155 kvp_respond_to_host(NULL, HV_E_FAIL); 156 157 hv_poll_channel(kvp_transaction.recv_channel, kvp_poll_wrapper); 158 } 159 160 static void kvp_host_handshake_func(struct work_struct *dummy) 161 { 162 tasklet_schedule(&kvp_transaction.recv_channel->callback_event); 163 } 164 165 static int kvp_handle_handshake(struct hv_kvp_msg *msg) 166 { 167 switch (msg->kvp_hdr.operation) { 168 case KVP_OP_REGISTER: 169 dm_reg_value = KVP_OP_REGISTER; 170 pr_info("KVP: IP injection functionality not available\n"); 171 pr_info("KVP: Upgrade the KVP daemon\n"); 172 break; 173 case KVP_OP_REGISTER1: 174 dm_reg_value = KVP_OP_REGISTER1; 175 break; 176 default: 177 pr_info("KVP: incompatible daemon\n"); 178 pr_info("KVP: KVP version: %d, Daemon version: %d\n", 179 KVP_OP_REGISTER1, msg->kvp_hdr.operation); 180 return -EINVAL; 181 } 182 183 /* 184 * We have a compatible daemon; complete the handshake. 185 */ 186 pr_debug("KVP: userspace daemon ver. %d connected\n", 187 msg->kvp_hdr.operation); 188 kvp_register(dm_reg_value); 189 190 return 0; 191 } 192 193 194 /* 195 * Callback when data is received from user mode. 196 */ 197 198 static int kvp_on_msg(void *msg, int len) 199 { 200 struct hv_kvp_msg *message = (struct hv_kvp_msg *)msg; 201 struct hv_kvp_msg_enumerate *data; 202 int error = 0; 203 204 if (len < sizeof(*message)) 205 return -EINVAL; 206 207 /* 208 * If we are negotiating the version information 209 * with the daemon; handle that first. 210 */ 211 212 if (kvp_transaction.state < HVUTIL_READY) { 213 return kvp_handle_handshake(message); 214 } 215 216 /* We didn't send anything to userspace so the reply is spurious */ 217 if (kvp_transaction.state < HVUTIL_USERSPACE_REQ) 218 return -EINVAL; 219 220 kvp_transaction.state = HVUTIL_USERSPACE_RECV; 221 222 /* 223 * Based on the version of the daemon, we propagate errors from the 224 * daemon differently. 225 */ 226 227 data = &message->body.kvp_enum_data; 228 229 switch (dm_reg_value) { 230 case KVP_OP_REGISTER: 231 /* 232 * Null string is used to pass back error condition. 233 */ 234 if (data->data.key[0] == 0) 235 error = HV_S_CONT; 236 break; 237 238 case KVP_OP_REGISTER1: 239 /* 240 * We use the message header information from 241 * the user level daemon to transmit errors. 242 */ 243 error = message->error; 244 break; 245 } 246 247 /* 248 * Complete the transaction by forwarding the key value 249 * to the host. But first, cancel the timeout. 250 */ 251 if (cancel_delayed_work_sync(&kvp_timeout_work)) { 252 kvp_respond_to_host(message, error); 253 hv_poll_channel(kvp_transaction.recv_channel, kvp_poll_wrapper); 254 } 255 256 return 0; 257 } 258 259 260 static int process_ob_ipinfo(void *in_msg, void *out_msg, int op) 261 { 262 struct hv_kvp_msg *in = in_msg; 263 struct hv_kvp_ip_msg *out = out_msg; 264 int len; 265 266 switch (op) { 267 case KVP_OP_GET_IP_INFO: 268 /* 269 * Transform all parameters into utf16 encoding. 270 */ 271 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.ip_addr, 272 strlen((char *)in->body.kvp_ip_val.ip_addr), 273 UTF16_HOST_ENDIAN, 274 (wchar_t *)out->kvp_ip_val.ip_addr, 275 MAX_IP_ADDR_SIZE); 276 if (len < 0) 277 return len; 278 279 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.sub_net, 280 strlen((char *)in->body.kvp_ip_val.sub_net), 281 UTF16_HOST_ENDIAN, 282 (wchar_t *)out->kvp_ip_val.sub_net, 283 MAX_IP_ADDR_SIZE); 284 if (len < 0) 285 return len; 286 287 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.gate_way, 288 strlen((char *)in->body.kvp_ip_val.gate_way), 289 UTF16_HOST_ENDIAN, 290 (wchar_t *)out->kvp_ip_val.gate_way, 291 MAX_GATEWAY_SIZE); 292 if (len < 0) 293 return len; 294 295 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.dns_addr, 296 strlen((char *)in->body.kvp_ip_val.dns_addr), 297 UTF16_HOST_ENDIAN, 298 (wchar_t *)out->kvp_ip_val.dns_addr, 299 MAX_IP_ADDR_SIZE); 300 if (len < 0) 301 return len; 302 303 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.adapter_id, 304 strlen((char *)in->body.kvp_ip_val.adapter_id), 305 UTF16_HOST_ENDIAN, 306 (wchar_t *)out->kvp_ip_val.adapter_id, 307 MAX_ADAPTER_ID_SIZE); 308 if (len < 0) 309 return len; 310 311 out->kvp_ip_val.dhcp_enabled = 312 in->body.kvp_ip_val.dhcp_enabled; 313 out->kvp_ip_val.addr_family = 314 in->body.kvp_ip_val.addr_family; 315 } 316 317 return 0; 318 } 319 320 static void process_ib_ipinfo(void *in_msg, void *out_msg, int op) 321 { 322 struct hv_kvp_ip_msg *in = in_msg; 323 struct hv_kvp_msg *out = out_msg; 324 325 switch (op) { 326 case KVP_OP_SET_IP_INFO: 327 /* 328 * Transform all parameters into utf8 encoding. 329 */ 330 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.ip_addr, 331 MAX_IP_ADDR_SIZE, 332 UTF16_LITTLE_ENDIAN, 333 (__u8 *)out->body.kvp_ip_val.ip_addr, 334 MAX_IP_ADDR_SIZE); 335 336 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.sub_net, 337 MAX_IP_ADDR_SIZE, 338 UTF16_LITTLE_ENDIAN, 339 (__u8 *)out->body.kvp_ip_val.sub_net, 340 MAX_IP_ADDR_SIZE); 341 342 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.gate_way, 343 MAX_GATEWAY_SIZE, 344 UTF16_LITTLE_ENDIAN, 345 (__u8 *)out->body.kvp_ip_val.gate_way, 346 MAX_GATEWAY_SIZE); 347 348 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.dns_addr, 349 MAX_IP_ADDR_SIZE, 350 UTF16_LITTLE_ENDIAN, 351 (__u8 *)out->body.kvp_ip_val.dns_addr, 352 MAX_IP_ADDR_SIZE); 353 354 out->body.kvp_ip_val.dhcp_enabled = in->kvp_ip_val.dhcp_enabled; 355 356 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.adapter_id, 357 MAX_ADAPTER_ID_SIZE, 358 UTF16_LITTLE_ENDIAN, 359 (__u8 *)out->body.kvp_ip_val.adapter_id, 360 MAX_ADAPTER_ID_SIZE); 361 362 out->body.kvp_ip_val.addr_family = in->kvp_ip_val.addr_family; 363 } 364 } 365 366 367 368 369 static void 370 kvp_send_key(struct work_struct *dummy) 371 { 372 struct hv_kvp_msg *message; 373 struct hv_kvp_msg *in_msg; 374 __u8 operation = kvp_transaction.kvp_msg->kvp_hdr.operation; 375 __u8 pool = kvp_transaction.kvp_msg->kvp_hdr.pool; 376 __u32 val32; 377 __u64 val64; 378 int rc; 379 380 /* The transaction state is wrong. */ 381 if (kvp_transaction.state != HVUTIL_HOSTMSG_RECEIVED) 382 return; 383 384 message = kzalloc(sizeof(*message), GFP_KERNEL); 385 if (!message) 386 return; 387 388 message->kvp_hdr.operation = operation; 389 message->kvp_hdr.pool = pool; 390 in_msg = kvp_transaction.kvp_msg; 391 392 /* 393 * The key/value strings sent from the host are encoded in 394 * in utf16; convert it to utf8 strings. 395 * The host assures us that the utf16 strings will not exceed 396 * the max lengths specified. We will however, reserve room 397 * for the string terminating character - in the utf16s_utf8s() 398 * function we limit the size of the buffer where the converted 399 * string is placed to HV_KVP_EXCHANGE_MAX_*_SIZE -1 to guarantee 400 * that the strings can be properly terminated! 401 */ 402 403 switch (message->kvp_hdr.operation) { 404 case KVP_OP_SET_IP_INFO: 405 process_ib_ipinfo(in_msg, message, KVP_OP_SET_IP_INFO); 406 break; 407 case KVP_OP_GET_IP_INFO: 408 /* We only need to pass on message->kvp_hdr.operation. */ 409 break; 410 case KVP_OP_SET: 411 switch (in_msg->body.kvp_set.data.value_type) { 412 case REG_SZ: 413 /* 414 * The value is a string - utf16 encoding. 415 */ 416 message->body.kvp_set.data.value_size = 417 utf16s_to_utf8s( 418 (wchar_t *)in_msg->body.kvp_set.data.value, 419 in_msg->body.kvp_set.data.value_size, 420 UTF16_LITTLE_ENDIAN, 421 message->body.kvp_set.data.value, 422 HV_KVP_EXCHANGE_MAX_VALUE_SIZE - 1) + 1; 423 break; 424 425 case REG_U32: 426 /* 427 * The value is a 32 bit scalar. 428 * We save this as a utf8 string. 429 */ 430 val32 = in_msg->body.kvp_set.data.value_u32; 431 message->body.kvp_set.data.value_size = 432 sprintf(message->body.kvp_set.data.value, 433 "%d", val32) + 1; 434 break; 435 436 case REG_U64: 437 /* 438 * The value is a 64 bit scalar. 439 * We save this as a utf8 string. 440 */ 441 val64 = in_msg->body.kvp_set.data.value_u64; 442 message->body.kvp_set.data.value_size = 443 sprintf(message->body.kvp_set.data.value, 444 "%llu", val64) + 1; 445 break; 446 447 } 448 449 break; 450 451 case KVP_OP_GET: 452 message->body.kvp_set.data.key_size = 453 utf16s_to_utf8s( 454 (wchar_t *)in_msg->body.kvp_set.data.key, 455 in_msg->body.kvp_set.data.key_size, 456 UTF16_LITTLE_ENDIAN, 457 message->body.kvp_set.data.key, 458 HV_KVP_EXCHANGE_MAX_KEY_SIZE - 1) + 1; 459 break; 460 461 case KVP_OP_DELETE: 462 message->body.kvp_delete.key_size = 463 utf16s_to_utf8s( 464 (wchar_t *)in_msg->body.kvp_delete.key, 465 in_msg->body.kvp_delete.key_size, 466 UTF16_LITTLE_ENDIAN, 467 message->body.kvp_delete.key, 468 HV_KVP_EXCHANGE_MAX_KEY_SIZE - 1) + 1; 469 break; 470 471 case KVP_OP_ENUMERATE: 472 message->body.kvp_enum_data.index = 473 in_msg->body.kvp_enum_data.index; 474 break; 475 } 476 477 kvp_transaction.state = HVUTIL_USERSPACE_REQ; 478 rc = hvutil_transport_send(hvt, message, sizeof(*message), NULL); 479 if (rc) { 480 pr_debug("KVP: failed to communicate to the daemon: %d\n", rc); 481 if (cancel_delayed_work_sync(&kvp_timeout_work)) { 482 kvp_respond_to_host(message, HV_E_FAIL); 483 kvp_transaction.state = HVUTIL_READY; 484 } 485 } 486 487 kfree(message); 488 } 489 490 /* 491 * Send a response back to the host. 492 */ 493 494 static void 495 kvp_respond_to_host(struct hv_kvp_msg *msg_to_host, int error) 496 { 497 struct hv_kvp_msg *kvp_msg; 498 struct hv_kvp_exchg_msg_value *kvp_data; 499 char *key_name; 500 char *value; 501 struct icmsg_hdr *icmsghdrp; 502 int keylen = 0; 503 int valuelen = 0; 504 u32 buf_len; 505 struct vmbus_channel *channel; 506 u64 req_id; 507 int ret; 508 509 /* 510 * Copy the global state for completing the transaction. Note that 511 * only one transaction can be active at a time. 512 */ 513 514 buf_len = kvp_transaction.recv_len; 515 channel = kvp_transaction.recv_channel; 516 req_id = kvp_transaction.recv_req_id; 517 518 icmsghdrp = (struct icmsg_hdr *) 519 &recv_buffer[sizeof(struct vmbuspipe_hdr)]; 520 521 if (channel->onchannel_callback == NULL) 522 /* 523 * We have raced with util driver being unloaded; 524 * silently return. 525 */ 526 return; 527 528 icmsghdrp->status = error; 529 530 /* 531 * If the error parameter is set, terminate the host's enumeration 532 * on this pool. 533 */ 534 if (error) { 535 /* 536 * Something failed or we have timed out; 537 * terminate the current host-side iteration. 538 */ 539 goto response_done; 540 } 541 542 kvp_msg = (struct hv_kvp_msg *) 543 &recv_buffer[sizeof(struct vmbuspipe_hdr) + 544 sizeof(struct icmsg_hdr)]; 545 546 switch (kvp_transaction.kvp_msg->kvp_hdr.operation) { 547 case KVP_OP_GET_IP_INFO: 548 ret = process_ob_ipinfo(msg_to_host, 549 (struct hv_kvp_ip_msg *)kvp_msg, 550 KVP_OP_GET_IP_INFO); 551 if (ret < 0) 552 icmsghdrp->status = HV_E_FAIL; 553 554 goto response_done; 555 case KVP_OP_SET_IP_INFO: 556 goto response_done; 557 case KVP_OP_GET: 558 kvp_data = &kvp_msg->body.kvp_get.data; 559 goto copy_value; 560 561 case KVP_OP_SET: 562 case KVP_OP_DELETE: 563 goto response_done; 564 565 default: 566 break; 567 } 568 569 kvp_data = &kvp_msg->body.kvp_enum_data.data; 570 key_name = msg_to_host->body.kvp_enum_data.data.key; 571 572 /* 573 * The windows host expects the key/value pair to be encoded 574 * in utf16. Ensure that the key/value size reported to the host 575 * will be less than or equal to the MAX size (including the 576 * terminating character). 577 */ 578 keylen = utf8s_to_utf16s(key_name, strlen(key_name), UTF16_HOST_ENDIAN, 579 (wchar_t *) kvp_data->key, 580 (HV_KVP_EXCHANGE_MAX_KEY_SIZE / 2) - 2); 581 kvp_data->key_size = 2*(keylen + 1); /* utf16 encoding */ 582 583 copy_value: 584 value = msg_to_host->body.kvp_enum_data.data.value; 585 valuelen = utf8s_to_utf16s(value, strlen(value), UTF16_HOST_ENDIAN, 586 (wchar_t *) kvp_data->value, 587 (HV_KVP_EXCHANGE_MAX_VALUE_SIZE / 2) - 2); 588 kvp_data->value_size = 2*(valuelen + 1); /* utf16 encoding */ 589 590 /* 591 * If the utf8s to utf16s conversion failed; notify host 592 * of the error. 593 */ 594 if ((keylen < 0) || (valuelen < 0)) 595 icmsghdrp->status = HV_E_FAIL; 596 597 kvp_data->value_type = REG_SZ; /* all our values are strings */ 598 599 response_done: 600 icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION | ICMSGHDRFLAG_RESPONSE; 601 602 vmbus_sendpacket(channel, recv_buffer, buf_len, req_id, 603 VM_PKT_DATA_INBAND, 0); 604 } 605 606 /* 607 * This callback is invoked when we get a KVP message from the host. 608 * The host ensures that only one KVP transaction can be active at a time. 609 * KVP implementation in Linux needs to forward the key to a user-mde 610 * component to retrieve the corresponding value. Consequently, we cannot 611 * respond to the host in the context of this callback. Since the host 612 * guarantees that at most only one transaction can be active at a time, 613 * we stash away the transaction state in a set of global variables. 614 */ 615 616 void hv_kvp_onchannelcallback(void *context) 617 { 618 struct vmbus_channel *channel = context; 619 u32 recvlen; 620 u64 requestid; 621 622 struct hv_kvp_msg *kvp_msg; 623 624 struct icmsg_hdr *icmsghdrp; 625 int kvp_srv_version; 626 static enum {NEGO_NOT_STARTED, 627 NEGO_IN_PROGRESS, 628 NEGO_FINISHED} host_negotiatied = NEGO_NOT_STARTED; 629 630 if (kvp_transaction.state < HVUTIL_READY) { 631 /* 632 * If userspace daemon is not connected and host is asking 633 * us to negotiate we need to delay to not lose messages. 634 * This is important for Failover IP setting. 635 */ 636 if (host_negotiatied == NEGO_NOT_STARTED) { 637 host_negotiatied = NEGO_IN_PROGRESS; 638 schedule_delayed_work(&kvp_host_handshake_work, 639 HV_UTIL_NEGO_TIMEOUT * HZ); 640 } 641 return; 642 } 643 if (kvp_transaction.state > HVUTIL_READY) 644 return; 645 646 vmbus_recvpacket(channel, recv_buffer, PAGE_SIZE * 4, &recvlen, 647 &requestid); 648 649 if (recvlen > 0) { 650 icmsghdrp = (struct icmsg_hdr *)&recv_buffer[ 651 sizeof(struct vmbuspipe_hdr)]; 652 653 if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) { 654 if (vmbus_prep_negotiate_resp(icmsghdrp, 655 recv_buffer, fw_versions, FW_VER_COUNT, 656 kvp_versions, KVP_VER_COUNT, 657 NULL, &kvp_srv_version)) { 658 pr_info("KVP IC version %d.%d\n", 659 kvp_srv_version >> 16, 660 kvp_srv_version & 0xFFFF); 661 } 662 } else { 663 kvp_msg = (struct hv_kvp_msg *)&recv_buffer[ 664 sizeof(struct vmbuspipe_hdr) + 665 sizeof(struct icmsg_hdr)]; 666 667 /* 668 * Stash away this global state for completing the 669 * transaction; note transactions are serialized. 670 */ 671 672 kvp_transaction.recv_len = recvlen; 673 kvp_transaction.recv_req_id = requestid; 674 kvp_transaction.kvp_msg = kvp_msg; 675 676 if (kvp_transaction.state < HVUTIL_READY) { 677 /* Userspace is not registered yet */ 678 kvp_respond_to_host(NULL, HV_E_FAIL); 679 return; 680 } 681 kvp_transaction.state = HVUTIL_HOSTMSG_RECEIVED; 682 683 /* 684 * Get the information from the 685 * user-mode component. 686 * component. This transaction will be 687 * completed when we get the value from 688 * the user-mode component. 689 * Set a timeout to deal with 690 * user-mode not responding. 691 */ 692 schedule_work(&kvp_sendkey_work); 693 schedule_delayed_work(&kvp_timeout_work, 694 HV_UTIL_TIMEOUT * HZ); 695 696 return; 697 698 } 699 700 icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION 701 | ICMSGHDRFLAG_RESPONSE; 702 703 vmbus_sendpacket(channel, recv_buffer, 704 recvlen, requestid, 705 VM_PKT_DATA_INBAND, 0); 706 707 host_negotiatied = NEGO_FINISHED; 708 hv_poll_channel(kvp_transaction.recv_channel, kvp_poll_wrapper); 709 } 710 711 } 712 713 static void kvp_on_reset(void) 714 { 715 if (cancel_delayed_work_sync(&kvp_timeout_work)) 716 kvp_respond_to_host(NULL, HV_E_FAIL); 717 kvp_transaction.state = HVUTIL_DEVICE_INIT; 718 } 719 720 int 721 hv_kvp_init(struct hv_util_service *srv) 722 { 723 recv_buffer = srv->recv_buffer; 724 kvp_transaction.recv_channel = srv->channel; 725 726 /* 727 * When this driver loads, the user level daemon that 728 * processes the host requests may not yet be running. 729 * Defer processing channel callbacks until the daemon 730 * has registered. 731 */ 732 kvp_transaction.state = HVUTIL_DEVICE_INIT; 733 734 hvt = hvutil_transport_init(kvp_devname, CN_KVP_IDX, CN_KVP_VAL, 735 kvp_on_msg, kvp_on_reset); 736 if (!hvt) 737 return -EFAULT; 738 739 return 0; 740 } 741 742 void hv_kvp_deinit(void) 743 { 744 kvp_transaction.state = HVUTIL_DEVICE_DYING; 745 cancel_delayed_work_sync(&kvp_host_handshake_work); 746 cancel_delayed_work_sync(&kvp_timeout_work); 747 cancel_work_sync(&kvp_sendkey_work); 748 hvutil_transport_destroy(hvt); 749 } 750