1 /* 2 * An implementation of key value pair (KVP) functionality for Linux. 3 * 4 * 5 * Copyright (C) 2010, Novell, Inc. 6 * Author : K. Y. Srinivasan <ksrinivasan@novell.com> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published 10 * by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, but 13 * WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 15 * NON INFRINGEMENT. See the GNU General Public License for more 16 * details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 21 * 22 */ 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/net.h> 26 #include <linux/nls.h> 27 #include <linux/connector.h> 28 #include <linux/workqueue.h> 29 #include <linux/hyperv.h> 30 31 #include "hyperv_vmbus.h" 32 #include "hv_utils_transport.h" 33 34 /* 35 * Pre win8 version numbers used in ws2008 and ws 2008 r2 (win7) 36 */ 37 #define WS2008_SRV_MAJOR 1 38 #define WS2008_SRV_MINOR 0 39 #define WS2008_SRV_VERSION (WS2008_SRV_MAJOR << 16 | WS2008_SRV_MINOR) 40 41 #define WIN7_SRV_MAJOR 3 42 #define WIN7_SRV_MINOR 0 43 #define WIN7_SRV_VERSION (WIN7_SRV_MAJOR << 16 | WIN7_SRV_MINOR) 44 45 #define WIN8_SRV_MAJOR 4 46 #define WIN8_SRV_MINOR 0 47 #define WIN8_SRV_VERSION (WIN8_SRV_MAJOR << 16 | WIN8_SRV_MINOR) 48 49 /* 50 * Global state maintained for transaction that is being processed. For a class 51 * of integration services, including the "KVP service", the specified protocol 52 * is a "request/response" protocol which means that there can only be single 53 * outstanding transaction from the host at any given point in time. We use 54 * this to simplify memory management in this driver - we cache and process 55 * only one message at a time. 56 * 57 * While the request/response protocol is guaranteed by the host, we further 58 * ensure this by serializing packet processing in this driver - we do not 59 * read additional packets from the VMBUs until the current packet is fully 60 * handled. 61 */ 62 63 static struct { 64 int state; /* hvutil_device_state */ 65 int recv_len; /* number of bytes received. */ 66 struct hv_kvp_msg *kvp_msg; /* current message */ 67 struct vmbus_channel *recv_channel; /* chn we got the request */ 68 u64 recv_req_id; /* request ID. */ 69 } kvp_transaction; 70 71 /* 72 * This state maintains the version number registered by the daemon. 73 */ 74 static int dm_reg_value; 75 76 static void kvp_send_key(struct work_struct *dummy); 77 78 79 static void kvp_respond_to_host(struct hv_kvp_msg *msg, int error); 80 static void kvp_timeout_func(struct work_struct *dummy); 81 static void kvp_host_handshake_func(struct work_struct *dummy); 82 static void kvp_register(int); 83 84 static DECLARE_DELAYED_WORK(kvp_timeout_work, kvp_timeout_func); 85 static DECLARE_DELAYED_WORK(kvp_host_handshake_work, kvp_host_handshake_func); 86 static DECLARE_WORK(kvp_sendkey_work, kvp_send_key); 87 88 static const char kvp_devname[] = "vmbus/hv_kvp"; 89 static u8 *recv_buffer; 90 static struct hvutil_transport *hvt; 91 /* 92 * Register the kernel component with the user-level daemon. 93 * As part of this registration, pass the LIC version number. 94 * This number has no meaning, it satisfies the registration protocol. 95 */ 96 #define HV_DRV_VERSION "3.1" 97 98 static void kvp_poll_wrapper(void *channel) 99 { 100 /* Transaction is finished, reset the state here to avoid races. */ 101 kvp_transaction.state = HVUTIL_READY; 102 hv_kvp_onchannelcallback(channel); 103 } 104 105 static void kvp_register_done(void) 106 { 107 /* 108 * If we're still negotiating with the host cancel the timeout 109 * work to not poll the channel twice. 110 */ 111 pr_debug("KVP: userspace daemon registered\n"); 112 cancel_delayed_work_sync(&kvp_host_handshake_work); 113 hv_poll_channel(kvp_transaction.recv_channel, kvp_poll_wrapper); 114 } 115 116 static void 117 kvp_register(int reg_value) 118 { 119 120 struct hv_kvp_msg *kvp_msg; 121 char *version; 122 123 kvp_msg = kzalloc(sizeof(*kvp_msg), GFP_KERNEL); 124 125 if (kvp_msg) { 126 version = kvp_msg->body.kvp_register.version; 127 kvp_msg->kvp_hdr.operation = reg_value; 128 strcpy(version, HV_DRV_VERSION); 129 130 hvutil_transport_send(hvt, kvp_msg, sizeof(*kvp_msg), 131 kvp_register_done); 132 kfree(kvp_msg); 133 } 134 } 135 136 static void kvp_timeout_func(struct work_struct *dummy) 137 { 138 /* 139 * If the timer fires, the user-mode component has not responded; 140 * process the pending transaction. 141 */ 142 kvp_respond_to_host(NULL, HV_E_FAIL); 143 144 hv_poll_channel(kvp_transaction.recv_channel, kvp_poll_wrapper); 145 } 146 147 static void kvp_host_handshake_func(struct work_struct *dummy) 148 { 149 hv_poll_channel(kvp_transaction.recv_channel, hv_kvp_onchannelcallback); 150 } 151 152 static int kvp_handle_handshake(struct hv_kvp_msg *msg) 153 { 154 switch (msg->kvp_hdr.operation) { 155 case KVP_OP_REGISTER: 156 dm_reg_value = KVP_OP_REGISTER; 157 pr_info("KVP: IP injection functionality not available\n"); 158 pr_info("KVP: Upgrade the KVP daemon\n"); 159 break; 160 case KVP_OP_REGISTER1: 161 dm_reg_value = KVP_OP_REGISTER1; 162 break; 163 default: 164 pr_info("KVP: incompatible daemon\n"); 165 pr_info("KVP: KVP version: %d, Daemon version: %d\n", 166 KVP_OP_REGISTER1, msg->kvp_hdr.operation); 167 return -EINVAL; 168 } 169 170 /* 171 * We have a compatible daemon; complete the handshake. 172 */ 173 pr_debug("KVP: userspace daemon ver. %d connected\n", 174 msg->kvp_hdr.operation); 175 kvp_register(dm_reg_value); 176 177 return 0; 178 } 179 180 181 /* 182 * Callback when data is received from user mode. 183 */ 184 185 static int kvp_on_msg(void *msg, int len) 186 { 187 struct hv_kvp_msg *message = (struct hv_kvp_msg *)msg; 188 struct hv_kvp_msg_enumerate *data; 189 int error = 0; 190 191 if (len < sizeof(*message)) 192 return -EINVAL; 193 194 /* 195 * If we are negotiating the version information 196 * with the daemon; handle that first. 197 */ 198 199 if (kvp_transaction.state < HVUTIL_READY) { 200 return kvp_handle_handshake(message); 201 } 202 203 /* We didn't send anything to userspace so the reply is spurious */ 204 if (kvp_transaction.state < HVUTIL_USERSPACE_REQ) 205 return -EINVAL; 206 207 kvp_transaction.state = HVUTIL_USERSPACE_RECV; 208 209 /* 210 * Based on the version of the daemon, we propagate errors from the 211 * daemon differently. 212 */ 213 214 data = &message->body.kvp_enum_data; 215 216 switch (dm_reg_value) { 217 case KVP_OP_REGISTER: 218 /* 219 * Null string is used to pass back error condition. 220 */ 221 if (data->data.key[0] == 0) 222 error = HV_S_CONT; 223 break; 224 225 case KVP_OP_REGISTER1: 226 /* 227 * We use the message header information from 228 * the user level daemon to transmit errors. 229 */ 230 error = message->error; 231 break; 232 } 233 234 /* 235 * Complete the transaction by forwarding the key value 236 * to the host. But first, cancel the timeout. 237 */ 238 if (cancel_delayed_work_sync(&kvp_timeout_work)) { 239 kvp_respond_to_host(message, error); 240 hv_poll_channel(kvp_transaction.recv_channel, kvp_poll_wrapper); 241 } 242 243 return 0; 244 } 245 246 247 static int process_ob_ipinfo(void *in_msg, void *out_msg, int op) 248 { 249 struct hv_kvp_msg *in = in_msg; 250 struct hv_kvp_ip_msg *out = out_msg; 251 int len; 252 253 switch (op) { 254 case KVP_OP_GET_IP_INFO: 255 /* 256 * Transform all parameters into utf16 encoding. 257 */ 258 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.ip_addr, 259 strlen((char *)in->body.kvp_ip_val.ip_addr), 260 UTF16_HOST_ENDIAN, 261 (wchar_t *)out->kvp_ip_val.ip_addr, 262 MAX_IP_ADDR_SIZE); 263 if (len < 0) 264 return len; 265 266 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.sub_net, 267 strlen((char *)in->body.kvp_ip_val.sub_net), 268 UTF16_HOST_ENDIAN, 269 (wchar_t *)out->kvp_ip_val.sub_net, 270 MAX_IP_ADDR_SIZE); 271 if (len < 0) 272 return len; 273 274 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.gate_way, 275 strlen((char *)in->body.kvp_ip_val.gate_way), 276 UTF16_HOST_ENDIAN, 277 (wchar_t *)out->kvp_ip_val.gate_way, 278 MAX_GATEWAY_SIZE); 279 if (len < 0) 280 return len; 281 282 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.dns_addr, 283 strlen((char *)in->body.kvp_ip_val.dns_addr), 284 UTF16_HOST_ENDIAN, 285 (wchar_t *)out->kvp_ip_val.dns_addr, 286 MAX_IP_ADDR_SIZE); 287 if (len < 0) 288 return len; 289 290 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.adapter_id, 291 strlen((char *)in->body.kvp_ip_val.adapter_id), 292 UTF16_HOST_ENDIAN, 293 (wchar_t *)out->kvp_ip_val.adapter_id, 294 MAX_IP_ADDR_SIZE); 295 if (len < 0) 296 return len; 297 298 out->kvp_ip_val.dhcp_enabled = 299 in->body.kvp_ip_val.dhcp_enabled; 300 out->kvp_ip_val.addr_family = 301 in->body.kvp_ip_val.addr_family; 302 } 303 304 return 0; 305 } 306 307 static void process_ib_ipinfo(void *in_msg, void *out_msg, int op) 308 { 309 struct hv_kvp_ip_msg *in = in_msg; 310 struct hv_kvp_msg *out = out_msg; 311 312 switch (op) { 313 case KVP_OP_SET_IP_INFO: 314 /* 315 * Transform all parameters into utf8 encoding. 316 */ 317 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.ip_addr, 318 MAX_IP_ADDR_SIZE, 319 UTF16_LITTLE_ENDIAN, 320 (__u8 *)out->body.kvp_ip_val.ip_addr, 321 MAX_IP_ADDR_SIZE); 322 323 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.sub_net, 324 MAX_IP_ADDR_SIZE, 325 UTF16_LITTLE_ENDIAN, 326 (__u8 *)out->body.kvp_ip_val.sub_net, 327 MAX_IP_ADDR_SIZE); 328 329 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.gate_way, 330 MAX_GATEWAY_SIZE, 331 UTF16_LITTLE_ENDIAN, 332 (__u8 *)out->body.kvp_ip_val.gate_way, 333 MAX_GATEWAY_SIZE); 334 335 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.dns_addr, 336 MAX_IP_ADDR_SIZE, 337 UTF16_LITTLE_ENDIAN, 338 (__u8 *)out->body.kvp_ip_val.dns_addr, 339 MAX_IP_ADDR_SIZE); 340 341 out->body.kvp_ip_val.dhcp_enabled = in->kvp_ip_val.dhcp_enabled; 342 343 default: 344 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.adapter_id, 345 MAX_ADAPTER_ID_SIZE, 346 UTF16_LITTLE_ENDIAN, 347 (__u8 *)out->body.kvp_ip_val.adapter_id, 348 MAX_ADAPTER_ID_SIZE); 349 350 out->body.kvp_ip_val.addr_family = in->kvp_ip_val.addr_family; 351 } 352 } 353 354 355 356 357 static void 358 kvp_send_key(struct work_struct *dummy) 359 { 360 struct hv_kvp_msg *message; 361 struct hv_kvp_msg *in_msg; 362 __u8 operation = kvp_transaction.kvp_msg->kvp_hdr.operation; 363 __u8 pool = kvp_transaction.kvp_msg->kvp_hdr.pool; 364 __u32 val32; 365 __u64 val64; 366 int rc; 367 368 /* The transaction state is wrong. */ 369 if (kvp_transaction.state != HVUTIL_HOSTMSG_RECEIVED) 370 return; 371 372 message = kzalloc(sizeof(*message), GFP_KERNEL); 373 if (!message) 374 return; 375 376 message->kvp_hdr.operation = operation; 377 message->kvp_hdr.pool = pool; 378 in_msg = kvp_transaction.kvp_msg; 379 380 /* 381 * The key/value strings sent from the host are encoded in 382 * in utf16; convert it to utf8 strings. 383 * The host assures us that the utf16 strings will not exceed 384 * the max lengths specified. We will however, reserve room 385 * for the string terminating character - in the utf16s_utf8s() 386 * function we limit the size of the buffer where the converted 387 * string is placed to HV_KVP_EXCHANGE_MAX_*_SIZE -1 to gaurantee 388 * that the strings can be properly terminated! 389 */ 390 391 switch (message->kvp_hdr.operation) { 392 case KVP_OP_SET_IP_INFO: 393 process_ib_ipinfo(in_msg, message, KVP_OP_SET_IP_INFO); 394 break; 395 case KVP_OP_GET_IP_INFO: 396 process_ib_ipinfo(in_msg, message, KVP_OP_GET_IP_INFO); 397 break; 398 case KVP_OP_SET: 399 switch (in_msg->body.kvp_set.data.value_type) { 400 case REG_SZ: 401 /* 402 * The value is a string - utf16 encoding. 403 */ 404 message->body.kvp_set.data.value_size = 405 utf16s_to_utf8s( 406 (wchar_t *)in_msg->body.kvp_set.data.value, 407 in_msg->body.kvp_set.data.value_size, 408 UTF16_LITTLE_ENDIAN, 409 message->body.kvp_set.data.value, 410 HV_KVP_EXCHANGE_MAX_VALUE_SIZE - 1) + 1; 411 break; 412 413 case REG_U32: 414 /* 415 * The value is a 32 bit scalar. 416 * We save this as a utf8 string. 417 */ 418 val32 = in_msg->body.kvp_set.data.value_u32; 419 message->body.kvp_set.data.value_size = 420 sprintf(message->body.kvp_set.data.value, 421 "%d", val32) + 1; 422 break; 423 424 case REG_U64: 425 /* 426 * The value is a 64 bit scalar. 427 * We save this as a utf8 string. 428 */ 429 val64 = in_msg->body.kvp_set.data.value_u64; 430 message->body.kvp_set.data.value_size = 431 sprintf(message->body.kvp_set.data.value, 432 "%llu", val64) + 1; 433 break; 434 435 } 436 case KVP_OP_GET: 437 message->body.kvp_set.data.key_size = 438 utf16s_to_utf8s( 439 (wchar_t *)in_msg->body.kvp_set.data.key, 440 in_msg->body.kvp_set.data.key_size, 441 UTF16_LITTLE_ENDIAN, 442 message->body.kvp_set.data.key, 443 HV_KVP_EXCHANGE_MAX_KEY_SIZE - 1) + 1; 444 break; 445 446 case KVP_OP_DELETE: 447 message->body.kvp_delete.key_size = 448 utf16s_to_utf8s( 449 (wchar_t *)in_msg->body.kvp_delete.key, 450 in_msg->body.kvp_delete.key_size, 451 UTF16_LITTLE_ENDIAN, 452 message->body.kvp_delete.key, 453 HV_KVP_EXCHANGE_MAX_KEY_SIZE - 1) + 1; 454 break; 455 456 case KVP_OP_ENUMERATE: 457 message->body.kvp_enum_data.index = 458 in_msg->body.kvp_enum_data.index; 459 break; 460 } 461 462 kvp_transaction.state = HVUTIL_USERSPACE_REQ; 463 rc = hvutil_transport_send(hvt, message, sizeof(*message), NULL); 464 if (rc) { 465 pr_debug("KVP: failed to communicate to the daemon: %d\n", rc); 466 if (cancel_delayed_work_sync(&kvp_timeout_work)) { 467 kvp_respond_to_host(message, HV_E_FAIL); 468 kvp_transaction.state = HVUTIL_READY; 469 } 470 } 471 472 kfree(message); 473 474 return; 475 } 476 477 /* 478 * Send a response back to the host. 479 */ 480 481 static void 482 kvp_respond_to_host(struct hv_kvp_msg *msg_to_host, int error) 483 { 484 struct hv_kvp_msg *kvp_msg; 485 struct hv_kvp_exchg_msg_value *kvp_data; 486 char *key_name; 487 char *value; 488 struct icmsg_hdr *icmsghdrp; 489 int keylen = 0; 490 int valuelen = 0; 491 u32 buf_len; 492 struct vmbus_channel *channel; 493 u64 req_id; 494 int ret; 495 496 /* 497 * Copy the global state for completing the transaction. Note that 498 * only one transaction can be active at a time. 499 */ 500 501 buf_len = kvp_transaction.recv_len; 502 channel = kvp_transaction.recv_channel; 503 req_id = kvp_transaction.recv_req_id; 504 505 icmsghdrp = (struct icmsg_hdr *) 506 &recv_buffer[sizeof(struct vmbuspipe_hdr)]; 507 508 if (channel->onchannel_callback == NULL) 509 /* 510 * We have raced with util driver being unloaded; 511 * silently return. 512 */ 513 return; 514 515 icmsghdrp->status = error; 516 517 /* 518 * If the error parameter is set, terminate the host's enumeration 519 * on this pool. 520 */ 521 if (error) { 522 /* 523 * Something failed or we have timedout; 524 * terminate the current host-side iteration. 525 */ 526 goto response_done; 527 } 528 529 kvp_msg = (struct hv_kvp_msg *) 530 &recv_buffer[sizeof(struct vmbuspipe_hdr) + 531 sizeof(struct icmsg_hdr)]; 532 533 switch (kvp_transaction.kvp_msg->kvp_hdr.operation) { 534 case KVP_OP_GET_IP_INFO: 535 ret = process_ob_ipinfo(msg_to_host, 536 (struct hv_kvp_ip_msg *)kvp_msg, 537 KVP_OP_GET_IP_INFO); 538 if (ret < 0) 539 icmsghdrp->status = HV_E_FAIL; 540 541 goto response_done; 542 case KVP_OP_SET_IP_INFO: 543 goto response_done; 544 case KVP_OP_GET: 545 kvp_data = &kvp_msg->body.kvp_get.data; 546 goto copy_value; 547 548 case KVP_OP_SET: 549 case KVP_OP_DELETE: 550 goto response_done; 551 552 default: 553 break; 554 } 555 556 kvp_data = &kvp_msg->body.kvp_enum_data.data; 557 key_name = msg_to_host->body.kvp_enum_data.data.key; 558 559 /* 560 * The windows host expects the key/value pair to be encoded 561 * in utf16. Ensure that the key/value size reported to the host 562 * will be less than or equal to the MAX size (including the 563 * terminating character). 564 */ 565 keylen = utf8s_to_utf16s(key_name, strlen(key_name), UTF16_HOST_ENDIAN, 566 (wchar_t *) kvp_data->key, 567 (HV_KVP_EXCHANGE_MAX_KEY_SIZE / 2) - 2); 568 kvp_data->key_size = 2*(keylen + 1); /* utf16 encoding */ 569 570 copy_value: 571 value = msg_to_host->body.kvp_enum_data.data.value; 572 valuelen = utf8s_to_utf16s(value, strlen(value), UTF16_HOST_ENDIAN, 573 (wchar_t *) kvp_data->value, 574 (HV_KVP_EXCHANGE_MAX_VALUE_SIZE / 2) - 2); 575 kvp_data->value_size = 2*(valuelen + 1); /* utf16 encoding */ 576 577 /* 578 * If the utf8s to utf16s conversion failed; notify host 579 * of the error. 580 */ 581 if ((keylen < 0) || (valuelen < 0)) 582 icmsghdrp->status = HV_E_FAIL; 583 584 kvp_data->value_type = REG_SZ; /* all our values are strings */ 585 586 response_done: 587 icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION | ICMSGHDRFLAG_RESPONSE; 588 589 vmbus_sendpacket(channel, recv_buffer, buf_len, req_id, 590 VM_PKT_DATA_INBAND, 0); 591 } 592 593 /* 594 * This callback is invoked when we get a KVP message from the host. 595 * The host ensures that only one KVP transaction can be active at a time. 596 * KVP implementation in Linux needs to forward the key to a user-mde 597 * component to retrive the corresponding value. Consequently, we cannot 598 * respond to the host in the conext of this callback. Since the host 599 * guarantees that at most only one transaction can be active at a time, 600 * we stash away the transaction state in a set of global variables. 601 */ 602 603 void hv_kvp_onchannelcallback(void *context) 604 { 605 struct vmbus_channel *channel = context; 606 u32 recvlen; 607 u64 requestid; 608 609 struct hv_kvp_msg *kvp_msg; 610 611 struct icmsg_hdr *icmsghdrp; 612 struct icmsg_negotiate *negop = NULL; 613 int util_fw_version; 614 int kvp_srv_version; 615 static enum {NEGO_NOT_STARTED, 616 NEGO_IN_PROGRESS, 617 NEGO_FINISHED} host_negotiatied = NEGO_NOT_STARTED; 618 619 if (host_negotiatied == NEGO_NOT_STARTED && 620 kvp_transaction.state < HVUTIL_READY) { 621 /* 622 * If userspace daemon is not connected and host is asking 623 * us to negotiate we need to delay to not lose messages. 624 * This is important for Failover IP setting. 625 */ 626 host_negotiatied = NEGO_IN_PROGRESS; 627 schedule_delayed_work(&kvp_host_handshake_work, 628 HV_UTIL_NEGO_TIMEOUT * HZ); 629 return; 630 } 631 if (kvp_transaction.state > HVUTIL_READY) 632 return; 633 634 vmbus_recvpacket(channel, recv_buffer, PAGE_SIZE * 4, &recvlen, 635 &requestid); 636 637 if (recvlen > 0) { 638 icmsghdrp = (struct icmsg_hdr *)&recv_buffer[ 639 sizeof(struct vmbuspipe_hdr)]; 640 641 if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) { 642 /* 643 * Based on the host, select appropriate 644 * framework and service versions we will 645 * negotiate. 646 */ 647 switch (vmbus_proto_version) { 648 case (VERSION_WS2008): 649 util_fw_version = UTIL_WS2K8_FW_VERSION; 650 kvp_srv_version = WS2008_SRV_VERSION; 651 break; 652 case (VERSION_WIN7): 653 util_fw_version = UTIL_FW_VERSION; 654 kvp_srv_version = WIN7_SRV_VERSION; 655 break; 656 default: 657 util_fw_version = UTIL_FW_VERSION; 658 kvp_srv_version = WIN8_SRV_VERSION; 659 } 660 vmbus_prep_negotiate_resp(icmsghdrp, negop, 661 recv_buffer, util_fw_version, 662 kvp_srv_version); 663 664 } else { 665 kvp_msg = (struct hv_kvp_msg *)&recv_buffer[ 666 sizeof(struct vmbuspipe_hdr) + 667 sizeof(struct icmsg_hdr)]; 668 669 /* 670 * Stash away this global state for completing the 671 * transaction; note transactions are serialized. 672 */ 673 674 kvp_transaction.recv_len = recvlen; 675 kvp_transaction.recv_req_id = requestid; 676 kvp_transaction.kvp_msg = kvp_msg; 677 678 if (kvp_transaction.state < HVUTIL_READY) { 679 /* Userspace is not registered yet */ 680 kvp_respond_to_host(NULL, HV_E_FAIL); 681 return; 682 } 683 kvp_transaction.state = HVUTIL_HOSTMSG_RECEIVED; 684 685 /* 686 * Get the information from the 687 * user-mode component. 688 * component. This transaction will be 689 * completed when we get the value from 690 * the user-mode component. 691 * Set a timeout to deal with 692 * user-mode not responding. 693 */ 694 schedule_work(&kvp_sendkey_work); 695 schedule_delayed_work(&kvp_timeout_work, 696 HV_UTIL_TIMEOUT * HZ); 697 698 return; 699 700 } 701 702 icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION 703 | ICMSGHDRFLAG_RESPONSE; 704 705 vmbus_sendpacket(channel, recv_buffer, 706 recvlen, requestid, 707 VM_PKT_DATA_INBAND, 0); 708 709 host_negotiatied = NEGO_FINISHED; 710 } 711 712 } 713 714 static void kvp_on_reset(void) 715 { 716 if (cancel_delayed_work_sync(&kvp_timeout_work)) 717 kvp_respond_to_host(NULL, HV_E_FAIL); 718 kvp_transaction.state = HVUTIL_DEVICE_INIT; 719 } 720 721 int 722 hv_kvp_init(struct hv_util_service *srv) 723 { 724 recv_buffer = srv->recv_buffer; 725 kvp_transaction.recv_channel = srv->channel; 726 727 /* 728 * When this driver loads, the user level daemon that 729 * processes the host requests may not yet be running. 730 * Defer processing channel callbacks until the daemon 731 * has registered. 732 */ 733 kvp_transaction.state = HVUTIL_DEVICE_INIT; 734 735 hvt = hvutil_transport_init(kvp_devname, CN_KVP_IDX, CN_KVP_VAL, 736 kvp_on_msg, kvp_on_reset); 737 if (!hvt) 738 return -EFAULT; 739 740 return 0; 741 } 742 743 void hv_kvp_deinit(void) 744 { 745 kvp_transaction.state = HVUTIL_DEVICE_DYING; 746 cancel_delayed_work_sync(&kvp_host_handshake_work); 747 cancel_delayed_work_sync(&kvp_timeout_work); 748 cancel_work_sync(&kvp_sendkey_work); 749 hvutil_transport_destroy(hvt); 750 } 751