1 /* 2 * An implementation of key value pair (KVP) functionality for Linux. 3 * 4 * 5 * Copyright (C) 2010, Novell, Inc. 6 * Author : K. Y. Srinivasan <ksrinivasan@novell.com> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published 10 * by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, but 13 * WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 15 * NON INFRINGEMENT. See the GNU General Public License for more 16 * details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 21 * 22 */ 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/net.h> 26 #include <linux/nls.h> 27 #include <linux/connector.h> 28 #include <linux/workqueue.h> 29 #include <linux/hyperv.h> 30 31 #include "hyperv_vmbus.h" 32 #include "hv_utils_transport.h" 33 34 /* 35 * Pre win8 version numbers used in ws2008 and ws 2008 r2 (win7) 36 */ 37 #define WS2008_SRV_MAJOR 1 38 #define WS2008_SRV_MINOR 0 39 #define WS2008_SRV_VERSION (WS2008_SRV_MAJOR << 16 | WS2008_SRV_MINOR) 40 41 #define WIN7_SRV_MAJOR 3 42 #define WIN7_SRV_MINOR 0 43 #define WIN7_SRV_VERSION (WIN7_SRV_MAJOR << 16 | WIN7_SRV_MINOR) 44 45 #define WIN8_SRV_MAJOR 4 46 #define WIN8_SRV_MINOR 0 47 #define WIN8_SRV_VERSION (WIN8_SRV_MAJOR << 16 | WIN8_SRV_MINOR) 48 49 #define KVP_VER_COUNT 3 50 static const int kvp_versions[] = { 51 WIN8_SRV_VERSION, 52 WIN7_SRV_VERSION, 53 WS2008_SRV_VERSION 54 }; 55 56 #define FW_VER_COUNT 2 57 static const int fw_versions[] = { 58 UTIL_FW_VERSION, 59 UTIL_WS2K8_FW_VERSION 60 }; 61 62 /* 63 * Global state maintained for transaction that is being processed. For a class 64 * of integration services, including the "KVP service", the specified protocol 65 * is a "request/response" protocol which means that there can only be single 66 * outstanding transaction from the host at any given point in time. We use 67 * this to simplify memory management in this driver - we cache and process 68 * only one message at a time. 69 * 70 * While the request/response protocol is guaranteed by the host, we further 71 * ensure this by serializing packet processing in this driver - we do not 72 * read additional packets from the VMBUs until the current packet is fully 73 * handled. 74 */ 75 76 static struct { 77 int state; /* hvutil_device_state */ 78 int recv_len; /* number of bytes received. */ 79 struct hv_kvp_msg *kvp_msg; /* current message */ 80 struct vmbus_channel *recv_channel; /* chn we got the request */ 81 u64 recv_req_id; /* request ID. */ 82 } kvp_transaction; 83 84 /* 85 * This state maintains the version number registered by the daemon. 86 */ 87 static int dm_reg_value; 88 89 static void kvp_send_key(struct work_struct *dummy); 90 91 92 static void kvp_respond_to_host(struct hv_kvp_msg *msg, int error); 93 static void kvp_timeout_func(struct work_struct *dummy); 94 static void kvp_host_handshake_func(struct work_struct *dummy); 95 static void kvp_register(int); 96 97 static DECLARE_DELAYED_WORK(kvp_timeout_work, kvp_timeout_func); 98 static DECLARE_DELAYED_WORK(kvp_host_handshake_work, kvp_host_handshake_func); 99 static DECLARE_WORK(kvp_sendkey_work, kvp_send_key); 100 101 static const char kvp_devname[] = "vmbus/hv_kvp"; 102 static u8 *recv_buffer; 103 static struct hvutil_transport *hvt; 104 static struct completion release_event; 105 /* 106 * Register the kernel component with the user-level daemon. 107 * As part of this registration, pass the LIC version number. 108 * This number has no meaning, it satisfies the registration protocol. 109 */ 110 #define HV_DRV_VERSION "3.1" 111 112 static void kvp_poll_wrapper(void *channel) 113 { 114 /* Transaction is finished, reset the state here to avoid races. */ 115 kvp_transaction.state = HVUTIL_READY; 116 hv_kvp_onchannelcallback(channel); 117 } 118 119 static void kvp_register_done(void) 120 { 121 /* 122 * If we're still negotiating with the host cancel the timeout 123 * work to not poll the channel twice. 124 */ 125 pr_debug("KVP: userspace daemon registered\n"); 126 cancel_delayed_work_sync(&kvp_host_handshake_work); 127 hv_poll_channel(kvp_transaction.recv_channel, kvp_poll_wrapper); 128 } 129 130 static void 131 kvp_register(int reg_value) 132 { 133 134 struct hv_kvp_msg *kvp_msg; 135 char *version; 136 137 kvp_msg = kzalloc(sizeof(*kvp_msg), GFP_KERNEL); 138 139 if (kvp_msg) { 140 version = kvp_msg->body.kvp_register.version; 141 kvp_msg->kvp_hdr.operation = reg_value; 142 strcpy(version, HV_DRV_VERSION); 143 144 hvutil_transport_send(hvt, kvp_msg, sizeof(*kvp_msg), 145 kvp_register_done); 146 kfree(kvp_msg); 147 } 148 } 149 150 static void kvp_timeout_func(struct work_struct *dummy) 151 { 152 /* 153 * If the timer fires, the user-mode component has not responded; 154 * process the pending transaction. 155 */ 156 kvp_respond_to_host(NULL, HV_E_FAIL); 157 158 hv_poll_channel(kvp_transaction.recv_channel, kvp_poll_wrapper); 159 } 160 161 static void kvp_host_handshake_func(struct work_struct *dummy) 162 { 163 hv_poll_channel(kvp_transaction.recv_channel, hv_kvp_onchannelcallback); 164 } 165 166 static int kvp_handle_handshake(struct hv_kvp_msg *msg) 167 { 168 switch (msg->kvp_hdr.operation) { 169 case KVP_OP_REGISTER: 170 dm_reg_value = KVP_OP_REGISTER; 171 pr_info("KVP: IP injection functionality not available\n"); 172 pr_info("KVP: Upgrade the KVP daemon\n"); 173 break; 174 case KVP_OP_REGISTER1: 175 dm_reg_value = KVP_OP_REGISTER1; 176 break; 177 default: 178 pr_info("KVP: incompatible daemon\n"); 179 pr_info("KVP: KVP version: %d, Daemon version: %d\n", 180 KVP_OP_REGISTER1, msg->kvp_hdr.operation); 181 return -EINVAL; 182 } 183 184 /* 185 * We have a compatible daemon; complete the handshake. 186 */ 187 pr_debug("KVP: userspace daemon ver. %d connected\n", 188 msg->kvp_hdr.operation); 189 kvp_register(dm_reg_value); 190 191 return 0; 192 } 193 194 195 /* 196 * Callback when data is received from user mode. 197 */ 198 199 static int kvp_on_msg(void *msg, int len) 200 { 201 struct hv_kvp_msg *message = (struct hv_kvp_msg *)msg; 202 struct hv_kvp_msg_enumerate *data; 203 int error = 0; 204 205 if (len < sizeof(*message)) 206 return -EINVAL; 207 208 /* 209 * If we are negotiating the version information 210 * with the daemon; handle that first. 211 */ 212 213 if (kvp_transaction.state < HVUTIL_READY) { 214 return kvp_handle_handshake(message); 215 } 216 217 /* We didn't send anything to userspace so the reply is spurious */ 218 if (kvp_transaction.state < HVUTIL_USERSPACE_REQ) 219 return -EINVAL; 220 221 kvp_transaction.state = HVUTIL_USERSPACE_RECV; 222 223 /* 224 * Based on the version of the daemon, we propagate errors from the 225 * daemon differently. 226 */ 227 228 data = &message->body.kvp_enum_data; 229 230 switch (dm_reg_value) { 231 case KVP_OP_REGISTER: 232 /* 233 * Null string is used to pass back error condition. 234 */ 235 if (data->data.key[0] == 0) 236 error = HV_S_CONT; 237 break; 238 239 case KVP_OP_REGISTER1: 240 /* 241 * We use the message header information from 242 * the user level daemon to transmit errors. 243 */ 244 error = message->error; 245 break; 246 } 247 248 /* 249 * Complete the transaction by forwarding the key value 250 * to the host. But first, cancel the timeout. 251 */ 252 if (cancel_delayed_work_sync(&kvp_timeout_work)) { 253 kvp_respond_to_host(message, error); 254 hv_poll_channel(kvp_transaction.recv_channel, kvp_poll_wrapper); 255 } 256 257 return 0; 258 } 259 260 261 static int process_ob_ipinfo(void *in_msg, void *out_msg, int op) 262 { 263 struct hv_kvp_msg *in = in_msg; 264 struct hv_kvp_ip_msg *out = out_msg; 265 int len; 266 267 switch (op) { 268 case KVP_OP_GET_IP_INFO: 269 /* 270 * Transform all parameters into utf16 encoding. 271 */ 272 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.ip_addr, 273 strlen((char *)in->body.kvp_ip_val.ip_addr), 274 UTF16_HOST_ENDIAN, 275 (wchar_t *)out->kvp_ip_val.ip_addr, 276 MAX_IP_ADDR_SIZE); 277 if (len < 0) 278 return len; 279 280 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.sub_net, 281 strlen((char *)in->body.kvp_ip_val.sub_net), 282 UTF16_HOST_ENDIAN, 283 (wchar_t *)out->kvp_ip_val.sub_net, 284 MAX_IP_ADDR_SIZE); 285 if (len < 0) 286 return len; 287 288 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.gate_way, 289 strlen((char *)in->body.kvp_ip_val.gate_way), 290 UTF16_HOST_ENDIAN, 291 (wchar_t *)out->kvp_ip_val.gate_way, 292 MAX_GATEWAY_SIZE); 293 if (len < 0) 294 return len; 295 296 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.dns_addr, 297 strlen((char *)in->body.kvp_ip_val.dns_addr), 298 UTF16_HOST_ENDIAN, 299 (wchar_t *)out->kvp_ip_val.dns_addr, 300 MAX_IP_ADDR_SIZE); 301 if (len < 0) 302 return len; 303 304 len = utf8s_to_utf16s((char *)in->body.kvp_ip_val.adapter_id, 305 strlen((char *)in->body.kvp_ip_val.adapter_id), 306 UTF16_HOST_ENDIAN, 307 (wchar_t *)out->kvp_ip_val.adapter_id, 308 MAX_IP_ADDR_SIZE); 309 if (len < 0) 310 return len; 311 312 out->kvp_ip_val.dhcp_enabled = 313 in->body.kvp_ip_val.dhcp_enabled; 314 out->kvp_ip_val.addr_family = 315 in->body.kvp_ip_val.addr_family; 316 } 317 318 return 0; 319 } 320 321 static void process_ib_ipinfo(void *in_msg, void *out_msg, int op) 322 { 323 struct hv_kvp_ip_msg *in = in_msg; 324 struct hv_kvp_msg *out = out_msg; 325 326 switch (op) { 327 case KVP_OP_SET_IP_INFO: 328 /* 329 * Transform all parameters into utf8 encoding. 330 */ 331 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.ip_addr, 332 MAX_IP_ADDR_SIZE, 333 UTF16_LITTLE_ENDIAN, 334 (__u8 *)out->body.kvp_ip_val.ip_addr, 335 MAX_IP_ADDR_SIZE); 336 337 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.sub_net, 338 MAX_IP_ADDR_SIZE, 339 UTF16_LITTLE_ENDIAN, 340 (__u8 *)out->body.kvp_ip_val.sub_net, 341 MAX_IP_ADDR_SIZE); 342 343 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.gate_way, 344 MAX_GATEWAY_SIZE, 345 UTF16_LITTLE_ENDIAN, 346 (__u8 *)out->body.kvp_ip_val.gate_way, 347 MAX_GATEWAY_SIZE); 348 349 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.dns_addr, 350 MAX_IP_ADDR_SIZE, 351 UTF16_LITTLE_ENDIAN, 352 (__u8 *)out->body.kvp_ip_val.dns_addr, 353 MAX_IP_ADDR_SIZE); 354 355 out->body.kvp_ip_val.dhcp_enabled = in->kvp_ip_val.dhcp_enabled; 356 357 default: 358 utf16s_to_utf8s((wchar_t *)in->kvp_ip_val.adapter_id, 359 MAX_ADAPTER_ID_SIZE, 360 UTF16_LITTLE_ENDIAN, 361 (__u8 *)out->body.kvp_ip_val.adapter_id, 362 MAX_ADAPTER_ID_SIZE); 363 364 out->body.kvp_ip_val.addr_family = in->kvp_ip_val.addr_family; 365 } 366 } 367 368 369 370 371 static void 372 kvp_send_key(struct work_struct *dummy) 373 { 374 struct hv_kvp_msg *message; 375 struct hv_kvp_msg *in_msg; 376 __u8 operation = kvp_transaction.kvp_msg->kvp_hdr.operation; 377 __u8 pool = kvp_transaction.kvp_msg->kvp_hdr.pool; 378 __u32 val32; 379 __u64 val64; 380 int rc; 381 382 /* The transaction state is wrong. */ 383 if (kvp_transaction.state != HVUTIL_HOSTMSG_RECEIVED) 384 return; 385 386 message = kzalloc(sizeof(*message), GFP_KERNEL); 387 if (!message) 388 return; 389 390 message->kvp_hdr.operation = operation; 391 message->kvp_hdr.pool = pool; 392 in_msg = kvp_transaction.kvp_msg; 393 394 /* 395 * The key/value strings sent from the host are encoded in 396 * in utf16; convert it to utf8 strings. 397 * The host assures us that the utf16 strings will not exceed 398 * the max lengths specified. We will however, reserve room 399 * for the string terminating character - in the utf16s_utf8s() 400 * function we limit the size of the buffer where the converted 401 * string is placed to HV_KVP_EXCHANGE_MAX_*_SIZE -1 to gaurantee 402 * that the strings can be properly terminated! 403 */ 404 405 switch (message->kvp_hdr.operation) { 406 case KVP_OP_SET_IP_INFO: 407 process_ib_ipinfo(in_msg, message, KVP_OP_SET_IP_INFO); 408 break; 409 case KVP_OP_GET_IP_INFO: 410 process_ib_ipinfo(in_msg, message, KVP_OP_GET_IP_INFO); 411 break; 412 case KVP_OP_SET: 413 switch (in_msg->body.kvp_set.data.value_type) { 414 case REG_SZ: 415 /* 416 * The value is a string - utf16 encoding. 417 */ 418 message->body.kvp_set.data.value_size = 419 utf16s_to_utf8s( 420 (wchar_t *)in_msg->body.kvp_set.data.value, 421 in_msg->body.kvp_set.data.value_size, 422 UTF16_LITTLE_ENDIAN, 423 message->body.kvp_set.data.value, 424 HV_KVP_EXCHANGE_MAX_VALUE_SIZE - 1) + 1; 425 break; 426 427 case REG_U32: 428 /* 429 * The value is a 32 bit scalar. 430 * We save this as a utf8 string. 431 */ 432 val32 = in_msg->body.kvp_set.data.value_u32; 433 message->body.kvp_set.data.value_size = 434 sprintf(message->body.kvp_set.data.value, 435 "%d", val32) + 1; 436 break; 437 438 case REG_U64: 439 /* 440 * The value is a 64 bit scalar. 441 * We save this as a utf8 string. 442 */ 443 val64 = in_msg->body.kvp_set.data.value_u64; 444 message->body.kvp_set.data.value_size = 445 sprintf(message->body.kvp_set.data.value, 446 "%llu", val64) + 1; 447 break; 448 449 } 450 case KVP_OP_GET: 451 message->body.kvp_set.data.key_size = 452 utf16s_to_utf8s( 453 (wchar_t *)in_msg->body.kvp_set.data.key, 454 in_msg->body.kvp_set.data.key_size, 455 UTF16_LITTLE_ENDIAN, 456 message->body.kvp_set.data.key, 457 HV_KVP_EXCHANGE_MAX_KEY_SIZE - 1) + 1; 458 break; 459 460 case KVP_OP_DELETE: 461 message->body.kvp_delete.key_size = 462 utf16s_to_utf8s( 463 (wchar_t *)in_msg->body.kvp_delete.key, 464 in_msg->body.kvp_delete.key_size, 465 UTF16_LITTLE_ENDIAN, 466 message->body.kvp_delete.key, 467 HV_KVP_EXCHANGE_MAX_KEY_SIZE - 1) + 1; 468 break; 469 470 case KVP_OP_ENUMERATE: 471 message->body.kvp_enum_data.index = 472 in_msg->body.kvp_enum_data.index; 473 break; 474 } 475 476 kvp_transaction.state = HVUTIL_USERSPACE_REQ; 477 rc = hvutil_transport_send(hvt, message, sizeof(*message), NULL); 478 if (rc) { 479 pr_debug("KVP: failed to communicate to the daemon: %d\n", rc); 480 if (cancel_delayed_work_sync(&kvp_timeout_work)) { 481 kvp_respond_to_host(message, HV_E_FAIL); 482 kvp_transaction.state = HVUTIL_READY; 483 } 484 } 485 486 kfree(message); 487 488 return; 489 } 490 491 /* 492 * Send a response back to the host. 493 */ 494 495 static void 496 kvp_respond_to_host(struct hv_kvp_msg *msg_to_host, int error) 497 { 498 struct hv_kvp_msg *kvp_msg; 499 struct hv_kvp_exchg_msg_value *kvp_data; 500 char *key_name; 501 char *value; 502 struct icmsg_hdr *icmsghdrp; 503 int keylen = 0; 504 int valuelen = 0; 505 u32 buf_len; 506 struct vmbus_channel *channel; 507 u64 req_id; 508 int ret; 509 510 /* 511 * Copy the global state for completing the transaction. Note that 512 * only one transaction can be active at a time. 513 */ 514 515 buf_len = kvp_transaction.recv_len; 516 channel = kvp_transaction.recv_channel; 517 req_id = kvp_transaction.recv_req_id; 518 519 icmsghdrp = (struct icmsg_hdr *) 520 &recv_buffer[sizeof(struct vmbuspipe_hdr)]; 521 522 if (channel->onchannel_callback == NULL) 523 /* 524 * We have raced with util driver being unloaded; 525 * silently return. 526 */ 527 return; 528 529 icmsghdrp->status = error; 530 531 /* 532 * If the error parameter is set, terminate the host's enumeration 533 * on this pool. 534 */ 535 if (error) { 536 /* 537 * Something failed or we have timedout; 538 * terminate the current host-side iteration. 539 */ 540 goto response_done; 541 } 542 543 kvp_msg = (struct hv_kvp_msg *) 544 &recv_buffer[sizeof(struct vmbuspipe_hdr) + 545 sizeof(struct icmsg_hdr)]; 546 547 switch (kvp_transaction.kvp_msg->kvp_hdr.operation) { 548 case KVP_OP_GET_IP_INFO: 549 ret = process_ob_ipinfo(msg_to_host, 550 (struct hv_kvp_ip_msg *)kvp_msg, 551 KVP_OP_GET_IP_INFO); 552 if (ret < 0) 553 icmsghdrp->status = HV_E_FAIL; 554 555 goto response_done; 556 case KVP_OP_SET_IP_INFO: 557 goto response_done; 558 case KVP_OP_GET: 559 kvp_data = &kvp_msg->body.kvp_get.data; 560 goto copy_value; 561 562 case KVP_OP_SET: 563 case KVP_OP_DELETE: 564 goto response_done; 565 566 default: 567 break; 568 } 569 570 kvp_data = &kvp_msg->body.kvp_enum_data.data; 571 key_name = msg_to_host->body.kvp_enum_data.data.key; 572 573 /* 574 * The windows host expects the key/value pair to be encoded 575 * in utf16. Ensure that the key/value size reported to the host 576 * will be less than or equal to the MAX size (including the 577 * terminating character). 578 */ 579 keylen = utf8s_to_utf16s(key_name, strlen(key_name), UTF16_HOST_ENDIAN, 580 (wchar_t *) kvp_data->key, 581 (HV_KVP_EXCHANGE_MAX_KEY_SIZE / 2) - 2); 582 kvp_data->key_size = 2*(keylen + 1); /* utf16 encoding */ 583 584 copy_value: 585 value = msg_to_host->body.kvp_enum_data.data.value; 586 valuelen = utf8s_to_utf16s(value, strlen(value), UTF16_HOST_ENDIAN, 587 (wchar_t *) kvp_data->value, 588 (HV_KVP_EXCHANGE_MAX_VALUE_SIZE / 2) - 2); 589 kvp_data->value_size = 2*(valuelen + 1); /* utf16 encoding */ 590 591 /* 592 * If the utf8s to utf16s conversion failed; notify host 593 * of the error. 594 */ 595 if ((keylen < 0) || (valuelen < 0)) 596 icmsghdrp->status = HV_E_FAIL; 597 598 kvp_data->value_type = REG_SZ; /* all our values are strings */ 599 600 response_done: 601 icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION | ICMSGHDRFLAG_RESPONSE; 602 603 vmbus_sendpacket(channel, recv_buffer, buf_len, req_id, 604 VM_PKT_DATA_INBAND, 0); 605 } 606 607 /* 608 * This callback is invoked when we get a KVP message from the host. 609 * The host ensures that only one KVP transaction can be active at a time. 610 * KVP implementation in Linux needs to forward the key to a user-mde 611 * component to retrive the corresponding value. Consequently, we cannot 612 * respond to the host in the conext of this callback. Since the host 613 * guarantees that at most only one transaction can be active at a time, 614 * we stash away the transaction state in a set of global variables. 615 */ 616 617 void hv_kvp_onchannelcallback(void *context) 618 { 619 struct vmbus_channel *channel = context; 620 u32 recvlen; 621 u64 requestid; 622 623 struct hv_kvp_msg *kvp_msg; 624 625 struct icmsg_hdr *icmsghdrp; 626 int kvp_srv_version; 627 static enum {NEGO_NOT_STARTED, 628 NEGO_IN_PROGRESS, 629 NEGO_FINISHED} host_negotiatied = NEGO_NOT_STARTED; 630 631 if (host_negotiatied == NEGO_NOT_STARTED && 632 kvp_transaction.state < HVUTIL_READY) { 633 /* 634 * If userspace daemon is not connected and host is asking 635 * us to negotiate we need to delay to not lose messages. 636 * This is important for Failover IP setting. 637 */ 638 host_negotiatied = NEGO_IN_PROGRESS; 639 schedule_delayed_work(&kvp_host_handshake_work, 640 HV_UTIL_NEGO_TIMEOUT * HZ); 641 return; 642 } 643 if (kvp_transaction.state > HVUTIL_READY) 644 return; 645 646 vmbus_recvpacket(channel, recv_buffer, PAGE_SIZE * 4, &recvlen, 647 &requestid); 648 649 if (recvlen > 0) { 650 icmsghdrp = (struct icmsg_hdr *)&recv_buffer[ 651 sizeof(struct vmbuspipe_hdr)]; 652 653 if (icmsghdrp->icmsgtype == ICMSGTYPE_NEGOTIATE) { 654 if (vmbus_prep_negotiate_resp(icmsghdrp, 655 recv_buffer, fw_versions, FW_VER_COUNT, 656 kvp_versions, KVP_VER_COUNT, 657 NULL, &kvp_srv_version)) { 658 pr_info("KVP IC version %d.%d\n", 659 kvp_srv_version >> 16, 660 kvp_srv_version & 0xFFFF); 661 } 662 } else { 663 kvp_msg = (struct hv_kvp_msg *)&recv_buffer[ 664 sizeof(struct vmbuspipe_hdr) + 665 sizeof(struct icmsg_hdr)]; 666 667 /* 668 * Stash away this global state for completing the 669 * transaction; note transactions are serialized. 670 */ 671 672 kvp_transaction.recv_len = recvlen; 673 kvp_transaction.recv_req_id = requestid; 674 kvp_transaction.kvp_msg = kvp_msg; 675 676 if (kvp_transaction.state < HVUTIL_READY) { 677 /* Userspace is not registered yet */ 678 kvp_respond_to_host(NULL, HV_E_FAIL); 679 return; 680 } 681 kvp_transaction.state = HVUTIL_HOSTMSG_RECEIVED; 682 683 /* 684 * Get the information from the 685 * user-mode component. 686 * component. This transaction will be 687 * completed when we get the value from 688 * the user-mode component. 689 * Set a timeout to deal with 690 * user-mode not responding. 691 */ 692 schedule_work(&kvp_sendkey_work); 693 schedule_delayed_work(&kvp_timeout_work, 694 HV_UTIL_TIMEOUT * HZ); 695 696 return; 697 698 } 699 700 icmsghdrp->icflags = ICMSGHDRFLAG_TRANSACTION 701 | ICMSGHDRFLAG_RESPONSE; 702 703 vmbus_sendpacket(channel, recv_buffer, 704 recvlen, requestid, 705 VM_PKT_DATA_INBAND, 0); 706 707 host_negotiatied = NEGO_FINISHED; 708 } 709 710 } 711 712 static void kvp_on_reset(void) 713 { 714 if (cancel_delayed_work_sync(&kvp_timeout_work)) 715 kvp_respond_to_host(NULL, HV_E_FAIL); 716 kvp_transaction.state = HVUTIL_DEVICE_INIT; 717 complete(&release_event); 718 } 719 720 int 721 hv_kvp_init(struct hv_util_service *srv) 722 { 723 recv_buffer = srv->recv_buffer; 724 kvp_transaction.recv_channel = srv->channel; 725 726 init_completion(&release_event); 727 /* 728 * When this driver loads, the user level daemon that 729 * processes the host requests may not yet be running. 730 * Defer processing channel callbacks until the daemon 731 * has registered. 732 */ 733 kvp_transaction.state = HVUTIL_DEVICE_INIT; 734 735 hvt = hvutil_transport_init(kvp_devname, CN_KVP_IDX, CN_KVP_VAL, 736 kvp_on_msg, kvp_on_reset); 737 if (!hvt) 738 return -EFAULT; 739 740 return 0; 741 } 742 743 void hv_kvp_deinit(void) 744 { 745 kvp_transaction.state = HVUTIL_DEVICE_DYING; 746 cancel_delayed_work_sync(&kvp_host_handshake_work); 747 cancel_delayed_work_sync(&kvp_timeout_work); 748 cancel_work_sync(&kvp_sendkey_work); 749 hvutil_transport_destroy(hvt); 750 wait_for_completion(&release_event); 751 } 752