xref: /openbmc/linux/drivers/hv/hv_balloon.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  * Copyright (c) 2012, Microsoft Corporation.
3  *
4  * Author:
5  *   K. Y. Srinivasan <kys@microsoft.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  * NON INFRINGEMENT.  See the GNU General Public License for more
15  * details.
16  *
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/jiffies.h>
23 #include <linux/mman.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/kthread.h>
29 #include <linux/completion.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memory.h>
32 #include <linux/notifier.h>
33 #include <linux/percpu_counter.h>
34 
35 #include <linux/hyperv.h>
36 
37 /*
38  * We begin with definitions supporting the Dynamic Memory protocol
39  * with the host.
40  *
41  * Begin protocol definitions.
42  */
43 
44 
45 
46 /*
47  * Protocol versions. The low word is the minor version, the high word the major
48  * version.
49  *
50  * History:
51  * Initial version 1.0
52  * Changed to 0.1 on 2009/03/25
53  * Changes to 0.2 on 2009/05/14
54  * Changes to 0.3 on 2009/12/03
55  * Changed to 1.0 on 2011/04/05
56  */
57 
58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
61 
62 enum {
63 	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64 	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65 
66 	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
67 	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
68 
69 	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN8
70 };
71 
72 
73 
74 /*
75  * Message Types
76  */
77 
78 enum dm_message_type {
79 	/*
80 	 * Version 0.3
81 	 */
82 	DM_ERROR			= 0,
83 	DM_VERSION_REQUEST		= 1,
84 	DM_VERSION_RESPONSE		= 2,
85 	DM_CAPABILITIES_REPORT		= 3,
86 	DM_CAPABILITIES_RESPONSE	= 4,
87 	DM_STATUS_REPORT		= 5,
88 	DM_BALLOON_REQUEST		= 6,
89 	DM_BALLOON_RESPONSE		= 7,
90 	DM_UNBALLOON_REQUEST		= 8,
91 	DM_UNBALLOON_RESPONSE		= 9,
92 	DM_MEM_HOT_ADD_REQUEST		= 10,
93 	DM_MEM_HOT_ADD_RESPONSE		= 11,
94 	DM_VERSION_03_MAX		= 11,
95 	/*
96 	 * Version 1.0.
97 	 */
98 	DM_INFO_MESSAGE			= 12,
99 	DM_VERSION_1_MAX		= 12
100 };
101 
102 
103 /*
104  * Structures defining the dynamic memory management
105  * protocol.
106  */
107 
108 union dm_version {
109 	struct {
110 		__u16 minor_version;
111 		__u16 major_version;
112 	};
113 	__u32 version;
114 } __packed;
115 
116 
117 union dm_caps {
118 	struct {
119 		__u64 balloon:1;
120 		__u64 hot_add:1;
121 		/*
122 		 * To support guests that may have alignment
123 		 * limitations on hot-add, the guest can specify
124 		 * its alignment requirements; a value of n
125 		 * represents an alignment of 2^n in mega bytes.
126 		 */
127 		__u64 hot_add_alignment:4;
128 		__u64 reservedz:58;
129 	} cap_bits;
130 	__u64 caps;
131 } __packed;
132 
133 union dm_mem_page_range {
134 	struct  {
135 		/*
136 		 * The PFN number of the first page in the range.
137 		 * 40 bits is the architectural limit of a PFN
138 		 * number for AMD64.
139 		 */
140 		__u64 start_page:40;
141 		/*
142 		 * The number of pages in the range.
143 		 */
144 		__u64 page_cnt:24;
145 	} finfo;
146 	__u64  page_range;
147 } __packed;
148 
149 
150 
151 /*
152  * The header for all dynamic memory messages:
153  *
154  * type: Type of the message.
155  * size: Size of the message in bytes; including the header.
156  * trans_id: The guest is responsible for manufacturing this ID.
157  */
158 
159 struct dm_header {
160 	__u16 type;
161 	__u16 size;
162 	__u32 trans_id;
163 } __packed;
164 
165 /*
166  * A generic message format for dynamic memory.
167  * Specific message formats are defined later in the file.
168  */
169 
170 struct dm_message {
171 	struct dm_header hdr;
172 	__u8 data[]; /* enclosed message */
173 } __packed;
174 
175 
176 /*
177  * Specific message types supporting the dynamic memory protocol.
178  */
179 
180 /*
181  * Version negotiation message. Sent from the guest to the host.
182  * The guest is free to try different versions until the host
183  * accepts the version.
184  *
185  * dm_version: The protocol version requested.
186  * is_last_attempt: If TRUE, this is the last version guest will request.
187  * reservedz: Reserved field, set to zero.
188  */
189 
190 struct dm_version_request {
191 	struct dm_header hdr;
192 	union dm_version version;
193 	__u32 is_last_attempt:1;
194 	__u32 reservedz:31;
195 } __packed;
196 
197 /*
198  * Version response message; Host to Guest and indicates
199  * if the host has accepted the version sent by the guest.
200  *
201  * is_accepted: If TRUE, host has accepted the version and the guest
202  * should proceed to the next stage of the protocol. FALSE indicates that
203  * guest should re-try with a different version.
204  *
205  * reservedz: Reserved field, set to zero.
206  */
207 
208 struct dm_version_response {
209 	struct dm_header hdr;
210 	__u64 is_accepted:1;
211 	__u64 reservedz:63;
212 } __packed;
213 
214 /*
215  * Message reporting capabilities. This is sent from the guest to the
216  * host.
217  */
218 
219 struct dm_capabilities {
220 	struct dm_header hdr;
221 	union dm_caps caps;
222 	__u64 min_page_cnt;
223 	__u64 max_page_number;
224 } __packed;
225 
226 /*
227  * Response to the capabilities message. This is sent from the host to the
228  * guest. This message notifies if the host has accepted the guest's
229  * capabilities. If the host has not accepted, the guest must shutdown
230  * the service.
231  *
232  * is_accepted: Indicates if the host has accepted guest's capabilities.
233  * reservedz: Must be 0.
234  */
235 
236 struct dm_capabilities_resp_msg {
237 	struct dm_header hdr;
238 	__u64 is_accepted:1;
239 	__u64 reservedz:63;
240 } __packed;
241 
242 /*
243  * This message is used to report memory pressure from the guest.
244  * This message is not part of any transaction and there is no
245  * response to this message.
246  *
247  * num_avail: Available memory in pages.
248  * num_committed: Committed memory in pages.
249  * page_file_size: The accumulated size of all page files
250  *		   in the system in pages.
251  * zero_free: The nunber of zero and free pages.
252  * page_file_writes: The writes to the page file in pages.
253  * io_diff: An indicator of file cache efficiency or page file activity,
254  *	    calculated as File Cache Page Fault Count - Page Read Count.
255  *	    This value is in pages.
256  *
257  * Some of these metrics are Windows specific and fortunately
258  * the algorithm on the host side that computes the guest memory
259  * pressure only uses num_committed value.
260  */
261 
262 struct dm_status {
263 	struct dm_header hdr;
264 	__u64 num_avail;
265 	__u64 num_committed;
266 	__u64 page_file_size;
267 	__u64 zero_free;
268 	__u32 page_file_writes;
269 	__u32 io_diff;
270 } __packed;
271 
272 
273 /*
274  * Message to ask the guest to allocate memory - balloon up message.
275  * This message is sent from the host to the guest. The guest may not be
276  * able to allocate as much memory as requested.
277  *
278  * num_pages: number of pages to allocate.
279  */
280 
281 struct dm_balloon {
282 	struct dm_header hdr;
283 	__u32 num_pages;
284 	__u32 reservedz;
285 } __packed;
286 
287 
288 /*
289  * Balloon response message; this message is sent from the guest
290  * to the host in response to the balloon message.
291  *
292  * reservedz: Reserved; must be set to zero.
293  * more_pages: If FALSE, this is the last message of the transaction.
294  * if TRUE there will atleast one more message from the guest.
295  *
296  * range_count: The number of ranges in the range array.
297  *
298  * range_array: An array of page ranges returned to the host.
299  *
300  */
301 
302 struct dm_balloon_response {
303 	struct dm_header hdr;
304 	__u32 reservedz;
305 	__u32 more_pages:1;
306 	__u32 range_count:31;
307 	union dm_mem_page_range range_array[];
308 } __packed;
309 
310 /*
311  * Un-balloon message; this message is sent from the host
312  * to the guest to give guest more memory.
313  *
314  * more_pages: If FALSE, this is the last message of the transaction.
315  * if TRUE there will atleast one more message from the guest.
316  *
317  * reservedz: Reserved; must be set to zero.
318  *
319  * range_count: The number of ranges in the range array.
320  *
321  * range_array: An array of page ranges returned to the host.
322  *
323  */
324 
325 struct dm_unballoon_request {
326 	struct dm_header hdr;
327 	__u32 more_pages:1;
328 	__u32 reservedz:31;
329 	__u32 range_count;
330 	union dm_mem_page_range range_array[];
331 } __packed;
332 
333 /*
334  * Un-balloon response message; this message is sent from the guest
335  * to the host in response to an unballoon request.
336  *
337  */
338 
339 struct dm_unballoon_response {
340 	struct dm_header hdr;
341 } __packed;
342 
343 
344 /*
345  * Hot add request message. Message sent from the host to the guest.
346  *
347  * mem_range: Memory range to hot add.
348  *
349  * On Linux we currently don't support this since we cannot hot add
350  * arbitrary granularity of memory.
351  */
352 
353 struct dm_hot_add {
354 	struct dm_header hdr;
355 	union dm_mem_page_range range;
356 } __packed;
357 
358 /*
359  * Hot add response message.
360  * This message is sent by the guest to report the status of a hot add request.
361  * If page_count is less than the requested page count, then the host should
362  * assume all further hot add requests will fail, since this indicates that
363  * the guest has hit an upper physical memory barrier.
364  *
365  * Hot adds may also fail due to low resources; in this case, the guest must
366  * not complete this message until the hot add can succeed, and the host must
367  * not send a new hot add request until the response is sent.
368  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
369  * times it fails the request.
370  *
371  *
372  * page_count: number of pages that were successfully hot added.
373  *
374  * result: result of the operation 1: success, 0: failure.
375  *
376  */
377 
378 struct dm_hot_add_response {
379 	struct dm_header hdr;
380 	__u32 page_count;
381 	__u32 result;
382 } __packed;
383 
384 /*
385  * Types of information sent from host to the guest.
386  */
387 
388 enum dm_info_type {
389 	INFO_TYPE_MAX_PAGE_CNT = 0,
390 	MAX_INFO_TYPE
391 };
392 
393 
394 /*
395  * Header for the information message.
396  */
397 
398 struct dm_info_header {
399 	enum dm_info_type type;
400 	__u32 data_size;
401 } __packed;
402 
403 /*
404  * This message is sent from the host to the guest to pass
405  * some relevant information (win8 addition).
406  *
407  * reserved: no used.
408  * info_size: size of the information blob.
409  * info: information blob.
410  */
411 
412 struct dm_info_msg {
413 	struct dm_header hdr;
414 	__u32 reserved;
415 	__u32 info_size;
416 	__u8  info[];
417 };
418 
419 /*
420  * End protocol definitions.
421  */
422 
423 /*
424  * State to manage hot adding memory into the guest.
425  * The range start_pfn : end_pfn specifies the range
426  * that the host has asked us to hot add. The range
427  * start_pfn : ha_end_pfn specifies the range that we have
428  * currently hot added. We hot add in multiples of 128M
429  * chunks; it is possible that we may not be able to bring
430  * online all the pages in the region. The range
431  * covered_start_pfn : covered_end_pfn defines the pages that can
432  * be brough online.
433  */
434 
435 struct hv_hotadd_state {
436 	struct list_head list;
437 	unsigned long start_pfn;
438 	unsigned long covered_start_pfn;
439 	unsigned long covered_end_pfn;
440 	unsigned long ha_end_pfn;
441 	unsigned long end_pfn;
442 };
443 
444 struct balloon_state {
445 	__u32 num_pages;
446 	struct work_struct wrk;
447 };
448 
449 struct hot_add_wrk {
450 	union dm_mem_page_range ha_page_range;
451 	union dm_mem_page_range ha_region_range;
452 	struct work_struct wrk;
453 };
454 
455 static bool hot_add = true;
456 static bool do_hot_add;
457 /*
458  * Delay reporting memory pressure by
459  * the specified number of seconds.
460  */
461 static uint pressure_report_delay = 45;
462 
463 /*
464  * The last time we posted a pressure report to host.
465  */
466 static unsigned long last_post_time;
467 
468 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
469 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
470 
471 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
472 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
473 static atomic_t trans_id = ATOMIC_INIT(0);
474 
475 static int dm_ring_size = (5 * PAGE_SIZE);
476 
477 /*
478  * Driver specific state.
479  */
480 
481 enum hv_dm_state {
482 	DM_INITIALIZING = 0,
483 	DM_INITIALIZED,
484 	DM_BALLOON_UP,
485 	DM_BALLOON_DOWN,
486 	DM_HOT_ADD,
487 	DM_INIT_ERROR
488 };
489 
490 
491 static __u8 recv_buffer[PAGE_SIZE];
492 static __u8 *send_buffer;
493 #define PAGES_IN_2M	512
494 #define HA_CHUNK (32 * 1024)
495 
496 struct hv_dynmem_device {
497 	struct hv_device *dev;
498 	enum hv_dm_state state;
499 	struct completion host_event;
500 	struct completion config_event;
501 
502 	/*
503 	 * Number of pages we have currently ballooned out.
504 	 */
505 	unsigned int num_pages_ballooned;
506 
507 	/*
508 	 * State to manage the ballooning (up) operation.
509 	 */
510 	struct balloon_state balloon_wrk;
511 
512 	/*
513 	 * State to execute the "hot-add" operation.
514 	 */
515 	struct hot_add_wrk ha_wrk;
516 
517 	/*
518 	 * This state tracks if the host has specified a hot-add
519 	 * region.
520 	 */
521 	bool host_specified_ha_region;
522 
523 	/*
524 	 * State to synchronize hot-add.
525 	 */
526 	struct completion  ol_waitevent;
527 	bool ha_waiting;
528 	/*
529 	 * This thread handles hot-add
530 	 * requests from the host as well as notifying
531 	 * the host with regards to memory pressure in
532 	 * the guest.
533 	 */
534 	struct task_struct *thread;
535 
536 	struct mutex ha_region_mutex;
537 	struct completion waiter_event;
538 
539 	/*
540 	 * A list of hot-add regions.
541 	 */
542 	struct list_head ha_region_list;
543 
544 	/*
545 	 * We start with the highest version we can support
546 	 * and downgrade based on the host; we save here the
547 	 * next version to try.
548 	 */
549 	__u32 next_version;
550 };
551 
552 static struct hv_dynmem_device dm_device;
553 
554 static void post_status(struct hv_dynmem_device *dm);
555 
556 #ifdef CONFIG_MEMORY_HOTPLUG
557 static void acquire_region_mutex(bool trylock)
558 {
559 	if (trylock) {
560 		reinit_completion(&dm_device.waiter_event);
561 		while (!mutex_trylock(&dm_device.ha_region_mutex))
562 			wait_for_completion(&dm_device.waiter_event);
563 	} else {
564 		mutex_lock(&dm_device.ha_region_mutex);
565 	}
566 }
567 
568 static void release_region_mutex(bool trylock)
569 {
570 	if (trylock) {
571 		mutex_unlock(&dm_device.ha_region_mutex);
572 	} else {
573 		mutex_unlock(&dm_device.ha_region_mutex);
574 		complete(&dm_device.waiter_event);
575 	}
576 }
577 
578 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
579 			      void *v)
580 {
581 	switch (val) {
582 	case MEM_GOING_ONLINE:
583 		acquire_region_mutex(true);
584 		break;
585 
586 	case MEM_ONLINE:
587 	case MEM_CANCEL_ONLINE:
588 		release_region_mutex(true);
589 		if (dm_device.ha_waiting) {
590 			dm_device.ha_waiting = false;
591 			complete(&dm_device.ol_waitevent);
592 		}
593 		break;
594 
595 	case MEM_GOING_OFFLINE:
596 	case MEM_OFFLINE:
597 	case MEM_CANCEL_OFFLINE:
598 		break;
599 	}
600 	return NOTIFY_OK;
601 }
602 
603 static struct notifier_block hv_memory_nb = {
604 	.notifier_call = hv_memory_notifier,
605 	.priority = 0
606 };
607 
608 
609 static void hv_bring_pgs_online(unsigned long start_pfn, unsigned long size)
610 {
611 	int i;
612 
613 	for (i = 0; i < size; i++) {
614 		struct page *pg;
615 		pg = pfn_to_page(start_pfn + i);
616 		__online_page_set_limits(pg);
617 		__online_page_increment_counters(pg);
618 		__online_page_free(pg);
619 	}
620 }
621 
622 static void hv_mem_hot_add(unsigned long start, unsigned long size,
623 				unsigned long pfn_count,
624 				struct hv_hotadd_state *has)
625 {
626 	int ret = 0;
627 	int i, nid;
628 	unsigned long start_pfn;
629 	unsigned long processed_pfn;
630 	unsigned long total_pfn = pfn_count;
631 
632 	for (i = 0; i < (size/HA_CHUNK); i++) {
633 		start_pfn = start + (i * HA_CHUNK);
634 		has->ha_end_pfn +=  HA_CHUNK;
635 
636 		if (total_pfn > HA_CHUNK) {
637 			processed_pfn = HA_CHUNK;
638 			total_pfn -= HA_CHUNK;
639 		} else {
640 			processed_pfn = total_pfn;
641 			total_pfn = 0;
642 		}
643 
644 		has->covered_end_pfn +=  processed_pfn;
645 
646 		init_completion(&dm_device.ol_waitevent);
647 		dm_device.ha_waiting = true;
648 
649 		release_region_mutex(false);
650 		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
651 		ret = add_memory(nid, PFN_PHYS((start_pfn)),
652 				(HA_CHUNK << PAGE_SHIFT));
653 
654 		if (ret) {
655 			pr_info("hot_add memory failed error is %d\n", ret);
656 			if (ret == -EEXIST) {
657 				/*
658 				 * This error indicates that the error
659 				 * is not a transient failure. This is the
660 				 * case where the guest's physical address map
661 				 * precludes hot adding memory. Stop all further
662 				 * memory hot-add.
663 				 */
664 				do_hot_add = false;
665 			}
666 			has->ha_end_pfn -= HA_CHUNK;
667 			has->covered_end_pfn -=  processed_pfn;
668 			break;
669 		}
670 
671 		/*
672 		 * Wait for the memory block to be onlined.
673 		 * Since the hot add has succeeded, it is ok to
674 		 * proceed even if the pages in the hot added region
675 		 * have not been "onlined" within the allowed time.
676 		 */
677 		wait_for_completion_timeout(&dm_device.ol_waitevent, 5*HZ);
678 		acquire_region_mutex(false);
679 		post_status(&dm_device);
680 	}
681 
682 	return;
683 }
684 
685 static void hv_online_page(struct page *pg)
686 {
687 	struct list_head *cur;
688 	struct hv_hotadd_state *has;
689 	unsigned long cur_start_pgp;
690 	unsigned long cur_end_pgp;
691 
692 	list_for_each(cur, &dm_device.ha_region_list) {
693 		has = list_entry(cur, struct hv_hotadd_state, list);
694 		cur_start_pgp = (unsigned long)
695 				pfn_to_page(has->covered_start_pfn);
696 		cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
697 
698 		if (((unsigned long)pg >= cur_start_pgp) &&
699 			((unsigned long)pg < cur_end_pgp)) {
700 			/*
701 			 * This frame is currently backed; online the
702 			 * page.
703 			 */
704 			__online_page_set_limits(pg);
705 			__online_page_increment_counters(pg);
706 			__online_page_free(pg);
707 			has->covered_start_pfn++;
708 		}
709 	}
710 }
711 
712 static bool pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
713 {
714 	struct list_head *cur;
715 	struct hv_hotadd_state *has;
716 	unsigned long residual, new_inc;
717 
718 	if (list_empty(&dm_device.ha_region_list))
719 		return false;
720 
721 	list_for_each(cur, &dm_device.ha_region_list) {
722 		has = list_entry(cur, struct hv_hotadd_state, list);
723 
724 		/*
725 		 * If the pfn range we are dealing with is not in the current
726 		 * "hot add block", move on.
727 		 */
728 		if ((start_pfn >= has->end_pfn))
729 			continue;
730 		/*
731 		 * If the current hot add-request extends beyond
732 		 * our current limit; extend it.
733 		 */
734 		if ((start_pfn + pfn_cnt) > has->end_pfn) {
735 			residual = (start_pfn + pfn_cnt - has->end_pfn);
736 			/*
737 			 * Extend the region by multiples of HA_CHUNK.
738 			 */
739 			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
740 			if (residual % HA_CHUNK)
741 				new_inc += HA_CHUNK;
742 
743 			has->end_pfn += new_inc;
744 		}
745 
746 		/*
747 		 * If the current start pfn is not where the covered_end
748 		 * is, update it.
749 		 */
750 
751 		if (has->covered_end_pfn != start_pfn) {
752 			has->covered_end_pfn = start_pfn;
753 			has->covered_start_pfn = start_pfn;
754 		}
755 		return true;
756 
757 	}
758 
759 	return false;
760 }
761 
762 static unsigned long handle_pg_range(unsigned long pg_start,
763 					unsigned long pg_count)
764 {
765 	unsigned long start_pfn = pg_start;
766 	unsigned long pfn_cnt = pg_count;
767 	unsigned long size;
768 	struct list_head *cur;
769 	struct hv_hotadd_state *has;
770 	unsigned long pgs_ol = 0;
771 	unsigned long old_covered_state;
772 
773 	if (list_empty(&dm_device.ha_region_list))
774 		return 0;
775 
776 	list_for_each(cur, &dm_device.ha_region_list) {
777 		has = list_entry(cur, struct hv_hotadd_state, list);
778 
779 		/*
780 		 * If the pfn range we are dealing with is not in the current
781 		 * "hot add block", move on.
782 		 */
783 		if ((start_pfn >= has->end_pfn))
784 			continue;
785 
786 		old_covered_state = has->covered_end_pfn;
787 
788 		if (start_pfn < has->ha_end_pfn) {
789 			/*
790 			 * This is the case where we are backing pages
791 			 * in an already hot added region. Bring
792 			 * these pages online first.
793 			 */
794 			pgs_ol = has->ha_end_pfn - start_pfn;
795 			if (pgs_ol > pfn_cnt)
796 				pgs_ol = pfn_cnt;
797 			hv_bring_pgs_online(start_pfn, pgs_ol);
798 			has->covered_end_pfn +=  pgs_ol;
799 			has->covered_start_pfn +=  pgs_ol;
800 			pfn_cnt -= pgs_ol;
801 		}
802 
803 		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
804 			/*
805 			 * We have some residual hot add range
806 			 * that needs to be hot added; hot add
807 			 * it now. Hot add a multiple of
808 			 * of HA_CHUNK that fully covers the pages
809 			 * we have.
810 			 */
811 			size = (has->end_pfn - has->ha_end_pfn);
812 			if (pfn_cnt <= size) {
813 				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
814 				if (pfn_cnt % HA_CHUNK)
815 					size += HA_CHUNK;
816 			} else {
817 				pfn_cnt = size;
818 			}
819 			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
820 		}
821 		/*
822 		 * If we managed to online any pages that were given to us,
823 		 * we declare success.
824 		 */
825 		return has->covered_end_pfn - old_covered_state;
826 
827 	}
828 
829 	return 0;
830 }
831 
832 static unsigned long process_hot_add(unsigned long pg_start,
833 					unsigned long pfn_cnt,
834 					unsigned long rg_start,
835 					unsigned long rg_size)
836 {
837 	struct hv_hotadd_state *ha_region = NULL;
838 
839 	if (pfn_cnt == 0)
840 		return 0;
841 
842 	if (!dm_device.host_specified_ha_region)
843 		if (pfn_covered(pg_start, pfn_cnt))
844 			goto do_pg_range;
845 
846 	/*
847 	 * If the host has specified a hot-add range; deal with it first.
848 	 */
849 
850 	if (rg_size != 0) {
851 		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
852 		if (!ha_region)
853 			return 0;
854 
855 		INIT_LIST_HEAD(&ha_region->list);
856 
857 		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
858 		ha_region->start_pfn = rg_start;
859 		ha_region->ha_end_pfn = rg_start;
860 		ha_region->covered_start_pfn = pg_start;
861 		ha_region->covered_end_pfn = pg_start;
862 		ha_region->end_pfn = rg_start + rg_size;
863 	}
864 
865 do_pg_range:
866 	/*
867 	 * Process the page range specified; bringing them
868 	 * online if possible.
869 	 */
870 	return handle_pg_range(pg_start, pfn_cnt);
871 }
872 
873 #endif
874 
875 static void hot_add_req(struct work_struct *dummy)
876 {
877 	struct dm_hot_add_response resp;
878 #ifdef CONFIG_MEMORY_HOTPLUG
879 	unsigned long pg_start, pfn_cnt;
880 	unsigned long rg_start, rg_sz;
881 #endif
882 	struct hv_dynmem_device *dm = &dm_device;
883 
884 	memset(&resp, 0, sizeof(struct dm_hot_add_response));
885 	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
886 	resp.hdr.size = sizeof(struct dm_hot_add_response);
887 
888 #ifdef CONFIG_MEMORY_HOTPLUG
889 	acquire_region_mutex(false);
890 	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
891 	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
892 
893 	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
894 	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
895 
896 	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
897 		unsigned long region_size;
898 		unsigned long region_start;
899 
900 		/*
901 		 * The host has not specified the hot-add region.
902 		 * Based on the hot-add page range being specified,
903 		 * compute a hot-add region that can cover the pages
904 		 * that need to be hot-added while ensuring the alignment
905 		 * and size requirements of Linux as it relates to hot-add.
906 		 */
907 		region_start = pg_start;
908 		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
909 		if (pfn_cnt % HA_CHUNK)
910 			region_size += HA_CHUNK;
911 
912 		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
913 
914 		rg_start = region_start;
915 		rg_sz = region_size;
916 	}
917 
918 	if (do_hot_add)
919 		resp.page_count = process_hot_add(pg_start, pfn_cnt,
920 						rg_start, rg_sz);
921 	release_region_mutex(false);
922 #endif
923 	/*
924 	 * The result field of the response structure has the
925 	 * following semantics:
926 	 *
927 	 * 1. If all or some pages hot-added: Guest should return success.
928 	 *
929 	 * 2. If no pages could be hot-added:
930 	 *
931 	 * If the guest returns success, then the host
932 	 * will not attempt any further hot-add operations. This
933 	 * signifies a permanent failure.
934 	 *
935 	 * If the guest returns failure, then this failure will be
936 	 * treated as a transient failure and the host may retry the
937 	 * hot-add operation after some delay.
938 	 */
939 	if (resp.page_count > 0)
940 		resp.result = 1;
941 	else if (!do_hot_add)
942 		resp.result = 1;
943 	else
944 		resp.result = 0;
945 
946 	if (!do_hot_add || (resp.page_count == 0))
947 		pr_info("Memory hot add failed\n");
948 
949 	dm->state = DM_INITIALIZED;
950 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
951 	vmbus_sendpacket(dm->dev->channel, &resp,
952 			sizeof(struct dm_hot_add_response),
953 			(unsigned long)NULL,
954 			VM_PKT_DATA_INBAND, 0);
955 }
956 
957 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
958 {
959 	struct dm_info_header *info_hdr;
960 
961 	info_hdr = (struct dm_info_header *)msg->info;
962 
963 	switch (info_hdr->type) {
964 	case INFO_TYPE_MAX_PAGE_CNT:
965 		pr_info("Received INFO_TYPE_MAX_PAGE_CNT\n");
966 		pr_info("Data Size is %d\n", info_hdr->data_size);
967 		break;
968 	default:
969 		pr_info("Received Unknown type: %d\n", info_hdr->type);
970 	}
971 }
972 
973 static unsigned long compute_balloon_floor(void)
974 {
975 	unsigned long min_pages;
976 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
977 	/* Simple continuous piecewiese linear function:
978 	 *  max MiB -> min MiB  gradient
979 	 *       0         0
980 	 *      16        16
981 	 *      32        24
982 	 *     128        72    (1/2)
983 	 *     512       168    (1/4)
984 	 *    2048       360    (1/8)
985 	 *    8192       768    (1/16)
986 	 *   32768      1536	(1/32)
987 	 */
988 	if (totalram_pages < MB2PAGES(128))
989 		min_pages = MB2PAGES(8) + (totalram_pages >> 1);
990 	else if (totalram_pages < MB2PAGES(512))
991 		min_pages = MB2PAGES(40) + (totalram_pages >> 2);
992 	else if (totalram_pages < MB2PAGES(2048))
993 		min_pages = MB2PAGES(104) + (totalram_pages >> 3);
994 	else if (totalram_pages < MB2PAGES(8192))
995 		min_pages = MB2PAGES(256) + (totalram_pages >> 4);
996 	else
997 		min_pages = MB2PAGES(512) + (totalram_pages >> 5);
998 #undef MB2PAGES
999 	return min_pages;
1000 }
1001 
1002 /*
1003  * Post our status as it relates memory pressure to the
1004  * host. Host expects the guests to post this status
1005  * periodically at 1 second intervals.
1006  *
1007  * The metrics specified in this protocol are very Windows
1008  * specific and so we cook up numbers here to convey our memory
1009  * pressure.
1010  */
1011 
1012 static void post_status(struct hv_dynmem_device *dm)
1013 {
1014 	struct dm_status status;
1015 	struct sysinfo val;
1016 	unsigned long now = jiffies;
1017 	unsigned long last_post = last_post_time;
1018 
1019 	if (pressure_report_delay > 0) {
1020 		--pressure_report_delay;
1021 		return;
1022 	}
1023 
1024 	if (!time_after(now, (last_post_time + HZ)))
1025 		return;
1026 
1027 	si_meminfo(&val);
1028 	memset(&status, 0, sizeof(struct dm_status));
1029 	status.hdr.type = DM_STATUS_REPORT;
1030 	status.hdr.size = sizeof(struct dm_status);
1031 	status.hdr.trans_id = atomic_inc_return(&trans_id);
1032 
1033 	/*
1034 	 * The host expects the guest to report free memory.
1035 	 * Further, the host expects the pressure information to
1036 	 * include the ballooned out pages.
1037 	 * For a given amount of memory that we are managing, we
1038 	 * need to compute a floor below which we should not balloon.
1039 	 * Compute this and add it to the pressure report.
1040 	 */
1041 	status.num_avail = val.freeram;
1042 	status.num_committed = vm_memory_committed() +
1043 				dm->num_pages_ballooned +
1044 				compute_balloon_floor();
1045 
1046 	/*
1047 	 * If our transaction ID is no longer current, just don't
1048 	 * send the status. This can happen if we were interrupted
1049 	 * after we picked our transaction ID.
1050 	 */
1051 	if (status.hdr.trans_id != atomic_read(&trans_id))
1052 		return;
1053 
1054 	/*
1055 	 * If the last post time that we sampled has changed,
1056 	 * we have raced, don't post the status.
1057 	 */
1058 	if (last_post != last_post_time)
1059 		return;
1060 
1061 	last_post_time = jiffies;
1062 	vmbus_sendpacket(dm->dev->channel, &status,
1063 				sizeof(struct dm_status),
1064 				(unsigned long)NULL,
1065 				VM_PKT_DATA_INBAND, 0);
1066 
1067 }
1068 
1069 static void free_balloon_pages(struct hv_dynmem_device *dm,
1070 			 union dm_mem_page_range *range_array)
1071 {
1072 	int num_pages = range_array->finfo.page_cnt;
1073 	__u64 start_frame = range_array->finfo.start_page;
1074 	struct page *pg;
1075 	int i;
1076 
1077 	for (i = 0; i < num_pages; i++) {
1078 		pg = pfn_to_page(i + start_frame);
1079 		__free_page(pg);
1080 		dm->num_pages_ballooned--;
1081 	}
1082 }
1083 
1084 
1085 
1086 static int  alloc_balloon_pages(struct hv_dynmem_device *dm, int num_pages,
1087 			 struct dm_balloon_response *bl_resp, int alloc_unit,
1088 			 bool *alloc_error)
1089 {
1090 	int i = 0;
1091 	struct page *pg;
1092 
1093 	if (num_pages < alloc_unit)
1094 		return 0;
1095 
1096 	for (i = 0; (i * alloc_unit) < num_pages; i++) {
1097 		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1098 			PAGE_SIZE)
1099 			return i * alloc_unit;
1100 
1101 		/*
1102 		 * We execute this code in a thread context. Furthermore,
1103 		 * we don't want the kernel to try too hard.
1104 		 */
1105 		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1106 				__GFP_NOMEMALLOC | __GFP_NOWARN,
1107 				get_order(alloc_unit << PAGE_SHIFT));
1108 
1109 		if (!pg) {
1110 			*alloc_error = true;
1111 			return i * alloc_unit;
1112 		}
1113 
1114 
1115 		dm->num_pages_ballooned += alloc_unit;
1116 
1117 		/*
1118 		 * If we allocatted 2M pages; split them so we
1119 		 * can free them in any order we get.
1120 		 */
1121 
1122 		if (alloc_unit != 1)
1123 			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1124 
1125 		bl_resp->range_count++;
1126 		bl_resp->range_array[i].finfo.start_page =
1127 			page_to_pfn(pg);
1128 		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1129 		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1130 
1131 	}
1132 
1133 	return num_pages;
1134 }
1135 
1136 
1137 
1138 static void balloon_up(struct work_struct *dummy)
1139 {
1140 	int num_pages = dm_device.balloon_wrk.num_pages;
1141 	int num_ballooned = 0;
1142 	struct dm_balloon_response *bl_resp;
1143 	int alloc_unit;
1144 	int ret;
1145 	bool alloc_error;
1146 	bool done = false;
1147 	int i;
1148 
1149 	/* The host balloons pages in 2M granularity. */
1150 	WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1151 
1152 	/*
1153 	 * We will attempt 2M allocations. However, if we fail to
1154 	 * allocate 2M chunks, we will go back to 4k allocations.
1155 	 */
1156 	alloc_unit = 512;
1157 
1158 	while (!done) {
1159 		bl_resp = (struct dm_balloon_response *)send_buffer;
1160 		memset(send_buffer, 0, PAGE_SIZE);
1161 		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1162 		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1163 		bl_resp->more_pages = 1;
1164 
1165 
1166 		num_pages -= num_ballooned;
1167 		alloc_error = false;
1168 		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1169 						bl_resp, alloc_unit,
1170 						 &alloc_error);
1171 
1172 		if (alloc_unit != 1 && num_ballooned == 0) {
1173 			alloc_unit = 1;
1174 			continue;
1175 		}
1176 
1177 		if ((alloc_unit == 1 && alloc_error) ||
1178 			(num_ballooned == num_pages)) {
1179 			bl_resp->more_pages = 0;
1180 			done = true;
1181 			dm_device.state = DM_INITIALIZED;
1182 		}
1183 
1184 		/*
1185 		 * We are pushing a lot of data through the channel;
1186 		 * deal with transient failures caused because of the
1187 		 * lack of space in the ring buffer.
1188 		 */
1189 
1190 		do {
1191 			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1192 			ret = vmbus_sendpacket(dm_device.dev->channel,
1193 						bl_resp,
1194 						bl_resp->hdr.size,
1195 						(unsigned long)NULL,
1196 						VM_PKT_DATA_INBAND, 0);
1197 
1198 			if (ret == -EAGAIN)
1199 				msleep(20);
1200 			post_status(&dm_device);
1201 		} while (ret == -EAGAIN);
1202 
1203 		if (ret) {
1204 			/*
1205 			 * Free up the memory we allocatted.
1206 			 */
1207 			pr_info("Balloon response failed\n");
1208 
1209 			for (i = 0; i < bl_resp->range_count; i++)
1210 				free_balloon_pages(&dm_device,
1211 						 &bl_resp->range_array[i]);
1212 
1213 			done = true;
1214 		}
1215 	}
1216 
1217 }
1218 
1219 static void balloon_down(struct hv_dynmem_device *dm,
1220 			struct dm_unballoon_request *req)
1221 {
1222 	union dm_mem_page_range *range_array = req->range_array;
1223 	int range_count = req->range_count;
1224 	struct dm_unballoon_response resp;
1225 	int i;
1226 
1227 	for (i = 0; i < range_count; i++) {
1228 		free_balloon_pages(dm, &range_array[i]);
1229 		complete(&dm_device.config_event);
1230 	}
1231 
1232 	if (req->more_pages == 1)
1233 		return;
1234 
1235 	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1236 	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1237 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1238 	resp.hdr.size = sizeof(struct dm_unballoon_response);
1239 
1240 	vmbus_sendpacket(dm_device.dev->channel, &resp,
1241 				sizeof(struct dm_unballoon_response),
1242 				(unsigned long)NULL,
1243 				VM_PKT_DATA_INBAND, 0);
1244 
1245 	dm->state = DM_INITIALIZED;
1246 }
1247 
1248 static void balloon_onchannelcallback(void *context);
1249 
1250 static int dm_thread_func(void *dm_dev)
1251 {
1252 	struct hv_dynmem_device *dm = dm_dev;
1253 
1254 	while (!kthread_should_stop()) {
1255 		wait_for_completion_interruptible_timeout(
1256 						&dm_device.config_event, 1*HZ);
1257 		/*
1258 		 * The host expects us to post information on the memory
1259 		 * pressure every second.
1260 		 */
1261 		reinit_completion(&dm_device.config_event);
1262 		post_status(dm);
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 
1269 static void version_resp(struct hv_dynmem_device *dm,
1270 			struct dm_version_response *vresp)
1271 {
1272 	struct dm_version_request version_req;
1273 	int ret;
1274 
1275 	if (vresp->is_accepted) {
1276 		/*
1277 		 * We are done; wakeup the
1278 		 * context waiting for version
1279 		 * negotiation.
1280 		 */
1281 		complete(&dm->host_event);
1282 		return;
1283 	}
1284 	/*
1285 	 * If there are more versions to try, continue
1286 	 * with negotiations; if not
1287 	 * shutdown the service since we are not able
1288 	 * to negotiate a suitable version number
1289 	 * with the host.
1290 	 */
1291 	if (dm->next_version == 0)
1292 		goto version_error;
1293 
1294 	dm->next_version = 0;
1295 	memset(&version_req, 0, sizeof(struct dm_version_request));
1296 	version_req.hdr.type = DM_VERSION_REQUEST;
1297 	version_req.hdr.size = sizeof(struct dm_version_request);
1298 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1299 	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN7;
1300 	version_req.is_last_attempt = 1;
1301 
1302 	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1303 				sizeof(struct dm_version_request),
1304 				(unsigned long)NULL,
1305 				VM_PKT_DATA_INBAND, 0);
1306 
1307 	if (ret)
1308 		goto version_error;
1309 
1310 	return;
1311 
1312 version_error:
1313 	dm->state = DM_INIT_ERROR;
1314 	complete(&dm->host_event);
1315 }
1316 
1317 static void cap_resp(struct hv_dynmem_device *dm,
1318 			struct dm_capabilities_resp_msg *cap_resp)
1319 {
1320 	if (!cap_resp->is_accepted) {
1321 		pr_info("Capabilities not accepted by host\n");
1322 		dm->state = DM_INIT_ERROR;
1323 	}
1324 	complete(&dm->host_event);
1325 }
1326 
1327 static void balloon_onchannelcallback(void *context)
1328 {
1329 	struct hv_device *dev = context;
1330 	u32 recvlen;
1331 	u64 requestid;
1332 	struct dm_message *dm_msg;
1333 	struct dm_header *dm_hdr;
1334 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1335 	struct dm_balloon *bal_msg;
1336 	struct dm_hot_add *ha_msg;
1337 	union dm_mem_page_range *ha_pg_range;
1338 	union dm_mem_page_range *ha_region;
1339 
1340 	memset(recv_buffer, 0, sizeof(recv_buffer));
1341 	vmbus_recvpacket(dev->channel, recv_buffer,
1342 			 PAGE_SIZE, &recvlen, &requestid);
1343 
1344 	if (recvlen > 0) {
1345 		dm_msg = (struct dm_message *)recv_buffer;
1346 		dm_hdr = &dm_msg->hdr;
1347 
1348 		switch (dm_hdr->type) {
1349 		case DM_VERSION_RESPONSE:
1350 			version_resp(dm,
1351 				 (struct dm_version_response *)dm_msg);
1352 			break;
1353 
1354 		case DM_CAPABILITIES_RESPONSE:
1355 			cap_resp(dm,
1356 				 (struct dm_capabilities_resp_msg *)dm_msg);
1357 			break;
1358 
1359 		case DM_BALLOON_REQUEST:
1360 			if (dm->state == DM_BALLOON_UP)
1361 				pr_warn("Currently ballooning\n");
1362 			bal_msg = (struct dm_balloon *)recv_buffer;
1363 			dm->state = DM_BALLOON_UP;
1364 			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1365 			schedule_work(&dm_device.balloon_wrk.wrk);
1366 			break;
1367 
1368 		case DM_UNBALLOON_REQUEST:
1369 			dm->state = DM_BALLOON_DOWN;
1370 			balloon_down(dm,
1371 				 (struct dm_unballoon_request *)recv_buffer);
1372 			break;
1373 
1374 		case DM_MEM_HOT_ADD_REQUEST:
1375 			if (dm->state == DM_HOT_ADD)
1376 				pr_warn("Currently hot-adding\n");
1377 			dm->state = DM_HOT_ADD;
1378 			ha_msg = (struct dm_hot_add *)recv_buffer;
1379 			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1380 				/*
1381 				 * This is a normal hot-add request specifying
1382 				 * hot-add memory.
1383 				 */
1384 				ha_pg_range = &ha_msg->range;
1385 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1386 				dm->ha_wrk.ha_region_range.page_range = 0;
1387 			} else {
1388 				/*
1389 				 * Host is specifying that we first hot-add
1390 				 * a region and then partially populate this
1391 				 * region.
1392 				 */
1393 				dm->host_specified_ha_region = true;
1394 				ha_pg_range = &ha_msg->range;
1395 				ha_region = &ha_pg_range[1];
1396 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1397 				dm->ha_wrk.ha_region_range = *ha_region;
1398 			}
1399 			schedule_work(&dm_device.ha_wrk.wrk);
1400 			break;
1401 
1402 		case DM_INFO_MESSAGE:
1403 			process_info(dm, (struct dm_info_msg *)dm_msg);
1404 			break;
1405 
1406 		default:
1407 			pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1408 
1409 		}
1410 	}
1411 
1412 }
1413 
1414 static int balloon_probe(struct hv_device *dev,
1415 			const struct hv_vmbus_device_id *dev_id)
1416 {
1417 	int ret, t;
1418 	struct dm_version_request version_req;
1419 	struct dm_capabilities cap_msg;
1420 
1421 	do_hot_add = hot_add;
1422 
1423 	/*
1424 	 * First allocate a send buffer.
1425 	 */
1426 
1427 	send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1428 	if (!send_buffer)
1429 		return -ENOMEM;
1430 
1431 	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1432 			balloon_onchannelcallback, dev);
1433 
1434 	if (ret)
1435 		goto probe_error0;
1436 
1437 	dm_device.dev = dev;
1438 	dm_device.state = DM_INITIALIZING;
1439 	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1440 	init_completion(&dm_device.host_event);
1441 	init_completion(&dm_device.config_event);
1442 	init_completion(&dm_device.waiter_event);
1443 	INIT_LIST_HEAD(&dm_device.ha_region_list);
1444 	mutex_init(&dm_device.ha_region_mutex);
1445 	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1446 	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1447 	dm_device.host_specified_ha_region = false;
1448 
1449 	dm_device.thread =
1450 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1451 	if (IS_ERR(dm_device.thread)) {
1452 		ret = PTR_ERR(dm_device.thread);
1453 		goto probe_error1;
1454 	}
1455 
1456 #ifdef CONFIG_MEMORY_HOTPLUG
1457 	set_online_page_callback(&hv_online_page);
1458 	register_memory_notifier(&hv_memory_nb);
1459 #endif
1460 
1461 	hv_set_drvdata(dev, &dm_device);
1462 	/*
1463 	 * Initiate the hand shake with the host and negotiate
1464 	 * a version that the host can support. We start with the
1465 	 * highest version number and go down if the host cannot
1466 	 * support it.
1467 	 */
1468 	memset(&version_req, 0, sizeof(struct dm_version_request));
1469 	version_req.hdr.type = DM_VERSION_REQUEST;
1470 	version_req.hdr.size = sizeof(struct dm_version_request);
1471 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1472 	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN8;
1473 	version_req.is_last_attempt = 0;
1474 
1475 	ret = vmbus_sendpacket(dev->channel, &version_req,
1476 				sizeof(struct dm_version_request),
1477 				(unsigned long)NULL,
1478 				VM_PKT_DATA_INBAND, 0);
1479 	if (ret)
1480 		goto probe_error2;
1481 
1482 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1483 	if (t == 0) {
1484 		ret = -ETIMEDOUT;
1485 		goto probe_error2;
1486 	}
1487 
1488 	/*
1489 	 * If we could not negotiate a compatible version with the host
1490 	 * fail the probe function.
1491 	 */
1492 	if (dm_device.state == DM_INIT_ERROR) {
1493 		ret = -ETIMEDOUT;
1494 		goto probe_error2;
1495 	}
1496 	/*
1497 	 * Now submit our capabilities to the host.
1498 	 */
1499 	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1500 	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1501 	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1502 	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1503 
1504 	cap_msg.caps.cap_bits.balloon = 1;
1505 	cap_msg.caps.cap_bits.hot_add = 1;
1506 
1507 	/*
1508 	 * Specify our alignment requirements as it relates
1509 	 * memory hot-add. Specify 128MB alignment.
1510 	 */
1511 	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1512 
1513 	/*
1514 	 * Currently the host does not use these
1515 	 * values and we set them to what is done in the
1516 	 * Windows driver.
1517 	 */
1518 	cap_msg.min_page_cnt = 0;
1519 	cap_msg.max_page_number = -1;
1520 
1521 	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1522 				sizeof(struct dm_capabilities),
1523 				(unsigned long)NULL,
1524 				VM_PKT_DATA_INBAND, 0);
1525 	if (ret)
1526 		goto probe_error2;
1527 
1528 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1529 	if (t == 0) {
1530 		ret = -ETIMEDOUT;
1531 		goto probe_error2;
1532 	}
1533 
1534 	/*
1535 	 * If the host does not like our capabilities,
1536 	 * fail the probe function.
1537 	 */
1538 	if (dm_device.state == DM_INIT_ERROR) {
1539 		ret = -ETIMEDOUT;
1540 		goto probe_error2;
1541 	}
1542 
1543 	dm_device.state = DM_INITIALIZED;
1544 
1545 	return 0;
1546 
1547 probe_error2:
1548 #ifdef CONFIG_MEMORY_HOTPLUG
1549 	restore_online_page_callback(&hv_online_page);
1550 #endif
1551 	kthread_stop(dm_device.thread);
1552 
1553 probe_error1:
1554 	vmbus_close(dev->channel);
1555 probe_error0:
1556 	kfree(send_buffer);
1557 	return ret;
1558 }
1559 
1560 static int balloon_remove(struct hv_device *dev)
1561 {
1562 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1563 	struct list_head *cur, *tmp;
1564 	struct hv_hotadd_state *has;
1565 
1566 	if (dm->num_pages_ballooned != 0)
1567 		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1568 
1569 	cancel_work_sync(&dm->balloon_wrk.wrk);
1570 	cancel_work_sync(&dm->ha_wrk.wrk);
1571 
1572 	vmbus_close(dev->channel);
1573 	kthread_stop(dm->thread);
1574 	kfree(send_buffer);
1575 #ifdef CONFIG_MEMORY_HOTPLUG
1576 	restore_online_page_callback(&hv_online_page);
1577 	unregister_memory_notifier(&hv_memory_nb);
1578 #endif
1579 	list_for_each_safe(cur, tmp, &dm->ha_region_list) {
1580 		has = list_entry(cur, struct hv_hotadd_state, list);
1581 		list_del(&has->list);
1582 		kfree(has);
1583 	}
1584 
1585 	return 0;
1586 }
1587 
1588 static const struct hv_vmbus_device_id id_table[] = {
1589 	/* Dynamic Memory Class ID */
1590 	/* 525074DC-8985-46e2-8057-A307DC18A502 */
1591 	{ HV_DM_GUID, },
1592 	{ },
1593 };
1594 
1595 MODULE_DEVICE_TABLE(vmbus, id_table);
1596 
1597 static  struct hv_driver balloon_drv = {
1598 	.name = "hv_balloon",
1599 	.id_table = id_table,
1600 	.probe =  balloon_probe,
1601 	.remove =  balloon_remove,
1602 };
1603 
1604 static int __init init_balloon_drv(void)
1605 {
1606 
1607 	return vmbus_driver_register(&balloon_drv);
1608 }
1609 
1610 module_init(init_balloon_drv);
1611 
1612 MODULE_DESCRIPTION("Hyper-V Balloon");
1613 MODULE_LICENSE("GPL");
1614