xref: /openbmc/linux/drivers/hv/hv_balloon.c (revision c0c45238)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012, Microsoft Corporation.
4  *
5  * Author:
6  *   K. Y. Srinivasan <kys@microsoft.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/jiffies.h>
13 #include <linux/mman.h>
14 #include <linux/delay.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/kthread.h>
19 #include <linux/completion.h>
20 #include <linux/count_zeros.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/memory.h>
23 #include <linux/notifier.h>
24 #include <linux/percpu_counter.h>
25 #include <linux/page_reporting.h>
26 
27 #include <linux/hyperv.h>
28 #include <asm/hyperv-tlfs.h>
29 
30 #include <asm/mshyperv.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include "hv_trace_balloon.h"
34 
35 /*
36  * We begin with definitions supporting the Dynamic Memory protocol
37  * with the host.
38  *
39  * Begin protocol definitions.
40  */
41 
42 
43 
44 /*
45  * Protocol versions. The low word is the minor version, the high word the major
46  * version.
47  *
48  * History:
49  * Initial version 1.0
50  * Changed to 0.1 on 2009/03/25
51  * Changes to 0.2 on 2009/05/14
52  * Changes to 0.3 on 2009/12/03
53  * Changed to 1.0 on 2011/04/05
54  */
55 
56 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
57 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
58 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
59 
60 enum {
61 	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
62 	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
63 	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
64 
65 	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
66 	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
67 	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
68 
69 	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
70 };
71 
72 
73 
74 /*
75  * Message Types
76  */
77 
78 enum dm_message_type {
79 	/*
80 	 * Version 0.3
81 	 */
82 	DM_ERROR			= 0,
83 	DM_VERSION_REQUEST		= 1,
84 	DM_VERSION_RESPONSE		= 2,
85 	DM_CAPABILITIES_REPORT		= 3,
86 	DM_CAPABILITIES_RESPONSE	= 4,
87 	DM_STATUS_REPORT		= 5,
88 	DM_BALLOON_REQUEST		= 6,
89 	DM_BALLOON_RESPONSE		= 7,
90 	DM_UNBALLOON_REQUEST		= 8,
91 	DM_UNBALLOON_RESPONSE		= 9,
92 	DM_MEM_HOT_ADD_REQUEST		= 10,
93 	DM_MEM_HOT_ADD_RESPONSE		= 11,
94 	DM_VERSION_03_MAX		= 11,
95 	/*
96 	 * Version 1.0.
97 	 */
98 	DM_INFO_MESSAGE			= 12,
99 	DM_VERSION_1_MAX		= 12
100 };
101 
102 
103 /*
104  * Structures defining the dynamic memory management
105  * protocol.
106  */
107 
108 union dm_version {
109 	struct {
110 		__u16 minor_version;
111 		__u16 major_version;
112 	};
113 	__u32 version;
114 } __packed;
115 
116 
117 union dm_caps {
118 	struct {
119 		__u64 balloon:1;
120 		__u64 hot_add:1;
121 		/*
122 		 * To support guests that may have alignment
123 		 * limitations on hot-add, the guest can specify
124 		 * its alignment requirements; a value of n
125 		 * represents an alignment of 2^n in mega bytes.
126 		 */
127 		__u64 hot_add_alignment:4;
128 		__u64 reservedz:58;
129 	} cap_bits;
130 	__u64 caps;
131 } __packed;
132 
133 union dm_mem_page_range {
134 	struct  {
135 		/*
136 		 * The PFN number of the first page in the range.
137 		 * 40 bits is the architectural limit of a PFN
138 		 * number for AMD64.
139 		 */
140 		__u64 start_page:40;
141 		/*
142 		 * The number of pages in the range.
143 		 */
144 		__u64 page_cnt:24;
145 	} finfo;
146 	__u64  page_range;
147 } __packed;
148 
149 
150 
151 /*
152  * The header for all dynamic memory messages:
153  *
154  * type: Type of the message.
155  * size: Size of the message in bytes; including the header.
156  * trans_id: The guest is responsible for manufacturing this ID.
157  */
158 
159 struct dm_header {
160 	__u16 type;
161 	__u16 size;
162 	__u32 trans_id;
163 } __packed;
164 
165 /*
166  * A generic message format for dynamic memory.
167  * Specific message formats are defined later in the file.
168  */
169 
170 struct dm_message {
171 	struct dm_header hdr;
172 	__u8 data[]; /* enclosed message */
173 } __packed;
174 
175 
176 /*
177  * Specific message types supporting the dynamic memory protocol.
178  */
179 
180 /*
181  * Version negotiation message. Sent from the guest to the host.
182  * The guest is free to try different versions until the host
183  * accepts the version.
184  *
185  * dm_version: The protocol version requested.
186  * is_last_attempt: If TRUE, this is the last version guest will request.
187  * reservedz: Reserved field, set to zero.
188  */
189 
190 struct dm_version_request {
191 	struct dm_header hdr;
192 	union dm_version version;
193 	__u32 is_last_attempt:1;
194 	__u32 reservedz:31;
195 } __packed;
196 
197 /*
198  * Version response message; Host to Guest and indicates
199  * if the host has accepted the version sent by the guest.
200  *
201  * is_accepted: If TRUE, host has accepted the version and the guest
202  * should proceed to the next stage of the protocol. FALSE indicates that
203  * guest should re-try with a different version.
204  *
205  * reservedz: Reserved field, set to zero.
206  */
207 
208 struct dm_version_response {
209 	struct dm_header hdr;
210 	__u64 is_accepted:1;
211 	__u64 reservedz:63;
212 } __packed;
213 
214 /*
215  * Message reporting capabilities. This is sent from the guest to the
216  * host.
217  */
218 
219 struct dm_capabilities {
220 	struct dm_header hdr;
221 	union dm_caps caps;
222 	__u64 min_page_cnt;
223 	__u64 max_page_number;
224 } __packed;
225 
226 /*
227  * Response to the capabilities message. This is sent from the host to the
228  * guest. This message notifies if the host has accepted the guest's
229  * capabilities. If the host has not accepted, the guest must shutdown
230  * the service.
231  *
232  * is_accepted: Indicates if the host has accepted guest's capabilities.
233  * reservedz: Must be 0.
234  */
235 
236 struct dm_capabilities_resp_msg {
237 	struct dm_header hdr;
238 	__u64 is_accepted:1;
239 	__u64 reservedz:63;
240 } __packed;
241 
242 /*
243  * This message is used to report memory pressure from the guest.
244  * This message is not part of any transaction and there is no
245  * response to this message.
246  *
247  * num_avail: Available memory in pages.
248  * num_committed: Committed memory in pages.
249  * page_file_size: The accumulated size of all page files
250  *		   in the system in pages.
251  * zero_free: The nunber of zero and free pages.
252  * page_file_writes: The writes to the page file in pages.
253  * io_diff: An indicator of file cache efficiency or page file activity,
254  *	    calculated as File Cache Page Fault Count - Page Read Count.
255  *	    This value is in pages.
256  *
257  * Some of these metrics are Windows specific and fortunately
258  * the algorithm on the host side that computes the guest memory
259  * pressure only uses num_committed value.
260  */
261 
262 struct dm_status {
263 	struct dm_header hdr;
264 	__u64 num_avail;
265 	__u64 num_committed;
266 	__u64 page_file_size;
267 	__u64 zero_free;
268 	__u32 page_file_writes;
269 	__u32 io_diff;
270 } __packed;
271 
272 
273 /*
274  * Message to ask the guest to allocate memory - balloon up message.
275  * This message is sent from the host to the guest. The guest may not be
276  * able to allocate as much memory as requested.
277  *
278  * num_pages: number of pages to allocate.
279  */
280 
281 struct dm_balloon {
282 	struct dm_header hdr;
283 	__u32 num_pages;
284 	__u32 reservedz;
285 } __packed;
286 
287 
288 /*
289  * Balloon response message; this message is sent from the guest
290  * to the host in response to the balloon message.
291  *
292  * reservedz: Reserved; must be set to zero.
293  * more_pages: If FALSE, this is the last message of the transaction.
294  * if TRUE there will atleast one more message from the guest.
295  *
296  * range_count: The number of ranges in the range array.
297  *
298  * range_array: An array of page ranges returned to the host.
299  *
300  */
301 
302 struct dm_balloon_response {
303 	struct dm_header hdr;
304 	__u32 reservedz;
305 	__u32 more_pages:1;
306 	__u32 range_count:31;
307 	union dm_mem_page_range range_array[];
308 } __packed;
309 
310 /*
311  * Un-balloon message; this message is sent from the host
312  * to the guest to give guest more memory.
313  *
314  * more_pages: If FALSE, this is the last message of the transaction.
315  * if TRUE there will atleast one more message from the guest.
316  *
317  * reservedz: Reserved; must be set to zero.
318  *
319  * range_count: The number of ranges in the range array.
320  *
321  * range_array: An array of page ranges returned to the host.
322  *
323  */
324 
325 struct dm_unballoon_request {
326 	struct dm_header hdr;
327 	__u32 more_pages:1;
328 	__u32 reservedz:31;
329 	__u32 range_count;
330 	union dm_mem_page_range range_array[];
331 } __packed;
332 
333 /*
334  * Un-balloon response message; this message is sent from the guest
335  * to the host in response to an unballoon request.
336  *
337  */
338 
339 struct dm_unballoon_response {
340 	struct dm_header hdr;
341 } __packed;
342 
343 
344 /*
345  * Hot add request message. Message sent from the host to the guest.
346  *
347  * mem_range: Memory range to hot add.
348  *
349  */
350 
351 struct dm_hot_add {
352 	struct dm_header hdr;
353 	union dm_mem_page_range range;
354 } __packed;
355 
356 /*
357  * Hot add response message.
358  * This message is sent by the guest to report the status of a hot add request.
359  * If page_count is less than the requested page count, then the host should
360  * assume all further hot add requests will fail, since this indicates that
361  * the guest has hit an upper physical memory barrier.
362  *
363  * Hot adds may also fail due to low resources; in this case, the guest must
364  * not complete this message until the hot add can succeed, and the host must
365  * not send a new hot add request until the response is sent.
366  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
367  * times it fails the request.
368  *
369  *
370  * page_count: number of pages that were successfully hot added.
371  *
372  * result: result of the operation 1: success, 0: failure.
373  *
374  */
375 
376 struct dm_hot_add_response {
377 	struct dm_header hdr;
378 	__u32 page_count;
379 	__u32 result;
380 } __packed;
381 
382 /*
383  * Types of information sent from host to the guest.
384  */
385 
386 enum dm_info_type {
387 	INFO_TYPE_MAX_PAGE_CNT = 0,
388 	MAX_INFO_TYPE
389 };
390 
391 
392 /*
393  * Header for the information message.
394  */
395 
396 struct dm_info_header {
397 	enum dm_info_type type;
398 	__u32 data_size;
399 } __packed;
400 
401 /*
402  * This message is sent from the host to the guest to pass
403  * some relevant information (win8 addition).
404  *
405  * reserved: no used.
406  * info_size: size of the information blob.
407  * info: information blob.
408  */
409 
410 struct dm_info_msg {
411 	struct dm_header hdr;
412 	__u32 reserved;
413 	__u32 info_size;
414 	__u8  info[];
415 };
416 
417 /*
418  * End protocol definitions.
419  */
420 
421 /*
422  * State to manage hot adding memory into the guest.
423  * The range start_pfn : end_pfn specifies the range
424  * that the host has asked us to hot add. The range
425  * start_pfn : ha_end_pfn specifies the range that we have
426  * currently hot added. We hot add in multiples of 128M
427  * chunks; it is possible that we may not be able to bring
428  * online all the pages in the region. The range
429  * covered_start_pfn:covered_end_pfn defines the pages that can
430  * be brough online.
431  */
432 
433 struct hv_hotadd_state {
434 	struct list_head list;
435 	unsigned long start_pfn;
436 	unsigned long covered_start_pfn;
437 	unsigned long covered_end_pfn;
438 	unsigned long ha_end_pfn;
439 	unsigned long end_pfn;
440 	/*
441 	 * A list of gaps.
442 	 */
443 	struct list_head gap_list;
444 };
445 
446 struct hv_hotadd_gap {
447 	struct list_head list;
448 	unsigned long start_pfn;
449 	unsigned long end_pfn;
450 };
451 
452 struct balloon_state {
453 	__u32 num_pages;
454 	struct work_struct wrk;
455 };
456 
457 struct hot_add_wrk {
458 	union dm_mem_page_range ha_page_range;
459 	union dm_mem_page_range ha_region_range;
460 	struct work_struct wrk;
461 };
462 
463 static bool allow_hibernation;
464 static bool hot_add = true;
465 static bool do_hot_add;
466 /*
467  * Delay reporting memory pressure by
468  * the specified number of seconds.
469  */
470 static uint pressure_report_delay = 45;
471 
472 /*
473  * The last time we posted a pressure report to host.
474  */
475 static unsigned long last_post_time;
476 
477 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
478 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
479 
480 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
481 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
482 static atomic_t trans_id = ATOMIC_INIT(0);
483 
484 static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024);
485 
486 /*
487  * Driver specific state.
488  */
489 
490 enum hv_dm_state {
491 	DM_INITIALIZING = 0,
492 	DM_INITIALIZED,
493 	DM_BALLOON_UP,
494 	DM_BALLOON_DOWN,
495 	DM_HOT_ADD,
496 	DM_INIT_ERROR
497 };
498 
499 
500 static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
501 static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
502 #define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
503 #define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
504 
505 struct hv_dynmem_device {
506 	struct hv_device *dev;
507 	enum hv_dm_state state;
508 	struct completion host_event;
509 	struct completion config_event;
510 
511 	/*
512 	 * Number of pages we have currently ballooned out.
513 	 */
514 	unsigned int num_pages_ballooned;
515 	unsigned int num_pages_onlined;
516 	unsigned int num_pages_added;
517 
518 	/*
519 	 * State to manage the ballooning (up) operation.
520 	 */
521 	struct balloon_state balloon_wrk;
522 
523 	/*
524 	 * State to execute the "hot-add" operation.
525 	 */
526 	struct hot_add_wrk ha_wrk;
527 
528 	/*
529 	 * This state tracks if the host has specified a hot-add
530 	 * region.
531 	 */
532 	bool host_specified_ha_region;
533 
534 	/*
535 	 * State to synchronize hot-add.
536 	 */
537 	struct completion  ol_waitevent;
538 	/*
539 	 * This thread handles hot-add
540 	 * requests from the host as well as notifying
541 	 * the host with regards to memory pressure in
542 	 * the guest.
543 	 */
544 	struct task_struct *thread;
545 
546 	/*
547 	 * Protects ha_region_list, num_pages_onlined counter and individual
548 	 * regions from ha_region_list.
549 	 */
550 	spinlock_t ha_lock;
551 
552 	/*
553 	 * A list of hot-add regions.
554 	 */
555 	struct list_head ha_region_list;
556 
557 	/*
558 	 * We start with the highest version we can support
559 	 * and downgrade based on the host; we save here the
560 	 * next version to try.
561 	 */
562 	__u32 next_version;
563 
564 	/*
565 	 * The negotiated version agreed by host.
566 	 */
567 	__u32 version;
568 
569 	struct page_reporting_dev_info pr_dev_info;
570 };
571 
572 static struct hv_dynmem_device dm_device;
573 
574 static void post_status(struct hv_dynmem_device *dm);
575 
576 #ifdef CONFIG_MEMORY_HOTPLUG
577 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
578 				     unsigned long pfn)
579 {
580 	struct hv_hotadd_gap *gap;
581 
582 	/* The page is not backed. */
583 	if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
584 		return false;
585 
586 	/* Check for gaps. */
587 	list_for_each_entry(gap, &has->gap_list, list) {
588 		if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
589 			return false;
590 	}
591 
592 	return true;
593 }
594 
595 static unsigned long hv_page_offline_check(unsigned long start_pfn,
596 					   unsigned long nr_pages)
597 {
598 	unsigned long pfn = start_pfn, count = 0;
599 	struct hv_hotadd_state *has;
600 	bool found;
601 
602 	while (pfn < start_pfn + nr_pages) {
603 		/*
604 		 * Search for HAS which covers the pfn and when we find one
605 		 * count how many consequitive PFNs are covered.
606 		 */
607 		found = false;
608 		list_for_each_entry(has, &dm_device.ha_region_list, list) {
609 			while ((pfn >= has->start_pfn) &&
610 			       (pfn < has->end_pfn) &&
611 			       (pfn < start_pfn + nr_pages)) {
612 				found = true;
613 				if (has_pfn_is_backed(has, pfn))
614 					count++;
615 				pfn++;
616 			}
617 		}
618 
619 		/*
620 		 * This PFN is not in any HAS (e.g. we're offlining a region
621 		 * which was present at boot), no need to account for it. Go
622 		 * to the next one.
623 		 */
624 		if (!found)
625 			pfn++;
626 	}
627 
628 	return count;
629 }
630 
631 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
632 			      void *v)
633 {
634 	struct memory_notify *mem = (struct memory_notify *)v;
635 	unsigned long flags, pfn_count;
636 
637 	switch (val) {
638 	case MEM_ONLINE:
639 	case MEM_CANCEL_ONLINE:
640 		complete(&dm_device.ol_waitevent);
641 		break;
642 
643 	case MEM_OFFLINE:
644 		spin_lock_irqsave(&dm_device.ha_lock, flags);
645 		pfn_count = hv_page_offline_check(mem->start_pfn,
646 						  mem->nr_pages);
647 		if (pfn_count <= dm_device.num_pages_onlined) {
648 			dm_device.num_pages_onlined -= pfn_count;
649 		} else {
650 			/*
651 			 * We're offlining more pages than we managed to online.
652 			 * This is unexpected. In any case don't let
653 			 * num_pages_onlined wrap around zero.
654 			 */
655 			WARN_ON_ONCE(1);
656 			dm_device.num_pages_onlined = 0;
657 		}
658 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
659 		break;
660 	case MEM_GOING_ONLINE:
661 	case MEM_GOING_OFFLINE:
662 	case MEM_CANCEL_OFFLINE:
663 		break;
664 	}
665 	return NOTIFY_OK;
666 }
667 
668 static struct notifier_block hv_memory_nb = {
669 	.notifier_call = hv_memory_notifier,
670 	.priority = 0
671 };
672 
673 /* Check if the particular page is backed and can be onlined and online it. */
674 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
675 {
676 	if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
677 		if (!PageOffline(pg))
678 			__SetPageOffline(pg);
679 		return;
680 	}
681 	if (PageOffline(pg))
682 		__ClearPageOffline(pg);
683 
684 	/* This frame is currently backed; online the page. */
685 	generic_online_page(pg, 0);
686 
687 	lockdep_assert_held(&dm_device.ha_lock);
688 	dm_device.num_pages_onlined++;
689 }
690 
691 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
692 				unsigned long start_pfn, unsigned long size)
693 {
694 	int i;
695 
696 	pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
697 	for (i = 0; i < size; i++)
698 		hv_page_online_one(has, pfn_to_page(start_pfn + i));
699 }
700 
701 static void hv_mem_hot_add(unsigned long start, unsigned long size,
702 				unsigned long pfn_count,
703 				struct hv_hotadd_state *has)
704 {
705 	int ret = 0;
706 	int i, nid;
707 	unsigned long start_pfn;
708 	unsigned long processed_pfn;
709 	unsigned long total_pfn = pfn_count;
710 	unsigned long flags;
711 
712 	for (i = 0; i < (size/HA_CHUNK); i++) {
713 		start_pfn = start + (i * HA_CHUNK);
714 
715 		spin_lock_irqsave(&dm_device.ha_lock, flags);
716 		has->ha_end_pfn +=  HA_CHUNK;
717 
718 		if (total_pfn > HA_CHUNK) {
719 			processed_pfn = HA_CHUNK;
720 			total_pfn -= HA_CHUNK;
721 		} else {
722 			processed_pfn = total_pfn;
723 			total_pfn = 0;
724 		}
725 
726 		has->covered_end_pfn +=  processed_pfn;
727 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
728 
729 		reinit_completion(&dm_device.ol_waitevent);
730 
731 		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
732 		ret = add_memory(nid, PFN_PHYS((start_pfn)),
733 				(HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE);
734 
735 		if (ret) {
736 			pr_err("hot_add memory failed error is %d\n", ret);
737 			if (ret == -EEXIST) {
738 				/*
739 				 * This error indicates that the error
740 				 * is not a transient failure. This is the
741 				 * case where the guest's physical address map
742 				 * precludes hot adding memory. Stop all further
743 				 * memory hot-add.
744 				 */
745 				do_hot_add = false;
746 			}
747 			spin_lock_irqsave(&dm_device.ha_lock, flags);
748 			has->ha_end_pfn -= HA_CHUNK;
749 			has->covered_end_pfn -=  processed_pfn;
750 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
751 			break;
752 		}
753 
754 		/*
755 		 * Wait for memory to get onlined. If the kernel onlined the
756 		 * memory when adding it, this will return directly. Otherwise,
757 		 * it will wait for user space to online the memory. This helps
758 		 * to avoid adding memory faster than it is getting onlined. As
759 		 * adding succeeded, it is ok to proceed even if the memory was
760 		 * not onlined in time.
761 		 */
762 		wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
763 		post_status(&dm_device);
764 	}
765 }
766 
767 static void hv_online_page(struct page *pg, unsigned int order)
768 {
769 	struct hv_hotadd_state *has;
770 	unsigned long flags;
771 	unsigned long pfn = page_to_pfn(pg);
772 
773 	spin_lock_irqsave(&dm_device.ha_lock, flags);
774 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
775 		/* The page belongs to a different HAS. */
776 		if ((pfn < has->start_pfn) ||
777 				(pfn + (1UL << order) > has->end_pfn))
778 			continue;
779 
780 		hv_bring_pgs_online(has, pfn, 1UL << order);
781 		break;
782 	}
783 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
784 }
785 
786 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
787 {
788 	struct hv_hotadd_state *has;
789 	struct hv_hotadd_gap *gap;
790 	unsigned long residual, new_inc;
791 	int ret = 0;
792 	unsigned long flags;
793 
794 	spin_lock_irqsave(&dm_device.ha_lock, flags);
795 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
796 		/*
797 		 * If the pfn range we are dealing with is not in the current
798 		 * "hot add block", move on.
799 		 */
800 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
801 			continue;
802 
803 		/*
804 		 * If the current start pfn is not where the covered_end
805 		 * is, create a gap and update covered_end_pfn.
806 		 */
807 		if (has->covered_end_pfn != start_pfn) {
808 			gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
809 			if (!gap) {
810 				ret = -ENOMEM;
811 				break;
812 			}
813 
814 			INIT_LIST_HEAD(&gap->list);
815 			gap->start_pfn = has->covered_end_pfn;
816 			gap->end_pfn = start_pfn;
817 			list_add_tail(&gap->list, &has->gap_list);
818 
819 			has->covered_end_pfn = start_pfn;
820 		}
821 
822 		/*
823 		 * If the current hot add-request extends beyond
824 		 * our current limit; extend it.
825 		 */
826 		if ((start_pfn + pfn_cnt) > has->end_pfn) {
827 			residual = (start_pfn + pfn_cnt - has->end_pfn);
828 			/*
829 			 * Extend the region by multiples of HA_CHUNK.
830 			 */
831 			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
832 			if (residual % HA_CHUNK)
833 				new_inc += HA_CHUNK;
834 
835 			has->end_pfn += new_inc;
836 		}
837 
838 		ret = 1;
839 		break;
840 	}
841 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
842 
843 	return ret;
844 }
845 
846 static unsigned long handle_pg_range(unsigned long pg_start,
847 					unsigned long pg_count)
848 {
849 	unsigned long start_pfn = pg_start;
850 	unsigned long pfn_cnt = pg_count;
851 	unsigned long size;
852 	struct hv_hotadd_state *has;
853 	unsigned long pgs_ol = 0;
854 	unsigned long old_covered_state;
855 	unsigned long res = 0, flags;
856 
857 	pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
858 		pg_start);
859 
860 	spin_lock_irqsave(&dm_device.ha_lock, flags);
861 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
862 		/*
863 		 * If the pfn range we are dealing with is not in the current
864 		 * "hot add block", move on.
865 		 */
866 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
867 			continue;
868 
869 		old_covered_state = has->covered_end_pfn;
870 
871 		if (start_pfn < has->ha_end_pfn) {
872 			/*
873 			 * This is the case where we are backing pages
874 			 * in an already hot added region. Bring
875 			 * these pages online first.
876 			 */
877 			pgs_ol = has->ha_end_pfn - start_pfn;
878 			if (pgs_ol > pfn_cnt)
879 				pgs_ol = pfn_cnt;
880 
881 			has->covered_end_pfn +=  pgs_ol;
882 			pfn_cnt -= pgs_ol;
883 			/*
884 			 * Check if the corresponding memory block is already
885 			 * online. It is possible to observe struct pages still
886 			 * being uninitialized here so check section instead.
887 			 * In case the section is online we need to bring the
888 			 * rest of pfns (which were not backed previously)
889 			 * online too.
890 			 */
891 			if (start_pfn > has->start_pfn &&
892 			    online_section_nr(pfn_to_section_nr(start_pfn)))
893 				hv_bring_pgs_online(has, start_pfn, pgs_ol);
894 
895 		}
896 
897 		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
898 			/*
899 			 * We have some residual hot add range
900 			 * that needs to be hot added; hot add
901 			 * it now. Hot add a multiple of
902 			 * of HA_CHUNK that fully covers the pages
903 			 * we have.
904 			 */
905 			size = (has->end_pfn - has->ha_end_pfn);
906 			if (pfn_cnt <= size) {
907 				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
908 				if (pfn_cnt % HA_CHUNK)
909 					size += HA_CHUNK;
910 			} else {
911 				pfn_cnt = size;
912 			}
913 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
914 			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
915 			spin_lock_irqsave(&dm_device.ha_lock, flags);
916 		}
917 		/*
918 		 * If we managed to online any pages that were given to us,
919 		 * we declare success.
920 		 */
921 		res = has->covered_end_pfn - old_covered_state;
922 		break;
923 	}
924 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
925 
926 	return res;
927 }
928 
929 static unsigned long process_hot_add(unsigned long pg_start,
930 					unsigned long pfn_cnt,
931 					unsigned long rg_start,
932 					unsigned long rg_size)
933 {
934 	struct hv_hotadd_state *ha_region = NULL;
935 	int covered;
936 	unsigned long flags;
937 
938 	if (pfn_cnt == 0)
939 		return 0;
940 
941 	if (!dm_device.host_specified_ha_region) {
942 		covered = pfn_covered(pg_start, pfn_cnt);
943 		if (covered < 0)
944 			return 0;
945 
946 		if (covered)
947 			goto do_pg_range;
948 	}
949 
950 	/*
951 	 * If the host has specified a hot-add range; deal with it first.
952 	 */
953 
954 	if (rg_size != 0) {
955 		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
956 		if (!ha_region)
957 			return 0;
958 
959 		INIT_LIST_HEAD(&ha_region->list);
960 		INIT_LIST_HEAD(&ha_region->gap_list);
961 
962 		ha_region->start_pfn = rg_start;
963 		ha_region->ha_end_pfn = rg_start;
964 		ha_region->covered_start_pfn = pg_start;
965 		ha_region->covered_end_pfn = pg_start;
966 		ha_region->end_pfn = rg_start + rg_size;
967 
968 		spin_lock_irqsave(&dm_device.ha_lock, flags);
969 		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
970 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
971 	}
972 
973 do_pg_range:
974 	/*
975 	 * Process the page range specified; bringing them
976 	 * online if possible.
977 	 */
978 	return handle_pg_range(pg_start, pfn_cnt);
979 }
980 
981 #endif
982 
983 static void hot_add_req(struct work_struct *dummy)
984 {
985 	struct dm_hot_add_response resp;
986 #ifdef CONFIG_MEMORY_HOTPLUG
987 	unsigned long pg_start, pfn_cnt;
988 	unsigned long rg_start, rg_sz;
989 #endif
990 	struct hv_dynmem_device *dm = &dm_device;
991 
992 	memset(&resp, 0, sizeof(struct dm_hot_add_response));
993 	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
994 	resp.hdr.size = sizeof(struct dm_hot_add_response);
995 
996 #ifdef CONFIG_MEMORY_HOTPLUG
997 	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
998 	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
999 
1000 	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1001 	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1002 
1003 	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1004 		unsigned long region_size;
1005 		unsigned long region_start;
1006 
1007 		/*
1008 		 * The host has not specified the hot-add region.
1009 		 * Based on the hot-add page range being specified,
1010 		 * compute a hot-add region that can cover the pages
1011 		 * that need to be hot-added while ensuring the alignment
1012 		 * and size requirements of Linux as it relates to hot-add.
1013 		 */
1014 		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1015 		if (pfn_cnt % HA_CHUNK)
1016 			region_size += HA_CHUNK;
1017 
1018 		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1019 
1020 		rg_start = region_start;
1021 		rg_sz = region_size;
1022 	}
1023 
1024 	if (do_hot_add)
1025 		resp.page_count = process_hot_add(pg_start, pfn_cnt,
1026 						rg_start, rg_sz);
1027 
1028 	dm->num_pages_added += resp.page_count;
1029 #endif
1030 	/*
1031 	 * The result field of the response structure has the
1032 	 * following semantics:
1033 	 *
1034 	 * 1. If all or some pages hot-added: Guest should return success.
1035 	 *
1036 	 * 2. If no pages could be hot-added:
1037 	 *
1038 	 * If the guest returns success, then the host
1039 	 * will not attempt any further hot-add operations. This
1040 	 * signifies a permanent failure.
1041 	 *
1042 	 * If the guest returns failure, then this failure will be
1043 	 * treated as a transient failure and the host may retry the
1044 	 * hot-add operation after some delay.
1045 	 */
1046 	if (resp.page_count > 0)
1047 		resp.result = 1;
1048 	else if (!do_hot_add)
1049 		resp.result = 1;
1050 	else
1051 		resp.result = 0;
1052 
1053 	if (!do_hot_add || resp.page_count == 0) {
1054 		if (!allow_hibernation)
1055 			pr_err("Memory hot add failed\n");
1056 		else
1057 			pr_info("Ignore hot-add request!\n");
1058 	}
1059 
1060 	dm->state = DM_INITIALIZED;
1061 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1062 	vmbus_sendpacket(dm->dev->channel, &resp,
1063 			sizeof(struct dm_hot_add_response),
1064 			(unsigned long)NULL,
1065 			VM_PKT_DATA_INBAND, 0);
1066 }
1067 
1068 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1069 {
1070 	struct dm_info_header *info_hdr;
1071 
1072 	info_hdr = (struct dm_info_header *)msg->info;
1073 
1074 	switch (info_hdr->type) {
1075 	case INFO_TYPE_MAX_PAGE_CNT:
1076 		if (info_hdr->data_size == sizeof(__u64)) {
1077 			__u64 *max_page_count = (__u64 *)&info_hdr[1];
1078 
1079 			pr_info("Max. dynamic memory size: %llu MB\n",
1080 				(*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1081 		}
1082 
1083 		break;
1084 	default:
1085 		pr_warn("Received Unknown type: %d\n", info_hdr->type);
1086 	}
1087 }
1088 
1089 static unsigned long compute_balloon_floor(void)
1090 {
1091 	unsigned long min_pages;
1092 	unsigned long nr_pages = totalram_pages();
1093 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1094 	/* Simple continuous piecewiese linear function:
1095 	 *  max MiB -> min MiB  gradient
1096 	 *       0         0
1097 	 *      16        16
1098 	 *      32        24
1099 	 *     128        72    (1/2)
1100 	 *     512       168    (1/4)
1101 	 *    2048       360    (1/8)
1102 	 *    8192       744    (1/16)
1103 	 *   32768      1512	(1/32)
1104 	 */
1105 	if (nr_pages < MB2PAGES(128))
1106 		min_pages = MB2PAGES(8) + (nr_pages >> 1);
1107 	else if (nr_pages < MB2PAGES(512))
1108 		min_pages = MB2PAGES(40) + (nr_pages >> 2);
1109 	else if (nr_pages < MB2PAGES(2048))
1110 		min_pages = MB2PAGES(104) + (nr_pages >> 3);
1111 	else if (nr_pages < MB2PAGES(8192))
1112 		min_pages = MB2PAGES(232) + (nr_pages >> 4);
1113 	else
1114 		min_pages = MB2PAGES(488) + (nr_pages >> 5);
1115 #undef MB2PAGES
1116 	return min_pages;
1117 }
1118 
1119 /*
1120  * Post our status as it relates memory pressure to the
1121  * host. Host expects the guests to post this status
1122  * periodically at 1 second intervals.
1123  *
1124  * The metrics specified in this protocol are very Windows
1125  * specific and so we cook up numbers here to convey our memory
1126  * pressure.
1127  */
1128 
1129 static void post_status(struct hv_dynmem_device *dm)
1130 {
1131 	struct dm_status status;
1132 	unsigned long now = jiffies;
1133 	unsigned long last_post = last_post_time;
1134 	unsigned long num_pages_avail, num_pages_committed;
1135 
1136 	if (pressure_report_delay > 0) {
1137 		--pressure_report_delay;
1138 		return;
1139 	}
1140 
1141 	if (!time_after(now, (last_post_time + HZ)))
1142 		return;
1143 
1144 	memset(&status, 0, sizeof(struct dm_status));
1145 	status.hdr.type = DM_STATUS_REPORT;
1146 	status.hdr.size = sizeof(struct dm_status);
1147 	status.hdr.trans_id = atomic_inc_return(&trans_id);
1148 
1149 	/*
1150 	 * The host expects the guest to report free and committed memory.
1151 	 * Furthermore, the host expects the pressure information to include
1152 	 * the ballooned out pages. For a given amount of memory that we are
1153 	 * managing we need to compute a floor below which we should not
1154 	 * balloon. Compute this and add it to the pressure report.
1155 	 * We also need to report all offline pages (num_pages_added -
1156 	 * num_pages_onlined) as committed to the host, otherwise it can try
1157 	 * asking us to balloon them out.
1158 	 */
1159 	num_pages_avail = si_mem_available();
1160 	num_pages_committed = vm_memory_committed() +
1161 		dm->num_pages_ballooned +
1162 		(dm->num_pages_added > dm->num_pages_onlined ?
1163 		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1164 		compute_balloon_floor();
1165 
1166 	trace_balloon_status(num_pages_avail, num_pages_committed,
1167 			     vm_memory_committed(), dm->num_pages_ballooned,
1168 			     dm->num_pages_added, dm->num_pages_onlined);
1169 
1170 	/* Convert numbers of pages into numbers of HV_HYP_PAGEs. */
1171 	status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE;
1172 	status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE;
1173 
1174 	/*
1175 	 * If our transaction ID is no longer current, just don't
1176 	 * send the status. This can happen if we were interrupted
1177 	 * after we picked our transaction ID.
1178 	 */
1179 	if (status.hdr.trans_id != atomic_read(&trans_id))
1180 		return;
1181 
1182 	/*
1183 	 * If the last post time that we sampled has changed,
1184 	 * we have raced, don't post the status.
1185 	 */
1186 	if (last_post != last_post_time)
1187 		return;
1188 
1189 	last_post_time = jiffies;
1190 	vmbus_sendpacket(dm->dev->channel, &status,
1191 				sizeof(struct dm_status),
1192 				(unsigned long)NULL,
1193 				VM_PKT_DATA_INBAND, 0);
1194 
1195 }
1196 
1197 static void free_balloon_pages(struct hv_dynmem_device *dm,
1198 			 union dm_mem_page_range *range_array)
1199 {
1200 	int num_pages = range_array->finfo.page_cnt;
1201 	__u64 start_frame = range_array->finfo.start_page;
1202 	struct page *pg;
1203 	int i;
1204 
1205 	for (i = 0; i < num_pages; i++) {
1206 		pg = pfn_to_page(i + start_frame);
1207 		__ClearPageOffline(pg);
1208 		__free_page(pg);
1209 		dm->num_pages_ballooned--;
1210 		adjust_managed_page_count(pg, 1);
1211 	}
1212 }
1213 
1214 
1215 
1216 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1217 					unsigned int num_pages,
1218 					struct dm_balloon_response *bl_resp,
1219 					int alloc_unit)
1220 {
1221 	unsigned int i, j;
1222 	struct page *pg;
1223 
1224 	for (i = 0; i < num_pages / alloc_unit; i++) {
1225 		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1226 			HV_HYP_PAGE_SIZE)
1227 			return i * alloc_unit;
1228 
1229 		/*
1230 		 * We execute this code in a thread context. Furthermore,
1231 		 * we don't want the kernel to try too hard.
1232 		 */
1233 		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1234 				__GFP_NOMEMALLOC | __GFP_NOWARN,
1235 				get_order(alloc_unit << PAGE_SHIFT));
1236 
1237 		if (!pg)
1238 			return i * alloc_unit;
1239 
1240 		dm->num_pages_ballooned += alloc_unit;
1241 
1242 		/*
1243 		 * If we allocatted 2M pages; split them so we
1244 		 * can free them in any order we get.
1245 		 */
1246 
1247 		if (alloc_unit != 1)
1248 			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1249 
1250 		/* mark all pages offline */
1251 		for (j = 0; j < alloc_unit; j++) {
1252 			__SetPageOffline(pg + j);
1253 			adjust_managed_page_count(pg + j, -1);
1254 		}
1255 
1256 		bl_resp->range_count++;
1257 		bl_resp->range_array[i].finfo.start_page =
1258 			page_to_pfn(pg);
1259 		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1260 		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1261 
1262 	}
1263 
1264 	return i * alloc_unit;
1265 }
1266 
1267 static void balloon_up(struct work_struct *dummy)
1268 {
1269 	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1270 	unsigned int num_ballooned = 0;
1271 	struct dm_balloon_response *bl_resp;
1272 	int alloc_unit;
1273 	int ret;
1274 	bool done = false;
1275 	int i;
1276 	long avail_pages;
1277 	unsigned long floor;
1278 
1279 	/*
1280 	 * We will attempt 2M allocations. However, if we fail to
1281 	 * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1282 	 */
1283 	alloc_unit = PAGES_IN_2M;
1284 
1285 	avail_pages = si_mem_available();
1286 	floor = compute_balloon_floor();
1287 
1288 	/* Refuse to balloon below the floor. */
1289 	if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1290 		pr_info("Balloon request will be partially fulfilled. %s\n",
1291 			avail_pages < num_pages ? "Not enough memory." :
1292 			"Balloon floor reached.");
1293 
1294 		num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1295 	}
1296 
1297 	while (!done) {
1298 		memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1299 		bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1300 		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1301 		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1302 		bl_resp->more_pages = 1;
1303 
1304 		num_pages -= num_ballooned;
1305 		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1306 						    bl_resp, alloc_unit);
1307 
1308 		if (alloc_unit != 1 && num_ballooned == 0) {
1309 			alloc_unit = 1;
1310 			continue;
1311 		}
1312 
1313 		if (num_ballooned == 0 || num_ballooned == num_pages) {
1314 			pr_debug("Ballooned %u out of %u requested pages.\n",
1315 				num_pages, dm_device.balloon_wrk.num_pages);
1316 
1317 			bl_resp->more_pages = 0;
1318 			done = true;
1319 			dm_device.state = DM_INITIALIZED;
1320 		}
1321 
1322 		/*
1323 		 * We are pushing a lot of data through the channel;
1324 		 * deal with transient failures caused because of the
1325 		 * lack of space in the ring buffer.
1326 		 */
1327 
1328 		do {
1329 			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1330 			ret = vmbus_sendpacket(dm_device.dev->channel,
1331 						bl_resp,
1332 						bl_resp->hdr.size,
1333 						(unsigned long)NULL,
1334 						VM_PKT_DATA_INBAND, 0);
1335 
1336 			if (ret == -EAGAIN)
1337 				msleep(20);
1338 			post_status(&dm_device);
1339 		} while (ret == -EAGAIN);
1340 
1341 		if (ret) {
1342 			/*
1343 			 * Free up the memory we allocatted.
1344 			 */
1345 			pr_err("Balloon response failed\n");
1346 
1347 			for (i = 0; i < bl_resp->range_count; i++)
1348 				free_balloon_pages(&dm_device,
1349 						 &bl_resp->range_array[i]);
1350 
1351 			done = true;
1352 		}
1353 	}
1354 
1355 }
1356 
1357 static void balloon_down(struct hv_dynmem_device *dm,
1358 			struct dm_unballoon_request *req)
1359 {
1360 	union dm_mem_page_range *range_array = req->range_array;
1361 	int range_count = req->range_count;
1362 	struct dm_unballoon_response resp;
1363 	int i;
1364 	unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1365 
1366 	for (i = 0; i < range_count; i++) {
1367 		free_balloon_pages(dm, &range_array[i]);
1368 		complete(&dm_device.config_event);
1369 	}
1370 
1371 	pr_debug("Freed %u ballooned pages.\n",
1372 		prev_pages_ballooned - dm->num_pages_ballooned);
1373 
1374 	if (req->more_pages == 1)
1375 		return;
1376 
1377 	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1378 	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1379 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1380 	resp.hdr.size = sizeof(struct dm_unballoon_response);
1381 
1382 	vmbus_sendpacket(dm_device.dev->channel, &resp,
1383 				sizeof(struct dm_unballoon_response),
1384 				(unsigned long)NULL,
1385 				VM_PKT_DATA_INBAND, 0);
1386 
1387 	dm->state = DM_INITIALIZED;
1388 }
1389 
1390 static void balloon_onchannelcallback(void *context);
1391 
1392 static int dm_thread_func(void *dm_dev)
1393 {
1394 	struct hv_dynmem_device *dm = dm_dev;
1395 
1396 	while (!kthread_should_stop()) {
1397 		wait_for_completion_interruptible_timeout(
1398 						&dm_device.config_event, 1*HZ);
1399 		/*
1400 		 * The host expects us to post information on the memory
1401 		 * pressure every second.
1402 		 */
1403 		reinit_completion(&dm_device.config_event);
1404 		post_status(dm);
1405 	}
1406 
1407 	return 0;
1408 }
1409 
1410 
1411 static void version_resp(struct hv_dynmem_device *dm,
1412 			struct dm_version_response *vresp)
1413 {
1414 	struct dm_version_request version_req;
1415 	int ret;
1416 
1417 	if (vresp->is_accepted) {
1418 		/*
1419 		 * We are done; wakeup the
1420 		 * context waiting for version
1421 		 * negotiation.
1422 		 */
1423 		complete(&dm->host_event);
1424 		return;
1425 	}
1426 	/*
1427 	 * If there are more versions to try, continue
1428 	 * with negotiations; if not
1429 	 * shutdown the service since we are not able
1430 	 * to negotiate a suitable version number
1431 	 * with the host.
1432 	 */
1433 	if (dm->next_version == 0)
1434 		goto version_error;
1435 
1436 	memset(&version_req, 0, sizeof(struct dm_version_request));
1437 	version_req.hdr.type = DM_VERSION_REQUEST;
1438 	version_req.hdr.size = sizeof(struct dm_version_request);
1439 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1440 	version_req.version.version = dm->next_version;
1441 	dm->version = version_req.version.version;
1442 
1443 	/*
1444 	 * Set the next version to try in case current version fails.
1445 	 * Win7 protocol ought to be the last one to try.
1446 	 */
1447 	switch (version_req.version.version) {
1448 	case DYNMEM_PROTOCOL_VERSION_WIN8:
1449 		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1450 		version_req.is_last_attempt = 0;
1451 		break;
1452 	default:
1453 		dm->next_version = 0;
1454 		version_req.is_last_attempt = 1;
1455 	}
1456 
1457 	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1458 				sizeof(struct dm_version_request),
1459 				(unsigned long)NULL,
1460 				VM_PKT_DATA_INBAND, 0);
1461 
1462 	if (ret)
1463 		goto version_error;
1464 
1465 	return;
1466 
1467 version_error:
1468 	dm->state = DM_INIT_ERROR;
1469 	complete(&dm->host_event);
1470 }
1471 
1472 static void cap_resp(struct hv_dynmem_device *dm,
1473 			struct dm_capabilities_resp_msg *cap_resp)
1474 {
1475 	if (!cap_resp->is_accepted) {
1476 		pr_err("Capabilities not accepted by host\n");
1477 		dm->state = DM_INIT_ERROR;
1478 	}
1479 	complete(&dm->host_event);
1480 }
1481 
1482 static void balloon_onchannelcallback(void *context)
1483 {
1484 	struct hv_device *dev = context;
1485 	u32 recvlen;
1486 	u64 requestid;
1487 	struct dm_message *dm_msg;
1488 	struct dm_header *dm_hdr;
1489 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1490 	struct dm_balloon *bal_msg;
1491 	struct dm_hot_add *ha_msg;
1492 	union dm_mem_page_range *ha_pg_range;
1493 	union dm_mem_page_range *ha_region;
1494 
1495 	memset(recv_buffer, 0, sizeof(recv_buffer));
1496 	vmbus_recvpacket(dev->channel, recv_buffer,
1497 			 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1498 
1499 	if (recvlen > 0) {
1500 		dm_msg = (struct dm_message *)recv_buffer;
1501 		dm_hdr = &dm_msg->hdr;
1502 
1503 		switch (dm_hdr->type) {
1504 		case DM_VERSION_RESPONSE:
1505 			version_resp(dm,
1506 				 (struct dm_version_response *)dm_msg);
1507 			break;
1508 
1509 		case DM_CAPABILITIES_RESPONSE:
1510 			cap_resp(dm,
1511 				 (struct dm_capabilities_resp_msg *)dm_msg);
1512 			break;
1513 
1514 		case DM_BALLOON_REQUEST:
1515 			if (allow_hibernation) {
1516 				pr_info("Ignore balloon-up request!\n");
1517 				break;
1518 			}
1519 
1520 			if (dm->state == DM_BALLOON_UP)
1521 				pr_warn("Currently ballooning\n");
1522 			bal_msg = (struct dm_balloon *)recv_buffer;
1523 			dm->state = DM_BALLOON_UP;
1524 			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1525 			schedule_work(&dm_device.balloon_wrk.wrk);
1526 			break;
1527 
1528 		case DM_UNBALLOON_REQUEST:
1529 			if (allow_hibernation) {
1530 				pr_info("Ignore balloon-down request!\n");
1531 				break;
1532 			}
1533 
1534 			dm->state = DM_BALLOON_DOWN;
1535 			balloon_down(dm,
1536 				 (struct dm_unballoon_request *)recv_buffer);
1537 			break;
1538 
1539 		case DM_MEM_HOT_ADD_REQUEST:
1540 			if (dm->state == DM_HOT_ADD)
1541 				pr_warn("Currently hot-adding\n");
1542 			dm->state = DM_HOT_ADD;
1543 			ha_msg = (struct dm_hot_add *)recv_buffer;
1544 			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1545 				/*
1546 				 * This is a normal hot-add request specifying
1547 				 * hot-add memory.
1548 				 */
1549 				dm->host_specified_ha_region = false;
1550 				ha_pg_range = &ha_msg->range;
1551 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1552 				dm->ha_wrk.ha_region_range.page_range = 0;
1553 			} else {
1554 				/*
1555 				 * Host is specifying that we first hot-add
1556 				 * a region and then partially populate this
1557 				 * region.
1558 				 */
1559 				dm->host_specified_ha_region = true;
1560 				ha_pg_range = &ha_msg->range;
1561 				ha_region = &ha_pg_range[1];
1562 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1563 				dm->ha_wrk.ha_region_range = *ha_region;
1564 			}
1565 			schedule_work(&dm_device.ha_wrk.wrk);
1566 			break;
1567 
1568 		case DM_INFO_MESSAGE:
1569 			process_info(dm, (struct dm_info_msg *)dm_msg);
1570 			break;
1571 
1572 		default:
1573 			pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type);
1574 
1575 		}
1576 	}
1577 
1578 }
1579 
1580 /* Hyper-V only supports reporting 2MB pages or higher */
1581 #define HV_MIN_PAGE_REPORTING_ORDER	9
1582 #define HV_MIN_PAGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << HV_MIN_PAGE_REPORTING_ORDER)
1583 static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
1584 		    struct scatterlist *sgl, unsigned int nents)
1585 {
1586 	unsigned long flags;
1587 	struct hv_memory_hint *hint;
1588 	int i;
1589 	u64 status;
1590 	struct scatterlist *sg;
1591 
1592 	WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1593 	WARN_ON_ONCE(sgl->length < HV_MIN_PAGE_REPORTING_LEN);
1594 	local_irq_save(flags);
1595 	hint = *(struct hv_memory_hint **)this_cpu_ptr(hyperv_pcpu_input_arg);
1596 	if (!hint) {
1597 		local_irq_restore(flags);
1598 		return -ENOSPC;
1599 	}
1600 
1601 	hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
1602 	hint->reserved = 0;
1603 	for_each_sg(sgl, sg, nents, i) {
1604 		union hv_gpa_page_range *range;
1605 
1606 		range = &hint->ranges[i];
1607 		range->address_space = 0;
1608 		/* page reporting only reports 2MB pages or higher */
1609 		range->page.largepage = 1;
1610 		range->page.additional_pages =
1611 			(sg->length / HV_MIN_PAGE_REPORTING_LEN) - 1;
1612 		range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
1613 		range->base_large_pfn =
1614 			page_to_hvpfn(sg_page(sg)) >> HV_MIN_PAGE_REPORTING_ORDER;
1615 	}
1616 
1617 	status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
1618 				     hint, NULL);
1619 	local_irq_restore(flags);
1620 	if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS) {
1621 		pr_err("Cold memory discard hypercall failed with status %llx\n",
1622 			status);
1623 		return -EINVAL;
1624 	}
1625 
1626 	return 0;
1627 }
1628 
1629 static void enable_page_reporting(void)
1630 {
1631 	int ret;
1632 
1633 	/* Essentially, validating 'PAGE_REPORTING_MIN_ORDER' is big enough. */
1634 	if (pageblock_order < HV_MIN_PAGE_REPORTING_ORDER) {
1635 		pr_debug("Cold memory discard is only supported on 2MB pages and above\n");
1636 		return;
1637 	}
1638 
1639 	if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
1640 		pr_debug("Cold memory discard hint not supported by Hyper-V\n");
1641 		return;
1642 	}
1643 
1644 	BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1645 	dm_device.pr_dev_info.report = hv_free_page_report;
1646 	ret = page_reporting_register(&dm_device.pr_dev_info);
1647 	if (ret < 0) {
1648 		dm_device.pr_dev_info.report = NULL;
1649 		pr_err("Failed to enable cold memory discard: %d\n", ret);
1650 	} else {
1651 		pr_info("Cold memory discard hint enabled\n");
1652 	}
1653 }
1654 
1655 static void disable_page_reporting(void)
1656 {
1657 	if (dm_device.pr_dev_info.report) {
1658 		page_reporting_unregister(&dm_device.pr_dev_info);
1659 		dm_device.pr_dev_info.report = NULL;
1660 	}
1661 }
1662 
1663 static int ballooning_enabled(void)
1664 {
1665 	/*
1666 	 * Disable ballooning if the page size is not 4k (HV_HYP_PAGE_SIZE),
1667 	 * since currently it's unclear to us whether an unballoon request can
1668 	 * make sure all page ranges are guest page size aligned.
1669 	 */
1670 	if (PAGE_SIZE != HV_HYP_PAGE_SIZE) {
1671 		pr_info("Ballooning disabled because page size is not 4096 bytes\n");
1672 		return 0;
1673 	}
1674 
1675 	return 1;
1676 }
1677 
1678 static int hot_add_enabled(void)
1679 {
1680 	/*
1681 	 * Disable hot add on ARM64, because we currently rely on
1682 	 * memory_add_physaddr_to_nid() to get a node id of a hot add range,
1683 	 * however ARM64's memory_add_physaddr_to_nid() always return 0 and
1684 	 * DM_MEM_HOT_ADD_REQUEST doesn't have the NUMA node information for
1685 	 * add_memory().
1686 	 */
1687 	if (IS_ENABLED(CONFIG_ARM64)) {
1688 		pr_info("Memory hot add disabled on ARM64\n");
1689 		return 0;
1690 	}
1691 
1692 	return 1;
1693 }
1694 
1695 static int balloon_connect_vsp(struct hv_device *dev)
1696 {
1697 	struct dm_version_request version_req;
1698 	struct dm_capabilities cap_msg;
1699 	unsigned long t;
1700 	int ret;
1701 
1702 	/*
1703 	 * max_pkt_size should be large enough for one vmbus packet header plus
1704 	 * our receive buffer size. Hyper-V sends messages up to
1705 	 * HV_HYP_PAGE_SIZE bytes long on balloon channel.
1706 	 */
1707 	dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2;
1708 
1709 	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1710 			 balloon_onchannelcallback, dev);
1711 	if (ret)
1712 		return ret;
1713 
1714 	/*
1715 	 * Initiate the hand shake with the host and negotiate
1716 	 * a version that the host can support. We start with the
1717 	 * highest version number and go down if the host cannot
1718 	 * support it.
1719 	 */
1720 	memset(&version_req, 0, sizeof(struct dm_version_request));
1721 	version_req.hdr.type = DM_VERSION_REQUEST;
1722 	version_req.hdr.size = sizeof(struct dm_version_request);
1723 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1724 	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1725 	version_req.is_last_attempt = 0;
1726 	dm_device.version = version_req.version.version;
1727 
1728 	ret = vmbus_sendpacket(dev->channel, &version_req,
1729 			       sizeof(struct dm_version_request),
1730 			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1731 	if (ret)
1732 		goto out;
1733 
1734 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1735 	if (t == 0) {
1736 		ret = -ETIMEDOUT;
1737 		goto out;
1738 	}
1739 
1740 	/*
1741 	 * If we could not negotiate a compatible version with the host
1742 	 * fail the probe function.
1743 	 */
1744 	if (dm_device.state == DM_INIT_ERROR) {
1745 		ret = -EPROTO;
1746 		goto out;
1747 	}
1748 
1749 	pr_info("Using Dynamic Memory protocol version %u.%u\n",
1750 		DYNMEM_MAJOR_VERSION(dm_device.version),
1751 		DYNMEM_MINOR_VERSION(dm_device.version));
1752 
1753 	/*
1754 	 * Now submit our capabilities to the host.
1755 	 */
1756 	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1757 	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1758 	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1759 	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1760 
1761 	/*
1762 	 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1763 	 * currently still requires the bits to be set, so we have to add code
1764 	 * to fail the host's hot-add and balloon up/down requests, if any.
1765 	 */
1766 	cap_msg.caps.cap_bits.balloon = ballooning_enabled();
1767 	cap_msg.caps.cap_bits.hot_add = hot_add_enabled();
1768 
1769 	/*
1770 	 * Specify our alignment requirements as it relates
1771 	 * memory hot-add. Specify 128MB alignment.
1772 	 */
1773 	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1774 
1775 	/*
1776 	 * Currently the host does not use these
1777 	 * values and we set them to what is done in the
1778 	 * Windows driver.
1779 	 */
1780 	cap_msg.min_page_cnt = 0;
1781 	cap_msg.max_page_number = -1;
1782 
1783 	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1784 			       sizeof(struct dm_capabilities),
1785 			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1786 	if (ret)
1787 		goto out;
1788 
1789 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1790 	if (t == 0) {
1791 		ret = -ETIMEDOUT;
1792 		goto out;
1793 	}
1794 
1795 	/*
1796 	 * If the host does not like our capabilities,
1797 	 * fail the probe function.
1798 	 */
1799 	if (dm_device.state == DM_INIT_ERROR) {
1800 		ret = -EPROTO;
1801 		goto out;
1802 	}
1803 
1804 	return 0;
1805 out:
1806 	vmbus_close(dev->channel);
1807 	return ret;
1808 }
1809 
1810 static int balloon_probe(struct hv_device *dev,
1811 			 const struct hv_vmbus_device_id *dev_id)
1812 {
1813 	int ret;
1814 
1815 	allow_hibernation = hv_is_hibernation_supported();
1816 	if (allow_hibernation)
1817 		hot_add = false;
1818 
1819 #ifdef CONFIG_MEMORY_HOTPLUG
1820 	do_hot_add = hot_add;
1821 #else
1822 	do_hot_add = false;
1823 #endif
1824 	dm_device.dev = dev;
1825 	dm_device.state = DM_INITIALIZING;
1826 	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1827 	init_completion(&dm_device.host_event);
1828 	init_completion(&dm_device.config_event);
1829 	INIT_LIST_HEAD(&dm_device.ha_region_list);
1830 	spin_lock_init(&dm_device.ha_lock);
1831 	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1832 	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1833 	dm_device.host_specified_ha_region = false;
1834 
1835 #ifdef CONFIG_MEMORY_HOTPLUG
1836 	set_online_page_callback(&hv_online_page);
1837 	init_completion(&dm_device.ol_waitevent);
1838 	register_memory_notifier(&hv_memory_nb);
1839 #endif
1840 
1841 	hv_set_drvdata(dev, &dm_device);
1842 
1843 	ret = balloon_connect_vsp(dev);
1844 	if (ret != 0)
1845 		return ret;
1846 
1847 	enable_page_reporting();
1848 	dm_device.state = DM_INITIALIZED;
1849 
1850 	dm_device.thread =
1851 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1852 	if (IS_ERR(dm_device.thread)) {
1853 		ret = PTR_ERR(dm_device.thread);
1854 		goto probe_error;
1855 	}
1856 
1857 	return 0;
1858 
1859 probe_error:
1860 	dm_device.state = DM_INIT_ERROR;
1861 	dm_device.thread  = NULL;
1862 	disable_page_reporting();
1863 	vmbus_close(dev->channel);
1864 #ifdef CONFIG_MEMORY_HOTPLUG
1865 	unregister_memory_notifier(&hv_memory_nb);
1866 	restore_online_page_callback(&hv_online_page);
1867 #endif
1868 	return ret;
1869 }
1870 
1871 static int balloon_remove(struct hv_device *dev)
1872 {
1873 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1874 	struct hv_hotadd_state *has, *tmp;
1875 	struct hv_hotadd_gap *gap, *tmp_gap;
1876 	unsigned long flags;
1877 
1878 	if (dm->num_pages_ballooned != 0)
1879 		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1880 
1881 	cancel_work_sync(&dm->balloon_wrk.wrk);
1882 	cancel_work_sync(&dm->ha_wrk.wrk);
1883 
1884 	kthread_stop(dm->thread);
1885 	disable_page_reporting();
1886 	vmbus_close(dev->channel);
1887 #ifdef CONFIG_MEMORY_HOTPLUG
1888 	unregister_memory_notifier(&hv_memory_nb);
1889 	restore_online_page_callback(&hv_online_page);
1890 #endif
1891 	spin_lock_irqsave(&dm_device.ha_lock, flags);
1892 	list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1893 		list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1894 			list_del(&gap->list);
1895 			kfree(gap);
1896 		}
1897 		list_del(&has->list);
1898 		kfree(has);
1899 	}
1900 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1901 
1902 	return 0;
1903 }
1904 
1905 static int balloon_suspend(struct hv_device *hv_dev)
1906 {
1907 	struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
1908 
1909 	tasklet_disable(&hv_dev->channel->callback_event);
1910 
1911 	cancel_work_sync(&dm->balloon_wrk.wrk);
1912 	cancel_work_sync(&dm->ha_wrk.wrk);
1913 
1914 	if (dm->thread) {
1915 		kthread_stop(dm->thread);
1916 		dm->thread = NULL;
1917 		vmbus_close(hv_dev->channel);
1918 	}
1919 
1920 	tasklet_enable(&hv_dev->channel->callback_event);
1921 
1922 	return 0;
1923 
1924 }
1925 
1926 static int balloon_resume(struct hv_device *dev)
1927 {
1928 	int ret;
1929 
1930 	dm_device.state = DM_INITIALIZING;
1931 
1932 	ret = balloon_connect_vsp(dev);
1933 
1934 	if (ret != 0)
1935 		goto out;
1936 
1937 	dm_device.thread =
1938 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1939 	if (IS_ERR(dm_device.thread)) {
1940 		ret = PTR_ERR(dm_device.thread);
1941 		dm_device.thread = NULL;
1942 		goto close_channel;
1943 	}
1944 
1945 	dm_device.state = DM_INITIALIZED;
1946 	return 0;
1947 close_channel:
1948 	vmbus_close(dev->channel);
1949 out:
1950 	dm_device.state = DM_INIT_ERROR;
1951 #ifdef CONFIG_MEMORY_HOTPLUG
1952 	unregister_memory_notifier(&hv_memory_nb);
1953 	restore_online_page_callback(&hv_online_page);
1954 #endif
1955 	return ret;
1956 }
1957 
1958 static const struct hv_vmbus_device_id id_table[] = {
1959 	/* Dynamic Memory Class ID */
1960 	/* 525074DC-8985-46e2-8057-A307DC18A502 */
1961 	{ HV_DM_GUID, },
1962 	{ },
1963 };
1964 
1965 MODULE_DEVICE_TABLE(vmbus, id_table);
1966 
1967 static  struct hv_driver balloon_drv = {
1968 	.name = "hv_balloon",
1969 	.id_table = id_table,
1970 	.probe =  balloon_probe,
1971 	.remove =  balloon_remove,
1972 	.suspend = balloon_suspend,
1973 	.resume = balloon_resume,
1974 	.driver = {
1975 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1976 	},
1977 };
1978 
1979 static int __init init_balloon_drv(void)
1980 {
1981 
1982 	return vmbus_driver_register(&balloon_drv);
1983 }
1984 
1985 module_init(init_balloon_drv);
1986 
1987 MODULE_DESCRIPTION("Hyper-V Balloon");
1988 MODULE_LICENSE("GPL");
1989