xref: /openbmc/linux/drivers/hv/hv_balloon.c (revision bbde9fc1824aab58bc78c084163007dd6c03fe5b)
1 /*
2  * Copyright (c) 2012, Microsoft Corporation.
3  *
4  * Author:
5  *   K. Y. Srinivasan <kys@microsoft.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  * NON INFRINGEMENT.  See the GNU General Public License for more
15  * details.
16  *
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/jiffies.h>
23 #include <linux/mman.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/kthread.h>
29 #include <linux/completion.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memory.h>
32 #include <linux/notifier.h>
33 #include <linux/percpu_counter.h>
34 
35 #include <linux/hyperv.h>
36 
37 /*
38  * We begin with definitions supporting the Dynamic Memory protocol
39  * with the host.
40  *
41  * Begin protocol definitions.
42  */
43 
44 
45 
46 /*
47  * Protocol versions. The low word is the minor version, the high word the major
48  * version.
49  *
50  * History:
51  * Initial version 1.0
52  * Changed to 0.1 on 2009/03/25
53  * Changes to 0.2 on 2009/05/14
54  * Changes to 0.3 on 2009/12/03
55  * Changed to 1.0 on 2011/04/05
56  */
57 
58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
61 
62 enum {
63 	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64 	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65 
66 	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
67 	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
68 
69 	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN8
70 };
71 
72 
73 
74 /*
75  * Message Types
76  */
77 
78 enum dm_message_type {
79 	/*
80 	 * Version 0.3
81 	 */
82 	DM_ERROR			= 0,
83 	DM_VERSION_REQUEST		= 1,
84 	DM_VERSION_RESPONSE		= 2,
85 	DM_CAPABILITIES_REPORT		= 3,
86 	DM_CAPABILITIES_RESPONSE	= 4,
87 	DM_STATUS_REPORT		= 5,
88 	DM_BALLOON_REQUEST		= 6,
89 	DM_BALLOON_RESPONSE		= 7,
90 	DM_UNBALLOON_REQUEST		= 8,
91 	DM_UNBALLOON_RESPONSE		= 9,
92 	DM_MEM_HOT_ADD_REQUEST		= 10,
93 	DM_MEM_HOT_ADD_RESPONSE		= 11,
94 	DM_VERSION_03_MAX		= 11,
95 	/*
96 	 * Version 1.0.
97 	 */
98 	DM_INFO_MESSAGE			= 12,
99 	DM_VERSION_1_MAX		= 12
100 };
101 
102 
103 /*
104  * Structures defining the dynamic memory management
105  * protocol.
106  */
107 
108 union dm_version {
109 	struct {
110 		__u16 minor_version;
111 		__u16 major_version;
112 	};
113 	__u32 version;
114 } __packed;
115 
116 
117 union dm_caps {
118 	struct {
119 		__u64 balloon:1;
120 		__u64 hot_add:1;
121 		/*
122 		 * To support guests that may have alignment
123 		 * limitations on hot-add, the guest can specify
124 		 * its alignment requirements; a value of n
125 		 * represents an alignment of 2^n in mega bytes.
126 		 */
127 		__u64 hot_add_alignment:4;
128 		__u64 reservedz:58;
129 	} cap_bits;
130 	__u64 caps;
131 } __packed;
132 
133 union dm_mem_page_range {
134 	struct  {
135 		/*
136 		 * The PFN number of the first page in the range.
137 		 * 40 bits is the architectural limit of a PFN
138 		 * number for AMD64.
139 		 */
140 		__u64 start_page:40;
141 		/*
142 		 * The number of pages in the range.
143 		 */
144 		__u64 page_cnt:24;
145 	} finfo;
146 	__u64  page_range;
147 } __packed;
148 
149 
150 
151 /*
152  * The header for all dynamic memory messages:
153  *
154  * type: Type of the message.
155  * size: Size of the message in bytes; including the header.
156  * trans_id: The guest is responsible for manufacturing this ID.
157  */
158 
159 struct dm_header {
160 	__u16 type;
161 	__u16 size;
162 	__u32 trans_id;
163 } __packed;
164 
165 /*
166  * A generic message format for dynamic memory.
167  * Specific message formats are defined later in the file.
168  */
169 
170 struct dm_message {
171 	struct dm_header hdr;
172 	__u8 data[]; /* enclosed message */
173 } __packed;
174 
175 
176 /*
177  * Specific message types supporting the dynamic memory protocol.
178  */
179 
180 /*
181  * Version negotiation message. Sent from the guest to the host.
182  * The guest is free to try different versions until the host
183  * accepts the version.
184  *
185  * dm_version: The protocol version requested.
186  * is_last_attempt: If TRUE, this is the last version guest will request.
187  * reservedz: Reserved field, set to zero.
188  */
189 
190 struct dm_version_request {
191 	struct dm_header hdr;
192 	union dm_version version;
193 	__u32 is_last_attempt:1;
194 	__u32 reservedz:31;
195 } __packed;
196 
197 /*
198  * Version response message; Host to Guest and indicates
199  * if the host has accepted the version sent by the guest.
200  *
201  * is_accepted: If TRUE, host has accepted the version and the guest
202  * should proceed to the next stage of the protocol. FALSE indicates that
203  * guest should re-try with a different version.
204  *
205  * reservedz: Reserved field, set to zero.
206  */
207 
208 struct dm_version_response {
209 	struct dm_header hdr;
210 	__u64 is_accepted:1;
211 	__u64 reservedz:63;
212 } __packed;
213 
214 /*
215  * Message reporting capabilities. This is sent from the guest to the
216  * host.
217  */
218 
219 struct dm_capabilities {
220 	struct dm_header hdr;
221 	union dm_caps caps;
222 	__u64 min_page_cnt;
223 	__u64 max_page_number;
224 } __packed;
225 
226 /*
227  * Response to the capabilities message. This is sent from the host to the
228  * guest. This message notifies if the host has accepted the guest's
229  * capabilities. If the host has not accepted, the guest must shutdown
230  * the service.
231  *
232  * is_accepted: Indicates if the host has accepted guest's capabilities.
233  * reservedz: Must be 0.
234  */
235 
236 struct dm_capabilities_resp_msg {
237 	struct dm_header hdr;
238 	__u64 is_accepted:1;
239 	__u64 reservedz:63;
240 } __packed;
241 
242 /*
243  * This message is used to report memory pressure from the guest.
244  * This message is not part of any transaction and there is no
245  * response to this message.
246  *
247  * num_avail: Available memory in pages.
248  * num_committed: Committed memory in pages.
249  * page_file_size: The accumulated size of all page files
250  *		   in the system in pages.
251  * zero_free: The nunber of zero and free pages.
252  * page_file_writes: The writes to the page file in pages.
253  * io_diff: An indicator of file cache efficiency or page file activity,
254  *	    calculated as File Cache Page Fault Count - Page Read Count.
255  *	    This value is in pages.
256  *
257  * Some of these metrics are Windows specific and fortunately
258  * the algorithm on the host side that computes the guest memory
259  * pressure only uses num_committed value.
260  */
261 
262 struct dm_status {
263 	struct dm_header hdr;
264 	__u64 num_avail;
265 	__u64 num_committed;
266 	__u64 page_file_size;
267 	__u64 zero_free;
268 	__u32 page_file_writes;
269 	__u32 io_diff;
270 } __packed;
271 
272 
273 /*
274  * Message to ask the guest to allocate memory - balloon up message.
275  * This message is sent from the host to the guest. The guest may not be
276  * able to allocate as much memory as requested.
277  *
278  * num_pages: number of pages to allocate.
279  */
280 
281 struct dm_balloon {
282 	struct dm_header hdr;
283 	__u32 num_pages;
284 	__u32 reservedz;
285 } __packed;
286 
287 
288 /*
289  * Balloon response message; this message is sent from the guest
290  * to the host in response to the balloon message.
291  *
292  * reservedz: Reserved; must be set to zero.
293  * more_pages: If FALSE, this is the last message of the transaction.
294  * if TRUE there will atleast one more message from the guest.
295  *
296  * range_count: The number of ranges in the range array.
297  *
298  * range_array: An array of page ranges returned to the host.
299  *
300  */
301 
302 struct dm_balloon_response {
303 	struct dm_header hdr;
304 	__u32 reservedz;
305 	__u32 more_pages:1;
306 	__u32 range_count:31;
307 	union dm_mem_page_range range_array[];
308 } __packed;
309 
310 /*
311  * Un-balloon message; this message is sent from the host
312  * to the guest to give guest more memory.
313  *
314  * more_pages: If FALSE, this is the last message of the transaction.
315  * if TRUE there will atleast one more message from the guest.
316  *
317  * reservedz: Reserved; must be set to zero.
318  *
319  * range_count: The number of ranges in the range array.
320  *
321  * range_array: An array of page ranges returned to the host.
322  *
323  */
324 
325 struct dm_unballoon_request {
326 	struct dm_header hdr;
327 	__u32 more_pages:1;
328 	__u32 reservedz:31;
329 	__u32 range_count;
330 	union dm_mem_page_range range_array[];
331 } __packed;
332 
333 /*
334  * Un-balloon response message; this message is sent from the guest
335  * to the host in response to an unballoon request.
336  *
337  */
338 
339 struct dm_unballoon_response {
340 	struct dm_header hdr;
341 } __packed;
342 
343 
344 /*
345  * Hot add request message. Message sent from the host to the guest.
346  *
347  * mem_range: Memory range to hot add.
348  *
349  * On Linux we currently don't support this since we cannot hot add
350  * arbitrary granularity of memory.
351  */
352 
353 struct dm_hot_add {
354 	struct dm_header hdr;
355 	union dm_mem_page_range range;
356 } __packed;
357 
358 /*
359  * Hot add response message.
360  * This message is sent by the guest to report the status of a hot add request.
361  * If page_count is less than the requested page count, then the host should
362  * assume all further hot add requests will fail, since this indicates that
363  * the guest has hit an upper physical memory barrier.
364  *
365  * Hot adds may also fail due to low resources; in this case, the guest must
366  * not complete this message until the hot add can succeed, and the host must
367  * not send a new hot add request until the response is sent.
368  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
369  * times it fails the request.
370  *
371  *
372  * page_count: number of pages that were successfully hot added.
373  *
374  * result: result of the operation 1: success, 0: failure.
375  *
376  */
377 
378 struct dm_hot_add_response {
379 	struct dm_header hdr;
380 	__u32 page_count;
381 	__u32 result;
382 } __packed;
383 
384 /*
385  * Types of information sent from host to the guest.
386  */
387 
388 enum dm_info_type {
389 	INFO_TYPE_MAX_PAGE_CNT = 0,
390 	MAX_INFO_TYPE
391 };
392 
393 
394 /*
395  * Header for the information message.
396  */
397 
398 struct dm_info_header {
399 	enum dm_info_type type;
400 	__u32 data_size;
401 } __packed;
402 
403 /*
404  * This message is sent from the host to the guest to pass
405  * some relevant information (win8 addition).
406  *
407  * reserved: no used.
408  * info_size: size of the information blob.
409  * info: information blob.
410  */
411 
412 struct dm_info_msg {
413 	struct dm_header hdr;
414 	__u32 reserved;
415 	__u32 info_size;
416 	__u8  info[];
417 };
418 
419 /*
420  * End protocol definitions.
421  */
422 
423 /*
424  * State to manage hot adding memory into the guest.
425  * The range start_pfn : end_pfn specifies the range
426  * that the host has asked us to hot add. The range
427  * start_pfn : ha_end_pfn specifies the range that we have
428  * currently hot added. We hot add in multiples of 128M
429  * chunks; it is possible that we may not be able to bring
430  * online all the pages in the region. The range
431  * covered_end_pfn defines the pages that can
432  * be brough online.
433  */
434 
435 struct hv_hotadd_state {
436 	struct list_head list;
437 	unsigned long start_pfn;
438 	unsigned long covered_end_pfn;
439 	unsigned long ha_end_pfn;
440 	unsigned long end_pfn;
441 };
442 
443 struct balloon_state {
444 	__u32 num_pages;
445 	struct work_struct wrk;
446 };
447 
448 struct hot_add_wrk {
449 	union dm_mem_page_range ha_page_range;
450 	union dm_mem_page_range ha_region_range;
451 	struct work_struct wrk;
452 };
453 
454 static bool hot_add = true;
455 static bool do_hot_add;
456 /*
457  * Delay reporting memory pressure by
458  * the specified number of seconds.
459  */
460 static uint pressure_report_delay = 45;
461 
462 /*
463  * The last time we posted a pressure report to host.
464  */
465 static unsigned long last_post_time;
466 
467 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
468 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
469 
470 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
471 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
472 static atomic_t trans_id = ATOMIC_INIT(0);
473 
474 static int dm_ring_size = (5 * PAGE_SIZE);
475 
476 /*
477  * Driver specific state.
478  */
479 
480 enum hv_dm_state {
481 	DM_INITIALIZING = 0,
482 	DM_INITIALIZED,
483 	DM_BALLOON_UP,
484 	DM_BALLOON_DOWN,
485 	DM_HOT_ADD,
486 	DM_INIT_ERROR
487 };
488 
489 
490 static __u8 recv_buffer[PAGE_SIZE];
491 static __u8 *send_buffer;
492 #define PAGES_IN_2M	512
493 #define HA_CHUNK (32 * 1024)
494 
495 struct hv_dynmem_device {
496 	struct hv_device *dev;
497 	enum hv_dm_state state;
498 	struct completion host_event;
499 	struct completion config_event;
500 
501 	/*
502 	 * Number of pages we have currently ballooned out.
503 	 */
504 	unsigned int num_pages_ballooned;
505 	unsigned int num_pages_onlined;
506 	unsigned int num_pages_added;
507 
508 	/*
509 	 * State to manage the ballooning (up) operation.
510 	 */
511 	struct balloon_state balloon_wrk;
512 
513 	/*
514 	 * State to execute the "hot-add" operation.
515 	 */
516 	struct hot_add_wrk ha_wrk;
517 
518 	/*
519 	 * This state tracks if the host has specified a hot-add
520 	 * region.
521 	 */
522 	bool host_specified_ha_region;
523 
524 	/*
525 	 * State to synchronize hot-add.
526 	 */
527 	struct completion  ol_waitevent;
528 	bool ha_waiting;
529 	/*
530 	 * This thread handles hot-add
531 	 * requests from the host as well as notifying
532 	 * the host with regards to memory pressure in
533 	 * the guest.
534 	 */
535 	struct task_struct *thread;
536 
537 	struct mutex ha_region_mutex;
538 
539 	/*
540 	 * A list of hot-add regions.
541 	 */
542 	struct list_head ha_region_list;
543 
544 	/*
545 	 * We start with the highest version we can support
546 	 * and downgrade based on the host; we save here the
547 	 * next version to try.
548 	 */
549 	__u32 next_version;
550 };
551 
552 static struct hv_dynmem_device dm_device;
553 
554 static void post_status(struct hv_dynmem_device *dm);
555 
556 #ifdef CONFIG_MEMORY_HOTPLUG
557 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
558 			      void *v)
559 {
560 	struct memory_notify *mem = (struct memory_notify *)v;
561 
562 	switch (val) {
563 	case MEM_GOING_ONLINE:
564 		mutex_lock(&dm_device.ha_region_mutex);
565 		break;
566 
567 	case MEM_ONLINE:
568 		dm_device.num_pages_onlined += mem->nr_pages;
569 	case MEM_CANCEL_ONLINE:
570 		if (val == MEM_ONLINE ||
571 		    mutex_is_locked(&dm_device.ha_region_mutex))
572 			mutex_unlock(&dm_device.ha_region_mutex);
573 		if (dm_device.ha_waiting) {
574 			dm_device.ha_waiting = false;
575 			complete(&dm_device.ol_waitevent);
576 		}
577 		break;
578 
579 	case MEM_OFFLINE:
580 		mutex_lock(&dm_device.ha_region_mutex);
581 		dm_device.num_pages_onlined -= mem->nr_pages;
582 		mutex_unlock(&dm_device.ha_region_mutex);
583 		break;
584 	case MEM_GOING_OFFLINE:
585 	case MEM_CANCEL_OFFLINE:
586 		break;
587 	}
588 	return NOTIFY_OK;
589 }
590 
591 static struct notifier_block hv_memory_nb = {
592 	.notifier_call = hv_memory_notifier,
593 	.priority = 0
594 };
595 
596 
597 static void hv_bring_pgs_online(unsigned long start_pfn, unsigned long size)
598 {
599 	int i;
600 
601 	for (i = 0; i < size; i++) {
602 		struct page *pg;
603 		pg = pfn_to_page(start_pfn + i);
604 		__online_page_set_limits(pg);
605 		__online_page_increment_counters(pg);
606 		__online_page_free(pg);
607 	}
608 }
609 
610 static void hv_mem_hot_add(unsigned long start, unsigned long size,
611 				unsigned long pfn_count,
612 				struct hv_hotadd_state *has)
613 {
614 	int ret = 0;
615 	int i, nid;
616 	unsigned long start_pfn;
617 	unsigned long processed_pfn;
618 	unsigned long total_pfn = pfn_count;
619 
620 	for (i = 0; i < (size/HA_CHUNK); i++) {
621 		start_pfn = start + (i * HA_CHUNK);
622 		has->ha_end_pfn +=  HA_CHUNK;
623 
624 		if (total_pfn > HA_CHUNK) {
625 			processed_pfn = HA_CHUNK;
626 			total_pfn -= HA_CHUNK;
627 		} else {
628 			processed_pfn = total_pfn;
629 			total_pfn = 0;
630 		}
631 
632 		has->covered_end_pfn +=  processed_pfn;
633 
634 		init_completion(&dm_device.ol_waitevent);
635 		dm_device.ha_waiting = true;
636 
637 		mutex_unlock(&dm_device.ha_region_mutex);
638 		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
639 		ret = add_memory(nid, PFN_PHYS((start_pfn)),
640 				(HA_CHUNK << PAGE_SHIFT));
641 
642 		if (ret) {
643 			pr_info("hot_add memory failed error is %d\n", ret);
644 			if (ret == -EEXIST) {
645 				/*
646 				 * This error indicates that the error
647 				 * is not a transient failure. This is the
648 				 * case where the guest's physical address map
649 				 * precludes hot adding memory. Stop all further
650 				 * memory hot-add.
651 				 */
652 				do_hot_add = false;
653 			}
654 			has->ha_end_pfn -= HA_CHUNK;
655 			has->covered_end_pfn -=  processed_pfn;
656 			mutex_lock(&dm_device.ha_region_mutex);
657 			break;
658 		}
659 
660 		/*
661 		 * Wait for the memory block to be onlined.
662 		 * Since the hot add has succeeded, it is ok to
663 		 * proceed even if the pages in the hot added region
664 		 * have not been "onlined" within the allowed time.
665 		 */
666 		wait_for_completion_timeout(&dm_device.ol_waitevent, 5*HZ);
667 		mutex_lock(&dm_device.ha_region_mutex);
668 		post_status(&dm_device);
669 	}
670 
671 	return;
672 }
673 
674 static void hv_online_page(struct page *pg)
675 {
676 	struct list_head *cur;
677 	struct hv_hotadd_state *has;
678 	unsigned long cur_start_pgp;
679 	unsigned long cur_end_pgp;
680 
681 	list_for_each(cur, &dm_device.ha_region_list) {
682 		has = list_entry(cur, struct hv_hotadd_state, list);
683 		cur_start_pgp = (unsigned long)pfn_to_page(has->start_pfn);
684 		cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
685 
686 		if (((unsigned long)pg >= cur_start_pgp) &&
687 			((unsigned long)pg < cur_end_pgp)) {
688 			/*
689 			 * This frame is currently backed; online the
690 			 * page.
691 			 */
692 			__online_page_set_limits(pg);
693 			__online_page_increment_counters(pg);
694 			__online_page_free(pg);
695 		}
696 	}
697 }
698 
699 static bool pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
700 {
701 	struct list_head *cur;
702 	struct hv_hotadd_state *has;
703 	unsigned long residual, new_inc;
704 
705 	if (list_empty(&dm_device.ha_region_list))
706 		return false;
707 
708 	list_for_each(cur, &dm_device.ha_region_list) {
709 		has = list_entry(cur, struct hv_hotadd_state, list);
710 
711 		/*
712 		 * If the pfn range we are dealing with is not in the current
713 		 * "hot add block", move on.
714 		 */
715 		if ((start_pfn >= has->end_pfn))
716 			continue;
717 		/*
718 		 * If the current hot add-request extends beyond
719 		 * our current limit; extend it.
720 		 */
721 		if ((start_pfn + pfn_cnt) > has->end_pfn) {
722 			residual = (start_pfn + pfn_cnt - has->end_pfn);
723 			/*
724 			 * Extend the region by multiples of HA_CHUNK.
725 			 */
726 			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
727 			if (residual % HA_CHUNK)
728 				new_inc += HA_CHUNK;
729 
730 			has->end_pfn += new_inc;
731 		}
732 
733 		/*
734 		 * If the current start pfn is not where the covered_end
735 		 * is, update it.
736 		 */
737 
738 		if (has->covered_end_pfn != start_pfn)
739 			has->covered_end_pfn = start_pfn;
740 
741 		return true;
742 
743 	}
744 
745 	return false;
746 }
747 
748 static unsigned long handle_pg_range(unsigned long pg_start,
749 					unsigned long pg_count)
750 {
751 	unsigned long start_pfn = pg_start;
752 	unsigned long pfn_cnt = pg_count;
753 	unsigned long size;
754 	struct list_head *cur;
755 	struct hv_hotadd_state *has;
756 	unsigned long pgs_ol = 0;
757 	unsigned long old_covered_state;
758 
759 	if (list_empty(&dm_device.ha_region_list))
760 		return 0;
761 
762 	list_for_each(cur, &dm_device.ha_region_list) {
763 		has = list_entry(cur, struct hv_hotadd_state, list);
764 
765 		/*
766 		 * If the pfn range we are dealing with is not in the current
767 		 * "hot add block", move on.
768 		 */
769 		if ((start_pfn >= has->end_pfn))
770 			continue;
771 
772 		old_covered_state = has->covered_end_pfn;
773 
774 		if (start_pfn < has->ha_end_pfn) {
775 			/*
776 			 * This is the case where we are backing pages
777 			 * in an already hot added region. Bring
778 			 * these pages online first.
779 			 */
780 			pgs_ol = has->ha_end_pfn - start_pfn;
781 			if (pgs_ol > pfn_cnt)
782 				pgs_ol = pfn_cnt;
783 
784 			/*
785 			 * Check if the corresponding memory block is already
786 			 * online by checking its last previously backed page.
787 			 * In case it is we need to bring rest (which was not
788 			 * backed previously) online too.
789 			 */
790 			if (start_pfn > has->start_pfn &&
791 			    !PageReserved(pfn_to_page(start_pfn - 1)))
792 				hv_bring_pgs_online(start_pfn, pgs_ol);
793 
794 			has->covered_end_pfn +=  pgs_ol;
795 			pfn_cnt -= pgs_ol;
796 		}
797 
798 		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
799 			/*
800 			 * We have some residual hot add range
801 			 * that needs to be hot added; hot add
802 			 * it now. Hot add a multiple of
803 			 * of HA_CHUNK that fully covers the pages
804 			 * we have.
805 			 */
806 			size = (has->end_pfn - has->ha_end_pfn);
807 			if (pfn_cnt <= size) {
808 				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
809 				if (pfn_cnt % HA_CHUNK)
810 					size += HA_CHUNK;
811 			} else {
812 				pfn_cnt = size;
813 			}
814 			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
815 		}
816 		/*
817 		 * If we managed to online any pages that were given to us,
818 		 * we declare success.
819 		 */
820 		return has->covered_end_pfn - old_covered_state;
821 
822 	}
823 
824 	return 0;
825 }
826 
827 static unsigned long process_hot_add(unsigned long pg_start,
828 					unsigned long pfn_cnt,
829 					unsigned long rg_start,
830 					unsigned long rg_size)
831 {
832 	struct hv_hotadd_state *ha_region = NULL;
833 
834 	if (pfn_cnt == 0)
835 		return 0;
836 
837 	if (!dm_device.host_specified_ha_region)
838 		if (pfn_covered(pg_start, pfn_cnt))
839 			goto do_pg_range;
840 
841 	/*
842 	 * If the host has specified a hot-add range; deal with it first.
843 	 */
844 
845 	if (rg_size != 0) {
846 		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
847 		if (!ha_region)
848 			return 0;
849 
850 		INIT_LIST_HEAD(&ha_region->list);
851 
852 		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
853 		ha_region->start_pfn = rg_start;
854 		ha_region->ha_end_pfn = rg_start;
855 		ha_region->covered_end_pfn = pg_start;
856 		ha_region->end_pfn = rg_start + rg_size;
857 	}
858 
859 do_pg_range:
860 	/*
861 	 * Process the page range specified; bringing them
862 	 * online if possible.
863 	 */
864 	return handle_pg_range(pg_start, pfn_cnt);
865 }
866 
867 #endif
868 
869 static void hot_add_req(struct work_struct *dummy)
870 {
871 	struct dm_hot_add_response resp;
872 #ifdef CONFIG_MEMORY_HOTPLUG
873 	unsigned long pg_start, pfn_cnt;
874 	unsigned long rg_start, rg_sz;
875 #endif
876 	struct hv_dynmem_device *dm = &dm_device;
877 
878 	memset(&resp, 0, sizeof(struct dm_hot_add_response));
879 	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
880 	resp.hdr.size = sizeof(struct dm_hot_add_response);
881 
882 #ifdef CONFIG_MEMORY_HOTPLUG
883 	mutex_lock(&dm_device.ha_region_mutex);
884 	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
885 	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
886 
887 	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
888 	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
889 
890 	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
891 		unsigned long region_size;
892 		unsigned long region_start;
893 
894 		/*
895 		 * The host has not specified the hot-add region.
896 		 * Based on the hot-add page range being specified,
897 		 * compute a hot-add region that can cover the pages
898 		 * that need to be hot-added while ensuring the alignment
899 		 * and size requirements of Linux as it relates to hot-add.
900 		 */
901 		region_start = pg_start;
902 		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
903 		if (pfn_cnt % HA_CHUNK)
904 			region_size += HA_CHUNK;
905 
906 		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
907 
908 		rg_start = region_start;
909 		rg_sz = region_size;
910 	}
911 
912 	if (do_hot_add)
913 		resp.page_count = process_hot_add(pg_start, pfn_cnt,
914 						rg_start, rg_sz);
915 
916 	dm->num_pages_added += resp.page_count;
917 	mutex_unlock(&dm_device.ha_region_mutex);
918 #endif
919 	/*
920 	 * The result field of the response structure has the
921 	 * following semantics:
922 	 *
923 	 * 1. If all or some pages hot-added: Guest should return success.
924 	 *
925 	 * 2. If no pages could be hot-added:
926 	 *
927 	 * If the guest returns success, then the host
928 	 * will not attempt any further hot-add operations. This
929 	 * signifies a permanent failure.
930 	 *
931 	 * If the guest returns failure, then this failure will be
932 	 * treated as a transient failure and the host may retry the
933 	 * hot-add operation after some delay.
934 	 */
935 	if (resp.page_count > 0)
936 		resp.result = 1;
937 	else if (!do_hot_add)
938 		resp.result = 1;
939 	else
940 		resp.result = 0;
941 
942 	if (!do_hot_add || (resp.page_count == 0))
943 		pr_info("Memory hot add failed\n");
944 
945 	dm->state = DM_INITIALIZED;
946 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
947 	vmbus_sendpacket(dm->dev->channel, &resp,
948 			sizeof(struct dm_hot_add_response),
949 			(unsigned long)NULL,
950 			VM_PKT_DATA_INBAND, 0);
951 }
952 
953 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
954 {
955 	struct dm_info_header *info_hdr;
956 
957 	info_hdr = (struct dm_info_header *)msg->info;
958 
959 	switch (info_hdr->type) {
960 	case INFO_TYPE_MAX_PAGE_CNT:
961 		pr_info("Received INFO_TYPE_MAX_PAGE_CNT\n");
962 		pr_info("Data Size is %d\n", info_hdr->data_size);
963 		break;
964 	default:
965 		pr_info("Received Unknown type: %d\n", info_hdr->type);
966 	}
967 }
968 
969 static unsigned long compute_balloon_floor(void)
970 {
971 	unsigned long min_pages;
972 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
973 	/* Simple continuous piecewiese linear function:
974 	 *  max MiB -> min MiB  gradient
975 	 *       0         0
976 	 *      16        16
977 	 *      32        24
978 	 *     128        72    (1/2)
979 	 *     512       168    (1/4)
980 	 *    2048       360    (1/8)
981 	 *    8192       744    (1/16)
982 	 *   32768      1512	(1/32)
983 	 */
984 	if (totalram_pages < MB2PAGES(128))
985 		min_pages = MB2PAGES(8) + (totalram_pages >> 1);
986 	else if (totalram_pages < MB2PAGES(512))
987 		min_pages = MB2PAGES(40) + (totalram_pages >> 2);
988 	else if (totalram_pages < MB2PAGES(2048))
989 		min_pages = MB2PAGES(104) + (totalram_pages >> 3);
990 	else if (totalram_pages < MB2PAGES(8192))
991 		min_pages = MB2PAGES(232) + (totalram_pages >> 4);
992 	else
993 		min_pages = MB2PAGES(488) + (totalram_pages >> 5);
994 #undef MB2PAGES
995 	return min_pages;
996 }
997 
998 /*
999  * Post our status as it relates memory pressure to the
1000  * host. Host expects the guests to post this status
1001  * periodically at 1 second intervals.
1002  *
1003  * The metrics specified in this protocol are very Windows
1004  * specific and so we cook up numbers here to convey our memory
1005  * pressure.
1006  */
1007 
1008 static void post_status(struct hv_dynmem_device *dm)
1009 {
1010 	struct dm_status status;
1011 	struct sysinfo val;
1012 	unsigned long now = jiffies;
1013 	unsigned long last_post = last_post_time;
1014 
1015 	if (pressure_report_delay > 0) {
1016 		--pressure_report_delay;
1017 		return;
1018 	}
1019 
1020 	if (!time_after(now, (last_post_time + HZ)))
1021 		return;
1022 
1023 	si_meminfo(&val);
1024 	memset(&status, 0, sizeof(struct dm_status));
1025 	status.hdr.type = DM_STATUS_REPORT;
1026 	status.hdr.size = sizeof(struct dm_status);
1027 	status.hdr.trans_id = atomic_inc_return(&trans_id);
1028 
1029 	/*
1030 	 * The host expects the guest to report free and committed memory.
1031 	 * Furthermore, the host expects the pressure information to include
1032 	 * the ballooned out pages. For a given amount of memory that we are
1033 	 * managing we need to compute a floor below which we should not
1034 	 * balloon. Compute this and add it to the pressure report.
1035 	 * We also need to report all offline pages (num_pages_added -
1036 	 * num_pages_onlined) as committed to the host, otherwise it can try
1037 	 * asking us to balloon them out.
1038 	 */
1039 	status.num_avail = val.freeram;
1040 	status.num_committed = vm_memory_committed() +
1041 		dm->num_pages_ballooned +
1042 		(dm->num_pages_added > dm->num_pages_onlined ?
1043 		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1044 		compute_balloon_floor();
1045 
1046 	/*
1047 	 * If our transaction ID is no longer current, just don't
1048 	 * send the status. This can happen if we were interrupted
1049 	 * after we picked our transaction ID.
1050 	 */
1051 	if (status.hdr.trans_id != atomic_read(&trans_id))
1052 		return;
1053 
1054 	/*
1055 	 * If the last post time that we sampled has changed,
1056 	 * we have raced, don't post the status.
1057 	 */
1058 	if (last_post != last_post_time)
1059 		return;
1060 
1061 	last_post_time = jiffies;
1062 	vmbus_sendpacket(dm->dev->channel, &status,
1063 				sizeof(struct dm_status),
1064 				(unsigned long)NULL,
1065 				VM_PKT_DATA_INBAND, 0);
1066 
1067 }
1068 
1069 static void free_balloon_pages(struct hv_dynmem_device *dm,
1070 			 union dm_mem_page_range *range_array)
1071 {
1072 	int num_pages = range_array->finfo.page_cnt;
1073 	__u64 start_frame = range_array->finfo.start_page;
1074 	struct page *pg;
1075 	int i;
1076 
1077 	for (i = 0; i < num_pages; i++) {
1078 		pg = pfn_to_page(i + start_frame);
1079 		__free_page(pg);
1080 		dm->num_pages_ballooned--;
1081 	}
1082 }
1083 
1084 
1085 
1086 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1087 					unsigned int num_pages,
1088 					struct dm_balloon_response *bl_resp,
1089 					int alloc_unit)
1090 {
1091 	unsigned int i = 0;
1092 	struct page *pg;
1093 
1094 	if (num_pages < alloc_unit)
1095 		return 0;
1096 
1097 	for (i = 0; (i * alloc_unit) < num_pages; i++) {
1098 		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1099 			PAGE_SIZE)
1100 			return i * alloc_unit;
1101 
1102 		/*
1103 		 * We execute this code in a thread context. Furthermore,
1104 		 * we don't want the kernel to try too hard.
1105 		 */
1106 		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1107 				__GFP_NOMEMALLOC | __GFP_NOWARN,
1108 				get_order(alloc_unit << PAGE_SHIFT));
1109 
1110 		if (!pg)
1111 			return i * alloc_unit;
1112 
1113 		dm->num_pages_ballooned += alloc_unit;
1114 
1115 		/*
1116 		 * If we allocatted 2M pages; split them so we
1117 		 * can free them in any order we get.
1118 		 */
1119 
1120 		if (alloc_unit != 1)
1121 			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1122 
1123 		bl_resp->range_count++;
1124 		bl_resp->range_array[i].finfo.start_page =
1125 			page_to_pfn(pg);
1126 		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1127 		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1128 
1129 	}
1130 
1131 	return num_pages;
1132 }
1133 
1134 
1135 
1136 static void balloon_up(struct work_struct *dummy)
1137 {
1138 	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1139 	unsigned int num_ballooned = 0;
1140 	struct dm_balloon_response *bl_resp;
1141 	int alloc_unit;
1142 	int ret;
1143 	bool done = false;
1144 	int i;
1145 	struct sysinfo val;
1146 	unsigned long floor;
1147 
1148 	/* The host balloons pages in 2M granularity. */
1149 	WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1150 
1151 	/*
1152 	 * We will attempt 2M allocations. However, if we fail to
1153 	 * allocate 2M chunks, we will go back to 4k allocations.
1154 	 */
1155 	alloc_unit = 512;
1156 
1157 	si_meminfo(&val);
1158 	floor = compute_balloon_floor();
1159 
1160 	/* Refuse to balloon below the floor, keep the 2M granularity. */
1161 	if (val.freeram < num_pages || val.freeram - num_pages < floor) {
1162 		num_pages = val.freeram > floor ? (val.freeram - floor) : 0;
1163 		num_pages -= num_pages % PAGES_IN_2M;
1164 	}
1165 
1166 	while (!done) {
1167 		bl_resp = (struct dm_balloon_response *)send_buffer;
1168 		memset(send_buffer, 0, PAGE_SIZE);
1169 		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1170 		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1171 		bl_resp->more_pages = 1;
1172 
1173 
1174 		num_pages -= num_ballooned;
1175 		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1176 						    bl_resp, alloc_unit);
1177 
1178 		if (alloc_unit != 1 && num_ballooned == 0) {
1179 			alloc_unit = 1;
1180 			continue;
1181 		}
1182 
1183 		if (num_ballooned == 0 || num_ballooned == num_pages) {
1184 			bl_resp->more_pages = 0;
1185 			done = true;
1186 			dm_device.state = DM_INITIALIZED;
1187 		}
1188 
1189 		/*
1190 		 * We are pushing a lot of data through the channel;
1191 		 * deal with transient failures caused because of the
1192 		 * lack of space in the ring buffer.
1193 		 */
1194 
1195 		do {
1196 			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1197 			ret = vmbus_sendpacket(dm_device.dev->channel,
1198 						bl_resp,
1199 						bl_resp->hdr.size,
1200 						(unsigned long)NULL,
1201 						VM_PKT_DATA_INBAND, 0);
1202 
1203 			if (ret == -EAGAIN)
1204 				msleep(20);
1205 			post_status(&dm_device);
1206 		} while (ret == -EAGAIN);
1207 
1208 		if (ret) {
1209 			/*
1210 			 * Free up the memory we allocatted.
1211 			 */
1212 			pr_info("Balloon response failed\n");
1213 
1214 			for (i = 0; i < bl_resp->range_count; i++)
1215 				free_balloon_pages(&dm_device,
1216 						 &bl_resp->range_array[i]);
1217 
1218 			done = true;
1219 		}
1220 	}
1221 
1222 }
1223 
1224 static void balloon_down(struct hv_dynmem_device *dm,
1225 			struct dm_unballoon_request *req)
1226 {
1227 	union dm_mem_page_range *range_array = req->range_array;
1228 	int range_count = req->range_count;
1229 	struct dm_unballoon_response resp;
1230 	int i;
1231 
1232 	for (i = 0; i < range_count; i++) {
1233 		free_balloon_pages(dm, &range_array[i]);
1234 		complete(&dm_device.config_event);
1235 	}
1236 
1237 	if (req->more_pages == 1)
1238 		return;
1239 
1240 	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1241 	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1242 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1243 	resp.hdr.size = sizeof(struct dm_unballoon_response);
1244 
1245 	vmbus_sendpacket(dm_device.dev->channel, &resp,
1246 				sizeof(struct dm_unballoon_response),
1247 				(unsigned long)NULL,
1248 				VM_PKT_DATA_INBAND, 0);
1249 
1250 	dm->state = DM_INITIALIZED;
1251 }
1252 
1253 static void balloon_onchannelcallback(void *context);
1254 
1255 static int dm_thread_func(void *dm_dev)
1256 {
1257 	struct hv_dynmem_device *dm = dm_dev;
1258 
1259 	while (!kthread_should_stop()) {
1260 		wait_for_completion_interruptible_timeout(
1261 						&dm_device.config_event, 1*HZ);
1262 		/*
1263 		 * The host expects us to post information on the memory
1264 		 * pressure every second.
1265 		 */
1266 		reinit_completion(&dm_device.config_event);
1267 		post_status(dm);
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 
1274 static void version_resp(struct hv_dynmem_device *dm,
1275 			struct dm_version_response *vresp)
1276 {
1277 	struct dm_version_request version_req;
1278 	int ret;
1279 
1280 	if (vresp->is_accepted) {
1281 		/*
1282 		 * We are done; wakeup the
1283 		 * context waiting for version
1284 		 * negotiation.
1285 		 */
1286 		complete(&dm->host_event);
1287 		return;
1288 	}
1289 	/*
1290 	 * If there are more versions to try, continue
1291 	 * with negotiations; if not
1292 	 * shutdown the service since we are not able
1293 	 * to negotiate a suitable version number
1294 	 * with the host.
1295 	 */
1296 	if (dm->next_version == 0)
1297 		goto version_error;
1298 
1299 	dm->next_version = 0;
1300 	memset(&version_req, 0, sizeof(struct dm_version_request));
1301 	version_req.hdr.type = DM_VERSION_REQUEST;
1302 	version_req.hdr.size = sizeof(struct dm_version_request);
1303 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1304 	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN7;
1305 	version_req.is_last_attempt = 1;
1306 
1307 	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1308 				sizeof(struct dm_version_request),
1309 				(unsigned long)NULL,
1310 				VM_PKT_DATA_INBAND, 0);
1311 
1312 	if (ret)
1313 		goto version_error;
1314 
1315 	return;
1316 
1317 version_error:
1318 	dm->state = DM_INIT_ERROR;
1319 	complete(&dm->host_event);
1320 }
1321 
1322 static void cap_resp(struct hv_dynmem_device *dm,
1323 			struct dm_capabilities_resp_msg *cap_resp)
1324 {
1325 	if (!cap_resp->is_accepted) {
1326 		pr_info("Capabilities not accepted by host\n");
1327 		dm->state = DM_INIT_ERROR;
1328 	}
1329 	complete(&dm->host_event);
1330 }
1331 
1332 static void balloon_onchannelcallback(void *context)
1333 {
1334 	struct hv_device *dev = context;
1335 	u32 recvlen;
1336 	u64 requestid;
1337 	struct dm_message *dm_msg;
1338 	struct dm_header *dm_hdr;
1339 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1340 	struct dm_balloon *bal_msg;
1341 	struct dm_hot_add *ha_msg;
1342 	union dm_mem_page_range *ha_pg_range;
1343 	union dm_mem_page_range *ha_region;
1344 
1345 	memset(recv_buffer, 0, sizeof(recv_buffer));
1346 	vmbus_recvpacket(dev->channel, recv_buffer,
1347 			 PAGE_SIZE, &recvlen, &requestid);
1348 
1349 	if (recvlen > 0) {
1350 		dm_msg = (struct dm_message *)recv_buffer;
1351 		dm_hdr = &dm_msg->hdr;
1352 
1353 		switch (dm_hdr->type) {
1354 		case DM_VERSION_RESPONSE:
1355 			version_resp(dm,
1356 				 (struct dm_version_response *)dm_msg);
1357 			break;
1358 
1359 		case DM_CAPABILITIES_RESPONSE:
1360 			cap_resp(dm,
1361 				 (struct dm_capabilities_resp_msg *)dm_msg);
1362 			break;
1363 
1364 		case DM_BALLOON_REQUEST:
1365 			if (dm->state == DM_BALLOON_UP)
1366 				pr_warn("Currently ballooning\n");
1367 			bal_msg = (struct dm_balloon *)recv_buffer;
1368 			dm->state = DM_BALLOON_UP;
1369 			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1370 			schedule_work(&dm_device.balloon_wrk.wrk);
1371 			break;
1372 
1373 		case DM_UNBALLOON_REQUEST:
1374 			dm->state = DM_BALLOON_DOWN;
1375 			balloon_down(dm,
1376 				 (struct dm_unballoon_request *)recv_buffer);
1377 			break;
1378 
1379 		case DM_MEM_HOT_ADD_REQUEST:
1380 			if (dm->state == DM_HOT_ADD)
1381 				pr_warn("Currently hot-adding\n");
1382 			dm->state = DM_HOT_ADD;
1383 			ha_msg = (struct dm_hot_add *)recv_buffer;
1384 			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1385 				/*
1386 				 * This is a normal hot-add request specifying
1387 				 * hot-add memory.
1388 				 */
1389 				ha_pg_range = &ha_msg->range;
1390 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1391 				dm->ha_wrk.ha_region_range.page_range = 0;
1392 			} else {
1393 				/*
1394 				 * Host is specifying that we first hot-add
1395 				 * a region and then partially populate this
1396 				 * region.
1397 				 */
1398 				dm->host_specified_ha_region = true;
1399 				ha_pg_range = &ha_msg->range;
1400 				ha_region = &ha_pg_range[1];
1401 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1402 				dm->ha_wrk.ha_region_range = *ha_region;
1403 			}
1404 			schedule_work(&dm_device.ha_wrk.wrk);
1405 			break;
1406 
1407 		case DM_INFO_MESSAGE:
1408 			process_info(dm, (struct dm_info_msg *)dm_msg);
1409 			break;
1410 
1411 		default:
1412 			pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1413 
1414 		}
1415 	}
1416 
1417 }
1418 
1419 static int balloon_probe(struct hv_device *dev,
1420 			const struct hv_vmbus_device_id *dev_id)
1421 {
1422 	int ret;
1423 	unsigned long t;
1424 	struct dm_version_request version_req;
1425 	struct dm_capabilities cap_msg;
1426 
1427 	do_hot_add = hot_add;
1428 
1429 	/*
1430 	 * First allocate a send buffer.
1431 	 */
1432 
1433 	send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1434 	if (!send_buffer)
1435 		return -ENOMEM;
1436 
1437 	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1438 			balloon_onchannelcallback, dev);
1439 
1440 	if (ret)
1441 		goto probe_error0;
1442 
1443 	dm_device.dev = dev;
1444 	dm_device.state = DM_INITIALIZING;
1445 	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1446 	init_completion(&dm_device.host_event);
1447 	init_completion(&dm_device.config_event);
1448 	INIT_LIST_HEAD(&dm_device.ha_region_list);
1449 	mutex_init(&dm_device.ha_region_mutex);
1450 	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1451 	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1452 	dm_device.host_specified_ha_region = false;
1453 
1454 	dm_device.thread =
1455 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1456 	if (IS_ERR(dm_device.thread)) {
1457 		ret = PTR_ERR(dm_device.thread);
1458 		goto probe_error1;
1459 	}
1460 
1461 #ifdef CONFIG_MEMORY_HOTPLUG
1462 	set_online_page_callback(&hv_online_page);
1463 	register_memory_notifier(&hv_memory_nb);
1464 #endif
1465 
1466 	hv_set_drvdata(dev, &dm_device);
1467 	/*
1468 	 * Initiate the hand shake with the host and negotiate
1469 	 * a version that the host can support. We start with the
1470 	 * highest version number and go down if the host cannot
1471 	 * support it.
1472 	 */
1473 	memset(&version_req, 0, sizeof(struct dm_version_request));
1474 	version_req.hdr.type = DM_VERSION_REQUEST;
1475 	version_req.hdr.size = sizeof(struct dm_version_request);
1476 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1477 	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN8;
1478 	version_req.is_last_attempt = 0;
1479 
1480 	ret = vmbus_sendpacket(dev->channel, &version_req,
1481 				sizeof(struct dm_version_request),
1482 				(unsigned long)NULL,
1483 				VM_PKT_DATA_INBAND, 0);
1484 	if (ret)
1485 		goto probe_error2;
1486 
1487 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1488 	if (t == 0) {
1489 		ret = -ETIMEDOUT;
1490 		goto probe_error2;
1491 	}
1492 
1493 	/*
1494 	 * If we could not negotiate a compatible version with the host
1495 	 * fail the probe function.
1496 	 */
1497 	if (dm_device.state == DM_INIT_ERROR) {
1498 		ret = -ETIMEDOUT;
1499 		goto probe_error2;
1500 	}
1501 	/*
1502 	 * Now submit our capabilities to the host.
1503 	 */
1504 	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1505 	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1506 	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1507 	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1508 
1509 	cap_msg.caps.cap_bits.balloon = 1;
1510 	cap_msg.caps.cap_bits.hot_add = 1;
1511 
1512 	/*
1513 	 * Specify our alignment requirements as it relates
1514 	 * memory hot-add. Specify 128MB alignment.
1515 	 */
1516 	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1517 
1518 	/*
1519 	 * Currently the host does not use these
1520 	 * values and we set them to what is done in the
1521 	 * Windows driver.
1522 	 */
1523 	cap_msg.min_page_cnt = 0;
1524 	cap_msg.max_page_number = -1;
1525 
1526 	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1527 				sizeof(struct dm_capabilities),
1528 				(unsigned long)NULL,
1529 				VM_PKT_DATA_INBAND, 0);
1530 	if (ret)
1531 		goto probe_error2;
1532 
1533 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1534 	if (t == 0) {
1535 		ret = -ETIMEDOUT;
1536 		goto probe_error2;
1537 	}
1538 
1539 	/*
1540 	 * If the host does not like our capabilities,
1541 	 * fail the probe function.
1542 	 */
1543 	if (dm_device.state == DM_INIT_ERROR) {
1544 		ret = -ETIMEDOUT;
1545 		goto probe_error2;
1546 	}
1547 
1548 	dm_device.state = DM_INITIALIZED;
1549 
1550 	return 0;
1551 
1552 probe_error2:
1553 #ifdef CONFIG_MEMORY_HOTPLUG
1554 	restore_online_page_callback(&hv_online_page);
1555 #endif
1556 	kthread_stop(dm_device.thread);
1557 
1558 probe_error1:
1559 	vmbus_close(dev->channel);
1560 probe_error0:
1561 	kfree(send_buffer);
1562 	return ret;
1563 }
1564 
1565 static int balloon_remove(struct hv_device *dev)
1566 {
1567 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1568 	struct list_head *cur, *tmp;
1569 	struct hv_hotadd_state *has;
1570 
1571 	if (dm->num_pages_ballooned != 0)
1572 		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1573 
1574 	cancel_work_sync(&dm->balloon_wrk.wrk);
1575 	cancel_work_sync(&dm->ha_wrk.wrk);
1576 
1577 	vmbus_close(dev->channel);
1578 	kthread_stop(dm->thread);
1579 	kfree(send_buffer);
1580 #ifdef CONFIG_MEMORY_HOTPLUG
1581 	restore_online_page_callback(&hv_online_page);
1582 	unregister_memory_notifier(&hv_memory_nb);
1583 #endif
1584 	list_for_each_safe(cur, tmp, &dm->ha_region_list) {
1585 		has = list_entry(cur, struct hv_hotadd_state, list);
1586 		list_del(&has->list);
1587 		kfree(has);
1588 	}
1589 
1590 	return 0;
1591 }
1592 
1593 static const struct hv_vmbus_device_id id_table[] = {
1594 	/* Dynamic Memory Class ID */
1595 	/* 525074DC-8985-46e2-8057-A307DC18A502 */
1596 	{ HV_DM_GUID, },
1597 	{ },
1598 };
1599 
1600 MODULE_DEVICE_TABLE(vmbus, id_table);
1601 
1602 static  struct hv_driver balloon_drv = {
1603 	.name = "hv_balloon",
1604 	.id_table = id_table,
1605 	.probe =  balloon_probe,
1606 	.remove =  balloon_remove,
1607 };
1608 
1609 static int __init init_balloon_drv(void)
1610 {
1611 
1612 	return vmbus_driver_register(&balloon_drv);
1613 }
1614 
1615 module_init(init_balloon_drv);
1616 
1617 MODULE_DESCRIPTION("Hyper-V Balloon");
1618 MODULE_LICENSE("GPL");
1619