1 /* 2 * Copyright (c) 2012, Microsoft Corporation. 3 * 4 * Author: 5 * K. Y. Srinivasan <kys@microsoft.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 as published 9 * by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, but 12 * WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 14 * NON INFRINGEMENT. See the GNU General Public License for more 15 * details. 16 * 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/jiffies.h> 23 #include <linux/mman.h> 24 #include <linux/delay.h> 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/kthread.h> 29 #include <linux/completion.h> 30 #include <linux/memory_hotplug.h> 31 #include <linux/memory.h> 32 #include <linux/notifier.h> 33 #include <linux/percpu_counter.h> 34 35 #include <linux/hyperv.h> 36 37 #define CREATE_TRACE_POINTS 38 #include "hv_trace_balloon.h" 39 40 /* 41 * We begin with definitions supporting the Dynamic Memory protocol 42 * with the host. 43 * 44 * Begin protocol definitions. 45 */ 46 47 48 49 /* 50 * Protocol versions. The low word is the minor version, the high word the major 51 * version. 52 * 53 * History: 54 * Initial version 1.0 55 * Changed to 0.1 on 2009/03/25 56 * Changes to 0.2 on 2009/05/14 57 * Changes to 0.3 on 2009/12/03 58 * Changed to 1.0 on 2011/04/05 59 */ 60 61 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor))) 62 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16) 63 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff) 64 65 enum { 66 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3), 67 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0), 68 DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0), 69 70 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1, 71 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2, 72 DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3, 73 74 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10 75 }; 76 77 78 79 /* 80 * Message Types 81 */ 82 83 enum dm_message_type { 84 /* 85 * Version 0.3 86 */ 87 DM_ERROR = 0, 88 DM_VERSION_REQUEST = 1, 89 DM_VERSION_RESPONSE = 2, 90 DM_CAPABILITIES_REPORT = 3, 91 DM_CAPABILITIES_RESPONSE = 4, 92 DM_STATUS_REPORT = 5, 93 DM_BALLOON_REQUEST = 6, 94 DM_BALLOON_RESPONSE = 7, 95 DM_UNBALLOON_REQUEST = 8, 96 DM_UNBALLOON_RESPONSE = 9, 97 DM_MEM_HOT_ADD_REQUEST = 10, 98 DM_MEM_HOT_ADD_RESPONSE = 11, 99 DM_VERSION_03_MAX = 11, 100 /* 101 * Version 1.0. 102 */ 103 DM_INFO_MESSAGE = 12, 104 DM_VERSION_1_MAX = 12 105 }; 106 107 108 /* 109 * Structures defining the dynamic memory management 110 * protocol. 111 */ 112 113 union dm_version { 114 struct { 115 __u16 minor_version; 116 __u16 major_version; 117 }; 118 __u32 version; 119 } __packed; 120 121 122 union dm_caps { 123 struct { 124 __u64 balloon:1; 125 __u64 hot_add:1; 126 /* 127 * To support guests that may have alignment 128 * limitations on hot-add, the guest can specify 129 * its alignment requirements; a value of n 130 * represents an alignment of 2^n in mega bytes. 131 */ 132 __u64 hot_add_alignment:4; 133 __u64 reservedz:58; 134 } cap_bits; 135 __u64 caps; 136 } __packed; 137 138 union dm_mem_page_range { 139 struct { 140 /* 141 * The PFN number of the first page in the range. 142 * 40 bits is the architectural limit of a PFN 143 * number for AMD64. 144 */ 145 __u64 start_page:40; 146 /* 147 * The number of pages in the range. 148 */ 149 __u64 page_cnt:24; 150 } finfo; 151 __u64 page_range; 152 } __packed; 153 154 155 156 /* 157 * The header for all dynamic memory messages: 158 * 159 * type: Type of the message. 160 * size: Size of the message in bytes; including the header. 161 * trans_id: The guest is responsible for manufacturing this ID. 162 */ 163 164 struct dm_header { 165 __u16 type; 166 __u16 size; 167 __u32 trans_id; 168 } __packed; 169 170 /* 171 * A generic message format for dynamic memory. 172 * Specific message formats are defined later in the file. 173 */ 174 175 struct dm_message { 176 struct dm_header hdr; 177 __u8 data[]; /* enclosed message */ 178 } __packed; 179 180 181 /* 182 * Specific message types supporting the dynamic memory protocol. 183 */ 184 185 /* 186 * Version negotiation message. Sent from the guest to the host. 187 * The guest is free to try different versions until the host 188 * accepts the version. 189 * 190 * dm_version: The protocol version requested. 191 * is_last_attempt: If TRUE, this is the last version guest will request. 192 * reservedz: Reserved field, set to zero. 193 */ 194 195 struct dm_version_request { 196 struct dm_header hdr; 197 union dm_version version; 198 __u32 is_last_attempt:1; 199 __u32 reservedz:31; 200 } __packed; 201 202 /* 203 * Version response message; Host to Guest and indicates 204 * if the host has accepted the version sent by the guest. 205 * 206 * is_accepted: If TRUE, host has accepted the version and the guest 207 * should proceed to the next stage of the protocol. FALSE indicates that 208 * guest should re-try with a different version. 209 * 210 * reservedz: Reserved field, set to zero. 211 */ 212 213 struct dm_version_response { 214 struct dm_header hdr; 215 __u64 is_accepted:1; 216 __u64 reservedz:63; 217 } __packed; 218 219 /* 220 * Message reporting capabilities. This is sent from the guest to the 221 * host. 222 */ 223 224 struct dm_capabilities { 225 struct dm_header hdr; 226 union dm_caps caps; 227 __u64 min_page_cnt; 228 __u64 max_page_number; 229 } __packed; 230 231 /* 232 * Response to the capabilities message. This is sent from the host to the 233 * guest. This message notifies if the host has accepted the guest's 234 * capabilities. If the host has not accepted, the guest must shutdown 235 * the service. 236 * 237 * is_accepted: Indicates if the host has accepted guest's capabilities. 238 * reservedz: Must be 0. 239 */ 240 241 struct dm_capabilities_resp_msg { 242 struct dm_header hdr; 243 __u64 is_accepted:1; 244 __u64 reservedz:63; 245 } __packed; 246 247 /* 248 * This message is used to report memory pressure from the guest. 249 * This message is not part of any transaction and there is no 250 * response to this message. 251 * 252 * num_avail: Available memory in pages. 253 * num_committed: Committed memory in pages. 254 * page_file_size: The accumulated size of all page files 255 * in the system in pages. 256 * zero_free: The nunber of zero and free pages. 257 * page_file_writes: The writes to the page file in pages. 258 * io_diff: An indicator of file cache efficiency or page file activity, 259 * calculated as File Cache Page Fault Count - Page Read Count. 260 * This value is in pages. 261 * 262 * Some of these metrics are Windows specific and fortunately 263 * the algorithm on the host side that computes the guest memory 264 * pressure only uses num_committed value. 265 */ 266 267 struct dm_status { 268 struct dm_header hdr; 269 __u64 num_avail; 270 __u64 num_committed; 271 __u64 page_file_size; 272 __u64 zero_free; 273 __u32 page_file_writes; 274 __u32 io_diff; 275 } __packed; 276 277 278 /* 279 * Message to ask the guest to allocate memory - balloon up message. 280 * This message is sent from the host to the guest. The guest may not be 281 * able to allocate as much memory as requested. 282 * 283 * num_pages: number of pages to allocate. 284 */ 285 286 struct dm_balloon { 287 struct dm_header hdr; 288 __u32 num_pages; 289 __u32 reservedz; 290 } __packed; 291 292 293 /* 294 * Balloon response message; this message is sent from the guest 295 * to the host in response to the balloon message. 296 * 297 * reservedz: Reserved; must be set to zero. 298 * more_pages: If FALSE, this is the last message of the transaction. 299 * if TRUE there will atleast one more message from the guest. 300 * 301 * range_count: The number of ranges in the range array. 302 * 303 * range_array: An array of page ranges returned to the host. 304 * 305 */ 306 307 struct dm_balloon_response { 308 struct dm_header hdr; 309 __u32 reservedz; 310 __u32 more_pages:1; 311 __u32 range_count:31; 312 union dm_mem_page_range range_array[]; 313 } __packed; 314 315 /* 316 * Un-balloon message; this message is sent from the host 317 * to the guest to give guest more memory. 318 * 319 * more_pages: If FALSE, this is the last message of the transaction. 320 * if TRUE there will atleast one more message from the guest. 321 * 322 * reservedz: Reserved; must be set to zero. 323 * 324 * range_count: The number of ranges in the range array. 325 * 326 * range_array: An array of page ranges returned to the host. 327 * 328 */ 329 330 struct dm_unballoon_request { 331 struct dm_header hdr; 332 __u32 more_pages:1; 333 __u32 reservedz:31; 334 __u32 range_count; 335 union dm_mem_page_range range_array[]; 336 } __packed; 337 338 /* 339 * Un-balloon response message; this message is sent from the guest 340 * to the host in response to an unballoon request. 341 * 342 */ 343 344 struct dm_unballoon_response { 345 struct dm_header hdr; 346 } __packed; 347 348 349 /* 350 * Hot add request message. Message sent from the host to the guest. 351 * 352 * mem_range: Memory range to hot add. 353 * 354 * On Linux we currently don't support this since we cannot hot add 355 * arbitrary granularity of memory. 356 */ 357 358 struct dm_hot_add { 359 struct dm_header hdr; 360 union dm_mem_page_range range; 361 } __packed; 362 363 /* 364 * Hot add response message. 365 * This message is sent by the guest to report the status of a hot add request. 366 * If page_count is less than the requested page count, then the host should 367 * assume all further hot add requests will fail, since this indicates that 368 * the guest has hit an upper physical memory barrier. 369 * 370 * Hot adds may also fail due to low resources; in this case, the guest must 371 * not complete this message until the hot add can succeed, and the host must 372 * not send a new hot add request until the response is sent. 373 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS 374 * times it fails the request. 375 * 376 * 377 * page_count: number of pages that were successfully hot added. 378 * 379 * result: result of the operation 1: success, 0: failure. 380 * 381 */ 382 383 struct dm_hot_add_response { 384 struct dm_header hdr; 385 __u32 page_count; 386 __u32 result; 387 } __packed; 388 389 /* 390 * Types of information sent from host to the guest. 391 */ 392 393 enum dm_info_type { 394 INFO_TYPE_MAX_PAGE_CNT = 0, 395 MAX_INFO_TYPE 396 }; 397 398 399 /* 400 * Header for the information message. 401 */ 402 403 struct dm_info_header { 404 enum dm_info_type type; 405 __u32 data_size; 406 } __packed; 407 408 /* 409 * This message is sent from the host to the guest to pass 410 * some relevant information (win8 addition). 411 * 412 * reserved: no used. 413 * info_size: size of the information blob. 414 * info: information blob. 415 */ 416 417 struct dm_info_msg { 418 struct dm_header hdr; 419 __u32 reserved; 420 __u32 info_size; 421 __u8 info[]; 422 }; 423 424 /* 425 * End protocol definitions. 426 */ 427 428 /* 429 * State to manage hot adding memory into the guest. 430 * The range start_pfn : end_pfn specifies the range 431 * that the host has asked us to hot add. The range 432 * start_pfn : ha_end_pfn specifies the range that we have 433 * currently hot added. We hot add in multiples of 128M 434 * chunks; it is possible that we may not be able to bring 435 * online all the pages in the region. The range 436 * covered_start_pfn:covered_end_pfn defines the pages that can 437 * be brough online. 438 */ 439 440 struct hv_hotadd_state { 441 struct list_head list; 442 unsigned long start_pfn; 443 unsigned long covered_start_pfn; 444 unsigned long covered_end_pfn; 445 unsigned long ha_end_pfn; 446 unsigned long end_pfn; 447 /* 448 * A list of gaps. 449 */ 450 struct list_head gap_list; 451 }; 452 453 struct hv_hotadd_gap { 454 struct list_head list; 455 unsigned long start_pfn; 456 unsigned long end_pfn; 457 }; 458 459 struct balloon_state { 460 __u32 num_pages; 461 struct work_struct wrk; 462 }; 463 464 struct hot_add_wrk { 465 union dm_mem_page_range ha_page_range; 466 union dm_mem_page_range ha_region_range; 467 struct work_struct wrk; 468 }; 469 470 static bool hot_add = true; 471 static bool do_hot_add; 472 /* 473 * Delay reporting memory pressure by 474 * the specified number of seconds. 475 */ 476 static uint pressure_report_delay = 45; 477 478 /* 479 * The last time we posted a pressure report to host. 480 */ 481 static unsigned long last_post_time; 482 483 module_param(hot_add, bool, (S_IRUGO | S_IWUSR)); 484 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add"); 485 486 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR)); 487 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure"); 488 static atomic_t trans_id = ATOMIC_INIT(0); 489 490 static int dm_ring_size = (5 * PAGE_SIZE); 491 492 /* 493 * Driver specific state. 494 */ 495 496 enum hv_dm_state { 497 DM_INITIALIZING = 0, 498 DM_INITIALIZED, 499 DM_BALLOON_UP, 500 DM_BALLOON_DOWN, 501 DM_HOT_ADD, 502 DM_INIT_ERROR 503 }; 504 505 506 static __u8 recv_buffer[PAGE_SIZE]; 507 static __u8 *send_buffer; 508 #define PAGES_IN_2M 512 509 #define HA_CHUNK (32 * 1024) 510 511 struct hv_dynmem_device { 512 struct hv_device *dev; 513 enum hv_dm_state state; 514 struct completion host_event; 515 struct completion config_event; 516 517 /* 518 * Number of pages we have currently ballooned out. 519 */ 520 unsigned int num_pages_ballooned; 521 unsigned int num_pages_onlined; 522 unsigned int num_pages_added; 523 524 /* 525 * State to manage the ballooning (up) operation. 526 */ 527 struct balloon_state balloon_wrk; 528 529 /* 530 * State to execute the "hot-add" operation. 531 */ 532 struct hot_add_wrk ha_wrk; 533 534 /* 535 * This state tracks if the host has specified a hot-add 536 * region. 537 */ 538 bool host_specified_ha_region; 539 540 /* 541 * State to synchronize hot-add. 542 */ 543 struct completion ol_waitevent; 544 bool ha_waiting; 545 /* 546 * This thread handles hot-add 547 * requests from the host as well as notifying 548 * the host with regards to memory pressure in 549 * the guest. 550 */ 551 struct task_struct *thread; 552 553 /* 554 * Protects ha_region_list, num_pages_onlined counter and individual 555 * regions from ha_region_list. 556 */ 557 spinlock_t ha_lock; 558 559 /* 560 * A list of hot-add regions. 561 */ 562 struct list_head ha_region_list; 563 564 /* 565 * We start with the highest version we can support 566 * and downgrade based on the host; we save here the 567 * next version to try. 568 */ 569 __u32 next_version; 570 571 /* 572 * The negotiated version agreed by host. 573 */ 574 __u32 version; 575 }; 576 577 static struct hv_dynmem_device dm_device; 578 579 static void post_status(struct hv_dynmem_device *dm); 580 581 #ifdef CONFIG_MEMORY_HOTPLUG 582 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has, 583 unsigned long pfn) 584 { 585 struct hv_hotadd_gap *gap; 586 587 /* The page is not backed. */ 588 if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn)) 589 return false; 590 591 /* Check for gaps. */ 592 list_for_each_entry(gap, &has->gap_list, list) { 593 if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn)) 594 return false; 595 } 596 597 return true; 598 } 599 600 static unsigned long hv_page_offline_check(unsigned long start_pfn, 601 unsigned long nr_pages) 602 { 603 unsigned long pfn = start_pfn, count = 0; 604 struct hv_hotadd_state *has; 605 bool found; 606 607 while (pfn < start_pfn + nr_pages) { 608 /* 609 * Search for HAS which covers the pfn and when we find one 610 * count how many consequitive PFNs are covered. 611 */ 612 found = false; 613 list_for_each_entry(has, &dm_device.ha_region_list, list) { 614 while ((pfn >= has->start_pfn) && 615 (pfn < has->end_pfn) && 616 (pfn < start_pfn + nr_pages)) { 617 found = true; 618 if (has_pfn_is_backed(has, pfn)) 619 count++; 620 pfn++; 621 } 622 } 623 624 /* 625 * This PFN is not in any HAS (e.g. we're offlining a region 626 * which was present at boot), no need to account for it. Go 627 * to the next one. 628 */ 629 if (!found) 630 pfn++; 631 } 632 633 return count; 634 } 635 636 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val, 637 void *v) 638 { 639 struct memory_notify *mem = (struct memory_notify *)v; 640 unsigned long flags, pfn_count; 641 642 switch (val) { 643 case MEM_ONLINE: 644 case MEM_CANCEL_ONLINE: 645 if (dm_device.ha_waiting) { 646 dm_device.ha_waiting = false; 647 complete(&dm_device.ol_waitevent); 648 } 649 break; 650 651 case MEM_OFFLINE: 652 spin_lock_irqsave(&dm_device.ha_lock, flags); 653 pfn_count = hv_page_offline_check(mem->start_pfn, 654 mem->nr_pages); 655 if (pfn_count <= dm_device.num_pages_onlined) { 656 dm_device.num_pages_onlined -= pfn_count; 657 } else { 658 /* 659 * We're offlining more pages than we managed to online. 660 * This is unexpected. In any case don't let 661 * num_pages_onlined wrap around zero. 662 */ 663 WARN_ON_ONCE(1); 664 dm_device.num_pages_onlined = 0; 665 } 666 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 667 break; 668 case MEM_GOING_ONLINE: 669 case MEM_GOING_OFFLINE: 670 case MEM_CANCEL_OFFLINE: 671 break; 672 } 673 return NOTIFY_OK; 674 } 675 676 static struct notifier_block hv_memory_nb = { 677 .notifier_call = hv_memory_notifier, 678 .priority = 0 679 }; 680 681 /* Check if the particular page is backed and can be onlined and online it. */ 682 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg) 683 { 684 if (!has_pfn_is_backed(has, page_to_pfn(pg))) { 685 if (!PageOffline(pg)) 686 __SetPageOffline(pg); 687 return; 688 } 689 if (PageOffline(pg)) 690 __ClearPageOffline(pg); 691 692 /* This frame is currently backed; online the page. */ 693 __online_page_set_limits(pg); 694 __online_page_increment_counters(pg); 695 __online_page_free(pg); 696 697 lockdep_assert_held(&dm_device.ha_lock); 698 dm_device.num_pages_onlined++; 699 } 700 701 static void hv_bring_pgs_online(struct hv_hotadd_state *has, 702 unsigned long start_pfn, unsigned long size) 703 { 704 int i; 705 706 pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn); 707 for (i = 0; i < size; i++) 708 hv_page_online_one(has, pfn_to_page(start_pfn + i)); 709 } 710 711 static void hv_mem_hot_add(unsigned long start, unsigned long size, 712 unsigned long pfn_count, 713 struct hv_hotadd_state *has) 714 { 715 int ret = 0; 716 int i, nid; 717 unsigned long start_pfn; 718 unsigned long processed_pfn; 719 unsigned long total_pfn = pfn_count; 720 unsigned long flags; 721 722 for (i = 0; i < (size/HA_CHUNK); i++) { 723 start_pfn = start + (i * HA_CHUNK); 724 725 spin_lock_irqsave(&dm_device.ha_lock, flags); 726 has->ha_end_pfn += HA_CHUNK; 727 728 if (total_pfn > HA_CHUNK) { 729 processed_pfn = HA_CHUNK; 730 total_pfn -= HA_CHUNK; 731 } else { 732 processed_pfn = total_pfn; 733 total_pfn = 0; 734 } 735 736 has->covered_end_pfn += processed_pfn; 737 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 738 739 init_completion(&dm_device.ol_waitevent); 740 dm_device.ha_waiting = !memhp_auto_online; 741 742 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn)); 743 ret = add_memory(nid, PFN_PHYS((start_pfn)), 744 (HA_CHUNK << PAGE_SHIFT)); 745 746 if (ret) { 747 pr_err("hot_add memory failed error is %d\n", ret); 748 if (ret == -EEXIST) { 749 /* 750 * This error indicates that the error 751 * is not a transient failure. This is the 752 * case where the guest's physical address map 753 * precludes hot adding memory. Stop all further 754 * memory hot-add. 755 */ 756 do_hot_add = false; 757 } 758 spin_lock_irqsave(&dm_device.ha_lock, flags); 759 has->ha_end_pfn -= HA_CHUNK; 760 has->covered_end_pfn -= processed_pfn; 761 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 762 break; 763 } 764 765 /* 766 * Wait for the memory block to be onlined when memory onlining 767 * is done outside of kernel (memhp_auto_online). Since the hot 768 * add has succeeded, it is ok to proceed even if the pages in 769 * the hot added region have not been "onlined" within the 770 * allowed time. 771 */ 772 if (dm_device.ha_waiting) 773 wait_for_completion_timeout(&dm_device.ol_waitevent, 774 5*HZ); 775 post_status(&dm_device); 776 } 777 } 778 779 static void hv_online_page(struct page *pg, unsigned int order) 780 { 781 struct hv_hotadd_state *has; 782 unsigned long flags; 783 unsigned long pfn = page_to_pfn(pg); 784 785 spin_lock_irqsave(&dm_device.ha_lock, flags); 786 list_for_each_entry(has, &dm_device.ha_region_list, list) { 787 /* The page belongs to a different HAS. */ 788 if ((pfn < has->start_pfn) || 789 (pfn + (1UL << order) > has->end_pfn)) 790 continue; 791 792 hv_bring_pgs_online(has, pfn, 1UL << order); 793 break; 794 } 795 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 796 } 797 798 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt) 799 { 800 struct hv_hotadd_state *has; 801 struct hv_hotadd_gap *gap; 802 unsigned long residual, new_inc; 803 int ret = 0; 804 unsigned long flags; 805 806 spin_lock_irqsave(&dm_device.ha_lock, flags); 807 list_for_each_entry(has, &dm_device.ha_region_list, list) { 808 /* 809 * If the pfn range we are dealing with is not in the current 810 * "hot add block", move on. 811 */ 812 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn) 813 continue; 814 815 /* 816 * If the current start pfn is not where the covered_end 817 * is, create a gap and update covered_end_pfn. 818 */ 819 if (has->covered_end_pfn != start_pfn) { 820 gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC); 821 if (!gap) { 822 ret = -ENOMEM; 823 break; 824 } 825 826 INIT_LIST_HEAD(&gap->list); 827 gap->start_pfn = has->covered_end_pfn; 828 gap->end_pfn = start_pfn; 829 list_add_tail(&gap->list, &has->gap_list); 830 831 has->covered_end_pfn = start_pfn; 832 } 833 834 /* 835 * If the current hot add-request extends beyond 836 * our current limit; extend it. 837 */ 838 if ((start_pfn + pfn_cnt) > has->end_pfn) { 839 residual = (start_pfn + pfn_cnt - has->end_pfn); 840 /* 841 * Extend the region by multiples of HA_CHUNK. 842 */ 843 new_inc = (residual / HA_CHUNK) * HA_CHUNK; 844 if (residual % HA_CHUNK) 845 new_inc += HA_CHUNK; 846 847 has->end_pfn += new_inc; 848 } 849 850 ret = 1; 851 break; 852 } 853 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 854 855 return ret; 856 } 857 858 static unsigned long handle_pg_range(unsigned long pg_start, 859 unsigned long pg_count) 860 { 861 unsigned long start_pfn = pg_start; 862 unsigned long pfn_cnt = pg_count; 863 unsigned long size; 864 struct hv_hotadd_state *has; 865 unsigned long pgs_ol = 0; 866 unsigned long old_covered_state; 867 unsigned long res = 0, flags; 868 869 pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count, 870 pg_start); 871 872 spin_lock_irqsave(&dm_device.ha_lock, flags); 873 list_for_each_entry(has, &dm_device.ha_region_list, list) { 874 /* 875 * If the pfn range we are dealing with is not in the current 876 * "hot add block", move on. 877 */ 878 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn) 879 continue; 880 881 old_covered_state = has->covered_end_pfn; 882 883 if (start_pfn < has->ha_end_pfn) { 884 /* 885 * This is the case where we are backing pages 886 * in an already hot added region. Bring 887 * these pages online first. 888 */ 889 pgs_ol = has->ha_end_pfn - start_pfn; 890 if (pgs_ol > pfn_cnt) 891 pgs_ol = pfn_cnt; 892 893 has->covered_end_pfn += pgs_ol; 894 pfn_cnt -= pgs_ol; 895 /* 896 * Check if the corresponding memory block is already 897 * online. It is possible to observe struct pages still 898 * being uninitialized here so check section instead. 899 * In case the section is online we need to bring the 900 * rest of pfns (which were not backed previously) 901 * online too. 902 */ 903 if (start_pfn > has->start_pfn && 904 online_section_nr(pfn_to_section_nr(start_pfn))) 905 hv_bring_pgs_online(has, start_pfn, pgs_ol); 906 907 } 908 909 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) { 910 /* 911 * We have some residual hot add range 912 * that needs to be hot added; hot add 913 * it now. Hot add a multiple of 914 * of HA_CHUNK that fully covers the pages 915 * we have. 916 */ 917 size = (has->end_pfn - has->ha_end_pfn); 918 if (pfn_cnt <= size) { 919 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK); 920 if (pfn_cnt % HA_CHUNK) 921 size += HA_CHUNK; 922 } else { 923 pfn_cnt = size; 924 } 925 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 926 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has); 927 spin_lock_irqsave(&dm_device.ha_lock, flags); 928 } 929 /* 930 * If we managed to online any pages that were given to us, 931 * we declare success. 932 */ 933 res = has->covered_end_pfn - old_covered_state; 934 break; 935 } 936 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 937 938 return res; 939 } 940 941 static unsigned long process_hot_add(unsigned long pg_start, 942 unsigned long pfn_cnt, 943 unsigned long rg_start, 944 unsigned long rg_size) 945 { 946 struct hv_hotadd_state *ha_region = NULL; 947 int covered; 948 unsigned long flags; 949 950 if (pfn_cnt == 0) 951 return 0; 952 953 if (!dm_device.host_specified_ha_region) { 954 covered = pfn_covered(pg_start, pfn_cnt); 955 if (covered < 0) 956 return 0; 957 958 if (covered) 959 goto do_pg_range; 960 } 961 962 /* 963 * If the host has specified a hot-add range; deal with it first. 964 */ 965 966 if (rg_size != 0) { 967 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL); 968 if (!ha_region) 969 return 0; 970 971 INIT_LIST_HEAD(&ha_region->list); 972 INIT_LIST_HEAD(&ha_region->gap_list); 973 974 ha_region->start_pfn = rg_start; 975 ha_region->ha_end_pfn = rg_start; 976 ha_region->covered_start_pfn = pg_start; 977 ha_region->covered_end_pfn = pg_start; 978 ha_region->end_pfn = rg_start + rg_size; 979 980 spin_lock_irqsave(&dm_device.ha_lock, flags); 981 list_add_tail(&ha_region->list, &dm_device.ha_region_list); 982 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 983 } 984 985 do_pg_range: 986 /* 987 * Process the page range specified; bringing them 988 * online if possible. 989 */ 990 return handle_pg_range(pg_start, pfn_cnt); 991 } 992 993 #endif 994 995 static void hot_add_req(struct work_struct *dummy) 996 { 997 struct dm_hot_add_response resp; 998 #ifdef CONFIG_MEMORY_HOTPLUG 999 unsigned long pg_start, pfn_cnt; 1000 unsigned long rg_start, rg_sz; 1001 #endif 1002 struct hv_dynmem_device *dm = &dm_device; 1003 1004 memset(&resp, 0, sizeof(struct dm_hot_add_response)); 1005 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE; 1006 resp.hdr.size = sizeof(struct dm_hot_add_response); 1007 1008 #ifdef CONFIG_MEMORY_HOTPLUG 1009 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page; 1010 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt; 1011 1012 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page; 1013 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt; 1014 1015 if ((rg_start == 0) && (!dm->host_specified_ha_region)) { 1016 unsigned long region_size; 1017 unsigned long region_start; 1018 1019 /* 1020 * The host has not specified the hot-add region. 1021 * Based on the hot-add page range being specified, 1022 * compute a hot-add region that can cover the pages 1023 * that need to be hot-added while ensuring the alignment 1024 * and size requirements of Linux as it relates to hot-add. 1025 */ 1026 region_start = pg_start; 1027 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK; 1028 if (pfn_cnt % HA_CHUNK) 1029 region_size += HA_CHUNK; 1030 1031 region_start = (pg_start / HA_CHUNK) * HA_CHUNK; 1032 1033 rg_start = region_start; 1034 rg_sz = region_size; 1035 } 1036 1037 if (do_hot_add) 1038 resp.page_count = process_hot_add(pg_start, pfn_cnt, 1039 rg_start, rg_sz); 1040 1041 dm->num_pages_added += resp.page_count; 1042 #endif 1043 /* 1044 * The result field of the response structure has the 1045 * following semantics: 1046 * 1047 * 1. If all or some pages hot-added: Guest should return success. 1048 * 1049 * 2. If no pages could be hot-added: 1050 * 1051 * If the guest returns success, then the host 1052 * will not attempt any further hot-add operations. This 1053 * signifies a permanent failure. 1054 * 1055 * If the guest returns failure, then this failure will be 1056 * treated as a transient failure and the host may retry the 1057 * hot-add operation after some delay. 1058 */ 1059 if (resp.page_count > 0) 1060 resp.result = 1; 1061 else if (!do_hot_add) 1062 resp.result = 1; 1063 else 1064 resp.result = 0; 1065 1066 if (!do_hot_add || (resp.page_count == 0)) 1067 pr_err("Memory hot add failed\n"); 1068 1069 dm->state = DM_INITIALIZED; 1070 resp.hdr.trans_id = atomic_inc_return(&trans_id); 1071 vmbus_sendpacket(dm->dev->channel, &resp, 1072 sizeof(struct dm_hot_add_response), 1073 (unsigned long)NULL, 1074 VM_PKT_DATA_INBAND, 0); 1075 } 1076 1077 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg) 1078 { 1079 struct dm_info_header *info_hdr; 1080 1081 info_hdr = (struct dm_info_header *)msg->info; 1082 1083 switch (info_hdr->type) { 1084 case INFO_TYPE_MAX_PAGE_CNT: 1085 if (info_hdr->data_size == sizeof(__u64)) { 1086 __u64 *max_page_count = (__u64 *)&info_hdr[1]; 1087 1088 pr_info("Max. dynamic memory size: %llu MB\n", 1089 (*max_page_count) >> (20 - PAGE_SHIFT)); 1090 } 1091 1092 break; 1093 default: 1094 pr_warn("Received Unknown type: %d\n", info_hdr->type); 1095 } 1096 } 1097 1098 static unsigned long compute_balloon_floor(void) 1099 { 1100 unsigned long min_pages; 1101 unsigned long nr_pages = totalram_pages(); 1102 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT)) 1103 /* Simple continuous piecewiese linear function: 1104 * max MiB -> min MiB gradient 1105 * 0 0 1106 * 16 16 1107 * 32 24 1108 * 128 72 (1/2) 1109 * 512 168 (1/4) 1110 * 2048 360 (1/8) 1111 * 8192 744 (1/16) 1112 * 32768 1512 (1/32) 1113 */ 1114 if (nr_pages < MB2PAGES(128)) 1115 min_pages = MB2PAGES(8) + (nr_pages >> 1); 1116 else if (nr_pages < MB2PAGES(512)) 1117 min_pages = MB2PAGES(40) + (nr_pages >> 2); 1118 else if (nr_pages < MB2PAGES(2048)) 1119 min_pages = MB2PAGES(104) + (nr_pages >> 3); 1120 else if (nr_pages < MB2PAGES(8192)) 1121 min_pages = MB2PAGES(232) + (nr_pages >> 4); 1122 else 1123 min_pages = MB2PAGES(488) + (nr_pages >> 5); 1124 #undef MB2PAGES 1125 return min_pages; 1126 } 1127 1128 /* 1129 * Post our status as it relates memory pressure to the 1130 * host. Host expects the guests to post this status 1131 * periodically at 1 second intervals. 1132 * 1133 * The metrics specified in this protocol are very Windows 1134 * specific and so we cook up numbers here to convey our memory 1135 * pressure. 1136 */ 1137 1138 static void post_status(struct hv_dynmem_device *dm) 1139 { 1140 struct dm_status status; 1141 unsigned long now = jiffies; 1142 unsigned long last_post = last_post_time; 1143 1144 if (pressure_report_delay > 0) { 1145 --pressure_report_delay; 1146 return; 1147 } 1148 1149 if (!time_after(now, (last_post_time + HZ))) 1150 return; 1151 1152 memset(&status, 0, sizeof(struct dm_status)); 1153 status.hdr.type = DM_STATUS_REPORT; 1154 status.hdr.size = sizeof(struct dm_status); 1155 status.hdr.trans_id = atomic_inc_return(&trans_id); 1156 1157 /* 1158 * The host expects the guest to report free and committed memory. 1159 * Furthermore, the host expects the pressure information to include 1160 * the ballooned out pages. For a given amount of memory that we are 1161 * managing we need to compute a floor below which we should not 1162 * balloon. Compute this and add it to the pressure report. 1163 * We also need to report all offline pages (num_pages_added - 1164 * num_pages_onlined) as committed to the host, otherwise it can try 1165 * asking us to balloon them out. 1166 */ 1167 status.num_avail = si_mem_available(); 1168 status.num_committed = vm_memory_committed() + 1169 dm->num_pages_ballooned + 1170 (dm->num_pages_added > dm->num_pages_onlined ? 1171 dm->num_pages_added - dm->num_pages_onlined : 0) + 1172 compute_balloon_floor(); 1173 1174 trace_balloon_status(status.num_avail, status.num_committed, 1175 vm_memory_committed(), dm->num_pages_ballooned, 1176 dm->num_pages_added, dm->num_pages_onlined); 1177 /* 1178 * If our transaction ID is no longer current, just don't 1179 * send the status. This can happen if we were interrupted 1180 * after we picked our transaction ID. 1181 */ 1182 if (status.hdr.trans_id != atomic_read(&trans_id)) 1183 return; 1184 1185 /* 1186 * If the last post time that we sampled has changed, 1187 * we have raced, don't post the status. 1188 */ 1189 if (last_post != last_post_time) 1190 return; 1191 1192 last_post_time = jiffies; 1193 vmbus_sendpacket(dm->dev->channel, &status, 1194 sizeof(struct dm_status), 1195 (unsigned long)NULL, 1196 VM_PKT_DATA_INBAND, 0); 1197 1198 } 1199 1200 static void free_balloon_pages(struct hv_dynmem_device *dm, 1201 union dm_mem_page_range *range_array) 1202 { 1203 int num_pages = range_array->finfo.page_cnt; 1204 __u64 start_frame = range_array->finfo.start_page; 1205 struct page *pg; 1206 int i; 1207 1208 for (i = 0; i < num_pages; i++) { 1209 pg = pfn_to_page(i + start_frame); 1210 __ClearPageOffline(pg); 1211 __free_page(pg); 1212 dm->num_pages_ballooned--; 1213 } 1214 } 1215 1216 1217 1218 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm, 1219 unsigned int num_pages, 1220 struct dm_balloon_response *bl_resp, 1221 int alloc_unit) 1222 { 1223 unsigned int i, j; 1224 struct page *pg; 1225 1226 if (num_pages < alloc_unit) 1227 return 0; 1228 1229 for (i = 0; (i * alloc_unit) < num_pages; i++) { 1230 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) > 1231 PAGE_SIZE) 1232 return i * alloc_unit; 1233 1234 /* 1235 * We execute this code in a thread context. Furthermore, 1236 * we don't want the kernel to try too hard. 1237 */ 1238 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY | 1239 __GFP_NOMEMALLOC | __GFP_NOWARN, 1240 get_order(alloc_unit << PAGE_SHIFT)); 1241 1242 if (!pg) 1243 return i * alloc_unit; 1244 1245 dm->num_pages_ballooned += alloc_unit; 1246 1247 /* 1248 * If we allocatted 2M pages; split them so we 1249 * can free them in any order we get. 1250 */ 1251 1252 if (alloc_unit != 1) 1253 split_page(pg, get_order(alloc_unit << PAGE_SHIFT)); 1254 1255 /* mark all pages offline */ 1256 for (j = 0; j < (1 << get_order(alloc_unit << PAGE_SHIFT)); j++) 1257 __SetPageOffline(pg + j); 1258 1259 bl_resp->range_count++; 1260 bl_resp->range_array[i].finfo.start_page = 1261 page_to_pfn(pg); 1262 bl_resp->range_array[i].finfo.page_cnt = alloc_unit; 1263 bl_resp->hdr.size += sizeof(union dm_mem_page_range); 1264 1265 } 1266 1267 return num_pages; 1268 } 1269 1270 static void balloon_up(struct work_struct *dummy) 1271 { 1272 unsigned int num_pages = dm_device.balloon_wrk.num_pages; 1273 unsigned int num_ballooned = 0; 1274 struct dm_balloon_response *bl_resp; 1275 int alloc_unit; 1276 int ret; 1277 bool done = false; 1278 int i; 1279 long avail_pages; 1280 unsigned long floor; 1281 1282 /* The host balloons pages in 2M granularity. */ 1283 WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0); 1284 1285 /* 1286 * We will attempt 2M allocations. However, if we fail to 1287 * allocate 2M chunks, we will go back to 4k allocations. 1288 */ 1289 alloc_unit = 512; 1290 1291 avail_pages = si_mem_available(); 1292 floor = compute_balloon_floor(); 1293 1294 /* Refuse to balloon below the floor, keep the 2M granularity. */ 1295 if (avail_pages < num_pages || avail_pages - num_pages < floor) { 1296 pr_warn("Balloon request will be partially fulfilled. %s\n", 1297 avail_pages < num_pages ? "Not enough memory." : 1298 "Balloon floor reached."); 1299 1300 num_pages = avail_pages > floor ? (avail_pages - floor) : 0; 1301 num_pages -= num_pages % PAGES_IN_2M; 1302 } 1303 1304 while (!done) { 1305 bl_resp = (struct dm_balloon_response *)send_buffer; 1306 memset(send_buffer, 0, PAGE_SIZE); 1307 bl_resp->hdr.type = DM_BALLOON_RESPONSE; 1308 bl_resp->hdr.size = sizeof(struct dm_balloon_response); 1309 bl_resp->more_pages = 1; 1310 1311 num_pages -= num_ballooned; 1312 num_ballooned = alloc_balloon_pages(&dm_device, num_pages, 1313 bl_resp, alloc_unit); 1314 1315 if (alloc_unit != 1 && num_ballooned == 0) { 1316 alloc_unit = 1; 1317 continue; 1318 } 1319 1320 if (num_ballooned == 0 || num_ballooned == num_pages) { 1321 pr_debug("Ballooned %u out of %u requested pages.\n", 1322 num_pages, dm_device.balloon_wrk.num_pages); 1323 1324 bl_resp->more_pages = 0; 1325 done = true; 1326 dm_device.state = DM_INITIALIZED; 1327 } 1328 1329 /* 1330 * We are pushing a lot of data through the channel; 1331 * deal with transient failures caused because of the 1332 * lack of space in the ring buffer. 1333 */ 1334 1335 do { 1336 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id); 1337 ret = vmbus_sendpacket(dm_device.dev->channel, 1338 bl_resp, 1339 bl_resp->hdr.size, 1340 (unsigned long)NULL, 1341 VM_PKT_DATA_INBAND, 0); 1342 1343 if (ret == -EAGAIN) 1344 msleep(20); 1345 post_status(&dm_device); 1346 } while (ret == -EAGAIN); 1347 1348 if (ret) { 1349 /* 1350 * Free up the memory we allocatted. 1351 */ 1352 pr_err("Balloon response failed\n"); 1353 1354 for (i = 0; i < bl_resp->range_count; i++) 1355 free_balloon_pages(&dm_device, 1356 &bl_resp->range_array[i]); 1357 1358 done = true; 1359 } 1360 } 1361 1362 } 1363 1364 static void balloon_down(struct hv_dynmem_device *dm, 1365 struct dm_unballoon_request *req) 1366 { 1367 union dm_mem_page_range *range_array = req->range_array; 1368 int range_count = req->range_count; 1369 struct dm_unballoon_response resp; 1370 int i; 1371 unsigned int prev_pages_ballooned = dm->num_pages_ballooned; 1372 1373 for (i = 0; i < range_count; i++) { 1374 free_balloon_pages(dm, &range_array[i]); 1375 complete(&dm_device.config_event); 1376 } 1377 1378 pr_debug("Freed %u ballooned pages.\n", 1379 prev_pages_ballooned - dm->num_pages_ballooned); 1380 1381 if (req->more_pages == 1) 1382 return; 1383 1384 memset(&resp, 0, sizeof(struct dm_unballoon_response)); 1385 resp.hdr.type = DM_UNBALLOON_RESPONSE; 1386 resp.hdr.trans_id = atomic_inc_return(&trans_id); 1387 resp.hdr.size = sizeof(struct dm_unballoon_response); 1388 1389 vmbus_sendpacket(dm_device.dev->channel, &resp, 1390 sizeof(struct dm_unballoon_response), 1391 (unsigned long)NULL, 1392 VM_PKT_DATA_INBAND, 0); 1393 1394 dm->state = DM_INITIALIZED; 1395 } 1396 1397 static void balloon_onchannelcallback(void *context); 1398 1399 static int dm_thread_func(void *dm_dev) 1400 { 1401 struct hv_dynmem_device *dm = dm_dev; 1402 1403 while (!kthread_should_stop()) { 1404 wait_for_completion_interruptible_timeout( 1405 &dm_device.config_event, 1*HZ); 1406 /* 1407 * The host expects us to post information on the memory 1408 * pressure every second. 1409 */ 1410 reinit_completion(&dm_device.config_event); 1411 post_status(dm); 1412 } 1413 1414 return 0; 1415 } 1416 1417 1418 static void version_resp(struct hv_dynmem_device *dm, 1419 struct dm_version_response *vresp) 1420 { 1421 struct dm_version_request version_req; 1422 int ret; 1423 1424 if (vresp->is_accepted) { 1425 /* 1426 * We are done; wakeup the 1427 * context waiting for version 1428 * negotiation. 1429 */ 1430 complete(&dm->host_event); 1431 return; 1432 } 1433 /* 1434 * If there are more versions to try, continue 1435 * with negotiations; if not 1436 * shutdown the service since we are not able 1437 * to negotiate a suitable version number 1438 * with the host. 1439 */ 1440 if (dm->next_version == 0) 1441 goto version_error; 1442 1443 memset(&version_req, 0, sizeof(struct dm_version_request)); 1444 version_req.hdr.type = DM_VERSION_REQUEST; 1445 version_req.hdr.size = sizeof(struct dm_version_request); 1446 version_req.hdr.trans_id = atomic_inc_return(&trans_id); 1447 version_req.version.version = dm->next_version; 1448 dm->version = version_req.version.version; 1449 1450 /* 1451 * Set the next version to try in case current version fails. 1452 * Win7 protocol ought to be the last one to try. 1453 */ 1454 switch (version_req.version.version) { 1455 case DYNMEM_PROTOCOL_VERSION_WIN8: 1456 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7; 1457 version_req.is_last_attempt = 0; 1458 break; 1459 default: 1460 dm->next_version = 0; 1461 version_req.is_last_attempt = 1; 1462 } 1463 1464 ret = vmbus_sendpacket(dm->dev->channel, &version_req, 1465 sizeof(struct dm_version_request), 1466 (unsigned long)NULL, 1467 VM_PKT_DATA_INBAND, 0); 1468 1469 if (ret) 1470 goto version_error; 1471 1472 return; 1473 1474 version_error: 1475 dm->state = DM_INIT_ERROR; 1476 complete(&dm->host_event); 1477 } 1478 1479 static void cap_resp(struct hv_dynmem_device *dm, 1480 struct dm_capabilities_resp_msg *cap_resp) 1481 { 1482 if (!cap_resp->is_accepted) { 1483 pr_err("Capabilities not accepted by host\n"); 1484 dm->state = DM_INIT_ERROR; 1485 } 1486 complete(&dm->host_event); 1487 } 1488 1489 static void balloon_onchannelcallback(void *context) 1490 { 1491 struct hv_device *dev = context; 1492 u32 recvlen; 1493 u64 requestid; 1494 struct dm_message *dm_msg; 1495 struct dm_header *dm_hdr; 1496 struct hv_dynmem_device *dm = hv_get_drvdata(dev); 1497 struct dm_balloon *bal_msg; 1498 struct dm_hot_add *ha_msg; 1499 union dm_mem_page_range *ha_pg_range; 1500 union dm_mem_page_range *ha_region; 1501 1502 memset(recv_buffer, 0, sizeof(recv_buffer)); 1503 vmbus_recvpacket(dev->channel, recv_buffer, 1504 PAGE_SIZE, &recvlen, &requestid); 1505 1506 if (recvlen > 0) { 1507 dm_msg = (struct dm_message *)recv_buffer; 1508 dm_hdr = &dm_msg->hdr; 1509 1510 switch (dm_hdr->type) { 1511 case DM_VERSION_RESPONSE: 1512 version_resp(dm, 1513 (struct dm_version_response *)dm_msg); 1514 break; 1515 1516 case DM_CAPABILITIES_RESPONSE: 1517 cap_resp(dm, 1518 (struct dm_capabilities_resp_msg *)dm_msg); 1519 break; 1520 1521 case DM_BALLOON_REQUEST: 1522 if (dm->state == DM_BALLOON_UP) 1523 pr_warn("Currently ballooning\n"); 1524 bal_msg = (struct dm_balloon *)recv_buffer; 1525 dm->state = DM_BALLOON_UP; 1526 dm_device.balloon_wrk.num_pages = bal_msg->num_pages; 1527 schedule_work(&dm_device.balloon_wrk.wrk); 1528 break; 1529 1530 case DM_UNBALLOON_REQUEST: 1531 dm->state = DM_BALLOON_DOWN; 1532 balloon_down(dm, 1533 (struct dm_unballoon_request *)recv_buffer); 1534 break; 1535 1536 case DM_MEM_HOT_ADD_REQUEST: 1537 if (dm->state == DM_HOT_ADD) 1538 pr_warn("Currently hot-adding\n"); 1539 dm->state = DM_HOT_ADD; 1540 ha_msg = (struct dm_hot_add *)recv_buffer; 1541 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) { 1542 /* 1543 * This is a normal hot-add request specifying 1544 * hot-add memory. 1545 */ 1546 dm->host_specified_ha_region = false; 1547 ha_pg_range = &ha_msg->range; 1548 dm->ha_wrk.ha_page_range = *ha_pg_range; 1549 dm->ha_wrk.ha_region_range.page_range = 0; 1550 } else { 1551 /* 1552 * Host is specifying that we first hot-add 1553 * a region and then partially populate this 1554 * region. 1555 */ 1556 dm->host_specified_ha_region = true; 1557 ha_pg_range = &ha_msg->range; 1558 ha_region = &ha_pg_range[1]; 1559 dm->ha_wrk.ha_page_range = *ha_pg_range; 1560 dm->ha_wrk.ha_region_range = *ha_region; 1561 } 1562 schedule_work(&dm_device.ha_wrk.wrk); 1563 break; 1564 1565 case DM_INFO_MESSAGE: 1566 process_info(dm, (struct dm_info_msg *)dm_msg); 1567 break; 1568 1569 default: 1570 pr_warn("Unhandled message: type: %d\n", dm_hdr->type); 1571 1572 } 1573 } 1574 1575 } 1576 1577 static int balloon_probe(struct hv_device *dev, 1578 const struct hv_vmbus_device_id *dev_id) 1579 { 1580 int ret; 1581 unsigned long t; 1582 struct dm_version_request version_req; 1583 struct dm_capabilities cap_msg; 1584 1585 #ifdef CONFIG_MEMORY_HOTPLUG 1586 do_hot_add = hot_add; 1587 #else 1588 do_hot_add = false; 1589 #endif 1590 1591 /* 1592 * First allocate a send buffer. 1593 */ 1594 1595 send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL); 1596 if (!send_buffer) 1597 return -ENOMEM; 1598 1599 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0, 1600 balloon_onchannelcallback, dev); 1601 1602 if (ret) 1603 goto probe_error0; 1604 1605 dm_device.dev = dev; 1606 dm_device.state = DM_INITIALIZING; 1607 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8; 1608 init_completion(&dm_device.host_event); 1609 init_completion(&dm_device.config_event); 1610 INIT_LIST_HEAD(&dm_device.ha_region_list); 1611 spin_lock_init(&dm_device.ha_lock); 1612 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up); 1613 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req); 1614 dm_device.host_specified_ha_region = false; 1615 1616 dm_device.thread = 1617 kthread_run(dm_thread_func, &dm_device, "hv_balloon"); 1618 if (IS_ERR(dm_device.thread)) { 1619 ret = PTR_ERR(dm_device.thread); 1620 goto probe_error1; 1621 } 1622 1623 #ifdef CONFIG_MEMORY_HOTPLUG 1624 set_online_page_callback(&hv_online_page); 1625 register_memory_notifier(&hv_memory_nb); 1626 #endif 1627 1628 hv_set_drvdata(dev, &dm_device); 1629 /* 1630 * Initiate the hand shake with the host and negotiate 1631 * a version that the host can support. We start with the 1632 * highest version number and go down if the host cannot 1633 * support it. 1634 */ 1635 memset(&version_req, 0, sizeof(struct dm_version_request)); 1636 version_req.hdr.type = DM_VERSION_REQUEST; 1637 version_req.hdr.size = sizeof(struct dm_version_request); 1638 version_req.hdr.trans_id = atomic_inc_return(&trans_id); 1639 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10; 1640 version_req.is_last_attempt = 0; 1641 dm_device.version = version_req.version.version; 1642 1643 ret = vmbus_sendpacket(dev->channel, &version_req, 1644 sizeof(struct dm_version_request), 1645 (unsigned long)NULL, 1646 VM_PKT_DATA_INBAND, 0); 1647 if (ret) 1648 goto probe_error2; 1649 1650 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ); 1651 if (t == 0) { 1652 ret = -ETIMEDOUT; 1653 goto probe_error2; 1654 } 1655 1656 /* 1657 * If we could not negotiate a compatible version with the host 1658 * fail the probe function. 1659 */ 1660 if (dm_device.state == DM_INIT_ERROR) { 1661 ret = -ETIMEDOUT; 1662 goto probe_error2; 1663 } 1664 1665 pr_info("Using Dynamic Memory protocol version %u.%u\n", 1666 DYNMEM_MAJOR_VERSION(dm_device.version), 1667 DYNMEM_MINOR_VERSION(dm_device.version)); 1668 1669 /* 1670 * Now submit our capabilities to the host. 1671 */ 1672 memset(&cap_msg, 0, sizeof(struct dm_capabilities)); 1673 cap_msg.hdr.type = DM_CAPABILITIES_REPORT; 1674 cap_msg.hdr.size = sizeof(struct dm_capabilities); 1675 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id); 1676 1677 cap_msg.caps.cap_bits.balloon = 1; 1678 cap_msg.caps.cap_bits.hot_add = 1; 1679 1680 /* 1681 * Specify our alignment requirements as it relates 1682 * memory hot-add. Specify 128MB alignment. 1683 */ 1684 cap_msg.caps.cap_bits.hot_add_alignment = 7; 1685 1686 /* 1687 * Currently the host does not use these 1688 * values and we set them to what is done in the 1689 * Windows driver. 1690 */ 1691 cap_msg.min_page_cnt = 0; 1692 cap_msg.max_page_number = -1; 1693 1694 ret = vmbus_sendpacket(dev->channel, &cap_msg, 1695 sizeof(struct dm_capabilities), 1696 (unsigned long)NULL, 1697 VM_PKT_DATA_INBAND, 0); 1698 if (ret) 1699 goto probe_error2; 1700 1701 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ); 1702 if (t == 0) { 1703 ret = -ETIMEDOUT; 1704 goto probe_error2; 1705 } 1706 1707 /* 1708 * If the host does not like our capabilities, 1709 * fail the probe function. 1710 */ 1711 if (dm_device.state == DM_INIT_ERROR) { 1712 ret = -ETIMEDOUT; 1713 goto probe_error2; 1714 } 1715 1716 dm_device.state = DM_INITIALIZED; 1717 last_post_time = jiffies; 1718 1719 return 0; 1720 1721 probe_error2: 1722 #ifdef CONFIG_MEMORY_HOTPLUG 1723 restore_online_page_callback(&hv_online_page); 1724 #endif 1725 kthread_stop(dm_device.thread); 1726 1727 probe_error1: 1728 vmbus_close(dev->channel); 1729 probe_error0: 1730 kfree(send_buffer); 1731 return ret; 1732 } 1733 1734 static int balloon_remove(struct hv_device *dev) 1735 { 1736 struct hv_dynmem_device *dm = hv_get_drvdata(dev); 1737 struct hv_hotadd_state *has, *tmp; 1738 struct hv_hotadd_gap *gap, *tmp_gap; 1739 unsigned long flags; 1740 1741 if (dm->num_pages_ballooned != 0) 1742 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned); 1743 1744 cancel_work_sync(&dm->balloon_wrk.wrk); 1745 cancel_work_sync(&dm->ha_wrk.wrk); 1746 1747 vmbus_close(dev->channel); 1748 kthread_stop(dm->thread); 1749 kfree(send_buffer); 1750 #ifdef CONFIG_MEMORY_HOTPLUG 1751 restore_online_page_callback(&hv_online_page); 1752 unregister_memory_notifier(&hv_memory_nb); 1753 #endif 1754 spin_lock_irqsave(&dm_device.ha_lock, flags); 1755 list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) { 1756 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) { 1757 list_del(&gap->list); 1758 kfree(gap); 1759 } 1760 list_del(&has->list); 1761 kfree(has); 1762 } 1763 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 1764 1765 return 0; 1766 } 1767 1768 static const struct hv_vmbus_device_id id_table[] = { 1769 /* Dynamic Memory Class ID */ 1770 /* 525074DC-8985-46e2-8057-A307DC18A502 */ 1771 { HV_DM_GUID, }, 1772 { }, 1773 }; 1774 1775 MODULE_DEVICE_TABLE(vmbus, id_table); 1776 1777 static struct hv_driver balloon_drv = { 1778 .name = "hv_balloon", 1779 .id_table = id_table, 1780 .probe = balloon_probe, 1781 .remove = balloon_remove, 1782 .driver = { 1783 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 1784 }, 1785 }; 1786 1787 static int __init init_balloon_drv(void) 1788 { 1789 1790 return vmbus_driver_register(&balloon_drv); 1791 } 1792 1793 module_init(init_balloon_drv); 1794 1795 MODULE_DESCRIPTION("Hyper-V Balloon"); 1796 MODULE_LICENSE("GPL"); 1797