1 /* 2 * Copyright (c) 2012, Microsoft Corporation. 3 * 4 * Author: 5 * K. Y. Srinivasan <kys@microsoft.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 as published 9 * by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, but 12 * WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 14 * NON INFRINGEMENT. See the GNU General Public License for more 15 * details. 16 * 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/jiffies.h> 23 #include <linux/mman.h> 24 #include <linux/delay.h> 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/kthread.h> 29 #include <linux/completion.h> 30 #include <linux/memory_hotplug.h> 31 #include <linux/memory.h> 32 #include <linux/notifier.h> 33 #include <linux/percpu_counter.h> 34 35 #include <linux/hyperv.h> 36 37 /* 38 * We begin with definitions supporting the Dynamic Memory protocol 39 * with the host. 40 * 41 * Begin protocol definitions. 42 */ 43 44 45 46 /* 47 * Protocol versions. The low word is the minor version, the high word the major 48 * version. 49 * 50 * History: 51 * Initial version 1.0 52 * Changed to 0.1 on 2009/03/25 53 * Changes to 0.2 on 2009/05/14 54 * Changes to 0.3 on 2009/12/03 55 * Changed to 1.0 on 2011/04/05 56 */ 57 58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor))) 59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16) 60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff) 61 62 enum { 63 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3), 64 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0), 65 DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0), 66 67 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1, 68 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2, 69 DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3, 70 71 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10 72 }; 73 74 75 76 /* 77 * Message Types 78 */ 79 80 enum dm_message_type { 81 /* 82 * Version 0.3 83 */ 84 DM_ERROR = 0, 85 DM_VERSION_REQUEST = 1, 86 DM_VERSION_RESPONSE = 2, 87 DM_CAPABILITIES_REPORT = 3, 88 DM_CAPABILITIES_RESPONSE = 4, 89 DM_STATUS_REPORT = 5, 90 DM_BALLOON_REQUEST = 6, 91 DM_BALLOON_RESPONSE = 7, 92 DM_UNBALLOON_REQUEST = 8, 93 DM_UNBALLOON_RESPONSE = 9, 94 DM_MEM_HOT_ADD_REQUEST = 10, 95 DM_MEM_HOT_ADD_RESPONSE = 11, 96 DM_VERSION_03_MAX = 11, 97 /* 98 * Version 1.0. 99 */ 100 DM_INFO_MESSAGE = 12, 101 DM_VERSION_1_MAX = 12 102 }; 103 104 105 /* 106 * Structures defining the dynamic memory management 107 * protocol. 108 */ 109 110 union dm_version { 111 struct { 112 __u16 minor_version; 113 __u16 major_version; 114 }; 115 __u32 version; 116 } __packed; 117 118 119 union dm_caps { 120 struct { 121 __u64 balloon:1; 122 __u64 hot_add:1; 123 /* 124 * To support guests that may have alignment 125 * limitations on hot-add, the guest can specify 126 * its alignment requirements; a value of n 127 * represents an alignment of 2^n in mega bytes. 128 */ 129 __u64 hot_add_alignment:4; 130 __u64 reservedz:58; 131 } cap_bits; 132 __u64 caps; 133 } __packed; 134 135 union dm_mem_page_range { 136 struct { 137 /* 138 * The PFN number of the first page in the range. 139 * 40 bits is the architectural limit of a PFN 140 * number for AMD64. 141 */ 142 __u64 start_page:40; 143 /* 144 * The number of pages in the range. 145 */ 146 __u64 page_cnt:24; 147 } finfo; 148 __u64 page_range; 149 } __packed; 150 151 152 153 /* 154 * The header for all dynamic memory messages: 155 * 156 * type: Type of the message. 157 * size: Size of the message in bytes; including the header. 158 * trans_id: The guest is responsible for manufacturing this ID. 159 */ 160 161 struct dm_header { 162 __u16 type; 163 __u16 size; 164 __u32 trans_id; 165 } __packed; 166 167 /* 168 * A generic message format for dynamic memory. 169 * Specific message formats are defined later in the file. 170 */ 171 172 struct dm_message { 173 struct dm_header hdr; 174 __u8 data[]; /* enclosed message */ 175 } __packed; 176 177 178 /* 179 * Specific message types supporting the dynamic memory protocol. 180 */ 181 182 /* 183 * Version negotiation message. Sent from the guest to the host. 184 * The guest is free to try different versions until the host 185 * accepts the version. 186 * 187 * dm_version: The protocol version requested. 188 * is_last_attempt: If TRUE, this is the last version guest will request. 189 * reservedz: Reserved field, set to zero. 190 */ 191 192 struct dm_version_request { 193 struct dm_header hdr; 194 union dm_version version; 195 __u32 is_last_attempt:1; 196 __u32 reservedz:31; 197 } __packed; 198 199 /* 200 * Version response message; Host to Guest and indicates 201 * if the host has accepted the version sent by the guest. 202 * 203 * is_accepted: If TRUE, host has accepted the version and the guest 204 * should proceed to the next stage of the protocol. FALSE indicates that 205 * guest should re-try with a different version. 206 * 207 * reservedz: Reserved field, set to zero. 208 */ 209 210 struct dm_version_response { 211 struct dm_header hdr; 212 __u64 is_accepted:1; 213 __u64 reservedz:63; 214 } __packed; 215 216 /* 217 * Message reporting capabilities. This is sent from the guest to the 218 * host. 219 */ 220 221 struct dm_capabilities { 222 struct dm_header hdr; 223 union dm_caps caps; 224 __u64 min_page_cnt; 225 __u64 max_page_number; 226 } __packed; 227 228 /* 229 * Response to the capabilities message. This is sent from the host to the 230 * guest. This message notifies if the host has accepted the guest's 231 * capabilities. If the host has not accepted, the guest must shutdown 232 * the service. 233 * 234 * is_accepted: Indicates if the host has accepted guest's capabilities. 235 * reservedz: Must be 0. 236 */ 237 238 struct dm_capabilities_resp_msg { 239 struct dm_header hdr; 240 __u64 is_accepted:1; 241 __u64 reservedz:63; 242 } __packed; 243 244 /* 245 * This message is used to report memory pressure from the guest. 246 * This message is not part of any transaction and there is no 247 * response to this message. 248 * 249 * num_avail: Available memory in pages. 250 * num_committed: Committed memory in pages. 251 * page_file_size: The accumulated size of all page files 252 * in the system in pages. 253 * zero_free: The nunber of zero and free pages. 254 * page_file_writes: The writes to the page file in pages. 255 * io_diff: An indicator of file cache efficiency or page file activity, 256 * calculated as File Cache Page Fault Count - Page Read Count. 257 * This value is in pages. 258 * 259 * Some of these metrics are Windows specific and fortunately 260 * the algorithm on the host side that computes the guest memory 261 * pressure only uses num_committed value. 262 */ 263 264 struct dm_status { 265 struct dm_header hdr; 266 __u64 num_avail; 267 __u64 num_committed; 268 __u64 page_file_size; 269 __u64 zero_free; 270 __u32 page_file_writes; 271 __u32 io_diff; 272 } __packed; 273 274 275 /* 276 * Message to ask the guest to allocate memory - balloon up message. 277 * This message is sent from the host to the guest. The guest may not be 278 * able to allocate as much memory as requested. 279 * 280 * num_pages: number of pages to allocate. 281 */ 282 283 struct dm_balloon { 284 struct dm_header hdr; 285 __u32 num_pages; 286 __u32 reservedz; 287 } __packed; 288 289 290 /* 291 * Balloon response message; this message is sent from the guest 292 * to the host in response to the balloon message. 293 * 294 * reservedz: Reserved; must be set to zero. 295 * more_pages: If FALSE, this is the last message of the transaction. 296 * if TRUE there will atleast one more message from the guest. 297 * 298 * range_count: The number of ranges in the range array. 299 * 300 * range_array: An array of page ranges returned to the host. 301 * 302 */ 303 304 struct dm_balloon_response { 305 struct dm_header hdr; 306 __u32 reservedz; 307 __u32 more_pages:1; 308 __u32 range_count:31; 309 union dm_mem_page_range range_array[]; 310 } __packed; 311 312 /* 313 * Un-balloon message; this message is sent from the host 314 * to the guest to give guest more memory. 315 * 316 * more_pages: If FALSE, this is the last message of the transaction. 317 * if TRUE there will atleast one more message from the guest. 318 * 319 * reservedz: Reserved; must be set to zero. 320 * 321 * range_count: The number of ranges in the range array. 322 * 323 * range_array: An array of page ranges returned to the host. 324 * 325 */ 326 327 struct dm_unballoon_request { 328 struct dm_header hdr; 329 __u32 more_pages:1; 330 __u32 reservedz:31; 331 __u32 range_count; 332 union dm_mem_page_range range_array[]; 333 } __packed; 334 335 /* 336 * Un-balloon response message; this message is sent from the guest 337 * to the host in response to an unballoon request. 338 * 339 */ 340 341 struct dm_unballoon_response { 342 struct dm_header hdr; 343 } __packed; 344 345 346 /* 347 * Hot add request message. Message sent from the host to the guest. 348 * 349 * mem_range: Memory range to hot add. 350 * 351 * On Linux we currently don't support this since we cannot hot add 352 * arbitrary granularity of memory. 353 */ 354 355 struct dm_hot_add { 356 struct dm_header hdr; 357 union dm_mem_page_range range; 358 } __packed; 359 360 /* 361 * Hot add response message. 362 * This message is sent by the guest to report the status of a hot add request. 363 * If page_count is less than the requested page count, then the host should 364 * assume all further hot add requests will fail, since this indicates that 365 * the guest has hit an upper physical memory barrier. 366 * 367 * Hot adds may also fail due to low resources; in this case, the guest must 368 * not complete this message until the hot add can succeed, and the host must 369 * not send a new hot add request until the response is sent. 370 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS 371 * times it fails the request. 372 * 373 * 374 * page_count: number of pages that were successfully hot added. 375 * 376 * result: result of the operation 1: success, 0: failure. 377 * 378 */ 379 380 struct dm_hot_add_response { 381 struct dm_header hdr; 382 __u32 page_count; 383 __u32 result; 384 } __packed; 385 386 /* 387 * Types of information sent from host to the guest. 388 */ 389 390 enum dm_info_type { 391 INFO_TYPE_MAX_PAGE_CNT = 0, 392 MAX_INFO_TYPE 393 }; 394 395 396 /* 397 * Header for the information message. 398 */ 399 400 struct dm_info_header { 401 enum dm_info_type type; 402 __u32 data_size; 403 } __packed; 404 405 /* 406 * This message is sent from the host to the guest to pass 407 * some relevant information (win8 addition). 408 * 409 * reserved: no used. 410 * info_size: size of the information blob. 411 * info: information blob. 412 */ 413 414 struct dm_info_msg { 415 struct dm_header hdr; 416 __u32 reserved; 417 __u32 info_size; 418 __u8 info[]; 419 }; 420 421 /* 422 * End protocol definitions. 423 */ 424 425 /* 426 * State to manage hot adding memory into the guest. 427 * The range start_pfn : end_pfn specifies the range 428 * that the host has asked us to hot add. The range 429 * start_pfn : ha_end_pfn specifies the range that we have 430 * currently hot added. We hot add in multiples of 128M 431 * chunks; it is possible that we may not be able to bring 432 * online all the pages in the region. The range 433 * covered_start_pfn:covered_end_pfn defines the pages that can 434 * be brough online. 435 */ 436 437 struct hv_hotadd_state { 438 struct list_head list; 439 unsigned long start_pfn; 440 unsigned long covered_start_pfn; 441 unsigned long covered_end_pfn; 442 unsigned long ha_end_pfn; 443 unsigned long end_pfn; 444 /* 445 * A list of gaps. 446 */ 447 struct list_head gap_list; 448 }; 449 450 struct hv_hotadd_gap { 451 struct list_head list; 452 unsigned long start_pfn; 453 unsigned long end_pfn; 454 }; 455 456 struct balloon_state { 457 __u32 num_pages; 458 struct work_struct wrk; 459 }; 460 461 struct hot_add_wrk { 462 union dm_mem_page_range ha_page_range; 463 union dm_mem_page_range ha_region_range; 464 struct work_struct wrk; 465 }; 466 467 static bool hot_add = true; 468 static bool do_hot_add; 469 /* 470 * Delay reporting memory pressure by 471 * the specified number of seconds. 472 */ 473 static uint pressure_report_delay = 45; 474 475 /* 476 * The last time we posted a pressure report to host. 477 */ 478 static unsigned long last_post_time; 479 480 module_param(hot_add, bool, (S_IRUGO | S_IWUSR)); 481 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add"); 482 483 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR)); 484 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure"); 485 static atomic_t trans_id = ATOMIC_INIT(0); 486 487 static int dm_ring_size = (5 * PAGE_SIZE); 488 489 /* 490 * Driver specific state. 491 */ 492 493 enum hv_dm_state { 494 DM_INITIALIZING = 0, 495 DM_INITIALIZED, 496 DM_BALLOON_UP, 497 DM_BALLOON_DOWN, 498 DM_HOT_ADD, 499 DM_INIT_ERROR 500 }; 501 502 503 static __u8 recv_buffer[PAGE_SIZE]; 504 static __u8 *send_buffer; 505 #define PAGES_IN_2M 512 506 #define HA_CHUNK (32 * 1024) 507 508 struct hv_dynmem_device { 509 struct hv_device *dev; 510 enum hv_dm_state state; 511 struct completion host_event; 512 struct completion config_event; 513 514 /* 515 * Number of pages we have currently ballooned out. 516 */ 517 unsigned int num_pages_ballooned; 518 unsigned int num_pages_onlined; 519 unsigned int num_pages_added; 520 521 /* 522 * State to manage the ballooning (up) operation. 523 */ 524 struct balloon_state balloon_wrk; 525 526 /* 527 * State to execute the "hot-add" operation. 528 */ 529 struct hot_add_wrk ha_wrk; 530 531 /* 532 * This state tracks if the host has specified a hot-add 533 * region. 534 */ 535 bool host_specified_ha_region; 536 537 /* 538 * State to synchronize hot-add. 539 */ 540 struct completion ol_waitevent; 541 bool ha_waiting; 542 /* 543 * This thread handles hot-add 544 * requests from the host as well as notifying 545 * the host with regards to memory pressure in 546 * the guest. 547 */ 548 struct task_struct *thread; 549 550 /* 551 * Protects ha_region_list, num_pages_onlined counter and individual 552 * regions from ha_region_list. 553 */ 554 spinlock_t ha_lock; 555 556 /* 557 * A list of hot-add regions. 558 */ 559 struct list_head ha_region_list; 560 561 /* 562 * We start with the highest version we can support 563 * and downgrade based on the host; we save here the 564 * next version to try. 565 */ 566 __u32 next_version; 567 568 /* 569 * The negotiated version agreed by host. 570 */ 571 __u32 version; 572 }; 573 574 static struct hv_dynmem_device dm_device; 575 576 static void post_status(struct hv_dynmem_device *dm); 577 578 #ifdef CONFIG_MEMORY_HOTPLUG 579 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val, 580 void *v) 581 { 582 struct memory_notify *mem = (struct memory_notify *)v; 583 unsigned long flags; 584 585 switch (val) { 586 case MEM_ONLINE: 587 spin_lock_irqsave(&dm_device.ha_lock, flags); 588 dm_device.num_pages_onlined += mem->nr_pages; 589 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 590 case MEM_CANCEL_ONLINE: 591 if (dm_device.ha_waiting) { 592 dm_device.ha_waiting = false; 593 complete(&dm_device.ol_waitevent); 594 } 595 break; 596 597 case MEM_OFFLINE: 598 spin_lock_irqsave(&dm_device.ha_lock, flags); 599 dm_device.num_pages_onlined -= mem->nr_pages; 600 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 601 break; 602 case MEM_GOING_ONLINE: 603 case MEM_GOING_OFFLINE: 604 case MEM_CANCEL_OFFLINE: 605 break; 606 } 607 return NOTIFY_OK; 608 } 609 610 static struct notifier_block hv_memory_nb = { 611 .notifier_call = hv_memory_notifier, 612 .priority = 0 613 }; 614 615 /* Check if the particular page is backed and can be onlined and online it. */ 616 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg) 617 { 618 unsigned long cur_start_pgp; 619 unsigned long cur_end_pgp; 620 struct hv_hotadd_gap *gap; 621 622 cur_start_pgp = (unsigned long)pfn_to_page(has->covered_start_pfn); 623 cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn); 624 625 /* The page is not backed. */ 626 if (((unsigned long)pg < cur_start_pgp) || 627 ((unsigned long)pg >= cur_end_pgp)) 628 return; 629 630 /* Check for gaps. */ 631 list_for_each_entry(gap, &has->gap_list, list) { 632 cur_start_pgp = (unsigned long) 633 pfn_to_page(gap->start_pfn); 634 cur_end_pgp = (unsigned long) 635 pfn_to_page(gap->end_pfn); 636 if (((unsigned long)pg >= cur_start_pgp) && 637 ((unsigned long)pg < cur_end_pgp)) { 638 return; 639 } 640 } 641 642 /* This frame is currently backed; online the page. */ 643 __online_page_set_limits(pg); 644 __online_page_increment_counters(pg); 645 __online_page_free(pg); 646 } 647 648 static void hv_bring_pgs_online(struct hv_hotadd_state *has, 649 unsigned long start_pfn, unsigned long size) 650 { 651 int i; 652 653 pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn); 654 for (i = 0; i < size; i++) 655 hv_page_online_one(has, pfn_to_page(start_pfn + i)); 656 } 657 658 static void hv_mem_hot_add(unsigned long start, unsigned long size, 659 unsigned long pfn_count, 660 struct hv_hotadd_state *has) 661 { 662 int ret = 0; 663 int i, nid; 664 unsigned long start_pfn; 665 unsigned long processed_pfn; 666 unsigned long total_pfn = pfn_count; 667 unsigned long flags; 668 669 for (i = 0; i < (size/HA_CHUNK); i++) { 670 start_pfn = start + (i * HA_CHUNK); 671 672 spin_lock_irqsave(&dm_device.ha_lock, flags); 673 has->ha_end_pfn += HA_CHUNK; 674 675 if (total_pfn > HA_CHUNK) { 676 processed_pfn = HA_CHUNK; 677 total_pfn -= HA_CHUNK; 678 } else { 679 processed_pfn = total_pfn; 680 total_pfn = 0; 681 } 682 683 has->covered_end_pfn += processed_pfn; 684 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 685 686 init_completion(&dm_device.ol_waitevent); 687 dm_device.ha_waiting = !memhp_auto_online; 688 689 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn)); 690 ret = add_memory(nid, PFN_PHYS((start_pfn)), 691 (HA_CHUNK << PAGE_SHIFT)); 692 693 if (ret) { 694 pr_warn("hot_add memory failed error is %d\n", ret); 695 if (ret == -EEXIST) { 696 /* 697 * This error indicates that the error 698 * is not a transient failure. This is the 699 * case where the guest's physical address map 700 * precludes hot adding memory. Stop all further 701 * memory hot-add. 702 */ 703 do_hot_add = false; 704 } 705 spin_lock_irqsave(&dm_device.ha_lock, flags); 706 has->ha_end_pfn -= HA_CHUNK; 707 has->covered_end_pfn -= processed_pfn; 708 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 709 break; 710 } 711 712 /* 713 * Wait for the memory block to be onlined when memory onlining 714 * is done outside of kernel (memhp_auto_online). Since the hot 715 * add has succeeded, it is ok to proceed even if the pages in 716 * the hot added region have not been "onlined" within the 717 * allowed time. 718 */ 719 if (dm_device.ha_waiting) 720 wait_for_completion_timeout(&dm_device.ol_waitevent, 721 5*HZ); 722 post_status(&dm_device); 723 } 724 725 return; 726 } 727 728 static void hv_online_page(struct page *pg) 729 { 730 struct hv_hotadd_state *has; 731 unsigned long cur_start_pgp; 732 unsigned long cur_end_pgp; 733 unsigned long flags; 734 735 spin_lock_irqsave(&dm_device.ha_lock, flags); 736 list_for_each_entry(has, &dm_device.ha_region_list, list) { 737 cur_start_pgp = (unsigned long) 738 pfn_to_page(has->start_pfn); 739 cur_end_pgp = (unsigned long)pfn_to_page(has->end_pfn); 740 741 /* The page belongs to a different HAS. */ 742 if (((unsigned long)pg < cur_start_pgp) || 743 ((unsigned long)pg >= cur_end_pgp)) 744 continue; 745 746 hv_page_online_one(has, pg); 747 break; 748 } 749 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 750 } 751 752 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt) 753 { 754 struct hv_hotadd_state *has; 755 struct hv_hotadd_gap *gap; 756 unsigned long residual, new_inc; 757 int ret = 0; 758 unsigned long flags; 759 760 spin_lock_irqsave(&dm_device.ha_lock, flags); 761 list_for_each_entry(has, &dm_device.ha_region_list, list) { 762 /* 763 * If the pfn range we are dealing with is not in the current 764 * "hot add block", move on. 765 */ 766 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn) 767 continue; 768 769 /* 770 * If the current start pfn is not where the covered_end 771 * is, create a gap and update covered_end_pfn. 772 */ 773 if (has->covered_end_pfn != start_pfn) { 774 gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC); 775 if (!gap) { 776 ret = -ENOMEM; 777 break; 778 } 779 780 INIT_LIST_HEAD(&gap->list); 781 gap->start_pfn = has->covered_end_pfn; 782 gap->end_pfn = start_pfn; 783 list_add_tail(&gap->list, &has->gap_list); 784 785 has->covered_end_pfn = start_pfn; 786 } 787 788 /* 789 * If the current hot add-request extends beyond 790 * our current limit; extend it. 791 */ 792 if ((start_pfn + pfn_cnt) > has->end_pfn) { 793 residual = (start_pfn + pfn_cnt - has->end_pfn); 794 /* 795 * Extend the region by multiples of HA_CHUNK. 796 */ 797 new_inc = (residual / HA_CHUNK) * HA_CHUNK; 798 if (residual % HA_CHUNK) 799 new_inc += HA_CHUNK; 800 801 has->end_pfn += new_inc; 802 } 803 804 ret = 1; 805 break; 806 } 807 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 808 809 return ret; 810 } 811 812 static unsigned long handle_pg_range(unsigned long pg_start, 813 unsigned long pg_count) 814 { 815 unsigned long start_pfn = pg_start; 816 unsigned long pfn_cnt = pg_count; 817 unsigned long size; 818 struct hv_hotadd_state *has; 819 unsigned long pgs_ol = 0; 820 unsigned long old_covered_state; 821 unsigned long res = 0, flags; 822 823 pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count, 824 pg_start); 825 826 spin_lock_irqsave(&dm_device.ha_lock, flags); 827 list_for_each_entry(has, &dm_device.ha_region_list, list) { 828 /* 829 * If the pfn range we are dealing with is not in the current 830 * "hot add block", move on. 831 */ 832 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn) 833 continue; 834 835 old_covered_state = has->covered_end_pfn; 836 837 if (start_pfn < has->ha_end_pfn) { 838 /* 839 * This is the case where we are backing pages 840 * in an already hot added region. Bring 841 * these pages online first. 842 */ 843 pgs_ol = has->ha_end_pfn - start_pfn; 844 if (pgs_ol > pfn_cnt) 845 pgs_ol = pfn_cnt; 846 847 has->covered_end_pfn += pgs_ol; 848 pfn_cnt -= pgs_ol; 849 /* 850 * Check if the corresponding memory block is already 851 * online by checking its last previously backed page. 852 * In case it is we need to bring rest (which was not 853 * backed previously) online too. 854 */ 855 if (start_pfn > has->start_pfn && 856 !PageReserved(pfn_to_page(start_pfn - 1))) 857 hv_bring_pgs_online(has, start_pfn, pgs_ol); 858 859 } 860 861 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) { 862 /* 863 * We have some residual hot add range 864 * that needs to be hot added; hot add 865 * it now. Hot add a multiple of 866 * of HA_CHUNK that fully covers the pages 867 * we have. 868 */ 869 size = (has->end_pfn - has->ha_end_pfn); 870 if (pfn_cnt <= size) { 871 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK); 872 if (pfn_cnt % HA_CHUNK) 873 size += HA_CHUNK; 874 } else { 875 pfn_cnt = size; 876 } 877 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 878 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has); 879 spin_lock_irqsave(&dm_device.ha_lock, flags); 880 } 881 /* 882 * If we managed to online any pages that were given to us, 883 * we declare success. 884 */ 885 res = has->covered_end_pfn - old_covered_state; 886 break; 887 } 888 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 889 890 return res; 891 } 892 893 static unsigned long process_hot_add(unsigned long pg_start, 894 unsigned long pfn_cnt, 895 unsigned long rg_start, 896 unsigned long rg_size) 897 { 898 struct hv_hotadd_state *ha_region = NULL; 899 int covered; 900 unsigned long flags; 901 902 if (pfn_cnt == 0) 903 return 0; 904 905 if (!dm_device.host_specified_ha_region) { 906 covered = pfn_covered(pg_start, pfn_cnt); 907 if (covered < 0) 908 return 0; 909 910 if (covered) 911 goto do_pg_range; 912 } 913 914 /* 915 * If the host has specified a hot-add range; deal with it first. 916 */ 917 918 if (rg_size != 0) { 919 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL); 920 if (!ha_region) 921 return 0; 922 923 INIT_LIST_HEAD(&ha_region->list); 924 INIT_LIST_HEAD(&ha_region->gap_list); 925 926 ha_region->start_pfn = rg_start; 927 ha_region->ha_end_pfn = rg_start; 928 ha_region->covered_start_pfn = pg_start; 929 ha_region->covered_end_pfn = pg_start; 930 ha_region->end_pfn = rg_start + rg_size; 931 932 spin_lock_irqsave(&dm_device.ha_lock, flags); 933 list_add_tail(&ha_region->list, &dm_device.ha_region_list); 934 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 935 } 936 937 do_pg_range: 938 /* 939 * Process the page range specified; bringing them 940 * online if possible. 941 */ 942 return handle_pg_range(pg_start, pfn_cnt); 943 } 944 945 #endif 946 947 static void hot_add_req(struct work_struct *dummy) 948 { 949 struct dm_hot_add_response resp; 950 #ifdef CONFIG_MEMORY_HOTPLUG 951 unsigned long pg_start, pfn_cnt; 952 unsigned long rg_start, rg_sz; 953 #endif 954 struct hv_dynmem_device *dm = &dm_device; 955 956 memset(&resp, 0, sizeof(struct dm_hot_add_response)); 957 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE; 958 resp.hdr.size = sizeof(struct dm_hot_add_response); 959 960 #ifdef CONFIG_MEMORY_HOTPLUG 961 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page; 962 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt; 963 964 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page; 965 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt; 966 967 if ((rg_start == 0) && (!dm->host_specified_ha_region)) { 968 unsigned long region_size; 969 unsigned long region_start; 970 971 /* 972 * The host has not specified the hot-add region. 973 * Based on the hot-add page range being specified, 974 * compute a hot-add region that can cover the pages 975 * that need to be hot-added while ensuring the alignment 976 * and size requirements of Linux as it relates to hot-add. 977 */ 978 region_start = pg_start; 979 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK; 980 if (pfn_cnt % HA_CHUNK) 981 region_size += HA_CHUNK; 982 983 region_start = (pg_start / HA_CHUNK) * HA_CHUNK; 984 985 rg_start = region_start; 986 rg_sz = region_size; 987 } 988 989 if (do_hot_add) 990 resp.page_count = process_hot_add(pg_start, pfn_cnt, 991 rg_start, rg_sz); 992 993 dm->num_pages_added += resp.page_count; 994 #endif 995 /* 996 * The result field of the response structure has the 997 * following semantics: 998 * 999 * 1. If all or some pages hot-added: Guest should return success. 1000 * 1001 * 2. If no pages could be hot-added: 1002 * 1003 * If the guest returns success, then the host 1004 * will not attempt any further hot-add operations. This 1005 * signifies a permanent failure. 1006 * 1007 * If the guest returns failure, then this failure will be 1008 * treated as a transient failure and the host may retry the 1009 * hot-add operation after some delay. 1010 */ 1011 if (resp.page_count > 0) 1012 resp.result = 1; 1013 else if (!do_hot_add) 1014 resp.result = 1; 1015 else 1016 resp.result = 0; 1017 1018 if (!do_hot_add || (resp.page_count == 0)) 1019 pr_info("Memory hot add failed\n"); 1020 1021 dm->state = DM_INITIALIZED; 1022 resp.hdr.trans_id = atomic_inc_return(&trans_id); 1023 vmbus_sendpacket(dm->dev->channel, &resp, 1024 sizeof(struct dm_hot_add_response), 1025 (unsigned long)NULL, 1026 VM_PKT_DATA_INBAND, 0); 1027 } 1028 1029 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg) 1030 { 1031 struct dm_info_header *info_hdr; 1032 1033 info_hdr = (struct dm_info_header *)msg->info; 1034 1035 switch (info_hdr->type) { 1036 case INFO_TYPE_MAX_PAGE_CNT: 1037 if (info_hdr->data_size == sizeof(__u64)) { 1038 __u64 *max_page_count = (__u64 *)&info_hdr[1]; 1039 1040 pr_info("INFO_TYPE_MAX_PAGE_CNT = %llu\n", 1041 *max_page_count); 1042 } 1043 1044 break; 1045 default: 1046 pr_info("Received Unknown type: %d\n", info_hdr->type); 1047 } 1048 } 1049 1050 static unsigned long compute_balloon_floor(void) 1051 { 1052 unsigned long min_pages; 1053 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT)) 1054 /* Simple continuous piecewiese linear function: 1055 * max MiB -> min MiB gradient 1056 * 0 0 1057 * 16 16 1058 * 32 24 1059 * 128 72 (1/2) 1060 * 512 168 (1/4) 1061 * 2048 360 (1/8) 1062 * 8192 744 (1/16) 1063 * 32768 1512 (1/32) 1064 */ 1065 if (totalram_pages < MB2PAGES(128)) 1066 min_pages = MB2PAGES(8) + (totalram_pages >> 1); 1067 else if (totalram_pages < MB2PAGES(512)) 1068 min_pages = MB2PAGES(40) + (totalram_pages >> 2); 1069 else if (totalram_pages < MB2PAGES(2048)) 1070 min_pages = MB2PAGES(104) + (totalram_pages >> 3); 1071 else if (totalram_pages < MB2PAGES(8192)) 1072 min_pages = MB2PAGES(232) + (totalram_pages >> 4); 1073 else 1074 min_pages = MB2PAGES(488) + (totalram_pages >> 5); 1075 #undef MB2PAGES 1076 return min_pages; 1077 } 1078 1079 /* 1080 * Post our status as it relates memory pressure to the 1081 * host. Host expects the guests to post this status 1082 * periodically at 1 second intervals. 1083 * 1084 * The metrics specified in this protocol are very Windows 1085 * specific and so we cook up numbers here to convey our memory 1086 * pressure. 1087 */ 1088 1089 static void post_status(struct hv_dynmem_device *dm) 1090 { 1091 struct dm_status status; 1092 unsigned long now = jiffies; 1093 unsigned long last_post = last_post_time; 1094 1095 if (pressure_report_delay > 0) { 1096 --pressure_report_delay; 1097 return; 1098 } 1099 1100 if (!time_after(now, (last_post_time + HZ))) 1101 return; 1102 1103 memset(&status, 0, sizeof(struct dm_status)); 1104 status.hdr.type = DM_STATUS_REPORT; 1105 status.hdr.size = sizeof(struct dm_status); 1106 status.hdr.trans_id = atomic_inc_return(&trans_id); 1107 1108 /* 1109 * The host expects the guest to report free and committed memory. 1110 * Furthermore, the host expects the pressure information to include 1111 * the ballooned out pages. For a given amount of memory that we are 1112 * managing we need to compute a floor below which we should not 1113 * balloon. Compute this and add it to the pressure report. 1114 * We also need to report all offline pages (num_pages_added - 1115 * num_pages_onlined) as committed to the host, otherwise it can try 1116 * asking us to balloon them out. 1117 */ 1118 status.num_avail = si_mem_available(); 1119 status.num_committed = vm_memory_committed() + 1120 dm->num_pages_ballooned + 1121 (dm->num_pages_added > dm->num_pages_onlined ? 1122 dm->num_pages_added - dm->num_pages_onlined : 0) + 1123 compute_balloon_floor(); 1124 1125 /* 1126 * If our transaction ID is no longer current, just don't 1127 * send the status. This can happen if we were interrupted 1128 * after we picked our transaction ID. 1129 */ 1130 if (status.hdr.trans_id != atomic_read(&trans_id)) 1131 return; 1132 1133 /* 1134 * If the last post time that we sampled has changed, 1135 * we have raced, don't post the status. 1136 */ 1137 if (last_post != last_post_time) 1138 return; 1139 1140 last_post_time = jiffies; 1141 vmbus_sendpacket(dm->dev->channel, &status, 1142 sizeof(struct dm_status), 1143 (unsigned long)NULL, 1144 VM_PKT_DATA_INBAND, 0); 1145 1146 } 1147 1148 static void free_balloon_pages(struct hv_dynmem_device *dm, 1149 union dm_mem_page_range *range_array) 1150 { 1151 int num_pages = range_array->finfo.page_cnt; 1152 __u64 start_frame = range_array->finfo.start_page; 1153 struct page *pg; 1154 int i; 1155 1156 for (i = 0; i < num_pages; i++) { 1157 pg = pfn_to_page(i + start_frame); 1158 __free_page(pg); 1159 dm->num_pages_ballooned--; 1160 } 1161 } 1162 1163 1164 1165 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm, 1166 unsigned int num_pages, 1167 struct dm_balloon_response *bl_resp, 1168 int alloc_unit) 1169 { 1170 unsigned int i = 0; 1171 struct page *pg; 1172 1173 if (num_pages < alloc_unit) 1174 return 0; 1175 1176 for (i = 0; (i * alloc_unit) < num_pages; i++) { 1177 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) > 1178 PAGE_SIZE) 1179 return i * alloc_unit; 1180 1181 /* 1182 * We execute this code in a thread context. Furthermore, 1183 * we don't want the kernel to try too hard. 1184 */ 1185 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY | 1186 __GFP_NOMEMALLOC | __GFP_NOWARN, 1187 get_order(alloc_unit << PAGE_SHIFT)); 1188 1189 if (!pg) 1190 return i * alloc_unit; 1191 1192 dm->num_pages_ballooned += alloc_unit; 1193 1194 /* 1195 * If we allocatted 2M pages; split them so we 1196 * can free them in any order we get. 1197 */ 1198 1199 if (alloc_unit != 1) 1200 split_page(pg, get_order(alloc_unit << PAGE_SHIFT)); 1201 1202 bl_resp->range_count++; 1203 bl_resp->range_array[i].finfo.start_page = 1204 page_to_pfn(pg); 1205 bl_resp->range_array[i].finfo.page_cnt = alloc_unit; 1206 bl_resp->hdr.size += sizeof(union dm_mem_page_range); 1207 1208 } 1209 1210 return num_pages; 1211 } 1212 1213 static void balloon_up(struct work_struct *dummy) 1214 { 1215 unsigned int num_pages = dm_device.balloon_wrk.num_pages; 1216 unsigned int num_ballooned = 0; 1217 struct dm_balloon_response *bl_resp; 1218 int alloc_unit; 1219 int ret; 1220 bool done = false; 1221 int i; 1222 long avail_pages; 1223 unsigned long floor; 1224 1225 /* The host balloons pages in 2M granularity. */ 1226 WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0); 1227 1228 /* 1229 * We will attempt 2M allocations. However, if we fail to 1230 * allocate 2M chunks, we will go back to 4k allocations. 1231 */ 1232 alloc_unit = 512; 1233 1234 avail_pages = si_mem_available(); 1235 floor = compute_balloon_floor(); 1236 1237 /* Refuse to balloon below the floor, keep the 2M granularity. */ 1238 if (avail_pages < num_pages || avail_pages - num_pages < floor) { 1239 pr_warn("Balloon request will be partially fulfilled. %s\n", 1240 avail_pages < num_pages ? "Not enough memory." : 1241 "Balloon floor reached."); 1242 1243 num_pages = avail_pages > floor ? (avail_pages - floor) : 0; 1244 num_pages -= num_pages % PAGES_IN_2M; 1245 } 1246 1247 while (!done) { 1248 bl_resp = (struct dm_balloon_response *)send_buffer; 1249 memset(send_buffer, 0, PAGE_SIZE); 1250 bl_resp->hdr.type = DM_BALLOON_RESPONSE; 1251 bl_resp->hdr.size = sizeof(struct dm_balloon_response); 1252 bl_resp->more_pages = 1; 1253 1254 num_pages -= num_ballooned; 1255 num_ballooned = alloc_balloon_pages(&dm_device, num_pages, 1256 bl_resp, alloc_unit); 1257 1258 if (alloc_unit != 1 && num_ballooned == 0) { 1259 alloc_unit = 1; 1260 continue; 1261 } 1262 1263 if (num_ballooned == 0 || num_ballooned == num_pages) { 1264 pr_debug("Ballooned %u out of %u requested pages.\n", 1265 num_pages, dm_device.balloon_wrk.num_pages); 1266 1267 bl_resp->more_pages = 0; 1268 done = true; 1269 dm_device.state = DM_INITIALIZED; 1270 } 1271 1272 /* 1273 * We are pushing a lot of data through the channel; 1274 * deal with transient failures caused because of the 1275 * lack of space in the ring buffer. 1276 */ 1277 1278 do { 1279 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id); 1280 ret = vmbus_sendpacket(dm_device.dev->channel, 1281 bl_resp, 1282 bl_resp->hdr.size, 1283 (unsigned long)NULL, 1284 VM_PKT_DATA_INBAND, 0); 1285 1286 if (ret == -EAGAIN) 1287 msleep(20); 1288 post_status(&dm_device); 1289 } while (ret == -EAGAIN); 1290 1291 if (ret) { 1292 /* 1293 * Free up the memory we allocatted. 1294 */ 1295 pr_info("Balloon response failed\n"); 1296 1297 for (i = 0; i < bl_resp->range_count; i++) 1298 free_balloon_pages(&dm_device, 1299 &bl_resp->range_array[i]); 1300 1301 done = true; 1302 } 1303 } 1304 1305 } 1306 1307 static void balloon_down(struct hv_dynmem_device *dm, 1308 struct dm_unballoon_request *req) 1309 { 1310 union dm_mem_page_range *range_array = req->range_array; 1311 int range_count = req->range_count; 1312 struct dm_unballoon_response resp; 1313 int i; 1314 unsigned int prev_pages_ballooned = dm->num_pages_ballooned; 1315 1316 for (i = 0; i < range_count; i++) { 1317 free_balloon_pages(dm, &range_array[i]); 1318 complete(&dm_device.config_event); 1319 } 1320 1321 pr_debug("Freed %u ballooned pages.\n", 1322 prev_pages_ballooned - dm->num_pages_ballooned); 1323 1324 if (req->more_pages == 1) 1325 return; 1326 1327 memset(&resp, 0, sizeof(struct dm_unballoon_response)); 1328 resp.hdr.type = DM_UNBALLOON_RESPONSE; 1329 resp.hdr.trans_id = atomic_inc_return(&trans_id); 1330 resp.hdr.size = sizeof(struct dm_unballoon_response); 1331 1332 vmbus_sendpacket(dm_device.dev->channel, &resp, 1333 sizeof(struct dm_unballoon_response), 1334 (unsigned long)NULL, 1335 VM_PKT_DATA_INBAND, 0); 1336 1337 dm->state = DM_INITIALIZED; 1338 } 1339 1340 static void balloon_onchannelcallback(void *context); 1341 1342 static int dm_thread_func(void *dm_dev) 1343 { 1344 struct hv_dynmem_device *dm = dm_dev; 1345 1346 while (!kthread_should_stop()) { 1347 wait_for_completion_interruptible_timeout( 1348 &dm_device.config_event, 1*HZ); 1349 /* 1350 * The host expects us to post information on the memory 1351 * pressure every second. 1352 */ 1353 reinit_completion(&dm_device.config_event); 1354 post_status(dm); 1355 } 1356 1357 return 0; 1358 } 1359 1360 1361 static void version_resp(struct hv_dynmem_device *dm, 1362 struct dm_version_response *vresp) 1363 { 1364 struct dm_version_request version_req; 1365 int ret; 1366 1367 if (vresp->is_accepted) { 1368 /* 1369 * We are done; wakeup the 1370 * context waiting for version 1371 * negotiation. 1372 */ 1373 complete(&dm->host_event); 1374 return; 1375 } 1376 /* 1377 * If there are more versions to try, continue 1378 * with negotiations; if not 1379 * shutdown the service since we are not able 1380 * to negotiate a suitable version number 1381 * with the host. 1382 */ 1383 if (dm->next_version == 0) 1384 goto version_error; 1385 1386 memset(&version_req, 0, sizeof(struct dm_version_request)); 1387 version_req.hdr.type = DM_VERSION_REQUEST; 1388 version_req.hdr.size = sizeof(struct dm_version_request); 1389 version_req.hdr.trans_id = atomic_inc_return(&trans_id); 1390 version_req.version.version = dm->next_version; 1391 dm->version = version_req.version.version; 1392 1393 /* 1394 * Set the next version to try in case current version fails. 1395 * Win7 protocol ought to be the last one to try. 1396 */ 1397 switch (version_req.version.version) { 1398 case DYNMEM_PROTOCOL_VERSION_WIN8: 1399 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7; 1400 version_req.is_last_attempt = 0; 1401 break; 1402 default: 1403 dm->next_version = 0; 1404 version_req.is_last_attempt = 1; 1405 } 1406 1407 ret = vmbus_sendpacket(dm->dev->channel, &version_req, 1408 sizeof(struct dm_version_request), 1409 (unsigned long)NULL, 1410 VM_PKT_DATA_INBAND, 0); 1411 1412 if (ret) 1413 goto version_error; 1414 1415 return; 1416 1417 version_error: 1418 dm->state = DM_INIT_ERROR; 1419 complete(&dm->host_event); 1420 } 1421 1422 static void cap_resp(struct hv_dynmem_device *dm, 1423 struct dm_capabilities_resp_msg *cap_resp) 1424 { 1425 if (!cap_resp->is_accepted) { 1426 pr_info("Capabilities not accepted by host\n"); 1427 dm->state = DM_INIT_ERROR; 1428 } 1429 complete(&dm->host_event); 1430 } 1431 1432 static void balloon_onchannelcallback(void *context) 1433 { 1434 struct hv_device *dev = context; 1435 u32 recvlen; 1436 u64 requestid; 1437 struct dm_message *dm_msg; 1438 struct dm_header *dm_hdr; 1439 struct hv_dynmem_device *dm = hv_get_drvdata(dev); 1440 struct dm_balloon *bal_msg; 1441 struct dm_hot_add *ha_msg; 1442 union dm_mem_page_range *ha_pg_range; 1443 union dm_mem_page_range *ha_region; 1444 1445 memset(recv_buffer, 0, sizeof(recv_buffer)); 1446 vmbus_recvpacket(dev->channel, recv_buffer, 1447 PAGE_SIZE, &recvlen, &requestid); 1448 1449 if (recvlen > 0) { 1450 dm_msg = (struct dm_message *)recv_buffer; 1451 dm_hdr = &dm_msg->hdr; 1452 1453 switch (dm_hdr->type) { 1454 case DM_VERSION_RESPONSE: 1455 version_resp(dm, 1456 (struct dm_version_response *)dm_msg); 1457 break; 1458 1459 case DM_CAPABILITIES_RESPONSE: 1460 cap_resp(dm, 1461 (struct dm_capabilities_resp_msg *)dm_msg); 1462 break; 1463 1464 case DM_BALLOON_REQUEST: 1465 if (dm->state == DM_BALLOON_UP) 1466 pr_warn("Currently ballooning\n"); 1467 bal_msg = (struct dm_balloon *)recv_buffer; 1468 dm->state = DM_BALLOON_UP; 1469 dm_device.balloon_wrk.num_pages = bal_msg->num_pages; 1470 schedule_work(&dm_device.balloon_wrk.wrk); 1471 break; 1472 1473 case DM_UNBALLOON_REQUEST: 1474 dm->state = DM_BALLOON_DOWN; 1475 balloon_down(dm, 1476 (struct dm_unballoon_request *)recv_buffer); 1477 break; 1478 1479 case DM_MEM_HOT_ADD_REQUEST: 1480 if (dm->state == DM_HOT_ADD) 1481 pr_warn("Currently hot-adding\n"); 1482 dm->state = DM_HOT_ADD; 1483 ha_msg = (struct dm_hot_add *)recv_buffer; 1484 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) { 1485 /* 1486 * This is a normal hot-add request specifying 1487 * hot-add memory. 1488 */ 1489 dm->host_specified_ha_region = false; 1490 ha_pg_range = &ha_msg->range; 1491 dm->ha_wrk.ha_page_range = *ha_pg_range; 1492 dm->ha_wrk.ha_region_range.page_range = 0; 1493 } else { 1494 /* 1495 * Host is specifying that we first hot-add 1496 * a region and then partially populate this 1497 * region. 1498 */ 1499 dm->host_specified_ha_region = true; 1500 ha_pg_range = &ha_msg->range; 1501 ha_region = &ha_pg_range[1]; 1502 dm->ha_wrk.ha_page_range = *ha_pg_range; 1503 dm->ha_wrk.ha_region_range = *ha_region; 1504 } 1505 schedule_work(&dm_device.ha_wrk.wrk); 1506 break; 1507 1508 case DM_INFO_MESSAGE: 1509 process_info(dm, (struct dm_info_msg *)dm_msg); 1510 break; 1511 1512 default: 1513 pr_err("Unhandled message: type: %d\n", dm_hdr->type); 1514 1515 } 1516 } 1517 1518 } 1519 1520 static int balloon_probe(struct hv_device *dev, 1521 const struct hv_vmbus_device_id *dev_id) 1522 { 1523 int ret; 1524 unsigned long t; 1525 struct dm_version_request version_req; 1526 struct dm_capabilities cap_msg; 1527 1528 #ifdef CONFIG_MEMORY_HOTPLUG 1529 do_hot_add = hot_add; 1530 #else 1531 do_hot_add = false; 1532 #endif 1533 1534 /* 1535 * First allocate a send buffer. 1536 */ 1537 1538 send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL); 1539 if (!send_buffer) 1540 return -ENOMEM; 1541 1542 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0, 1543 balloon_onchannelcallback, dev); 1544 1545 if (ret) 1546 goto probe_error0; 1547 1548 dm_device.dev = dev; 1549 dm_device.state = DM_INITIALIZING; 1550 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8; 1551 init_completion(&dm_device.host_event); 1552 init_completion(&dm_device.config_event); 1553 INIT_LIST_HEAD(&dm_device.ha_region_list); 1554 spin_lock_init(&dm_device.ha_lock); 1555 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up); 1556 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req); 1557 dm_device.host_specified_ha_region = false; 1558 1559 dm_device.thread = 1560 kthread_run(dm_thread_func, &dm_device, "hv_balloon"); 1561 if (IS_ERR(dm_device.thread)) { 1562 ret = PTR_ERR(dm_device.thread); 1563 goto probe_error1; 1564 } 1565 1566 #ifdef CONFIG_MEMORY_HOTPLUG 1567 set_online_page_callback(&hv_online_page); 1568 register_memory_notifier(&hv_memory_nb); 1569 #endif 1570 1571 hv_set_drvdata(dev, &dm_device); 1572 /* 1573 * Initiate the hand shake with the host and negotiate 1574 * a version that the host can support. We start with the 1575 * highest version number and go down if the host cannot 1576 * support it. 1577 */ 1578 memset(&version_req, 0, sizeof(struct dm_version_request)); 1579 version_req.hdr.type = DM_VERSION_REQUEST; 1580 version_req.hdr.size = sizeof(struct dm_version_request); 1581 version_req.hdr.trans_id = atomic_inc_return(&trans_id); 1582 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10; 1583 version_req.is_last_attempt = 0; 1584 dm_device.version = version_req.version.version; 1585 1586 ret = vmbus_sendpacket(dev->channel, &version_req, 1587 sizeof(struct dm_version_request), 1588 (unsigned long)NULL, 1589 VM_PKT_DATA_INBAND, 0); 1590 if (ret) 1591 goto probe_error2; 1592 1593 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ); 1594 if (t == 0) { 1595 ret = -ETIMEDOUT; 1596 goto probe_error2; 1597 } 1598 1599 /* 1600 * If we could not negotiate a compatible version with the host 1601 * fail the probe function. 1602 */ 1603 if (dm_device.state == DM_INIT_ERROR) { 1604 ret = -ETIMEDOUT; 1605 goto probe_error2; 1606 } 1607 1608 pr_info("Using Dynamic Memory protocol version %u.%u\n", 1609 DYNMEM_MAJOR_VERSION(dm_device.version), 1610 DYNMEM_MINOR_VERSION(dm_device.version)); 1611 1612 /* 1613 * Now submit our capabilities to the host. 1614 */ 1615 memset(&cap_msg, 0, sizeof(struct dm_capabilities)); 1616 cap_msg.hdr.type = DM_CAPABILITIES_REPORT; 1617 cap_msg.hdr.size = sizeof(struct dm_capabilities); 1618 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id); 1619 1620 cap_msg.caps.cap_bits.balloon = 1; 1621 cap_msg.caps.cap_bits.hot_add = 1; 1622 1623 /* 1624 * Specify our alignment requirements as it relates 1625 * memory hot-add. Specify 128MB alignment. 1626 */ 1627 cap_msg.caps.cap_bits.hot_add_alignment = 7; 1628 1629 /* 1630 * Currently the host does not use these 1631 * values and we set them to what is done in the 1632 * Windows driver. 1633 */ 1634 cap_msg.min_page_cnt = 0; 1635 cap_msg.max_page_number = -1; 1636 1637 ret = vmbus_sendpacket(dev->channel, &cap_msg, 1638 sizeof(struct dm_capabilities), 1639 (unsigned long)NULL, 1640 VM_PKT_DATA_INBAND, 0); 1641 if (ret) 1642 goto probe_error2; 1643 1644 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ); 1645 if (t == 0) { 1646 ret = -ETIMEDOUT; 1647 goto probe_error2; 1648 } 1649 1650 /* 1651 * If the host does not like our capabilities, 1652 * fail the probe function. 1653 */ 1654 if (dm_device.state == DM_INIT_ERROR) { 1655 ret = -ETIMEDOUT; 1656 goto probe_error2; 1657 } 1658 1659 dm_device.state = DM_INITIALIZED; 1660 1661 return 0; 1662 1663 probe_error2: 1664 #ifdef CONFIG_MEMORY_HOTPLUG 1665 restore_online_page_callback(&hv_online_page); 1666 #endif 1667 kthread_stop(dm_device.thread); 1668 1669 probe_error1: 1670 vmbus_close(dev->channel); 1671 probe_error0: 1672 kfree(send_buffer); 1673 return ret; 1674 } 1675 1676 static int balloon_remove(struct hv_device *dev) 1677 { 1678 struct hv_dynmem_device *dm = hv_get_drvdata(dev); 1679 struct hv_hotadd_state *has, *tmp; 1680 struct hv_hotadd_gap *gap, *tmp_gap; 1681 unsigned long flags; 1682 1683 if (dm->num_pages_ballooned != 0) 1684 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned); 1685 1686 cancel_work_sync(&dm->balloon_wrk.wrk); 1687 cancel_work_sync(&dm->ha_wrk.wrk); 1688 1689 vmbus_close(dev->channel); 1690 kthread_stop(dm->thread); 1691 kfree(send_buffer); 1692 #ifdef CONFIG_MEMORY_HOTPLUG 1693 restore_online_page_callback(&hv_online_page); 1694 unregister_memory_notifier(&hv_memory_nb); 1695 #endif 1696 spin_lock_irqsave(&dm_device.ha_lock, flags); 1697 list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) { 1698 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) { 1699 list_del(&gap->list); 1700 kfree(gap); 1701 } 1702 list_del(&has->list); 1703 kfree(has); 1704 } 1705 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 1706 1707 return 0; 1708 } 1709 1710 static const struct hv_vmbus_device_id id_table[] = { 1711 /* Dynamic Memory Class ID */ 1712 /* 525074DC-8985-46e2-8057-A307DC18A502 */ 1713 { HV_DM_GUID, }, 1714 { }, 1715 }; 1716 1717 MODULE_DEVICE_TABLE(vmbus, id_table); 1718 1719 static struct hv_driver balloon_drv = { 1720 .name = "hv_balloon", 1721 .id_table = id_table, 1722 .probe = balloon_probe, 1723 .remove = balloon_remove, 1724 }; 1725 1726 static int __init init_balloon_drv(void) 1727 { 1728 1729 return vmbus_driver_register(&balloon_drv); 1730 } 1731 1732 module_init(init_balloon_drv); 1733 1734 MODULE_DESCRIPTION("Hyper-V Balloon"); 1735 MODULE_LICENSE("GPL"); 1736