xref: /openbmc/linux/drivers/hv/hv_balloon.c (revision 8730046c)
1 /*
2  * Copyright (c) 2012, Microsoft Corporation.
3  *
4  * Author:
5  *   K. Y. Srinivasan <kys@microsoft.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  * NON INFRINGEMENT.  See the GNU General Public License for more
15  * details.
16  *
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/jiffies.h>
23 #include <linux/mman.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/kthread.h>
29 #include <linux/completion.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memory.h>
32 #include <linux/notifier.h>
33 #include <linux/percpu_counter.h>
34 
35 #include <linux/hyperv.h>
36 
37 /*
38  * We begin with definitions supporting the Dynamic Memory protocol
39  * with the host.
40  *
41  * Begin protocol definitions.
42  */
43 
44 
45 
46 /*
47  * Protocol versions. The low word is the minor version, the high word the major
48  * version.
49  *
50  * History:
51  * Initial version 1.0
52  * Changed to 0.1 on 2009/03/25
53  * Changes to 0.2 on 2009/05/14
54  * Changes to 0.3 on 2009/12/03
55  * Changed to 1.0 on 2011/04/05
56  */
57 
58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
61 
62 enum {
63 	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64 	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65 	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
66 
67 	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
68 	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
69 	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
70 
71 	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
72 };
73 
74 
75 
76 /*
77  * Message Types
78  */
79 
80 enum dm_message_type {
81 	/*
82 	 * Version 0.3
83 	 */
84 	DM_ERROR			= 0,
85 	DM_VERSION_REQUEST		= 1,
86 	DM_VERSION_RESPONSE		= 2,
87 	DM_CAPABILITIES_REPORT		= 3,
88 	DM_CAPABILITIES_RESPONSE	= 4,
89 	DM_STATUS_REPORT		= 5,
90 	DM_BALLOON_REQUEST		= 6,
91 	DM_BALLOON_RESPONSE		= 7,
92 	DM_UNBALLOON_REQUEST		= 8,
93 	DM_UNBALLOON_RESPONSE		= 9,
94 	DM_MEM_HOT_ADD_REQUEST		= 10,
95 	DM_MEM_HOT_ADD_RESPONSE		= 11,
96 	DM_VERSION_03_MAX		= 11,
97 	/*
98 	 * Version 1.0.
99 	 */
100 	DM_INFO_MESSAGE			= 12,
101 	DM_VERSION_1_MAX		= 12
102 };
103 
104 
105 /*
106  * Structures defining the dynamic memory management
107  * protocol.
108  */
109 
110 union dm_version {
111 	struct {
112 		__u16 minor_version;
113 		__u16 major_version;
114 	};
115 	__u32 version;
116 } __packed;
117 
118 
119 union dm_caps {
120 	struct {
121 		__u64 balloon:1;
122 		__u64 hot_add:1;
123 		/*
124 		 * To support guests that may have alignment
125 		 * limitations on hot-add, the guest can specify
126 		 * its alignment requirements; a value of n
127 		 * represents an alignment of 2^n in mega bytes.
128 		 */
129 		__u64 hot_add_alignment:4;
130 		__u64 reservedz:58;
131 	} cap_bits;
132 	__u64 caps;
133 } __packed;
134 
135 union dm_mem_page_range {
136 	struct  {
137 		/*
138 		 * The PFN number of the first page in the range.
139 		 * 40 bits is the architectural limit of a PFN
140 		 * number for AMD64.
141 		 */
142 		__u64 start_page:40;
143 		/*
144 		 * The number of pages in the range.
145 		 */
146 		__u64 page_cnt:24;
147 	} finfo;
148 	__u64  page_range;
149 } __packed;
150 
151 
152 
153 /*
154  * The header for all dynamic memory messages:
155  *
156  * type: Type of the message.
157  * size: Size of the message in bytes; including the header.
158  * trans_id: The guest is responsible for manufacturing this ID.
159  */
160 
161 struct dm_header {
162 	__u16 type;
163 	__u16 size;
164 	__u32 trans_id;
165 } __packed;
166 
167 /*
168  * A generic message format for dynamic memory.
169  * Specific message formats are defined later in the file.
170  */
171 
172 struct dm_message {
173 	struct dm_header hdr;
174 	__u8 data[]; /* enclosed message */
175 } __packed;
176 
177 
178 /*
179  * Specific message types supporting the dynamic memory protocol.
180  */
181 
182 /*
183  * Version negotiation message. Sent from the guest to the host.
184  * The guest is free to try different versions until the host
185  * accepts the version.
186  *
187  * dm_version: The protocol version requested.
188  * is_last_attempt: If TRUE, this is the last version guest will request.
189  * reservedz: Reserved field, set to zero.
190  */
191 
192 struct dm_version_request {
193 	struct dm_header hdr;
194 	union dm_version version;
195 	__u32 is_last_attempt:1;
196 	__u32 reservedz:31;
197 } __packed;
198 
199 /*
200  * Version response message; Host to Guest and indicates
201  * if the host has accepted the version sent by the guest.
202  *
203  * is_accepted: If TRUE, host has accepted the version and the guest
204  * should proceed to the next stage of the protocol. FALSE indicates that
205  * guest should re-try with a different version.
206  *
207  * reservedz: Reserved field, set to zero.
208  */
209 
210 struct dm_version_response {
211 	struct dm_header hdr;
212 	__u64 is_accepted:1;
213 	__u64 reservedz:63;
214 } __packed;
215 
216 /*
217  * Message reporting capabilities. This is sent from the guest to the
218  * host.
219  */
220 
221 struct dm_capabilities {
222 	struct dm_header hdr;
223 	union dm_caps caps;
224 	__u64 min_page_cnt;
225 	__u64 max_page_number;
226 } __packed;
227 
228 /*
229  * Response to the capabilities message. This is sent from the host to the
230  * guest. This message notifies if the host has accepted the guest's
231  * capabilities. If the host has not accepted, the guest must shutdown
232  * the service.
233  *
234  * is_accepted: Indicates if the host has accepted guest's capabilities.
235  * reservedz: Must be 0.
236  */
237 
238 struct dm_capabilities_resp_msg {
239 	struct dm_header hdr;
240 	__u64 is_accepted:1;
241 	__u64 reservedz:63;
242 } __packed;
243 
244 /*
245  * This message is used to report memory pressure from the guest.
246  * This message is not part of any transaction and there is no
247  * response to this message.
248  *
249  * num_avail: Available memory in pages.
250  * num_committed: Committed memory in pages.
251  * page_file_size: The accumulated size of all page files
252  *		   in the system in pages.
253  * zero_free: The nunber of zero and free pages.
254  * page_file_writes: The writes to the page file in pages.
255  * io_diff: An indicator of file cache efficiency or page file activity,
256  *	    calculated as File Cache Page Fault Count - Page Read Count.
257  *	    This value is in pages.
258  *
259  * Some of these metrics are Windows specific and fortunately
260  * the algorithm on the host side that computes the guest memory
261  * pressure only uses num_committed value.
262  */
263 
264 struct dm_status {
265 	struct dm_header hdr;
266 	__u64 num_avail;
267 	__u64 num_committed;
268 	__u64 page_file_size;
269 	__u64 zero_free;
270 	__u32 page_file_writes;
271 	__u32 io_diff;
272 } __packed;
273 
274 
275 /*
276  * Message to ask the guest to allocate memory - balloon up message.
277  * This message is sent from the host to the guest. The guest may not be
278  * able to allocate as much memory as requested.
279  *
280  * num_pages: number of pages to allocate.
281  */
282 
283 struct dm_balloon {
284 	struct dm_header hdr;
285 	__u32 num_pages;
286 	__u32 reservedz;
287 } __packed;
288 
289 
290 /*
291  * Balloon response message; this message is sent from the guest
292  * to the host in response to the balloon message.
293  *
294  * reservedz: Reserved; must be set to zero.
295  * more_pages: If FALSE, this is the last message of the transaction.
296  * if TRUE there will atleast one more message from the guest.
297  *
298  * range_count: The number of ranges in the range array.
299  *
300  * range_array: An array of page ranges returned to the host.
301  *
302  */
303 
304 struct dm_balloon_response {
305 	struct dm_header hdr;
306 	__u32 reservedz;
307 	__u32 more_pages:1;
308 	__u32 range_count:31;
309 	union dm_mem_page_range range_array[];
310 } __packed;
311 
312 /*
313  * Un-balloon message; this message is sent from the host
314  * to the guest to give guest more memory.
315  *
316  * more_pages: If FALSE, this is the last message of the transaction.
317  * if TRUE there will atleast one more message from the guest.
318  *
319  * reservedz: Reserved; must be set to zero.
320  *
321  * range_count: The number of ranges in the range array.
322  *
323  * range_array: An array of page ranges returned to the host.
324  *
325  */
326 
327 struct dm_unballoon_request {
328 	struct dm_header hdr;
329 	__u32 more_pages:1;
330 	__u32 reservedz:31;
331 	__u32 range_count;
332 	union dm_mem_page_range range_array[];
333 } __packed;
334 
335 /*
336  * Un-balloon response message; this message is sent from the guest
337  * to the host in response to an unballoon request.
338  *
339  */
340 
341 struct dm_unballoon_response {
342 	struct dm_header hdr;
343 } __packed;
344 
345 
346 /*
347  * Hot add request message. Message sent from the host to the guest.
348  *
349  * mem_range: Memory range to hot add.
350  *
351  * On Linux we currently don't support this since we cannot hot add
352  * arbitrary granularity of memory.
353  */
354 
355 struct dm_hot_add {
356 	struct dm_header hdr;
357 	union dm_mem_page_range range;
358 } __packed;
359 
360 /*
361  * Hot add response message.
362  * This message is sent by the guest to report the status of a hot add request.
363  * If page_count is less than the requested page count, then the host should
364  * assume all further hot add requests will fail, since this indicates that
365  * the guest has hit an upper physical memory barrier.
366  *
367  * Hot adds may also fail due to low resources; in this case, the guest must
368  * not complete this message until the hot add can succeed, and the host must
369  * not send a new hot add request until the response is sent.
370  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
371  * times it fails the request.
372  *
373  *
374  * page_count: number of pages that were successfully hot added.
375  *
376  * result: result of the operation 1: success, 0: failure.
377  *
378  */
379 
380 struct dm_hot_add_response {
381 	struct dm_header hdr;
382 	__u32 page_count;
383 	__u32 result;
384 } __packed;
385 
386 /*
387  * Types of information sent from host to the guest.
388  */
389 
390 enum dm_info_type {
391 	INFO_TYPE_MAX_PAGE_CNT = 0,
392 	MAX_INFO_TYPE
393 };
394 
395 
396 /*
397  * Header for the information message.
398  */
399 
400 struct dm_info_header {
401 	enum dm_info_type type;
402 	__u32 data_size;
403 } __packed;
404 
405 /*
406  * This message is sent from the host to the guest to pass
407  * some relevant information (win8 addition).
408  *
409  * reserved: no used.
410  * info_size: size of the information blob.
411  * info: information blob.
412  */
413 
414 struct dm_info_msg {
415 	struct dm_header hdr;
416 	__u32 reserved;
417 	__u32 info_size;
418 	__u8  info[];
419 };
420 
421 /*
422  * End protocol definitions.
423  */
424 
425 /*
426  * State to manage hot adding memory into the guest.
427  * The range start_pfn : end_pfn specifies the range
428  * that the host has asked us to hot add. The range
429  * start_pfn : ha_end_pfn specifies the range that we have
430  * currently hot added. We hot add in multiples of 128M
431  * chunks; it is possible that we may not be able to bring
432  * online all the pages in the region. The range
433  * covered_start_pfn:covered_end_pfn defines the pages that can
434  * be brough online.
435  */
436 
437 struct hv_hotadd_state {
438 	struct list_head list;
439 	unsigned long start_pfn;
440 	unsigned long covered_start_pfn;
441 	unsigned long covered_end_pfn;
442 	unsigned long ha_end_pfn;
443 	unsigned long end_pfn;
444 	/*
445 	 * A list of gaps.
446 	 */
447 	struct list_head gap_list;
448 };
449 
450 struct hv_hotadd_gap {
451 	struct list_head list;
452 	unsigned long start_pfn;
453 	unsigned long end_pfn;
454 };
455 
456 struct balloon_state {
457 	__u32 num_pages;
458 	struct work_struct wrk;
459 };
460 
461 struct hot_add_wrk {
462 	union dm_mem_page_range ha_page_range;
463 	union dm_mem_page_range ha_region_range;
464 	struct work_struct wrk;
465 };
466 
467 static bool hot_add = true;
468 static bool do_hot_add;
469 /*
470  * Delay reporting memory pressure by
471  * the specified number of seconds.
472  */
473 static uint pressure_report_delay = 45;
474 
475 /*
476  * The last time we posted a pressure report to host.
477  */
478 static unsigned long last_post_time;
479 
480 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
481 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
482 
483 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
484 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
485 static atomic_t trans_id = ATOMIC_INIT(0);
486 
487 static int dm_ring_size = (5 * PAGE_SIZE);
488 
489 /*
490  * Driver specific state.
491  */
492 
493 enum hv_dm_state {
494 	DM_INITIALIZING = 0,
495 	DM_INITIALIZED,
496 	DM_BALLOON_UP,
497 	DM_BALLOON_DOWN,
498 	DM_HOT_ADD,
499 	DM_INIT_ERROR
500 };
501 
502 
503 static __u8 recv_buffer[PAGE_SIZE];
504 static __u8 *send_buffer;
505 #define PAGES_IN_2M	512
506 #define HA_CHUNK (32 * 1024)
507 
508 struct hv_dynmem_device {
509 	struct hv_device *dev;
510 	enum hv_dm_state state;
511 	struct completion host_event;
512 	struct completion config_event;
513 
514 	/*
515 	 * Number of pages we have currently ballooned out.
516 	 */
517 	unsigned int num_pages_ballooned;
518 	unsigned int num_pages_onlined;
519 	unsigned int num_pages_added;
520 
521 	/*
522 	 * State to manage the ballooning (up) operation.
523 	 */
524 	struct balloon_state balloon_wrk;
525 
526 	/*
527 	 * State to execute the "hot-add" operation.
528 	 */
529 	struct hot_add_wrk ha_wrk;
530 
531 	/*
532 	 * This state tracks if the host has specified a hot-add
533 	 * region.
534 	 */
535 	bool host_specified_ha_region;
536 
537 	/*
538 	 * State to synchronize hot-add.
539 	 */
540 	struct completion  ol_waitevent;
541 	bool ha_waiting;
542 	/*
543 	 * This thread handles hot-add
544 	 * requests from the host as well as notifying
545 	 * the host with regards to memory pressure in
546 	 * the guest.
547 	 */
548 	struct task_struct *thread;
549 
550 	/*
551 	 * Protects ha_region_list, num_pages_onlined counter and individual
552 	 * regions from ha_region_list.
553 	 */
554 	spinlock_t ha_lock;
555 
556 	/*
557 	 * A list of hot-add regions.
558 	 */
559 	struct list_head ha_region_list;
560 
561 	/*
562 	 * We start with the highest version we can support
563 	 * and downgrade based on the host; we save here the
564 	 * next version to try.
565 	 */
566 	__u32 next_version;
567 
568 	/*
569 	 * The negotiated version agreed by host.
570 	 */
571 	__u32 version;
572 };
573 
574 static struct hv_dynmem_device dm_device;
575 
576 static void post_status(struct hv_dynmem_device *dm);
577 
578 #ifdef CONFIG_MEMORY_HOTPLUG
579 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
580 			      void *v)
581 {
582 	struct memory_notify *mem = (struct memory_notify *)v;
583 	unsigned long flags;
584 
585 	switch (val) {
586 	case MEM_ONLINE:
587 		spin_lock_irqsave(&dm_device.ha_lock, flags);
588 		dm_device.num_pages_onlined += mem->nr_pages;
589 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
590 	case MEM_CANCEL_ONLINE:
591 		if (dm_device.ha_waiting) {
592 			dm_device.ha_waiting = false;
593 			complete(&dm_device.ol_waitevent);
594 		}
595 		break;
596 
597 	case MEM_OFFLINE:
598 		spin_lock_irqsave(&dm_device.ha_lock, flags);
599 		dm_device.num_pages_onlined -= mem->nr_pages;
600 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
601 		break;
602 	case MEM_GOING_ONLINE:
603 	case MEM_GOING_OFFLINE:
604 	case MEM_CANCEL_OFFLINE:
605 		break;
606 	}
607 	return NOTIFY_OK;
608 }
609 
610 static struct notifier_block hv_memory_nb = {
611 	.notifier_call = hv_memory_notifier,
612 	.priority = 0
613 };
614 
615 /* Check if the particular page is backed and can be onlined and online it. */
616 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
617 {
618 	unsigned long cur_start_pgp;
619 	unsigned long cur_end_pgp;
620 	struct hv_hotadd_gap *gap;
621 
622 	cur_start_pgp = (unsigned long)pfn_to_page(has->covered_start_pfn);
623 	cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
624 
625 	/* The page is not backed. */
626 	if (((unsigned long)pg < cur_start_pgp) ||
627 	    ((unsigned long)pg >= cur_end_pgp))
628 		return;
629 
630 	/* Check for gaps. */
631 	list_for_each_entry(gap, &has->gap_list, list) {
632 		cur_start_pgp = (unsigned long)
633 			pfn_to_page(gap->start_pfn);
634 		cur_end_pgp = (unsigned long)
635 			pfn_to_page(gap->end_pfn);
636 		if (((unsigned long)pg >= cur_start_pgp) &&
637 		    ((unsigned long)pg < cur_end_pgp)) {
638 			return;
639 		}
640 	}
641 
642 	/* This frame is currently backed; online the page. */
643 	__online_page_set_limits(pg);
644 	__online_page_increment_counters(pg);
645 	__online_page_free(pg);
646 }
647 
648 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
649 				unsigned long start_pfn, unsigned long size)
650 {
651 	int i;
652 
653 	pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
654 	for (i = 0; i < size; i++)
655 		hv_page_online_one(has, pfn_to_page(start_pfn + i));
656 }
657 
658 static void hv_mem_hot_add(unsigned long start, unsigned long size,
659 				unsigned long pfn_count,
660 				struct hv_hotadd_state *has)
661 {
662 	int ret = 0;
663 	int i, nid;
664 	unsigned long start_pfn;
665 	unsigned long processed_pfn;
666 	unsigned long total_pfn = pfn_count;
667 	unsigned long flags;
668 
669 	for (i = 0; i < (size/HA_CHUNK); i++) {
670 		start_pfn = start + (i * HA_CHUNK);
671 
672 		spin_lock_irqsave(&dm_device.ha_lock, flags);
673 		has->ha_end_pfn +=  HA_CHUNK;
674 
675 		if (total_pfn > HA_CHUNK) {
676 			processed_pfn = HA_CHUNK;
677 			total_pfn -= HA_CHUNK;
678 		} else {
679 			processed_pfn = total_pfn;
680 			total_pfn = 0;
681 		}
682 
683 		has->covered_end_pfn +=  processed_pfn;
684 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
685 
686 		init_completion(&dm_device.ol_waitevent);
687 		dm_device.ha_waiting = !memhp_auto_online;
688 
689 		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
690 		ret = add_memory(nid, PFN_PHYS((start_pfn)),
691 				(HA_CHUNK << PAGE_SHIFT));
692 
693 		if (ret) {
694 			pr_warn("hot_add memory failed error is %d\n", ret);
695 			if (ret == -EEXIST) {
696 				/*
697 				 * This error indicates that the error
698 				 * is not a transient failure. This is the
699 				 * case where the guest's physical address map
700 				 * precludes hot adding memory. Stop all further
701 				 * memory hot-add.
702 				 */
703 				do_hot_add = false;
704 			}
705 			spin_lock_irqsave(&dm_device.ha_lock, flags);
706 			has->ha_end_pfn -= HA_CHUNK;
707 			has->covered_end_pfn -=  processed_pfn;
708 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
709 			break;
710 		}
711 
712 		/*
713 		 * Wait for the memory block to be onlined when memory onlining
714 		 * is done outside of kernel (memhp_auto_online). Since the hot
715 		 * add has succeeded, it is ok to proceed even if the pages in
716 		 * the hot added region have not been "onlined" within the
717 		 * allowed time.
718 		 */
719 		if (dm_device.ha_waiting)
720 			wait_for_completion_timeout(&dm_device.ol_waitevent,
721 						    5*HZ);
722 		post_status(&dm_device);
723 	}
724 
725 	return;
726 }
727 
728 static void hv_online_page(struct page *pg)
729 {
730 	struct hv_hotadd_state *has;
731 	unsigned long cur_start_pgp;
732 	unsigned long cur_end_pgp;
733 	unsigned long flags;
734 
735 	spin_lock_irqsave(&dm_device.ha_lock, flags);
736 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
737 		cur_start_pgp = (unsigned long)
738 			pfn_to_page(has->start_pfn);
739 		cur_end_pgp = (unsigned long)pfn_to_page(has->end_pfn);
740 
741 		/* The page belongs to a different HAS. */
742 		if (((unsigned long)pg < cur_start_pgp) ||
743 		    ((unsigned long)pg >= cur_end_pgp))
744 			continue;
745 
746 		hv_page_online_one(has, pg);
747 		break;
748 	}
749 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
750 }
751 
752 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
753 {
754 	struct hv_hotadd_state *has;
755 	struct hv_hotadd_gap *gap;
756 	unsigned long residual, new_inc;
757 	int ret = 0;
758 	unsigned long flags;
759 
760 	spin_lock_irqsave(&dm_device.ha_lock, flags);
761 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
762 		/*
763 		 * If the pfn range we are dealing with is not in the current
764 		 * "hot add block", move on.
765 		 */
766 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
767 			continue;
768 
769 		/*
770 		 * If the current start pfn is not where the covered_end
771 		 * is, create a gap and update covered_end_pfn.
772 		 */
773 		if (has->covered_end_pfn != start_pfn) {
774 			gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
775 			if (!gap) {
776 				ret = -ENOMEM;
777 				break;
778 			}
779 
780 			INIT_LIST_HEAD(&gap->list);
781 			gap->start_pfn = has->covered_end_pfn;
782 			gap->end_pfn = start_pfn;
783 			list_add_tail(&gap->list, &has->gap_list);
784 
785 			has->covered_end_pfn = start_pfn;
786 		}
787 
788 		/*
789 		 * If the current hot add-request extends beyond
790 		 * our current limit; extend it.
791 		 */
792 		if ((start_pfn + pfn_cnt) > has->end_pfn) {
793 			residual = (start_pfn + pfn_cnt - has->end_pfn);
794 			/*
795 			 * Extend the region by multiples of HA_CHUNK.
796 			 */
797 			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
798 			if (residual % HA_CHUNK)
799 				new_inc += HA_CHUNK;
800 
801 			has->end_pfn += new_inc;
802 		}
803 
804 		ret = 1;
805 		break;
806 	}
807 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
808 
809 	return ret;
810 }
811 
812 static unsigned long handle_pg_range(unsigned long pg_start,
813 					unsigned long pg_count)
814 {
815 	unsigned long start_pfn = pg_start;
816 	unsigned long pfn_cnt = pg_count;
817 	unsigned long size;
818 	struct hv_hotadd_state *has;
819 	unsigned long pgs_ol = 0;
820 	unsigned long old_covered_state;
821 	unsigned long res = 0, flags;
822 
823 	pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
824 		pg_start);
825 
826 	spin_lock_irqsave(&dm_device.ha_lock, flags);
827 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
828 		/*
829 		 * If the pfn range we are dealing with is not in the current
830 		 * "hot add block", move on.
831 		 */
832 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
833 			continue;
834 
835 		old_covered_state = has->covered_end_pfn;
836 
837 		if (start_pfn < has->ha_end_pfn) {
838 			/*
839 			 * This is the case where we are backing pages
840 			 * in an already hot added region. Bring
841 			 * these pages online first.
842 			 */
843 			pgs_ol = has->ha_end_pfn - start_pfn;
844 			if (pgs_ol > pfn_cnt)
845 				pgs_ol = pfn_cnt;
846 
847 			has->covered_end_pfn +=  pgs_ol;
848 			pfn_cnt -= pgs_ol;
849 			/*
850 			 * Check if the corresponding memory block is already
851 			 * online by checking its last previously backed page.
852 			 * In case it is we need to bring rest (which was not
853 			 * backed previously) online too.
854 			 */
855 			if (start_pfn > has->start_pfn &&
856 			    !PageReserved(pfn_to_page(start_pfn - 1)))
857 				hv_bring_pgs_online(has, start_pfn, pgs_ol);
858 
859 		}
860 
861 		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
862 			/*
863 			 * We have some residual hot add range
864 			 * that needs to be hot added; hot add
865 			 * it now. Hot add a multiple of
866 			 * of HA_CHUNK that fully covers the pages
867 			 * we have.
868 			 */
869 			size = (has->end_pfn - has->ha_end_pfn);
870 			if (pfn_cnt <= size) {
871 				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
872 				if (pfn_cnt % HA_CHUNK)
873 					size += HA_CHUNK;
874 			} else {
875 				pfn_cnt = size;
876 			}
877 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
878 			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
879 			spin_lock_irqsave(&dm_device.ha_lock, flags);
880 		}
881 		/*
882 		 * If we managed to online any pages that were given to us,
883 		 * we declare success.
884 		 */
885 		res = has->covered_end_pfn - old_covered_state;
886 		break;
887 	}
888 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
889 
890 	return res;
891 }
892 
893 static unsigned long process_hot_add(unsigned long pg_start,
894 					unsigned long pfn_cnt,
895 					unsigned long rg_start,
896 					unsigned long rg_size)
897 {
898 	struct hv_hotadd_state *ha_region = NULL;
899 	int covered;
900 	unsigned long flags;
901 
902 	if (pfn_cnt == 0)
903 		return 0;
904 
905 	if (!dm_device.host_specified_ha_region) {
906 		covered = pfn_covered(pg_start, pfn_cnt);
907 		if (covered < 0)
908 			return 0;
909 
910 		if (covered)
911 			goto do_pg_range;
912 	}
913 
914 	/*
915 	 * If the host has specified a hot-add range; deal with it first.
916 	 */
917 
918 	if (rg_size != 0) {
919 		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
920 		if (!ha_region)
921 			return 0;
922 
923 		INIT_LIST_HEAD(&ha_region->list);
924 		INIT_LIST_HEAD(&ha_region->gap_list);
925 
926 		ha_region->start_pfn = rg_start;
927 		ha_region->ha_end_pfn = rg_start;
928 		ha_region->covered_start_pfn = pg_start;
929 		ha_region->covered_end_pfn = pg_start;
930 		ha_region->end_pfn = rg_start + rg_size;
931 
932 		spin_lock_irqsave(&dm_device.ha_lock, flags);
933 		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
934 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
935 	}
936 
937 do_pg_range:
938 	/*
939 	 * Process the page range specified; bringing them
940 	 * online if possible.
941 	 */
942 	return handle_pg_range(pg_start, pfn_cnt);
943 }
944 
945 #endif
946 
947 static void hot_add_req(struct work_struct *dummy)
948 {
949 	struct dm_hot_add_response resp;
950 #ifdef CONFIG_MEMORY_HOTPLUG
951 	unsigned long pg_start, pfn_cnt;
952 	unsigned long rg_start, rg_sz;
953 #endif
954 	struct hv_dynmem_device *dm = &dm_device;
955 
956 	memset(&resp, 0, sizeof(struct dm_hot_add_response));
957 	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
958 	resp.hdr.size = sizeof(struct dm_hot_add_response);
959 
960 #ifdef CONFIG_MEMORY_HOTPLUG
961 	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
962 	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
963 
964 	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
965 	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
966 
967 	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
968 		unsigned long region_size;
969 		unsigned long region_start;
970 
971 		/*
972 		 * The host has not specified the hot-add region.
973 		 * Based on the hot-add page range being specified,
974 		 * compute a hot-add region that can cover the pages
975 		 * that need to be hot-added while ensuring the alignment
976 		 * and size requirements of Linux as it relates to hot-add.
977 		 */
978 		region_start = pg_start;
979 		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
980 		if (pfn_cnt % HA_CHUNK)
981 			region_size += HA_CHUNK;
982 
983 		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
984 
985 		rg_start = region_start;
986 		rg_sz = region_size;
987 	}
988 
989 	if (do_hot_add)
990 		resp.page_count = process_hot_add(pg_start, pfn_cnt,
991 						rg_start, rg_sz);
992 
993 	dm->num_pages_added += resp.page_count;
994 #endif
995 	/*
996 	 * The result field of the response structure has the
997 	 * following semantics:
998 	 *
999 	 * 1. If all or some pages hot-added: Guest should return success.
1000 	 *
1001 	 * 2. If no pages could be hot-added:
1002 	 *
1003 	 * If the guest returns success, then the host
1004 	 * will not attempt any further hot-add operations. This
1005 	 * signifies a permanent failure.
1006 	 *
1007 	 * If the guest returns failure, then this failure will be
1008 	 * treated as a transient failure and the host may retry the
1009 	 * hot-add operation after some delay.
1010 	 */
1011 	if (resp.page_count > 0)
1012 		resp.result = 1;
1013 	else if (!do_hot_add)
1014 		resp.result = 1;
1015 	else
1016 		resp.result = 0;
1017 
1018 	if (!do_hot_add || (resp.page_count == 0))
1019 		pr_info("Memory hot add failed\n");
1020 
1021 	dm->state = DM_INITIALIZED;
1022 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1023 	vmbus_sendpacket(dm->dev->channel, &resp,
1024 			sizeof(struct dm_hot_add_response),
1025 			(unsigned long)NULL,
1026 			VM_PKT_DATA_INBAND, 0);
1027 }
1028 
1029 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1030 {
1031 	struct dm_info_header *info_hdr;
1032 
1033 	info_hdr = (struct dm_info_header *)msg->info;
1034 
1035 	switch (info_hdr->type) {
1036 	case INFO_TYPE_MAX_PAGE_CNT:
1037 		if (info_hdr->data_size == sizeof(__u64)) {
1038 			__u64 *max_page_count = (__u64 *)&info_hdr[1];
1039 
1040 			pr_info("INFO_TYPE_MAX_PAGE_CNT = %llu\n",
1041 				*max_page_count);
1042 		}
1043 
1044 		break;
1045 	default:
1046 		pr_info("Received Unknown type: %d\n", info_hdr->type);
1047 	}
1048 }
1049 
1050 static unsigned long compute_balloon_floor(void)
1051 {
1052 	unsigned long min_pages;
1053 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1054 	/* Simple continuous piecewiese linear function:
1055 	 *  max MiB -> min MiB  gradient
1056 	 *       0         0
1057 	 *      16        16
1058 	 *      32        24
1059 	 *     128        72    (1/2)
1060 	 *     512       168    (1/4)
1061 	 *    2048       360    (1/8)
1062 	 *    8192       744    (1/16)
1063 	 *   32768      1512	(1/32)
1064 	 */
1065 	if (totalram_pages < MB2PAGES(128))
1066 		min_pages = MB2PAGES(8) + (totalram_pages >> 1);
1067 	else if (totalram_pages < MB2PAGES(512))
1068 		min_pages = MB2PAGES(40) + (totalram_pages >> 2);
1069 	else if (totalram_pages < MB2PAGES(2048))
1070 		min_pages = MB2PAGES(104) + (totalram_pages >> 3);
1071 	else if (totalram_pages < MB2PAGES(8192))
1072 		min_pages = MB2PAGES(232) + (totalram_pages >> 4);
1073 	else
1074 		min_pages = MB2PAGES(488) + (totalram_pages >> 5);
1075 #undef MB2PAGES
1076 	return min_pages;
1077 }
1078 
1079 /*
1080  * Post our status as it relates memory pressure to the
1081  * host. Host expects the guests to post this status
1082  * periodically at 1 second intervals.
1083  *
1084  * The metrics specified in this protocol are very Windows
1085  * specific and so we cook up numbers here to convey our memory
1086  * pressure.
1087  */
1088 
1089 static void post_status(struct hv_dynmem_device *dm)
1090 {
1091 	struct dm_status status;
1092 	unsigned long now = jiffies;
1093 	unsigned long last_post = last_post_time;
1094 
1095 	if (pressure_report_delay > 0) {
1096 		--pressure_report_delay;
1097 		return;
1098 	}
1099 
1100 	if (!time_after(now, (last_post_time + HZ)))
1101 		return;
1102 
1103 	memset(&status, 0, sizeof(struct dm_status));
1104 	status.hdr.type = DM_STATUS_REPORT;
1105 	status.hdr.size = sizeof(struct dm_status);
1106 	status.hdr.trans_id = atomic_inc_return(&trans_id);
1107 
1108 	/*
1109 	 * The host expects the guest to report free and committed memory.
1110 	 * Furthermore, the host expects the pressure information to include
1111 	 * the ballooned out pages. For a given amount of memory that we are
1112 	 * managing we need to compute a floor below which we should not
1113 	 * balloon. Compute this and add it to the pressure report.
1114 	 * We also need to report all offline pages (num_pages_added -
1115 	 * num_pages_onlined) as committed to the host, otherwise it can try
1116 	 * asking us to balloon them out.
1117 	 */
1118 	status.num_avail = si_mem_available();
1119 	status.num_committed = vm_memory_committed() +
1120 		dm->num_pages_ballooned +
1121 		(dm->num_pages_added > dm->num_pages_onlined ?
1122 		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1123 		compute_balloon_floor();
1124 
1125 	/*
1126 	 * If our transaction ID is no longer current, just don't
1127 	 * send the status. This can happen if we were interrupted
1128 	 * after we picked our transaction ID.
1129 	 */
1130 	if (status.hdr.trans_id != atomic_read(&trans_id))
1131 		return;
1132 
1133 	/*
1134 	 * If the last post time that we sampled has changed,
1135 	 * we have raced, don't post the status.
1136 	 */
1137 	if (last_post != last_post_time)
1138 		return;
1139 
1140 	last_post_time = jiffies;
1141 	vmbus_sendpacket(dm->dev->channel, &status,
1142 				sizeof(struct dm_status),
1143 				(unsigned long)NULL,
1144 				VM_PKT_DATA_INBAND, 0);
1145 
1146 }
1147 
1148 static void free_balloon_pages(struct hv_dynmem_device *dm,
1149 			 union dm_mem_page_range *range_array)
1150 {
1151 	int num_pages = range_array->finfo.page_cnt;
1152 	__u64 start_frame = range_array->finfo.start_page;
1153 	struct page *pg;
1154 	int i;
1155 
1156 	for (i = 0; i < num_pages; i++) {
1157 		pg = pfn_to_page(i + start_frame);
1158 		__free_page(pg);
1159 		dm->num_pages_ballooned--;
1160 	}
1161 }
1162 
1163 
1164 
1165 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1166 					unsigned int num_pages,
1167 					struct dm_balloon_response *bl_resp,
1168 					int alloc_unit)
1169 {
1170 	unsigned int i = 0;
1171 	struct page *pg;
1172 
1173 	if (num_pages < alloc_unit)
1174 		return 0;
1175 
1176 	for (i = 0; (i * alloc_unit) < num_pages; i++) {
1177 		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1178 			PAGE_SIZE)
1179 			return i * alloc_unit;
1180 
1181 		/*
1182 		 * We execute this code in a thread context. Furthermore,
1183 		 * we don't want the kernel to try too hard.
1184 		 */
1185 		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1186 				__GFP_NOMEMALLOC | __GFP_NOWARN,
1187 				get_order(alloc_unit << PAGE_SHIFT));
1188 
1189 		if (!pg)
1190 			return i * alloc_unit;
1191 
1192 		dm->num_pages_ballooned += alloc_unit;
1193 
1194 		/*
1195 		 * If we allocatted 2M pages; split them so we
1196 		 * can free them in any order we get.
1197 		 */
1198 
1199 		if (alloc_unit != 1)
1200 			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1201 
1202 		bl_resp->range_count++;
1203 		bl_resp->range_array[i].finfo.start_page =
1204 			page_to_pfn(pg);
1205 		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1206 		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1207 
1208 	}
1209 
1210 	return num_pages;
1211 }
1212 
1213 static void balloon_up(struct work_struct *dummy)
1214 {
1215 	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1216 	unsigned int num_ballooned = 0;
1217 	struct dm_balloon_response *bl_resp;
1218 	int alloc_unit;
1219 	int ret;
1220 	bool done = false;
1221 	int i;
1222 	long avail_pages;
1223 	unsigned long floor;
1224 
1225 	/* The host balloons pages in 2M granularity. */
1226 	WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1227 
1228 	/*
1229 	 * We will attempt 2M allocations. However, if we fail to
1230 	 * allocate 2M chunks, we will go back to 4k allocations.
1231 	 */
1232 	alloc_unit = 512;
1233 
1234 	avail_pages = si_mem_available();
1235 	floor = compute_balloon_floor();
1236 
1237 	/* Refuse to balloon below the floor, keep the 2M granularity. */
1238 	if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1239 		pr_warn("Balloon request will be partially fulfilled. %s\n",
1240 			avail_pages < num_pages ? "Not enough memory." :
1241 			"Balloon floor reached.");
1242 
1243 		num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1244 		num_pages -= num_pages % PAGES_IN_2M;
1245 	}
1246 
1247 	while (!done) {
1248 		bl_resp = (struct dm_balloon_response *)send_buffer;
1249 		memset(send_buffer, 0, PAGE_SIZE);
1250 		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1251 		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1252 		bl_resp->more_pages = 1;
1253 
1254 		num_pages -= num_ballooned;
1255 		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1256 						    bl_resp, alloc_unit);
1257 
1258 		if (alloc_unit != 1 && num_ballooned == 0) {
1259 			alloc_unit = 1;
1260 			continue;
1261 		}
1262 
1263 		if (num_ballooned == 0 || num_ballooned == num_pages) {
1264 			pr_debug("Ballooned %u out of %u requested pages.\n",
1265 				num_pages, dm_device.balloon_wrk.num_pages);
1266 
1267 			bl_resp->more_pages = 0;
1268 			done = true;
1269 			dm_device.state = DM_INITIALIZED;
1270 		}
1271 
1272 		/*
1273 		 * We are pushing a lot of data through the channel;
1274 		 * deal with transient failures caused because of the
1275 		 * lack of space in the ring buffer.
1276 		 */
1277 
1278 		do {
1279 			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1280 			ret = vmbus_sendpacket(dm_device.dev->channel,
1281 						bl_resp,
1282 						bl_resp->hdr.size,
1283 						(unsigned long)NULL,
1284 						VM_PKT_DATA_INBAND, 0);
1285 
1286 			if (ret == -EAGAIN)
1287 				msleep(20);
1288 			post_status(&dm_device);
1289 		} while (ret == -EAGAIN);
1290 
1291 		if (ret) {
1292 			/*
1293 			 * Free up the memory we allocatted.
1294 			 */
1295 			pr_info("Balloon response failed\n");
1296 
1297 			for (i = 0; i < bl_resp->range_count; i++)
1298 				free_balloon_pages(&dm_device,
1299 						 &bl_resp->range_array[i]);
1300 
1301 			done = true;
1302 		}
1303 	}
1304 
1305 }
1306 
1307 static void balloon_down(struct hv_dynmem_device *dm,
1308 			struct dm_unballoon_request *req)
1309 {
1310 	union dm_mem_page_range *range_array = req->range_array;
1311 	int range_count = req->range_count;
1312 	struct dm_unballoon_response resp;
1313 	int i;
1314 	unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1315 
1316 	for (i = 0; i < range_count; i++) {
1317 		free_balloon_pages(dm, &range_array[i]);
1318 		complete(&dm_device.config_event);
1319 	}
1320 
1321 	pr_debug("Freed %u ballooned pages.\n",
1322 		prev_pages_ballooned - dm->num_pages_ballooned);
1323 
1324 	if (req->more_pages == 1)
1325 		return;
1326 
1327 	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1328 	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1329 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1330 	resp.hdr.size = sizeof(struct dm_unballoon_response);
1331 
1332 	vmbus_sendpacket(dm_device.dev->channel, &resp,
1333 				sizeof(struct dm_unballoon_response),
1334 				(unsigned long)NULL,
1335 				VM_PKT_DATA_INBAND, 0);
1336 
1337 	dm->state = DM_INITIALIZED;
1338 }
1339 
1340 static void balloon_onchannelcallback(void *context);
1341 
1342 static int dm_thread_func(void *dm_dev)
1343 {
1344 	struct hv_dynmem_device *dm = dm_dev;
1345 
1346 	while (!kthread_should_stop()) {
1347 		wait_for_completion_interruptible_timeout(
1348 						&dm_device.config_event, 1*HZ);
1349 		/*
1350 		 * The host expects us to post information on the memory
1351 		 * pressure every second.
1352 		 */
1353 		reinit_completion(&dm_device.config_event);
1354 		post_status(dm);
1355 	}
1356 
1357 	return 0;
1358 }
1359 
1360 
1361 static void version_resp(struct hv_dynmem_device *dm,
1362 			struct dm_version_response *vresp)
1363 {
1364 	struct dm_version_request version_req;
1365 	int ret;
1366 
1367 	if (vresp->is_accepted) {
1368 		/*
1369 		 * We are done; wakeup the
1370 		 * context waiting for version
1371 		 * negotiation.
1372 		 */
1373 		complete(&dm->host_event);
1374 		return;
1375 	}
1376 	/*
1377 	 * If there are more versions to try, continue
1378 	 * with negotiations; if not
1379 	 * shutdown the service since we are not able
1380 	 * to negotiate a suitable version number
1381 	 * with the host.
1382 	 */
1383 	if (dm->next_version == 0)
1384 		goto version_error;
1385 
1386 	memset(&version_req, 0, sizeof(struct dm_version_request));
1387 	version_req.hdr.type = DM_VERSION_REQUEST;
1388 	version_req.hdr.size = sizeof(struct dm_version_request);
1389 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1390 	version_req.version.version = dm->next_version;
1391 	dm->version = version_req.version.version;
1392 
1393 	/*
1394 	 * Set the next version to try in case current version fails.
1395 	 * Win7 protocol ought to be the last one to try.
1396 	 */
1397 	switch (version_req.version.version) {
1398 	case DYNMEM_PROTOCOL_VERSION_WIN8:
1399 		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1400 		version_req.is_last_attempt = 0;
1401 		break;
1402 	default:
1403 		dm->next_version = 0;
1404 		version_req.is_last_attempt = 1;
1405 	}
1406 
1407 	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1408 				sizeof(struct dm_version_request),
1409 				(unsigned long)NULL,
1410 				VM_PKT_DATA_INBAND, 0);
1411 
1412 	if (ret)
1413 		goto version_error;
1414 
1415 	return;
1416 
1417 version_error:
1418 	dm->state = DM_INIT_ERROR;
1419 	complete(&dm->host_event);
1420 }
1421 
1422 static void cap_resp(struct hv_dynmem_device *dm,
1423 			struct dm_capabilities_resp_msg *cap_resp)
1424 {
1425 	if (!cap_resp->is_accepted) {
1426 		pr_info("Capabilities not accepted by host\n");
1427 		dm->state = DM_INIT_ERROR;
1428 	}
1429 	complete(&dm->host_event);
1430 }
1431 
1432 static void balloon_onchannelcallback(void *context)
1433 {
1434 	struct hv_device *dev = context;
1435 	u32 recvlen;
1436 	u64 requestid;
1437 	struct dm_message *dm_msg;
1438 	struct dm_header *dm_hdr;
1439 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1440 	struct dm_balloon *bal_msg;
1441 	struct dm_hot_add *ha_msg;
1442 	union dm_mem_page_range *ha_pg_range;
1443 	union dm_mem_page_range *ha_region;
1444 
1445 	memset(recv_buffer, 0, sizeof(recv_buffer));
1446 	vmbus_recvpacket(dev->channel, recv_buffer,
1447 			 PAGE_SIZE, &recvlen, &requestid);
1448 
1449 	if (recvlen > 0) {
1450 		dm_msg = (struct dm_message *)recv_buffer;
1451 		dm_hdr = &dm_msg->hdr;
1452 
1453 		switch (dm_hdr->type) {
1454 		case DM_VERSION_RESPONSE:
1455 			version_resp(dm,
1456 				 (struct dm_version_response *)dm_msg);
1457 			break;
1458 
1459 		case DM_CAPABILITIES_RESPONSE:
1460 			cap_resp(dm,
1461 				 (struct dm_capabilities_resp_msg *)dm_msg);
1462 			break;
1463 
1464 		case DM_BALLOON_REQUEST:
1465 			if (dm->state == DM_BALLOON_UP)
1466 				pr_warn("Currently ballooning\n");
1467 			bal_msg = (struct dm_balloon *)recv_buffer;
1468 			dm->state = DM_BALLOON_UP;
1469 			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1470 			schedule_work(&dm_device.balloon_wrk.wrk);
1471 			break;
1472 
1473 		case DM_UNBALLOON_REQUEST:
1474 			dm->state = DM_BALLOON_DOWN;
1475 			balloon_down(dm,
1476 				 (struct dm_unballoon_request *)recv_buffer);
1477 			break;
1478 
1479 		case DM_MEM_HOT_ADD_REQUEST:
1480 			if (dm->state == DM_HOT_ADD)
1481 				pr_warn("Currently hot-adding\n");
1482 			dm->state = DM_HOT_ADD;
1483 			ha_msg = (struct dm_hot_add *)recv_buffer;
1484 			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1485 				/*
1486 				 * This is a normal hot-add request specifying
1487 				 * hot-add memory.
1488 				 */
1489 				dm->host_specified_ha_region = false;
1490 				ha_pg_range = &ha_msg->range;
1491 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1492 				dm->ha_wrk.ha_region_range.page_range = 0;
1493 			} else {
1494 				/*
1495 				 * Host is specifying that we first hot-add
1496 				 * a region and then partially populate this
1497 				 * region.
1498 				 */
1499 				dm->host_specified_ha_region = true;
1500 				ha_pg_range = &ha_msg->range;
1501 				ha_region = &ha_pg_range[1];
1502 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1503 				dm->ha_wrk.ha_region_range = *ha_region;
1504 			}
1505 			schedule_work(&dm_device.ha_wrk.wrk);
1506 			break;
1507 
1508 		case DM_INFO_MESSAGE:
1509 			process_info(dm, (struct dm_info_msg *)dm_msg);
1510 			break;
1511 
1512 		default:
1513 			pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1514 
1515 		}
1516 	}
1517 
1518 }
1519 
1520 static int balloon_probe(struct hv_device *dev,
1521 			const struct hv_vmbus_device_id *dev_id)
1522 {
1523 	int ret;
1524 	unsigned long t;
1525 	struct dm_version_request version_req;
1526 	struct dm_capabilities cap_msg;
1527 
1528 #ifdef CONFIG_MEMORY_HOTPLUG
1529 	do_hot_add = hot_add;
1530 #else
1531 	do_hot_add = false;
1532 #endif
1533 
1534 	/*
1535 	 * First allocate a send buffer.
1536 	 */
1537 
1538 	send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1539 	if (!send_buffer)
1540 		return -ENOMEM;
1541 
1542 	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1543 			balloon_onchannelcallback, dev);
1544 
1545 	if (ret)
1546 		goto probe_error0;
1547 
1548 	dm_device.dev = dev;
1549 	dm_device.state = DM_INITIALIZING;
1550 	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1551 	init_completion(&dm_device.host_event);
1552 	init_completion(&dm_device.config_event);
1553 	INIT_LIST_HEAD(&dm_device.ha_region_list);
1554 	spin_lock_init(&dm_device.ha_lock);
1555 	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1556 	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1557 	dm_device.host_specified_ha_region = false;
1558 
1559 	dm_device.thread =
1560 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1561 	if (IS_ERR(dm_device.thread)) {
1562 		ret = PTR_ERR(dm_device.thread);
1563 		goto probe_error1;
1564 	}
1565 
1566 #ifdef CONFIG_MEMORY_HOTPLUG
1567 	set_online_page_callback(&hv_online_page);
1568 	register_memory_notifier(&hv_memory_nb);
1569 #endif
1570 
1571 	hv_set_drvdata(dev, &dm_device);
1572 	/*
1573 	 * Initiate the hand shake with the host and negotiate
1574 	 * a version that the host can support. We start with the
1575 	 * highest version number and go down if the host cannot
1576 	 * support it.
1577 	 */
1578 	memset(&version_req, 0, sizeof(struct dm_version_request));
1579 	version_req.hdr.type = DM_VERSION_REQUEST;
1580 	version_req.hdr.size = sizeof(struct dm_version_request);
1581 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1582 	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1583 	version_req.is_last_attempt = 0;
1584 	dm_device.version = version_req.version.version;
1585 
1586 	ret = vmbus_sendpacket(dev->channel, &version_req,
1587 				sizeof(struct dm_version_request),
1588 				(unsigned long)NULL,
1589 				VM_PKT_DATA_INBAND, 0);
1590 	if (ret)
1591 		goto probe_error2;
1592 
1593 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1594 	if (t == 0) {
1595 		ret = -ETIMEDOUT;
1596 		goto probe_error2;
1597 	}
1598 
1599 	/*
1600 	 * If we could not negotiate a compatible version with the host
1601 	 * fail the probe function.
1602 	 */
1603 	if (dm_device.state == DM_INIT_ERROR) {
1604 		ret = -ETIMEDOUT;
1605 		goto probe_error2;
1606 	}
1607 
1608 	pr_info("Using Dynamic Memory protocol version %u.%u\n",
1609 		DYNMEM_MAJOR_VERSION(dm_device.version),
1610 		DYNMEM_MINOR_VERSION(dm_device.version));
1611 
1612 	/*
1613 	 * Now submit our capabilities to the host.
1614 	 */
1615 	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1616 	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1617 	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1618 	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1619 
1620 	cap_msg.caps.cap_bits.balloon = 1;
1621 	cap_msg.caps.cap_bits.hot_add = 1;
1622 
1623 	/*
1624 	 * Specify our alignment requirements as it relates
1625 	 * memory hot-add. Specify 128MB alignment.
1626 	 */
1627 	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1628 
1629 	/*
1630 	 * Currently the host does not use these
1631 	 * values and we set them to what is done in the
1632 	 * Windows driver.
1633 	 */
1634 	cap_msg.min_page_cnt = 0;
1635 	cap_msg.max_page_number = -1;
1636 
1637 	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1638 				sizeof(struct dm_capabilities),
1639 				(unsigned long)NULL,
1640 				VM_PKT_DATA_INBAND, 0);
1641 	if (ret)
1642 		goto probe_error2;
1643 
1644 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1645 	if (t == 0) {
1646 		ret = -ETIMEDOUT;
1647 		goto probe_error2;
1648 	}
1649 
1650 	/*
1651 	 * If the host does not like our capabilities,
1652 	 * fail the probe function.
1653 	 */
1654 	if (dm_device.state == DM_INIT_ERROR) {
1655 		ret = -ETIMEDOUT;
1656 		goto probe_error2;
1657 	}
1658 
1659 	dm_device.state = DM_INITIALIZED;
1660 
1661 	return 0;
1662 
1663 probe_error2:
1664 #ifdef CONFIG_MEMORY_HOTPLUG
1665 	restore_online_page_callback(&hv_online_page);
1666 #endif
1667 	kthread_stop(dm_device.thread);
1668 
1669 probe_error1:
1670 	vmbus_close(dev->channel);
1671 probe_error0:
1672 	kfree(send_buffer);
1673 	return ret;
1674 }
1675 
1676 static int balloon_remove(struct hv_device *dev)
1677 {
1678 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1679 	struct hv_hotadd_state *has, *tmp;
1680 	struct hv_hotadd_gap *gap, *tmp_gap;
1681 	unsigned long flags;
1682 
1683 	if (dm->num_pages_ballooned != 0)
1684 		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1685 
1686 	cancel_work_sync(&dm->balloon_wrk.wrk);
1687 	cancel_work_sync(&dm->ha_wrk.wrk);
1688 
1689 	vmbus_close(dev->channel);
1690 	kthread_stop(dm->thread);
1691 	kfree(send_buffer);
1692 #ifdef CONFIG_MEMORY_HOTPLUG
1693 	restore_online_page_callback(&hv_online_page);
1694 	unregister_memory_notifier(&hv_memory_nb);
1695 #endif
1696 	spin_lock_irqsave(&dm_device.ha_lock, flags);
1697 	list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1698 		list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1699 			list_del(&gap->list);
1700 			kfree(gap);
1701 		}
1702 		list_del(&has->list);
1703 		kfree(has);
1704 	}
1705 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1706 
1707 	return 0;
1708 }
1709 
1710 static const struct hv_vmbus_device_id id_table[] = {
1711 	/* Dynamic Memory Class ID */
1712 	/* 525074DC-8985-46e2-8057-A307DC18A502 */
1713 	{ HV_DM_GUID, },
1714 	{ },
1715 };
1716 
1717 MODULE_DEVICE_TABLE(vmbus, id_table);
1718 
1719 static  struct hv_driver balloon_drv = {
1720 	.name = "hv_balloon",
1721 	.id_table = id_table,
1722 	.probe =  balloon_probe,
1723 	.remove =  balloon_remove,
1724 };
1725 
1726 static int __init init_balloon_drv(void)
1727 {
1728 
1729 	return vmbus_driver_register(&balloon_drv);
1730 }
1731 
1732 module_init(init_balloon_drv);
1733 
1734 MODULE_DESCRIPTION("Hyper-V Balloon");
1735 MODULE_LICENSE("GPL");
1736