xref: /openbmc/linux/drivers/hv/hv_balloon.c (revision 7bcae826)
1 /*
2  * Copyright (c) 2012, Microsoft Corporation.
3  *
4  * Author:
5  *   K. Y. Srinivasan <kys@microsoft.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  * NON INFRINGEMENT.  See the GNU General Public License for more
15  * details.
16  *
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/jiffies.h>
23 #include <linux/mman.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/kthread.h>
29 #include <linux/completion.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memory.h>
32 #include <linux/notifier.h>
33 #include <linux/percpu_counter.h>
34 
35 #include <linux/hyperv.h>
36 
37 /*
38  * We begin with definitions supporting the Dynamic Memory protocol
39  * with the host.
40  *
41  * Begin protocol definitions.
42  */
43 
44 
45 
46 /*
47  * Protocol versions. The low word is the minor version, the high word the major
48  * version.
49  *
50  * History:
51  * Initial version 1.0
52  * Changed to 0.1 on 2009/03/25
53  * Changes to 0.2 on 2009/05/14
54  * Changes to 0.3 on 2009/12/03
55  * Changed to 1.0 on 2011/04/05
56  */
57 
58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
61 
62 enum {
63 	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64 	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65 	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
66 
67 	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
68 	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
69 	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
70 
71 	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
72 };
73 
74 
75 
76 /*
77  * Message Types
78  */
79 
80 enum dm_message_type {
81 	/*
82 	 * Version 0.3
83 	 */
84 	DM_ERROR			= 0,
85 	DM_VERSION_REQUEST		= 1,
86 	DM_VERSION_RESPONSE		= 2,
87 	DM_CAPABILITIES_REPORT		= 3,
88 	DM_CAPABILITIES_RESPONSE	= 4,
89 	DM_STATUS_REPORT		= 5,
90 	DM_BALLOON_REQUEST		= 6,
91 	DM_BALLOON_RESPONSE		= 7,
92 	DM_UNBALLOON_REQUEST		= 8,
93 	DM_UNBALLOON_RESPONSE		= 9,
94 	DM_MEM_HOT_ADD_REQUEST		= 10,
95 	DM_MEM_HOT_ADD_RESPONSE		= 11,
96 	DM_VERSION_03_MAX		= 11,
97 	/*
98 	 * Version 1.0.
99 	 */
100 	DM_INFO_MESSAGE			= 12,
101 	DM_VERSION_1_MAX		= 12
102 };
103 
104 
105 /*
106  * Structures defining the dynamic memory management
107  * protocol.
108  */
109 
110 union dm_version {
111 	struct {
112 		__u16 minor_version;
113 		__u16 major_version;
114 	};
115 	__u32 version;
116 } __packed;
117 
118 
119 union dm_caps {
120 	struct {
121 		__u64 balloon:1;
122 		__u64 hot_add:1;
123 		/*
124 		 * To support guests that may have alignment
125 		 * limitations on hot-add, the guest can specify
126 		 * its alignment requirements; a value of n
127 		 * represents an alignment of 2^n in mega bytes.
128 		 */
129 		__u64 hot_add_alignment:4;
130 		__u64 reservedz:58;
131 	} cap_bits;
132 	__u64 caps;
133 } __packed;
134 
135 union dm_mem_page_range {
136 	struct  {
137 		/*
138 		 * The PFN number of the first page in the range.
139 		 * 40 bits is the architectural limit of a PFN
140 		 * number for AMD64.
141 		 */
142 		__u64 start_page:40;
143 		/*
144 		 * The number of pages in the range.
145 		 */
146 		__u64 page_cnt:24;
147 	} finfo;
148 	__u64  page_range;
149 } __packed;
150 
151 
152 
153 /*
154  * The header for all dynamic memory messages:
155  *
156  * type: Type of the message.
157  * size: Size of the message in bytes; including the header.
158  * trans_id: The guest is responsible for manufacturing this ID.
159  */
160 
161 struct dm_header {
162 	__u16 type;
163 	__u16 size;
164 	__u32 trans_id;
165 } __packed;
166 
167 /*
168  * A generic message format for dynamic memory.
169  * Specific message formats are defined later in the file.
170  */
171 
172 struct dm_message {
173 	struct dm_header hdr;
174 	__u8 data[]; /* enclosed message */
175 } __packed;
176 
177 
178 /*
179  * Specific message types supporting the dynamic memory protocol.
180  */
181 
182 /*
183  * Version negotiation message. Sent from the guest to the host.
184  * The guest is free to try different versions until the host
185  * accepts the version.
186  *
187  * dm_version: The protocol version requested.
188  * is_last_attempt: If TRUE, this is the last version guest will request.
189  * reservedz: Reserved field, set to zero.
190  */
191 
192 struct dm_version_request {
193 	struct dm_header hdr;
194 	union dm_version version;
195 	__u32 is_last_attempt:1;
196 	__u32 reservedz:31;
197 } __packed;
198 
199 /*
200  * Version response message; Host to Guest and indicates
201  * if the host has accepted the version sent by the guest.
202  *
203  * is_accepted: If TRUE, host has accepted the version and the guest
204  * should proceed to the next stage of the protocol. FALSE indicates that
205  * guest should re-try with a different version.
206  *
207  * reservedz: Reserved field, set to zero.
208  */
209 
210 struct dm_version_response {
211 	struct dm_header hdr;
212 	__u64 is_accepted:1;
213 	__u64 reservedz:63;
214 } __packed;
215 
216 /*
217  * Message reporting capabilities. This is sent from the guest to the
218  * host.
219  */
220 
221 struct dm_capabilities {
222 	struct dm_header hdr;
223 	union dm_caps caps;
224 	__u64 min_page_cnt;
225 	__u64 max_page_number;
226 } __packed;
227 
228 /*
229  * Response to the capabilities message. This is sent from the host to the
230  * guest. This message notifies if the host has accepted the guest's
231  * capabilities. If the host has not accepted, the guest must shutdown
232  * the service.
233  *
234  * is_accepted: Indicates if the host has accepted guest's capabilities.
235  * reservedz: Must be 0.
236  */
237 
238 struct dm_capabilities_resp_msg {
239 	struct dm_header hdr;
240 	__u64 is_accepted:1;
241 	__u64 reservedz:63;
242 } __packed;
243 
244 /*
245  * This message is used to report memory pressure from the guest.
246  * This message is not part of any transaction and there is no
247  * response to this message.
248  *
249  * num_avail: Available memory in pages.
250  * num_committed: Committed memory in pages.
251  * page_file_size: The accumulated size of all page files
252  *		   in the system in pages.
253  * zero_free: The nunber of zero and free pages.
254  * page_file_writes: The writes to the page file in pages.
255  * io_diff: An indicator of file cache efficiency or page file activity,
256  *	    calculated as File Cache Page Fault Count - Page Read Count.
257  *	    This value is in pages.
258  *
259  * Some of these metrics are Windows specific and fortunately
260  * the algorithm on the host side that computes the guest memory
261  * pressure only uses num_committed value.
262  */
263 
264 struct dm_status {
265 	struct dm_header hdr;
266 	__u64 num_avail;
267 	__u64 num_committed;
268 	__u64 page_file_size;
269 	__u64 zero_free;
270 	__u32 page_file_writes;
271 	__u32 io_diff;
272 } __packed;
273 
274 
275 /*
276  * Message to ask the guest to allocate memory - balloon up message.
277  * This message is sent from the host to the guest. The guest may not be
278  * able to allocate as much memory as requested.
279  *
280  * num_pages: number of pages to allocate.
281  */
282 
283 struct dm_balloon {
284 	struct dm_header hdr;
285 	__u32 num_pages;
286 	__u32 reservedz;
287 } __packed;
288 
289 
290 /*
291  * Balloon response message; this message is sent from the guest
292  * to the host in response to the balloon message.
293  *
294  * reservedz: Reserved; must be set to zero.
295  * more_pages: If FALSE, this is the last message of the transaction.
296  * if TRUE there will atleast one more message from the guest.
297  *
298  * range_count: The number of ranges in the range array.
299  *
300  * range_array: An array of page ranges returned to the host.
301  *
302  */
303 
304 struct dm_balloon_response {
305 	struct dm_header hdr;
306 	__u32 reservedz;
307 	__u32 more_pages:1;
308 	__u32 range_count:31;
309 	union dm_mem_page_range range_array[];
310 } __packed;
311 
312 /*
313  * Un-balloon message; this message is sent from the host
314  * to the guest to give guest more memory.
315  *
316  * more_pages: If FALSE, this is the last message of the transaction.
317  * if TRUE there will atleast one more message from the guest.
318  *
319  * reservedz: Reserved; must be set to zero.
320  *
321  * range_count: The number of ranges in the range array.
322  *
323  * range_array: An array of page ranges returned to the host.
324  *
325  */
326 
327 struct dm_unballoon_request {
328 	struct dm_header hdr;
329 	__u32 more_pages:1;
330 	__u32 reservedz:31;
331 	__u32 range_count;
332 	union dm_mem_page_range range_array[];
333 } __packed;
334 
335 /*
336  * Un-balloon response message; this message is sent from the guest
337  * to the host in response to an unballoon request.
338  *
339  */
340 
341 struct dm_unballoon_response {
342 	struct dm_header hdr;
343 } __packed;
344 
345 
346 /*
347  * Hot add request message. Message sent from the host to the guest.
348  *
349  * mem_range: Memory range to hot add.
350  *
351  * On Linux we currently don't support this since we cannot hot add
352  * arbitrary granularity of memory.
353  */
354 
355 struct dm_hot_add {
356 	struct dm_header hdr;
357 	union dm_mem_page_range range;
358 } __packed;
359 
360 /*
361  * Hot add response message.
362  * This message is sent by the guest to report the status of a hot add request.
363  * If page_count is less than the requested page count, then the host should
364  * assume all further hot add requests will fail, since this indicates that
365  * the guest has hit an upper physical memory barrier.
366  *
367  * Hot adds may also fail due to low resources; in this case, the guest must
368  * not complete this message until the hot add can succeed, and the host must
369  * not send a new hot add request until the response is sent.
370  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
371  * times it fails the request.
372  *
373  *
374  * page_count: number of pages that were successfully hot added.
375  *
376  * result: result of the operation 1: success, 0: failure.
377  *
378  */
379 
380 struct dm_hot_add_response {
381 	struct dm_header hdr;
382 	__u32 page_count;
383 	__u32 result;
384 } __packed;
385 
386 /*
387  * Types of information sent from host to the guest.
388  */
389 
390 enum dm_info_type {
391 	INFO_TYPE_MAX_PAGE_CNT = 0,
392 	MAX_INFO_TYPE
393 };
394 
395 
396 /*
397  * Header for the information message.
398  */
399 
400 struct dm_info_header {
401 	enum dm_info_type type;
402 	__u32 data_size;
403 } __packed;
404 
405 /*
406  * This message is sent from the host to the guest to pass
407  * some relevant information (win8 addition).
408  *
409  * reserved: no used.
410  * info_size: size of the information blob.
411  * info: information blob.
412  */
413 
414 struct dm_info_msg {
415 	struct dm_header hdr;
416 	__u32 reserved;
417 	__u32 info_size;
418 	__u8  info[];
419 };
420 
421 /*
422  * End protocol definitions.
423  */
424 
425 /*
426  * State to manage hot adding memory into the guest.
427  * The range start_pfn : end_pfn specifies the range
428  * that the host has asked us to hot add. The range
429  * start_pfn : ha_end_pfn specifies the range that we have
430  * currently hot added. We hot add in multiples of 128M
431  * chunks; it is possible that we may not be able to bring
432  * online all the pages in the region. The range
433  * covered_start_pfn:covered_end_pfn defines the pages that can
434  * be brough online.
435  */
436 
437 struct hv_hotadd_state {
438 	struct list_head list;
439 	unsigned long start_pfn;
440 	unsigned long covered_start_pfn;
441 	unsigned long covered_end_pfn;
442 	unsigned long ha_end_pfn;
443 	unsigned long end_pfn;
444 	/*
445 	 * A list of gaps.
446 	 */
447 	struct list_head gap_list;
448 };
449 
450 struct hv_hotadd_gap {
451 	struct list_head list;
452 	unsigned long start_pfn;
453 	unsigned long end_pfn;
454 };
455 
456 struct balloon_state {
457 	__u32 num_pages;
458 	struct work_struct wrk;
459 };
460 
461 struct hot_add_wrk {
462 	union dm_mem_page_range ha_page_range;
463 	union dm_mem_page_range ha_region_range;
464 	struct work_struct wrk;
465 };
466 
467 static bool hot_add = true;
468 static bool do_hot_add;
469 /*
470  * Delay reporting memory pressure by
471  * the specified number of seconds.
472  */
473 static uint pressure_report_delay = 45;
474 
475 /*
476  * The last time we posted a pressure report to host.
477  */
478 static unsigned long last_post_time;
479 
480 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
481 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
482 
483 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
484 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
485 static atomic_t trans_id = ATOMIC_INIT(0);
486 
487 static int dm_ring_size = (5 * PAGE_SIZE);
488 
489 /*
490  * Driver specific state.
491  */
492 
493 enum hv_dm_state {
494 	DM_INITIALIZING = 0,
495 	DM_INITIALIZED,
496 	DM_BALLOON_UP,
497 	DM_BALLOON_DOWN,
498 	DM_HOT_ADD,
499 	DM_INIT_ERROR
500 };
501 
502 
503 static __u8 recv_buffer[PAGE_SIZE];
504 static __u8 *send_buffer;
505 #define PAGES_IN_2M	512
506 #define HA_CHUNK (32 * 1024)
507 
508 struct hv_dynmem_device {
509 	struct hv_device *dev;
510 	enum hv_dm_state state;
511 	struct completion host_event;
512 	struct completion config_event;
513 
514 	/*
515 	 * Number of pages we have currently ballooned out.
516 	 */
517 	unsigned int num_pages_ballooned;
518 	unsigned int num_pages_onlined;
519 	unsigned int num_pages_added;
520 
521 	/*
522 	 * State to manage the ballooning (up) operation.
523 	 */
524 	struct balloon_state balloon_wrk;
525 
526 	/*
527 	 * State to execute the "hot-add" operation.
528 	 */
529 	struct hot_add_wrk ha_wrk;
530 
531 	/*
532 	 * This state tracks if the host has specified a hot-add
533 	 * region.
534 	 */
535 	bool host_specified_ha_region;
536 
537 	/*
538 	 * State to synchronize hot-add.
539 	 */
540 	struct completion  ol_waitevent;
541 	bool ha_waiting;
542 	/*
543 	 * This thread handles hot-add
544 	 * requests from the host as well as notifying
545 	 * the host with regards to memory pressure in
546 	 * the guest.
547 	 */
548 	struct task_struct *thread;
549 
550 	/*
551 	 * Protects ha_region_list, num_pages_onlined counter and individual
552 	 * regions from ha_region_list.
553 	 */
554 	spinlock_t ha_lock;
555 
556 	/*
557 	 * A list of hot-add regions.
558 	 */
559 	struct list_head ha_region_list;
560 
561 	/*
562 	 * We start with the highest version we can support
563 	 * and downgrade based on the host; we save here the
564 	 * next version to try.
565 	 */
566 	__u32 next_version;
567 
568 	/*
569 	 * The negotiated version agreed by host.
570 	 */
571 	__u32 version;
572 };
573 
574 static struct hv_dynmem_device dm_device;
575 
576 static void post_status(struct hv_dynmem_device *dm);
577 
578 #ifdef CONFIG_MEMORY_HOTPLUG
579 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
580 			      void *v)
581 {
582 	struct memory_notify *mem = (struct memory_notify *)v;
583 	unsigned long flags;
584 
585 	switch (val) {
586 	case MEM_ONLINE:
587 		spin_lock_irqsave(&dm_device.ha_lock, flags);
588 		dm_device.num_pages_onlined += mem->nr_pages;
589 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
590 		/* Fall through */
591 	case MEM_CANCEL_ONLINE:
592 		if (dm_device.ha_waiting) {
593 			dm_device.ha_waiting = false;
594 			complete(&dm_device.ol_waitevent);
595 		}
596 		break;
597 
598 	case MEM_OFFLINE:
599 		spin_lock_irqsave(&dm_device.ha_lock, flags);
600 		dm_device.num_pages_onlined -= mem->nr_pages;
601 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
602 		break;
603 	case MEM_GOING_ONLINE:
604 	case MEM_GOING_OFFLINE:
605 	case MEM_CANCEL_OFFLINE:
606 		break;
607 	}
608 	return NOTIFY_OK;
609 }
610 
611 static struct notifier_block hv_memory_nb = {
612 	.notifier_call = hv_memory_notifier,
613 	.priority = 0
614 };
615 
616 /* Check if the particular page is backed and can be onlined and online it. */
617 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
618 {
619 	unsigned long cur_start_pgp;
620 	unsigned long cur_end_pgp;
621 	struct hv_hotadd_gap *gap;
622 
623 	cur_start_pgp = (unsigned long)pfn_to_page(has->covered_start_pfn);
624 	cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
625 
626 	/* The page is not backed. */
627 	if (((unsigned long)pg < cur_start_pgp) ||
628 	    ((unsigned long)pg >= cur_end_pgp))
629 		return;
630 
631 	/* Check for gaps. */
632 	list_for_each_entry(gap, &has->gap_list, list) {
633 		cur_start_pgp = (unsigned long)
634 			pfn_to_page(gap->start_pfn);
635 		cur_end_pgp = (unsigned long)
636 			pfn_to_page(gap->end_pfn);
637 		if (((unsigned long)pg >= cur_start_pgp) &&
638 		    ((unsigned long)pg < cur_end_pgp)) {
639 			return;
640 		}
641 	}
642 
643 	/* This frame is currently backed; online the page. */
644 	__online_page_set_limits(pg);
645 	__online_page_increment_counters(pg);
646 	__online_page_free(pg);
647 }
648 
649 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
650 				unsigned long start_pfn, unsigned long size)
651 {
652 	int i;
653 
654 	pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
655 	for (i = 0; i < size; i++)
656 		hv_page_online_one(has, pfn_to_page(start_pfn + i));
657 }
658 
659 static void hv_mem_hot_add(unsigned long start, unsigned long size,
660 				unsigned long pfn_count,
661 				struct hv_hotadd_state *has)
662 {
663 	int ret = 0;
664 	int i, nid;
665 	unsigned long start_pfn;
666 	unsigned long processed_pfn;
667 	unsigned long total_pfn = pfn_count;
668 	unsigned long flags;
669 
670 	for (i = 0; i < (size/HA_CHUNK); i++) {
671 		start_pfn = start + (i * HA_CHUNK);
672 
673 		spin_lock_irqsave(&dm_device.ha_lock, flags);
674 		has->ha_end_pfn +=  HA_CHUNK;
675 
676 		if (total_pfn > HA_CHUNK) {
677 			processed_pfn = HA_CHUNK;
678 			total_pfn -= HA_CHUNK;
679 		} else {
680 			processed_pfn = total_pfn;
681 			total_pfn = 0;
682 		}
683 
684 		has->covered_end_pfn +=  processed_pfn;
685 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
686 
687 		init_completion(&dm_device.ol_waitevent);
688 		dm_device.ha_waiting = !memhp_auto_online;
689 
690 		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
691 		ret = add_memory(nid, PFN_PHYS((start_pfn)),
692 				(HA_CHUNK << PAGE_SHIFT));
693 
694 		if (ret) {
695 			pr_warn("hot_add memory failed error is %d\n", ret);
696 			if (ret == -EEXIST) {
697 				/*
698 				 * This error indicates that the error
699 				 * is not a transient failure. This is the
700 				 * case where the guest's physical address map
701 				 * precludes hot adding memory. Stop all further
702 				 * memory hot-add.
703 				 */
704 				do_hot_add = false;
705 			}
706 			spin_lock_irqsave(&dm_device.ha_lock, flags);
707 			has->ha_end_pfn -= HA_CHUNK;
708 			has->covered_end_pfn -=  processed_pfn;
709 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
710 			break;
711 		}
712 
713 		/*
714 		 * Wait for the memory block to be onlined when memory onlining
715 		 * is done outside of kernel (memhp_auto_online). Since the hot
716 		 * add has succeeded, it is ok to proceed even if the pages in
717 		 * the hot added region have not been "onlined" within the
718 		 * allowed time.
719 		 */
720 		if (dm_device.ha_waiting)
721 			wait_for_completion_timeout(&dm_device.ol_waitevent,
722 						    5*HZ);
723 		post_status(&dm_device);
724 	}
725 
726 	return;
727 }
728 
729 static void hv_online_page(struct page *pg)
730 {
731 	struct hv_hotadd_state *has;
732 	unsigned long cur_start_pgp;
733 	unsigned long cur_end_pgp;
734 	unsigned long flags;
735 
736 	spin_lock_irqsave(&dm_device.ha_lock, flags);
737 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
738 		cur_start_pgp = (unsigned long)
739 			pfn_to_page(has->start_pfn);
740 		cur_end_pgp = (unsigned long)pfn_to_page(has->end_pfn);
741 
742 		/* The page belongs to a different HAS. */
743 		if (((unsigned long)pg < cur_start_pgp) ||
744 		    ((unsigned long)pg >= cur_end_pgp))
745 			continue;
746 
747 		hv_page_online_one(has, pg);
748 		break;
749 	}
750 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
751 }
752 
753 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
754 {
755 	struct hv_hotadd_state *has;
756 	struct hv_hotadd_gap *gap;
757 	unsigned long residual, new_inc;
758 	int ret = 0;
759 	unsigned long flags;
760 
761 	spin_lock_irqsave(&dm_device.ha_lock, flags);
762 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
763 		/*
764 		 * If the pfn range we are dealing with is not in the current
765 		 * "hot add block", move on.
766 		 */
767 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
768 			continue;
769 
770 		/*
771 		 * If the current start pfn is not where the covered_end
772 		 * is, create a gap and update covered_end_pfn.
773 		 */
774 		if (has->covered_end_pfn != start_pfn) {
775 			gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
776 			if (!gap) {
777 				ret = -ENOMEM;
778 				break;
779 			}
780 
781 			INIT_LIST_HEAD(&gap->list);
782 			gap->start_pfn = has->covered_end_pfn;
783 			gap->end_pfn = start_pfn;
784 			list_add_tail(&gap->list, &has->gap_list);
785 
786 			has->covered_end_pfn = start_pfn;
787 		}
788 
789 		/*
790 		 * If the current hot add-request extends beyond
791 		 * our current limit; extend it.
792 		 */
793 		if ((start_pfn + pfn_cnt) > has->end_pfn) {
794 			residual = (start_pfn + pfn_cnt - has->end_pfn);
795 			/*
796 			 * Extend the region by multiples of HA_CHUNK.
797 			 */
798 			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
799 			if (residual % HA_CHUNK)
800 				new_inc += HA_CHUNK;
801 
802 			has->end_pfn += new_inc;
803 		}
804 
805 		ret = 1;
806 		break;
807 	}
808 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
809 
810 	return ret;
811 }
812 
813 static unsigned long handle_pg_range(unsigned long pg_start,
814 					unsigned long pg_count)
815 {
816 	unsigned long start_pfn = pg_start;
817 	unsigned long pfn_cnt = pg_count;
818 	unsigned long size;
819 	struct hv_hotadd_state *has;
820 	unsigned long pgs_ol = 0;
821 	unsigned long old_covered_state;
822 	unsigned long res = 0, flags;
823 
824 	pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
825 		pg_start);
826 
827 	spin_lock_irqsave(&dm_device.ha_lock, flags);
828 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
829 		/*
830 		 * If the pfn range we are dealing with is not in the current
831 		 * "hot add block", move on.
832 		 */
833 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
834 			continue;
835 
836 		old_covered_state = has->covered_end_pfn;
837 
838 		if (start_pfn < has->ha_end_pfn) {
839 			/*
840 			 * This is the case where we are backing pages
841 			 * in an already hot added region. Bring
842 			 * these pages online first.
843 			 */
844 			pgs_ol = has->ha_end_pfn - start_pfn;
845 			if (pgs_ol > pfn_cnt)
846 				pgs_ol = pfn_cnt;
847 
848 			has->covered_end_pfn +=  pgs_ol;
849 			pfn_cnt -= pgs_ol;
850 			/*
851 			 * Check if the corresponding memory block is already
852 			 * online by checking its last previously backed page.
853 			 * In case it is we need to bring rest (which was not
854 			 * backed previously) online too.
855 			 */
856 			if (start_pfn > has->start_pfn &&
857 			    !PageReserved(pfn_to_page(start_pfn - 1)))
858 				hv_bring_pgs_online(has, start_pfn, pgs_ol);
859 
860 		}
861 
862 		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
863 			/*
864 			 * We have some residual hot add range
865 			 * that needs to be hot added; hot add
866 			 * it now. Hot add a multiple of
867 			 * of HA_CHUNK that fully covers the pages
868 			 * we have.
869 			 */
870 			size = (has->end_pfn - has->ha_end_pfn);
871 			if (pfn_cnt <= size) {
872 				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
873 				if (pfn_cnt % HA_CHUNK)
874 					size += HA_CHUNK;
875 			} else {
876 				pfn_cnt = size;
877 			}
878 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
879 			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
880 			spin_lock_irqsave(&dm_device.ha_lock, flags);
881 		}
882 		/*
883 		 * If we managed to online any pages that were given to us,
884 		 * we declare success.
885 		 */
886 		res = has->covered_end_pfn - old_covered_state;
887 		break;
888 	}
889 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
890 
891 	return res;
892 }
893 
894 static unsigned long process_hot_add(unsigned long pg_start,
895 					unsigned long pfn_cnt,
896 					unsigned long rg_start,
897 					unsigned long rg_size)
898 {
899 	struct hv_hotadd_state *ha_region = NULL;
900 	int covered;
901 	unsigned long flags;
902 
903 	if (pfn_cnt == 0)
904 		return 0;
905 
906 	if (!dm_device.host_specified_ha_region) {
907 		covered = pfn_covered(pg_start, pfn_cnt);
908 		if (covered < 0)
909 			return 0;
910 
911 		if (covered)
912 			goto do_pg_range;
913 	}
914 
915 	/*
916 	 * If the host has specified a hot-add range; deal with it first.
917 	 */
918 
919 	if (rg_size != 0) {
920 		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
921 		if (!ha_region)
922 			return 0;
923 
924 		INIT_LIST_HEAD(&ha_region->list);
925 		INIT_LIST_HEAD(&ha_region->gap_list);
926 
927 		ha_region->start_pfn = rg_start;
928 		ha_region->ha_end_pfn = rg_start;
929 		ha_region->covered_start_pfn = pg_start;
930 		ha_region->covered_end_pfn = pg_start;
931 		ha_region->end_pfn = rg_start + rg_size;
932 
933 		spin_lock_irqsave(&dm_device.ha_lock, flags);
934 		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
935 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
936 	}
937 
938 do_pg_range:
939 	/*
940 	 * Process the page range specified; bringing them
941 	 * online if possible.
942 	 */
943 	return handle_pg_range(pg_start, pfn_cnt);
944 }
945 
946 #endif
947 
948 static void hot_add_req(struct work_struct *dummy)
949 {
950 	struct dm_hot_add_response resp;
951 #ifdef CONFIG_MEMORY_HOTPLUG
952 	unsigned long pg_start, pfn_cnt;
953 	unsigned long rg_start, rg_sz;
954 #endif
955 	struct hv_dynmem_device *dm = &dm_device;
956 
957 	memset(&resp, 0, sizeof(struct dm_hot_add_response));
958 	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
959 	resp.hdr.size = sizeof(struct dm_hot_add_response);
960 
961 #ifdef CONFIG_MEMORY_HOTPLUG
962 	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
963 	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
964 
965 	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
966 	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
967 
968 	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
969 		unsigned long region_size;
970 		unsigned long region_start;
971 
972 		/*
973 		 * The host has not specified the hot-add region.
974 		 * Based on the hot-add page range being specified,
975 		 * compute a hot-add region that can cover the pages
976 		 * that need to be hot-added while ensuring the alignment
977 		 * and size requirements of Linux as it relates to hot-add.
978 		 */
979 		region_start = pg_start;
980 		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
981 		if (pfn_cnt % HA_CHUNK)
982 			region_size += HA_CHUNK;
983 
984 		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
985 
986 		rg_start = region_start;
987 		rg_sz = region_size;
988 	}
989 
990 	if (do_hot_add)
991 		resp.page_count = process_hot_add(pg_start, pfn_cnt,
992 						rg_start, rg_sz);
993 
994 	dm->num_pages_added += resp.page_count;
995 #endif
996 	/*
997 	 * The result field of the response structure has the
998 	 * following semantics:
999 	 *
1000 	 * 1. If all or some pages hot-added: Guest should return success.
1001 	 *
1002 	 * 2. If no pages could be hot-added:
1003 	 *
1004 	 * If the guest returns success, then the host
1005 	 * will not attempt any further hot-add operations. This
1006 	 * signifies a permanent failure.
1007 	 *
1008 	 * If the guest returns failure, then this failure will be
1009 	 * treated as a transient failure and the host may retry the
1010 	 * hot-add operation after some delay.
1011 	 */
1012 	if (resp.page_count > 0)
1013 		resp.result = 1;
1014 	else if (!do_hot_add)
1015 		resp.result = 1;
1016 	else
1017 		resp.result = 0;
1018 
1019 	if (!do_hot_add || (resp.page_count == 0))
1020 		pr_info("Memory hot add failed\n");
1021 
1022 	dm->state = DM_INITIALIZED;
1023 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1024 	vmbus_sendpacket(dm->dev->channel, &resp,
1025 			sizeof(struct dm_hot_add_response),
1026 			(unsigned long)NULL,
1027 			VM_PKT_DATA_INBAND, 0);
1028 }
1029 
1030 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1031 {
1032 	struct dm_info_header *info_hdr;
1033 
1034 	info_hdr = (struct dm_info_header *)msg->info;
1035 
1036 	switch (info_hdr->type) {
1037 	case INFO_TYPE_MAX_PAGE_CNT:
1038 		if (info_hdr->data_size == sizeof(__u64)) {
1039 			__u64 *max_page_count = (__u64 *)&info_hdr[1];
1040 
1041 			pr_info("INFO_TYPE_MAX_PAGE_CNT = %llu\n",
1042 				*max_page_count);
1043 		}
1044 
1045 		break;
1046 	default:
1047 		pr_info("Received Unknown type: %d\n", info_hdr->type);
1048 	}
1049 }
1050 
1051 static unsigned long compute_balloon_floor(void)
1052 {
1053 	unsigned long min_pages;
1054 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1055 	/* Simple continuous piecewiese linear function:
1056 	 *  max MiB -> min MiB  gradient
1057 	 *       0         0
1058 	 *      16        16
1059 	 *      32        24
1060 	 *     128        72    (1/2)
1061 	 *     512       168    (1/4)
1062 	 *    2048       360    (1/8)
1063 	 *    8192       744    (1/16)
1064 	 *   32768      1512	(1/32)
1065 	 */
1066 	if (totalram_pages < MB2PAGES(128))
1067 		min_pages = MB2PAGES(8) + (totalram_pages >> 1);
1068 	else if (totalram_pages < MB2PAGES(512))
1069 		min_pages = MB2PAGES(40) + (totalram_pages >> 2);
1070 	else if (totalram_pages < MB2PAGES(2048))
1071 		min_pages = MB2PAGES(104) + (totalram_pages >> 3);
1072 	else if (totalram_pages < MB2PAGES(8192))
1073 		min_pages = MB2PAGES(232) + (totalram_pages >> 4);
1074 	else
1075 		min_pages = MB2PAGES(488) + (totalram_pages >> 5);
1076 #undef MB2PAGES
1077 	return min_pages;
1078 }
1079 
1080 /*
1081  * Post our status as it relates memory pressure to the
1082  * host. Host expects the guests to post this status
1083  * periodically at 1 second intervals.
1084  *
1085  * The metrics specified in this protocol are very Windows
1086  * specific and so we cook up numbers here to convey our memory
1087  * pressure.
1088  */
1089 
1090 static void post_status(struct hv_dynmem_device *dm)
1091 {
1092 	struct dm_status status;
1093 	unsigned long now = jiffies;
1094 	unsigned long last_post = last_post_time;
1095 
1096 	if (pressure_report_delay > 0) {
1097 		--pressure_report_delay;
1098 		return;
1099 	}
1100 
1101 	if (!time_after(now, (last_post_time + HZ)))
1102 		return;
1103 
1104 	memset(&status, 0, sizeof(struct dm_status));
1105 	status.hdr.type = DM_STATUS_REPORT;
1106 	status.hdr.size = sizeof(struct dm_status);
1107 	status.hdr.trans_id = atomic_inc_return(&trans_id);
1108 
1109 	/*
1110 	 * The host expects the guest to report free and committed memory.
1111 	 * Furthermore, the host expects the pressure information to include
1112 	 * the ballooned out pages. For a given amount of memory that we are
1113 	 * managing we need to compute a floor below which we should not
1114 	 * balloon. Compute this and add it to the pressure report.
1115 	 * We also need to report all offline pages (num_pages_added -
1116 	 * num_pages_onlined) as committed to the host, otherwise it can try
1117 	 * asking us to balloon them out.
1118 	 */
1119 	status.num_avail = si_mem_available();
1120 	status.num_committed = vm_memory_committed() +
1121 		dm->num_pages_ballooned +
1122 		(dm->num_pages_added > dm->num_pages_onlined ?
1123 		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1124 		compute_balloon_floor();
1125 
1126 	/*
1127 	 * If our transaction ID is no longer current, just don't
1128 	 * send the status. This can happen if we were interrupted
1129 	 * after we picked our transaction ID.
1130 	 */
1131 	if (status.hdr.trans_id != atomic_read(&trans_id))
1132 		return;
1133 
1134 	/*
1135 	 * If the last post time that we sampled has changed,
1136 	 * we have raced, don't post the status.
1137 	 */
1138 	if (last_post != last_post_time)
1139 		return;
1140 
1141 	last_post_time = jiffies;
1142 	vmbus_sendpacket(dm->dev->channel, &status,
1143 				sizeof(struct dm_status),
1144 				(unsigned long)NULL,
1145 				VM_PKT_DATA_INBAND, 0);
1146 
1147 }
1148 
1149 static void free_balloon_pages(struct hv_dynmem_device *dm,
1150 			 union dm_mem_page_range *range_array)
1151 {
1152 	int num_pages = range_array->finfo.page_cnt;
1153 	__u64 start_frame = range_array->finfo.start_page;
1154 	struct page *pg;
1155 	int i;
1156 
1157 	for (i = 0; i < num_pages; i++) {
1158 		pg = pfn_to_page(i + start_frame);
1159 		__free_page(pg);
1160 		dm->num_pages_ballooned--;
1161 	}
1162 }
1163 
1164 
1165 
1166 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1167 					unsigned int num_pages,
1168 					struct dm_balloon_response *bl_resp,
1169 					int alloc_unit)
1170 {
1171 	unsigned int i = 0;
1172 	struct page *pg;
1173 
1174 	if (num_pages < alloc_unit)
1175 		return 0;
1176 
1177 	for (i = 0; (i * alloc_unit) < num_pages; i++) {
1178 		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1179 			PAGE_SIZE)
1180 			return i * alloc_unit;
1181 
1182 		/*
1183 		 * We execute this code in a thread context. Furthermore,
1184 		 * we don't want the kernel to try too hard.
1185 		 */
1186 		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1187 				__GFP_NOMEMALLOC | __GFP_NOWARN,
1188 				get_order(alloc_unit << PAGE_SHIFT));
1189 
1190 		if (!pg)
1191 			return i * alloc_unit;
1192 
1193 		dm->num_pages_ballooned += alloc_unit;
1194 
1195 		/*
1196 		 * If we allocatted 2M pages; split them so we
1197 		 * can free them in any order we get.
1198 		 */
1199 
1200 		if (alloc_unit != 1)
1201 			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1202 
1203 		bl_resp->range_count++;
1204 		bl_resp->range_array[i].finfo.start_page =
1205 			page_to_pfn(pg);
1206 		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1207 		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1208 
1209 	}
1210 
1211 	return num_pages;
1212 }
1213 
1214 static void balloon_up(struct work_struct *dummy)
1215 {
1216 	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1217 	unsigned int num_ballooned = 0;
1218 	struct dm_balloon_response *bl_resp;
1219 	int alloc_unit;
1220 	int ret;
1221 	bool done = false;
1222 	int i;
1223 	long avail_pages;
1224 	unsigned long floor;
1225 
1226 	/* The host balloons pages in 2M granularity. */
1227 	WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1228 
1229 	/*
1230 	 * We will attempt 2M allocations. However, if we fail to
1231 	 * allocate 2M chunks, we will go back to 4k allocations.
1232 	 */
1233 	alloc_unit = 512;
1234 
1235 	avail_pages = si_mem_available();
1236 	floor = compute_balloon_floor();
1237 
1238 	/* Refuse to balloon below the floor, keep the 2M granularity. */
1239 	if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1240 		pr_warn("Balloon request will be partially fulfilled. %s\n",
1241 			avail_pages < num_pages ? "Not enough memory." :
1242 			"Balloon floor reached.");
1243 
1244 		num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1245 		num_pages -= num_pages % PAGES_IN_2M;
1246 	}
1247 
1248 	while (!done) {
1249 		bl_resp = (struct dm_balloon_response *)send_buffer;
1250 		memset(send_buffer, 0, PAGE_SIZE);
1251 		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1252 		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1253 		bl_resp->more_pages = 1;
1254 
1255 		num_pages -= num_ballooned;
1256 		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1257 						    bl_resp, alloc_unit);
1258 
1259 		if (alloc_unit != 1 && num_ballooned == 0) {
1260 			alloc_unit = 1;
1261 			continue;
1262 		}
1263 
1264 		if (num_ballooned == 0 || num_ballooned == num_pages) {
1265 			pr_debug("Ballooned %u out of %u requested pages.\n",
1266 				num_pages, dm_device.balloon_wrk.num_pages);
1267 
1268 			bl_resp->more_pages = 0;
1269 			done = true;
1270 			dm_device.state = DM_INITIALIZED;
1271 		}
1272 
1273 		/*
1274 		 * We are pushing a lot of data through the channel;
1275 		 * deal with transient failures caused because of the
1276 		 * lack of space in the ring buffer.
1277 		 */
1278 
1279 		do {
1280 			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1281 			ret = vmbus_sendpacket(dm_device.dev->channel,
1282 						bl_resp,
1283 						bl_resp->hdr.size,
1284 						(unsigned long)NULL,
1285 						VM_PKT_DATA_INBAND, 0);
1286 
1287 			if (ret == -EAGAIN)
1288 				msleep(20);
1289 			post_status(&dm_device);
1290 		} while (ret == -EAGAIN);
1291 
1292 		if (ret) {
1293 			/*
1294 			 * Free up the memory we allocatted.
1295 			 */
1296 			pr_info("Balloon response failed\n");
1297 
1298 			for (i = 0; i < bl_resp->range_count; i++)
1299 				free_balloon_pages(&dm_device,
1300 						 &bl_resp->range_array[i]);
1301 
1302 			done = true;
1303 		}
1304 	}
1305 
1306 }
1307 
1308 static void balloon_down(struct hv_dynmem_device *dm,
1309 			struct dm_unballoon_request *req)
1310 {
1311 	union dm_mem_page_range *range_array = req->range_array;
1312 	int range_count = req->range_count;
1313 	struct dm_unballoon_response resp;
1314 	int i;
1315 	unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1316 
1317 	for (i = 0; i < range_count; i++) {
1318 		free_balloon_pages(dm, &range_array[i]);
1319 		complete(&dm_device.config_event);
1320 	}
1321 
1322 	pr_debug("Freed %u ballooned pages.\n",
1323 		prev_pages_ballooned - dm->num_pages_ballooned);
1324 
1325 	if (req->more_pages == 1)
1326 		return;
1327 
1328 	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1329 	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1330 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1331 	resp.hdr.size = sizeof(struct dm_unballoon_response);
1332 
1333 	vmbus_sendpacket(dm_device.dev->channel, &resp,
1334 				sizeof(struct dm_unballoon_response),
1335 				(unsigned long)NULL,
1336 				VM_PKT_DATA_INBAND, 0);
1337 
1338 	dm->state = DM_INITIALIZED;
1339 }
1340 
1341 static void balloon_onchannelcallback(void *context);
1342 
1343 static int dm_thread_func(void *dm_dev)
1344 {
1345 	struct hv_dynmem_device *dm = dm_dev;
1346 
1347 	while (!kthread_should_stop()) {
1348 		wait_for_completion_interruptible_timeout(
1349 						&dm_device.config_event, 1*HZ);
1350 		/*
1351 		 * The host expects us to post information on the memory
1352 		 * pressure every second.
1353 		 */
1354 		reinit_completion(&dm_device.config_event);
1355 		post_status(dm);
1356 	}
1357 
1358 	return 0;
1359 }
1360 
1361 
1362 static void version_resp(struct hv_dynmem_device *dm,
1363 			struct dm_version_response *vresp)
1364 {
1365 	struct dm_version_request version_req;
1366 	int ret;
1367 
1368 	if (vresp->is_accepted) {
1369 		/*
1370 		 * We are done; wakeup the
1371 		 * context waiting for version
1372 		 * negotiation.
1373 		 */
1374 		complete(&dm->host_event);
1375 		return;
1376 	}
1377 	/*
1378 	 * If there are more versions to try, continue
1379 	 * with negotiations; if not
1380 	 * shutdown the service since we are not able
1381 	 * to negotiate a suitable version number
1382 	 * with the host.
1383 	 */
1384 	if (dm->next_version == 0)
1385 		goto version_error;
1386 
1387 	memset(&version_req, 0, sizeof(struct dm_version_request));
1388 	version_req.hdr.type = DM_VERSION_REQUEST;
1389 	version_req.hdr.size = sizeof(struct dm_version_request);
1390 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1391 	version_req.version.version = dm->next_version;
1392 	dm->version = version_req.version.version;
1393 
1394 	/*
1395 	 * Set the next version to try in case current version fails.
1396 	 * Win7 protocol ought to be the last one to try.
1397 	 */
1398 	switch (version_req.version.version) {
1399 	case DYNMEM_PROTOCOL_VERSION_WIN8:
1400 		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1401 		version_req.is_last_attempt = 0;
1402 		break;
1403 	default:
1404 		dm->next_version = 0;
1405 		version_req.is_last_attempt = 1;
1406 	}
1407 
1408 	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1409 				sizeof(struct dm_version_request),
1410 				(unsigned long)NULL,
1411 				VM_PKT_DATA_INBAND, 0);
1412 
1413 	if (ret)
1414 		goto version_error;
1415 
1416 	return;
1417 
1418 version_error:
1419 	dm->state = DM_INIT_ERROR;
1420 	complete(&dm->host_event);
1421 }
1422 
1423 static void cap_resp(struct hv_dynmem_device *dm,
1424 			struct dm_capabilities_resp_msg *cap_resp)
1425 {
1426 	if (!cap_resp->is_accepted) {
1427 		pr_info("Capabilities not accepted by host\n");
1428 		dm->state = DM_INIT_ERROR;
1429 	}
1430 	complete(&dm->host_event);
1431 }
1432 
1433 static void balloon_onchannelcallback(void *context)
1434 {
1435 	struct hv_device *dev = context;
1436 	u32 recvlen;
1437 	u64 requestid;
1438 	struct dm_message *dm_msg;
1439 	struct dm_header *dm_hdr;
1440 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1441 	struct dm_balloon *bal_msg;
1442 	struct dm_hot_add *ha_msg;
1443 	union dm_mem_page_range *ha_pg_range;
1444 	union dm_mem_page_range *ha_region;
1445 
1446 	memset(recv_buffer, 0, sizeof(recv_buffer));
1447 	vmbus_recvpacket(dev->channel, recv_buffer,
1448 			 PAGE_SIZE, &recvlen, &requestid);
1449 
1450 	if (recvlen > 0) {
1451 		dm_msg = (struct dm_message *)recv_buffer;
1452 		dm_hdr = &dm_msg->hdr;
1453 
1454 		switch (dm_hdr->type) {
1455 		case DM_VERSION_RESPONSE:
1456 			version_resp(dm,
1457 				 (struct dm_version_response *)dm_msg);
1458 			break;
1459 
1460 		case DM_CAPABILITIES_RESPONSE:
1461 			cap_resp(dm,
1462 				 (struct dm_capabilities_resp_msg *)dm_msg);
1463 			break;
1464 
1465 		case DM_BALLOON_REQUEST:
1466 			if (dm->state == DM_BALLOON_UP)
1467 				pr_warn("Currently ballooning\n");
1468 			bal_msg = (struct dm_balloon *)recv_buffer;
1469 			dm->state = DM_BALLOON_UP;
1470 			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1471 			schedule_work(&dm_device.balloon_wrk.wrk);
1472 			break;
1473 
1474 		case DM_UNBALLOON_REQUEST:
1475 			dm->state = DM_BALLOON_DOWN;
1476 			balloon_down(dm,
1477 				 (struct dm_unballoon_request *)recv_buffer);
1478 			break;
1479 
1480 		case DM_MEM_HOT_ADD_REQUEST:
1481 			if (dm->state == DM_HOT_ADD)
1482 				pr_warn("Currently hot-adding\n");
1483 			dm->state = DM_HOT_ADD;
1484 			ha_msg = (struct dm_hot_add *)recv_buffer;
1485 			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1486 				/*
1487 				 * This is a normal hot-add request specifying
1488 				 * hot-add memory.
1489 				 */
1490 				dm->host_specified_ha_region = false;
1491 				ha_pg_range = &ha_msg->range;
1492 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1493 				dm->ha_wrk.ha_region_range.page_range = 0;
1494 			} else {
1495 				/*
1496 				 * Host is specifying that we first hot-add
1497 				 * a region and then partially populate this
1498 				 * region.
1499 				 */
1500 				dm->host_specified_ha_region = true;
1501 				ha_pg_range = &ha_msg->range;
1502 				ha_region = &ha_pg_range[1];
1503 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1504 				dm->ha_wrk.ha_region_range = *ha_region;
1505 			}
1506 			schedule_work(&dm_device.ha_wrk.wrk);
1507 			break;
1508 
1509 		case DM_INFO_MESSAGE:
1510 			process_info(dm, (struct dm_info_msg *)dm_msg);
1511 			break;
1512 
1513 		default:
1514 			pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1515 
1516 		}
1517 	}
1518 
1519 }
1520 
1521 static int balloon_probe(struct hv_device *dev,
1522 			const struct hv_vmbus_device_id *dev_id)
1523 {
1524 	int ret;
1525 	unsigned long t;
1526 	struct dm_version_request version_req;
1527 	struct dm_capabilities cap_msg;
1528 
1529 #ifdef CONFIG_MEMORY_HOTPLUG
1530 	do_hot_add = hot_add;
1531 #else
1532 	do_hot_add = false;
1533 #endif
1534 
1535 	/*
1536 	 * First allocate a send buffer.
1537 	 */
1538 
1539 	send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1540 	if (!send_buffer)
1541 		return -ENOMEM;
1542 
1543 	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1544 			balloon_onchannelcallback, dev);
1545 
1546 	if (ret)
1547 		goto probe_error0;
1548 
1549 	dm_device.dev = dev;
1550 	dm_device.state = DM_INITIALIZING;
1551 	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1552 	init_completion(&dm_device.host_event);
1553 	init_completion(&dm_device.config_event);
1554 	INIT_LIST_HEAD(&dm_device.ha_region_list);
1555 	spin_lock_init(&dm_device.ha_lock);
1556 	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1557 	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1558 	dm_device.host_specified_ha_region = false;
1559 
1560 	dm_device.thread =
1561 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1562 	if (IS_ERR(dm_device.thread)) {
1563 		ret = PTR_ERR(dm_device.thread);
1564 		goto probe_error1;
1565 	}
1566 
1567 #ifdef CONFIG_MEMORY_HOTPLUG
1568 	set_online_page_callback(&hv_online_page);
1569 	register_memory_notifier(&hv_memory_nb);
1570 #endif
1571 
1572 	hv_set_drvdata(dev, &dm_device);
1573 	/*
1574 	 * Initiate the hand shake with the host and negotiate
1575 	 * a version that the host can support. We start with the
1576 	 * highest version number and go down if the host cannot
1577 	 * support it.
1578 	 */
1579 	memset(&version_req, 0, sizeof(struct dm_version_request));
1580 	version_req.hdr.type = DM_VERSION_REQUEST;
1581 	version_req.hdr.size = sizeof(struct dm_version_request);
1582 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1583 	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1584 	version_req.is_last_attempt = 0;
1585 	dm_device.version = version_req.version.version;
1586 
1587 	ret = vmbus_sendpacket(dev->channel, &version_req,
1588 				sizeof(struct dm_version_request),
1589 				(unsigned long)NULL,
1590 				VM_PKT_DATA_INBAND, 0);
1591 	if (ret)
1592 		goto probe_error2;
1593 
1594 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1595 	if (t == 0) {
1596 		ret = -ETIMEDOUT;
1597 		goto probe_error2;
1598 	}
1599 
1600 	/*
1601 	 * If we could not negotiate a compatible version with the host
1602 	 * fail the probe function.
1603 	 */
1604 	if (dm_device.state == DM_INIT_ERROR) {
1605 		ret = -ETIMEDOUT;
1606 		goto probe_error2;
1607 	}
1608 
1609 	pr_info("Using Dynamic Memory protocol version %u.%u\n",
1610 		DYNMEM_MAJOR_VERSION(dm_device.version),
1611 		DYNMEM_MINOR_VERSION(dm_device.version));
1612 
1613 	/*
1614 	 * Now submit our capabilities to the host.
1615 	 */
1616 	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1617 	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1618 	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1619 	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1620 
1621 	cap_msg.caps.cap_bits.balloon = 1;
1622 	cap_msg.caps.cap_bits.hot_add = 1;
1623 
1624 	/*
1625 	 * Specify our alignment requirements as it relates
1626 	 * memory hot-add. Specify 128MB alignment.
1627 	 */
1628 	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1629 
1630 	/*
1631 	 * Currently the host does not use these
1632 	 * values and we set them to what is done in the
1633 	 * Windows driver.
1634 	 */
1635 	cap_msg.min_page_cnt = 0;
1636 	cap_msg.max_page_number = -1;
1637 
1638 	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1639 				sizeof(struct dm_capabilities),
1640 				(unsigned long)NULL,
1641 				VM_PKT_DATA_INBAND, 0);
1642 	if (ret)
1643 		goto probe_error2;
1644 
1645 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1646 	if (t == 0) {
1647 		ret = -ETIMEDOUT;
1648 		goto probe_error2;
1649 	}
1650 
1651 	/*
1652 	 * If the host does not like our capabilities,
1653 	 * fail the probe function.
1654 	 */
1655 	if (dm_device.state == DM_INIT_ERROR) {
1656 		ret = -ETIMEDOUT;
1657 		goto probe_error2;
1658 	}
1659 
1660 	dm_device.state = DM_INITIALIZED;
1661 
1662 	return 0;
1663 
1664 probe_error2:
1665 #ifdef CONFIG_MEMORY_HOTPLUG
1666 	restore_online_page_callback(&hv_online_page);
1667 #endif
1668 	kthread_stop(dm_device.thread);
1669 
1670 probe_error1:
1671 	vmbus_close(dev->channel);
1672 probe_error0:
1673 	kfree(send_buffer);
1674 	return ret;
1675 }
1676 
1677 static int balloon_remove(struct hv_device *dev)
1678 {
1679 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1680 	struct hv_hotadd_state *has, *tmp;
1681 	struct hv_hotadd_gap *gap, *tmp_gap;
1682 	unsigned long flags;
1683 
1684 	if (dm->num_pages_ballooned != 0)
1685 		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1686 
1687 	cancel_work_sync(&dm->balloon_wrk.wrk);
1688 	cancel_work_sync(&dm->ha_wrk.wrk);
1689 
1690 	vmbus_close(dev->channel);
1691 	kthread_stop(dm->thread);
1692 	kfree(send_buffer);
1693 #ifdef CONFIG_MEMORY_HOTPLUG
1694 	restore_online_page_callback(&hv_online_page);
1695 	unregister_memory_notifier(&hv_memory_nb);
1696 #endif
1697 	spin_lock_irqsave(&dm_device.ha_lock, flags);
1698 	list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1699 		list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1700 			list_del(&gap->list);
1701 			kfree(gap);
1702 		}
1703 		list_del(&has->list);
1704 		kfree(has);
1705 	}
1706 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1707 
1708 	return 0;
1709 }
1710 
1711 static const struct hv_vmbus_device_id id_table[] = {
1712 	/* Dynamic Memory Class ID */
1713 	/* 525074DC-8985-46e2-8057-A307DC18A502 */
1714 	{ HV_DM_GUID, },
1715 	{ },
1716 };
1717 
1718 MODULE_DEVICE_TABLE(vmbus, id_table);
1719 
1720 static  struct hv_driver balloon_drv = {
1721 	.name = "hv_balloon",
1722 	.id_table = id_table,
1723 	.probe =  balloon_probe,
1724 	.remove =  balloon_remove,
1725 };
1726 
1727 static int __init init_balloon_drv(void)
1728 {
1729 
1730 	return vmbus_driver_register(&balloon_drv);
1731 }
1732 
1733 module_init(init_balloon_drv);
1734 
1735 MODULE_DESCRIPTION("Hyper-V Balloon");
1736 MODULE_LICENSE("GPL");
1737