xref: /openbmc/linux/drivers/hv/hv_balloon.c (revision 5ff32883)
1 /*
2  * Copyright (c) 2012, Microsoft Corporation.
3  *
4  * Author:
5  *   K. Y. Srinivasan <kys@microsoft.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  * NON INFRINGEMENT.  See the GNU General Public License for more
15  * details.
16  *
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/jiffies.h>
23 #include <linux/mman.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/kthread.h>
29 #include <linux/completion.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memory.h>
32 #include <linux/notifier.h>
33 #include <linux/percpu_counter.h>
34 
35 #include <linux/hyperv.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include "hv_trace_balloon.h"
39 
40 /*
41  * We begin with definitions supporting the Dynamic Memory protocol
42  * with the host.
43  *
44  * Begin protocol definitions.
45  */
46 
47 
48 
49 /*
50  * Protocol versions. The low word is the minor version, the high word the major
51  * version.
52  *
53  * History:
54  * Initial version 1.0
55  * Changed to 0.1 on 2009/03/25
56  * Changes to 0.2 on 2009/05/14
57  * Changes to 0.3 on 2009/12/03
58  * Changed to 1.0 on 2011/04/05
59  */
60 
61 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
62 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
63 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
64 
65 enum {
66 	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
67 	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
68 	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
69 
70 	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
71 	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
72 	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
73 
74 	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
75 };
76 
77 
78 
79 /*
80  * Message Types
81  */
82 
83 enum dm_message_type {
84 	/*
85 	 * Version 0.3
86 	 */
87 	DM_ERROR			= 0,
88 	DM_VERSION_REQUEST		= 1,
89 	DM_VERSION_RESPONSE		= 2,
90 	DM_CAPABILITIES_REPORT		= 3,
91 	DM_CAPABILITIES_RESPONSE	= 4,
92 	DM_STATUS_REPORT		= 5,
93 	DM_BALLOON_REQUEST		= 6,
94 	DM_BALLOON_RESPONSE		= 7,
95 	DM_UNBALLOON_REQUEST		= 8,
96 	DM_UNBALLOON_RESPONSE		= 9,
97 	DM_MEM_HOT_ADD_REQUEST		= 10,
98 	DM_MEM_HOT_ADD_RESPONSE		= 11,
99 	DM_VERSION_03_MAX		= 11,
100 	/*
101 	 * Version 1.0.
102 	 */
103 	DM_INFO_MESSAGE			= 12,
104 	DM_VERSION_1_MAX		= 12
105 };
106 
107 
108 /*
109  * Structures defining the dynamic memory management
110  * protocol.
111  */
112 
113 union dm_version {
114 	struct {
115 		__u16 minor_version;
116 		__u16 major_version;
117 	};
118 	__u32 version;
119 } __packed;
120 
121 
122 union dm_caps {
123 	struct {
124 		__u64 balloon:1;
125 		__u64 hot_add:1;
126 		/*
127 		 * To support guests that may have alignment
128 		 * limitations on hot-add, the guest can specify
129 		 * its alignment requirements; a value of n
130 		 * represents an alignment of 2^n in mega bytes.
131 		 */
132 		__u64 hot_add_alignment:4;
133 		__u64 reservedz:58;
134 	} cap_bits;
135 	__u64 caps;
136 } __packed;
137 
138 union dm_mem_page_range {
139 	struct  {
140 		/*
141 		 * The PFN number of the first page in the range.
142 		 * 40 bits is the architectural limit of a PFN
143 		 * number for AMD64.
144 		 */
145 		__u64 start_page:40;
146 		/*
147 		 * The number of pages in the range.
148 		 */
149 		__u64 page_cnt:24;
150 	} finfo;
151 	__u64  page_range;
152 } __packed;
153 
154 
155 
156 /*
157  * The header for all dynamic memory messages:
158  *
159  * type: Type of the message.
160  * size: Size of the message in bytes; including the header.
161  * trans_id: The guest is responsible for manufacturing this ID.
162  */
163 
164 struct dm_header {
165 	__u16 type;
166 	__u16 size;
167 	__u32 trans_id;
168 } __packed;
169 
170 /*
171  * A generic message format for dynamic memory.
172  * Specific message formats are defined later in the file.
173  */
174 
175 struct dm_message {
176 	struct dm_header hdr;
177 	__u8 data[]; /* enclosed message */
178 } __packed;
179 
180 
181 /*
182  * Specific message types supporting the dynamic memory protocol.
183  */
184 
185 /*
186  * Version negotiation message. Sent from the guest to the host.
187  * The guest is free to try different versions until the host
188  * accepts the version.
189  *
190  * dm_version: The protocol version requested.
191  * is_last_attempt: If TRUE, this is the last version guest will request.
192  * reservedz: Reserved field, set to zero.
193  */
194 
195 struct dm_version_request {
196 	struct dm_header hdr;
197 	union dm_version version;
198 	__u32 is_last_attempt:1;
199 	__u32 reservedz:31;
200 } __packed;
201 
202 /*
203  * Version response message; Host to Guest and indicates
204  * if the host has accepted the version sent by the guest.
205  *
206  * is_accepted: If TRUE, host has accepted the version and the guest
207  * should proceed to the next stage of the protocol. FALSE indicates that
208  * guest should re-try with a different version.
209  *
210  * reservedz: Reserved field, set to zero.
211  */
212 
213 struct dm_version_response {
214 	struct dm_header hdr;
215 	__u64 is_accepted:1;
216 	__u64 reservedz:63;
217 } __packed;
218 
219 /*
220  * Message reporting capabilities. This is sent from the guest to the
221  * host.
222  */
223 
224 struct dm_capabilities {
225 	struct dm_header hdr;
226 	union dm_caps caps;
227 	__u64 min_page_cnt;
228 	__u64 max_page_number;
229 } __packed;
230 
231 /*
232  * Response to the capabilities message. This is sent from the host to the
233  * guest. This message notifies if the host has accepted the guest's
234  * capabilities. If the host has not accepted, the guest must shutdown
235  * the service.
236  *
237  * is_accepted: Indicates if the host has accepted guest's capabilities.
238  * reservedz: Must be 0.
239  */
240 
241 struct dm_capabilities_resp_msg {
242 	struct dm_header hdr;
243 	__u64 is_accepted:1;
244 	__u64 reservedz:63;
245 } __packed;
246 
247 /*
248  * This message is used to report memory pressure from the guest.
249  * This message is not part of any transaction and there is no
250  * response to this message.
251  *
252  * num_avail: Available memory in pages.
253  * num_committed: Committed memory in pages.
254  * page_file_size: The accumulated size of all page files
255  *		   in the system in pages.
256  * zero_free: The nunber of zero and free pages.
257  * page_file_writes: The writes to the page file in pages.
258  * io_diff: An indicator of file cache efficiency or page file activity,
259  *	    calculated as File Cache Page Fault Count - Page Read Count.
260  *	    This value is in pages.
261  *
262  * Some of these metrics are Windows specific and fortunately
263  * the algorithm on the host side that computes the guest memory
264  * pressure only uses num_committed value.
265  */
266 
267 struct dm_status {
268 	struct dm_header hdr;
269 	__u64 num_avail;
270 	__u64 num_committed;
271 	__u64 page_file_size;
272 	__u64 zero_free;
273 	__u32 page_file_writes;
274 	__u32 io_diff;
275 } __packed;
276 
277 
278 /*
279  * Message to ask the guest to allocate memory - balloon up message.
280  * This message is sent from the host to the guest. The guest may not be
281  * able to allocate as much memory as requested.
282  *
283  * num_pages: number of pages to allocate.
284  */
285 
286 struct dm_balloon {
287 	struct dm_header hdr;
288 	__u32 num_pages;
289 	__u32 reservedz;
290 } __packed;
291 
292 
293 /*
294  * Balloon response message; this message is sent from the guest
295  * to the host in response to the balloon message.
296  *
297  * reservedz: Reserved; must be set to zero.
298  * more_pages: If FALSE, this is the last message of the transaction.
299  * if TRUE there will atleast one more message from the guest.
300  *
301  * range_count: The number of ranges in the range array.
302  *
303  * range_array: An array of page ranges returned to the host.
304  *
305  */
306 
307 struct dm_balloon_response {
308 	struct dm_header hdr;
309 	__u32 reservedz;
310 	__u32 more_pages:1;
311 	__u32 range_count:31;
312 	union dm_mem_page_range range_array[];
313 } __packed;
314 
315 /*
316  * Un-balloon message; this message is sent from the host
317  * to the guest to give guest more memory.
318  *
319  * more_pages: If FALSE, this is the last message of the transaction.
320  * if TRUE there will atleast one more message from the guest.
321  *
322  * reservedz: Reserved; must be set to zero.
323  *
324  * range_count: The number of ranges in the range array.
325  *
326  * range_array: An array of page ranges returned to the host.
327  *
328  */
329 
330 struct dm_unballoon_request {
331 	struct dm_header hdr;
332 	__u32 more_pages:1;
333 	__u32 reservedz:31;
334 	__u32 range_count;
335 	union dm_mem_page_range range_array[];
336 } __packed;
337 
338 /*
339  * Un-balloon response message; this message is sent from the guest
340  * to the host in response to an unballoon request.
341  *
342  */
343 
344 struct dm_unballoon_response {
345 	struct dm_header hdr;
346 } __packed;
347 
348 
349 /*
350  * Hot add request message. Message sent from the host to the guest.
351  *
352  * mem_range: Memory range to hot add.
353  *
354  * On Linux we currently don't support this since we cannot hot add
355  * arbitrary granularity of memory.
356  */
357 
358 struct dm_hot_add {
359 	struct dm_header hdr;
360 	union dm_mem_page_range range;
361 } __packed;
362 
363 /*
364  * Hot add response message.
365  * This message is sent by the guest to report the status of a hot add request.
366  * If page_count is less than the requested page count, then the host should
367  * assume all further hot add requests will fail, since this indicates that
368  * the guest has hit an upper physical memory barrier.
369  *
370  * Hot adds may also fail due to low resources; in this case, the guest must
371  * not complete this message until the hot add can succeed, and the host must
372  * not send a new hot add request until the response is sent.
373  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
374  * times it fails the request.
375  *
376  *
377  * page_count: number of pages that were successfully hot added.
378  *
379  * result: result of the operation 1: success, 0: failure.
380  *
381  */
382 
383 struct dm_hot_add_response {
384 	struct dm_header hdr;
385 	__u32 page_count;
386 	__u32 result;
387 } __packed;
388 
389 /*
390  * Types of information sent from host to the guest.
391  */
392 
393 enum dm_info_type {
394 	INFO_TYPE_MAX_PAGE_CNT = 0,
395 	MAX_INFO_TYPE
396 };
397 
398 
399 /*
400  * Header for the information message.
401  */
402 
403 struct dm_info_header {
404 	enum dm_info_type type;
405 	__u32 data_size;
406 } __packed;
407 
408 /*
409  * This message is sent from the host to the guest to pass
410  * some relevant information (win8 addition).
411  *
412  * reserved: no used.
413  * info_size: size of the information blob.
414  * info: information blob.
415  */
416 
417 struct dm_info_msg {
418 	struct dm_header hdr;
419 	__u32 reserved;
420 	__u32 info_size;
421 	__u8  info[];
422 };
423 
424 /*
425  * End protocol definitions.
426  */
427 
428 /*
429  * State to manage hot adding memory into the guest.
430  * The range start_pfn : end_pfn specifies the range
431  * that the host has asked us to hot add. The range
432  * start_pfn : ha_end_pfn specifies the range that we have
433  * currently hot added. We hot add in multiples of 128M
434  * chunks; it is possible that we may not be able to bring
435  * online all the pages in the region. The range
436  * covered_start_pfn:covered_end_pfn defines the pages that can
437  * be brough online.
438  */
439 
440 struct hv_hotadd_state {
441 	struct list_head list;
442 	unsigned long start_pfn;
443 	unsigned long covered_start_pfn;
444 	unsigned long covered_end_pfn;
445 	unsigned long ha_end_pfn;
446 	unsigned long end_pfn;
447 	/*
448 	 * A list of gaps.
449 	 */
450 	struct list_head gap_list;
451 };
452 
453 struct hv_hotadd_gap {
454 	struct list_head list;
455 	unsigned long start_pfn;
456 	unsigned long end_pfn;
457 };
458 
459 struct balloon_state {
460 	__u32 num_pages;
461 	struct work_struct wrk;
462 };
463 
464 struct hot_add_wrk {
465 	union dm_mem_page_range ha_page_range;
466 	union dm_mem_page_range ha_region_range;
467 	struct work_struct wrk;
468 };
469 
470 static bool hot_add = true;
471 static bool do_hot_add;
472 /*
473  * Delay reporting memory pressure by
474  * the specified number of seconds.
475  */
476 static uint pressure_report_delay = 45;
477 
478 /*
479  * The last time we posted a pressure report to host.
480  */
481 static unsigned long last_post_time;
482 
483 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
484 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
485 
486 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
487 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
488 static atomic_t trans_id = ATOMIC_INIT(0);
489 
490 static int dm_ring_size = (5 * PAGE_SIZE);
491 
492 /*
493  * Driver specific state.
494  */
495 
496 enum hv_dm_state {
497 	DM_INITIALIZING = 0,
498 	DM_INITIALIZED,
499 	DM_BALLOON_UP,
500 	DM_BALLOON_DOWN,
501 	DM_HOT_ADD,
502 	DM_INIT_ERROR
503 };
504 
505 
506 static __u8 recv_buffer[PAGE_SIZE];
507 static __u8 *send_buffer;
508 #define PAGES_IN_2M	512
509 #define HA_CHUNK (32 * 1024)
510 
511 struct hv_dynmem_device {
512 	struct hv_device *dev;
513 	enum hv_dm_state state;
514 	struct completion host_event;
515 	struct completion config_event;
516 
517 	/*
518 	 * Number of pages we have currently ballooned out.
519 	 */
520 	unsigned int num_pages_ballooned;
521 	unsigned int num_pages_onlined;
522 	unsigned int num_pages_added;
523 
524 	/*
525 	 * State to manage the ballooning (up) operation.
526 	 */
527 	struct balloon_state balloon_wrk;
528 
529 	/*
530 	 * State to execute the "hot-add" operation.
531 	 */
532 	struct hot_add_wrk ha_wrk;
533 
534 	/*
535 	 * This state tracks if the host has specified a hot-add
536 	 * region.
537 	 */
538 	bool host_specified_ha_region;
539 
540 	/*
541 	 * State to synchronize hot-add.
542 	 */
543 	struct completion  ol_waitevent;
544 	bool ha_waiting;
545 	/*
546 	 * This thread handles hot-add
547 	 * requests from the host as well as notifying
548 	 * the host with regards to memory pressure in
549 	 * the guest.
550 	 */
551 	struct task_struct *thread;
552 
553 	/*
554 	 * Protects ha_region_list, num_pages_onlined counter and individual
555 	 * regions from ha_region_list.
556 	 */
557 	spinlock_t ha_lock;
558 
559 	/*
560 	 * A list of hot-add regions.
561 	 */
562 	struct list_head ha_region_list;
563 
564 	/*
565 	 * We start with the highest version we can support
566 	 * and downgrade based on the host; we save here the
567 	 * next version to try.
568 	 */
569 	__u32 next_version;
570 
571 	/*
572 	 * The negotiated version agreed by host.
573 	 */
574 	__u32 version;
575 };
576 
577 static struct hv_dynmem_device dm_device;
578 
579 static void post_status(struct hv_dynmem_device *dm);
580 
581 #ifdef CONFIG_MEMORY_HOTPLUG
582 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
583 				     unsigned long pfn)
584 {
585 	struct hv_hotadd_gap *gap;
586 
587 	/* The page is not backed. */
588 	if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
589 		return false;
590 
591 	/* Check for gaps. */
592 	list_for_each_entry(gap, &has->gap_list, list) {
593 		if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
594 			return false;
595 	}
596 
597 	return true;
598 }
599 
600 static unsigned long hv_page_offline_check(unsigned long start_pfn,
601 					   unsigned long nr_pages)
602 {
603 	unsigned long pfn = start_pfn, count = 0;
604 	struct hv_hotadd_state *has;
605 	bool found;
606 
607 	while (pfn < start_pfn + nr_pages) {
608 		/*
609 		 * Search for HAS which covers the pfn and when we find one
610 		 * count how many consequitive PFNs are covered.
611 		 */
612 		found = false;
613 		list_for_each_entry(has, &dm_device.ha_region_list, list) {
614 			while ((pfn >= has->start_pfn) &&
615 			       (pfn < has->end_pfn) &&
616 			       (pfn < start_pfn + nr_pages)) {
617 				found = true;
618 				if (has_pfn_is_backed(has, pfn))
619 					count++;
620 				pfn++;
621 			}
622 		}
623 
624 		/*
625 		 * This PFN is not in any HAS (e.g. we're offlining a region
626 		 * which was present at boot), no need to account for it. Go
627 		 * to the next one.
628 		 */
629 		if (!found)
630 			pfn++;
631 	}
632 
633 	return count;
634 }
635 
636 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
637 			      void *v)
638 {
639 	struct memory_notify *mem = (struct memory_notify *)v;
640 	unsigned long flags, pfn_count;
641 
642 	switch (val) {
643 	case MEM_ONLINE:
644 	case MEM_CANCEL_ONLINE:
645 		if (dm_device.ha_waiting) {
646 			dm_device.ha_waiting = false;
647 			complete(&dm_device.ol_waitevent);
648 		}
649 		break;
650 
651 	case MEM_OFFLINE:
652 		spin_lock_irqsave(&dm_device.ha_lock, flags);
653 		pfn_count = hv_page_offline_check(mem->start_pfn,
654 						  mem->nr_pages);
655 		if (pfn_count <= dm_device.num_pages_onlined) {
656 			dm_device.num_pages_onlined -= pfn_count;
657 		} else {
658 			/*
659 			 * We're offlining more pages than we managed to online.
660 			 * This is unexpected. In any case don't let
661 			 * num_pages_onlined wrap around zero.
662 			 */
663 			WARN_ON_ONCE(1);
664 			dm_device.num_pages_onlined = 0;
665 		}
666 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
667 		break;
668 	case MEM_GOING_ONLINE:
669 	case MEM_GOING_OFFLINE:
670 	case MEM_CANCEL_OFFLINE:
671 		break;
672 	}
673 	return NOTIFY_OK;
674 }
675 
676 static struct notifier_block hv_memory_nb = {
677 	.notifier_call = hv_memory_notifier,
678 	.priority = 0
679 };
680 
681 /* Check if the particular page is backed and can be onlined and online it. */
682 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
683 {
684 	if (!has_pfn_is_backed(has, page_to_pfn(pg)))
685 		return;
686 
687 	/* This frame is currently backed; online the page. */
688 	__online_page_set_limits(pg);
689 	__online_page_increment_counters(pg);
690 	__online_page_free(pg);
691 
692 	lockdep_assert_held(&dm_device.ha_lock);
693 	dm_device.num_pages_onlined++;
694 }
695 
696 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
697 				unsigned long start_pfn, unsigned long size)
698 {
699 	int i;
700 
701 	pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
702 	for (i = 0; i < size; i++)
703 		hv_page_online_one(has, pfn_to_page(start_pfn + i));
704 }
705 
706 static void hv_mem_hot_add(unsigned long start, unsigned long size,
707 				unsigned long pfn_count,
708 				struct hv_hotadd_state *has)
709 {
710 	int ret = 0;
711 	int i, nid;
712 	unsigned long start_pfn;
713 	unsigned long processed_pfn;
714 	unsigned long total_pfn = pfn_count;
715 	unsigned long flags;
716 
717 	for (i = 0; i < (size/HA_CHUNK); i++) {
718 		start_pfn = start + (i * HA_CHUNK);
719 
720 		spin_lock_irqsave(&dm_device.ha_lock, flags);
721 		has->ha_end_pfn +=  HA_CHUNK;
722 
723 		if (total_pfn > HA_CHUNK) {
724 			processed_pfn = HA_CHUNK;
725 			total_pfn -= HA_CHUNK;
726 		} else {
727 			processed_pfn = total_pfn;
728 			total_pfn = 0;
729 		}
730 
731 		has->covered_end_pfn +=  processed_pfn;
732 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
733 
734 		init_completion(&dm_device.ol_waitevent);
735 		dm_device.ha_waiting = !memhp_auto_online;
736 
737 		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
738 		ret = add_memory(nid, PFN_PHYS((start_pfn)),
739 				(HA_CHUNK << PAGE_SHIFT));
740 
741 		if (ret) {
742 			pr_err("hot_add memory failed error is %d\n", ret);
743 			if (ret == -EEXIST) {
744 				/*
745 				 * This error indicates that the error
746 				 * is not a transient failure. This is the
747 				 * case where the guest's physical address map
748 				 * precludes hot adding memory. Stop all further
749 				 * memory hot-add.
750 				 */
751 				do_hot_add = false;
752 			}
753 			spin_lock_irqsave(&dm_device.ha_lock, flags);
754 			has->ha_end_pfn -= HA_CHUNK;
755 			has->covered_end_pfn -=  processed_pfn;
756 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
757 			break;
758 		}
759 
760 		/*
761 		 * Wait for the memory block to be onlined when memory onlining
762 		 * is done outside of kernel (memhp_auto_online). Since the hot
763 		 * add has succeeded, it is ok to proceed even if the pages in
764 		 * the hot added region have not been "onlined" within the
765 		 * allowed time.
766 		 */
767 		if (dm_device.ha_waiting)
768 			wait_for_completion_timeout(&dm_device.ol_waitevent,
769 						    5*HZ);
770 		post_status(&dm_device);
771 	}
772 }
773 
774 static void hv_online_page(struct page *pg)
775 {
776 	struct hv_hotadd_state *has;
777 	unsigned long flags;
778 	unsigned long pfn = page_to_pfn(pg);
779 
780 	spin_lock_irqsave(&dm_device.ha_lock, flags);
781 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
782 		/* The page belongs to a different HAS. */
783 		if ((pfn < has->start_pfn) || (pfn >= has->end_pfn))
784 			continue;
785 
786 		hv_page_online_one(has, pg);
787 		break;
788 	}
789 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
790 }
791 
792 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
793 {
794 	struct hv_hotadd_state *has;
795 	struct hv_hotadd_gap *gap;
796 	unsigned long residual, new_inc;
797 	int ret = 0;
798 	unsigned long flags;
799 
800 	spin_lock_irqsave(&dm_device.ha_lock, flags);
801 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
802 		/*
803 		 * If the pfn range we are dealing with is not in the current
804 		 * "hot add block", move on.
805 		 */
806 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
807 			continue;
808 
809 		/*
810 		 * If the current start pfn is not where the covered_end
811 		 * is, create a gap and update covered_end_pfn.
812 		 */
813 		if (has->covered_end_pfn != start_pfn) {
814 			gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
815 			if (!gap) {
816 				ret = -ENOMEM;
817 				break;
818 			}
819 
820 			INIT_LIST_HEAD(&gap->list);
821 			gap->start_pfn = has->covered_end_pfn;
822 			gap->end_pfn = start_pfn;
823 			list_add_tail(&gap->list, &has->gap_list);
824 
825 			has->covered_end_pfn = start_pfn;
826 		}
827 
828 		/*
829 		 * If the current hot add-request extends beyond
830 		 * our current limit; extend it.
831 		 */
832 		if ((start_pfn + pfn_cnt) > has->end_pfn) {
833 			residual = (start_pfn + pfn_cnt - has->end_pfn);
834 			/*
835 			 * Extend the region by multiples of HA_CHUNK.
836 			 */
837 			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
838 			if (residual % HA_CHUNK)
839 				new_inc += HA_CHUNK;
840 
841 			has->end_pfn += new_inc;
842 		}
843 
844 		ret = 1;
845 		break;
846 	}
847 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
848 
849 	return ret;
850 }
851 
852 static unsigned long handle_pg_range(unsigned long pg_start,
853 					unsigned long pg_count)
854 {
855 	unsigned long start_pfn = pg_start;
856 	unsigned long pfn_cnt = pg_count;
857 	unsigned long size;
858 	struct hv_hotadd_state *has;
859 	unsigned long pgs_ol = 0;
860 	unsigned long old_covered_state;
861 	unsigned long res = 0, flags;
862 
863 	pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
864 		pg_start);
865 
866 	spin_lock_irqsave(&dm_device.ha_lock, flags);
867 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
868 		/*
869 		 * If the pfn range we are dealing with is not in the current
870 		 * "hot add block", move on.
871 		 */
872 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
873 			continue;
874 
875 		old_covered_state = has->covered_end_pfn;
876 
877 		if (start_pfn < has->ha_end_pfn) {
878 			/*
879 			 * This is the case where we are backing pages
880 			 * in an already hot added region. Bring
881 			 * these pages online first.
882 			 */
883 			pgs_ol = has->ha_end_pfn - start_pfn;
884 			if (pgs_ol > pfn_cnt)
885 				pgs_ol = pfn_cnt;
886 
887 			has->covered_end_pfn +=  pgs_ol;
888 			pfn_cnt -= pgs_ol;
889 			/*
890 			 * Check if the corresponding memory block is already
891 			 * online. It is possible to observe struct pages still
892 			 * being uninitialized here so check section instead.
893 			 * In case the section is online we need to bring the
894 			 * rest of pfns (which were not backed previously)
895 			 * online too.
896 			 */
897 			if (start_pfn > has->start_pfn &&
898 			    online_section_nr(pfn_to_section_nr(start_pfn)))
899 				hv_bring_pgs_online(has, start_pfn, pgs_ol);
900 
901 		}
902 
903 		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
904 			/*
905 			 * We have some residual hot add range
906 			 * that needs to be hot added; hot add
907 			 * it now. Hot add a multiple of
908 			 * of HA_CHUNK that fully covers the pages
909 			 * we have.
910 			 */
911 			size = (has->end_pfn - has->ha_end_pfn);
912 			if (pfn_cnt <= size) {
913 				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
914 				if (pfn_cnt % HA_CHUNK)
915 					size += HA_CHUNK;
916 			} else {
917 				pfn_cnt = size;
918 			}
919 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
920 			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
921 			spin_lock_irqsave(&dm_device.ha_lock, flags);
922 		}
923 		/*
924 		 * If we managed to online any pages that were given to us,
925 		 * we declare success.
926 		 */
927 		res = has->covered_end_pfn - old_covered_state;
928 		break;
929 	}
930 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
931 
932 	return res;
933 }
934 
935 static unsigned long process_hot_add(unsigned long pg_start,
936 					unsigned long pfn_cnt,
937 					unsigned long rg_start,
938 					unsigned long rg_size)
939 {
940 	struct hv_hotadd_state *ha_region = NULL;
941 	int covered;
942 	unsigned long flags;
943 
944 	if (pfn_cnt == 0)
945 		return 0;
946 
947 	if (!dm_device.host_specified_ha_region) {
948 		covered = pfn_covered(pg_start, pfn_cnt);
949 		if (covered < 0)
950 			return 0;
951 
952 		if (covered)
953 			goto do_pg_range;
954 	}
955 
956 	/*
957 	 * If the host has specified a hot-add range; deal with it first.
958 	 */
959 
960 	if (rg_size != 0) {
961 		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
962 		if (!ha_region)
963 			return 0;
964 
965 		INIT_LIST_HEAD(&ha_region->list);
966 		INIT_LIST_HEAD(&ha_region->gap_list);
967 
968 		ha_region->start_pfn = rg_start;
969 		ha_region->ha_end_pfn = rg_start;
970 		ha_region->covered_start_pfn = pg_start;
971 		ha_region->covered_end_pfn = pg_start;
972 		ha_region->end_pfn = rg_start + rg_size;
973 
974 		spin_lock_irqsave(&dm_device.ha_lock, flags);
975 		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
976 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
977 	}
978 
979 do_pg_range:
980 	/*
981 	 * Process the page range specified; bringing them
982 	 * online if possible.
983 	 */
984 	return handle_pg_range(pg_start, pfn_cnt);
985 }
986 
987 #endif
988 
989 static void hot_add_req(struct work_struct *dummy)
990 {
991 	struct dm_hot_add_response resp;
992 #ifdef CONFIG_MEMORY_HOTPLUG
993 	unsigned long pg_start, pfn_cnt;
994 	unsigned long rg_start, rg_sz;
995 #endif
996 	struct hv_dynmem_device *dm = &dm_device;
997 
998 	memset(&resp, 0, sizeof(struct dm_hot_add_response));
999 	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
1000 	resp.hdr.size = sizeof(struct dm_hot_add_response);
1001 
1002 #ifdef CONFIG_MEMORY_HOTPLUG
1003 	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1004 	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1005 
1006 	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1007 	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1008 
1009 	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1010 		unsigned long region_size;
1011 		unsigned long region_start;
1012 
1013 		/*
1014 		 * The host has not specified the hot-add region.
1015 		 * Based on the hot-add page range being specified,
1016 		 * compute a hot-add region that can cover the pages
1017 		 * that need to be hot-added while ensuring the alignment
1018 		 * and size requirements of Linux as it relates to hot-add.
1019 		 */
1020 		region_start = pg_start;
1021 		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1022 		if (pfn_cnt % HA_CHUNK)
1023 			region_size += HA_CHUNK;
1024 
1025 		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1026 
1027 		rg_start = region_start;
1028 		rg_sz = region_size;
1029 	}
1030 
1031 	if (do_hot_add)
1032 		resp.page_count = process_hot_add(pg_start, pfn_cnt,
1033 						rg_start, rg_sz);
1034 
1035 	dm->num_pages_added += resp.page_count;
1036 #endif
1037 	/*
1038 	 * The result field of the response structure has the
1039 	 * following semantics:
1040 	 *
1041 	 * 1. If all or some pages hot-added: Guest should return success.
1042 	 *
1043 	 * 2. If no pages could be hot-added:
1044 	 *
1045 	 * If the guest returns success, then the host
1046 	 * will not attempt any further hot-add operations. This
1047 	 * signifies a permanent failure.
1048 	 *
1049 	 * If the guest returns failure, then this failure will be
1050 	 * treated as a transient failure and the host may retry the
1051 	 * hot-add operation after some delay.
1052 	 */
1053 	if (resp.page_count > 0)
1054 		resp.result = 1;
1055 	else if (!do_hot_add)
1056 		resp.result = 1;
1057 	else
1058 		resp.result = 0;
1059 
1060 	if (!do_hot_add || (resp.page_count == 0))
1061 		pr_err("Memory hot add failed\n");
1062 
1063 	dm->state = DM_INITIALIZED;
1064 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1065 	vmbus_sendpacket(dm->dev->channel, &resp,
1066 			sizeof(struct dm_hot_add_response),
1067 			(unsigned long)NULL,
1068 			VM_PKT_DATA_INBAND, 0);
1069 }
1070 
1071 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1072 {
1073 	struct dm_info_header *info_hdr;
1074 
1075 	info_hdr = (struct dm_info_header *)msg->info;
1076 
1077 	switch (info_hdr->type) {
1078 	case INFO_TYPE_MAX_PAGE_CNT:
1079 		if (info_hdr->data_size == sizeof(__u64)) {
1080 			__u64 *max_page_count = (__u64 *)&info_hdr[1];
1081 
1082 			pr_info("Max. dynamic memory size: %llu MB\n",
1083 				(*max_page_count) >> (20 - PAGE_SHIFT));
1084 		}
1085 
1086 		break;
1087 	default:
1088 		pr_warn("Received Unknown type: %d\n", info_hdr->type);
1089 	}
1090 }
1091 
1092 static unsigned long compute_balloon_floor(void)
1093 {
1094 	unsigned long min_pages;
1095 	unsigned long nr_pages = totalram_pages();
1096 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1097 	/* Simple continuous piecewiese linear function:
1098 	 *  max MiB -> min MiB  gradient
1099 	 *       0         0
1100 	 *      16        16
1101 	 *      32        24
1102 	 *     128        72    (1/2)
1103 	 *     512       168    (1/4)
1104 	 *    2048       360    (1/8)
1105 	 *    8192       744    (1/16)
1106 	 *   32768      1512	(1/32)
1107 	 */
1108 	if (nr_pages < MB2PAGES(128))
1109 		min_pages = MB2PAGES(8) + (nr_pages >> 1);
1110 	else if (nr_pages < MB2PAGES(512))
1111 		min_pages = MB2PAGES(40) + (nr_pages >> 2);
1112 	else if (nr_pages < MB2PAGES(2048))
1113 		min_pages = MB2PAGES(104) + (nr_pages >> 3);
1114 	else if (nr_pages < MB2PAGES(8192))
1115 		min_pages = MB2PAGES(232) + (nr_pages >> 4);
1116 	else
1117 		min_pages = MB2PAGES(488) + (nr_pages >> 5);
1118 #undef MB2PAGES
1119 	return min_pages;
1120 }
1121 
1122 /*
1123  * Post our status as it relates memory pressure to the
1124  * host. Host expects the guests to post this status
1125  * periodically at 1 second intervals.
1126  *
1127  * The metrics specified in this protocol are very Windows
1128  * specific and so we cook up numbers here to convey our memory
1129  * pressure.
1130  */
1131 
1132 static void post_status(struct hv_dynmem_device *dm)
1133 {
1134 	struct dm_status status;
1135 	unsigned long now = jiffies;
1136 	unsigned long last_post = last_post_time;
1137 
1138 	if (pressure_report_delay > 0) {
1139 		--pressure_report_delay;
1140 		return;
1141 	}
1142 
1143 	if (!time_after(now, (last_post_time + HZ)))
1144 		return;
1145 
1146 	memset(&status, 0, sizeof(struct dm_status));
1147 	status.hdr.type = DM_STATUS_REPORT;
1148 	status.hdr.size = sizeof(struct dm_status);
1149 	status.hdr.trans_id = atomic_inc_return(&trans_id);
1150 
1151 	/*
1152 	 * The host expects the guest to report free and committed memory.
1153 	 * Furthermore, the host expects the pressure information to include
1154 	 * the ballooned out pages. For a given amount of memory that we are
1155 	 * managing we need to compute a floor below which we should not
1156 	 * balloon. Compute this and add it to the pressure report.
1157 	 * We also need to report all offline pages (num_pages_added -
1158 	 * num_pages_onlined) as committed to the host, otherwise it can try
1159 	 * asking us to balloon them out.
1160 	 */
1161 	status.num_avail = si_mem_available();
1162 	status.num_committed = vm_memory_committed() +
1163 		dm->num_pages_ballooned +
1164 		(dm->num_pages_added > dm->num_pages_onlined ?
1165 		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1166 		compute_balloon_floor();
1167 
1168 	trace_balloon_status(status.num_avail, status.num_committed,
1169 			     vm_memory_committed(), dm->num_pages_ballooned,
1170 			     dm->num_pages_added, dm->num_pages_onlined);
1171 	/*
1172 	 * If our transaction ID is no longer current, just don't
1173 	 * send the status. This can happen if we were interrupted
1174 	 * after we picked our transaction ID.
1175 	 */
1176 	if (status.hdr.trans_id != atomic_read(&trans_id))
1177 		return;
1178 
1179 	/*
1180 	 * If the last post time that we sampled has changed,
1181 	 * we have raced, don't post the status.
1182 	 */
1183 	if (last_post != last_post_time)
1184 		return;
1185 
1186 	last_post_time = jiffies;
1187 	vmbus_sendpacket(dm->dev->channel, &status,
1188 				sizeof(struct dm_status),
1189 				(unsigned long)NULL,
1190 				VM_PKT_DATA_INBAND, 0);
1191 
1192 }
1193 
1194 static void free_balloon_pages(struct hv_dynmem_device *dm,
1195 			 union dm_mem_page_range *range_array)
1196 {
1197 	int num_pages = range_array->finfo.page_cnt;
1198 	__u64 start_frame = range_array->finfo.start_page;
1199 	struct page *pg;
1200 	int i;
1201 
1202 	for (i = 0; i < num_pages; i++) {
1203 		pg = pfn_to_page(i + start_frame);
1204 		__free_page(pg);
1205 		dm->num_pages_ballooned--;
1206 	}
1207 }
1208 
1209 
1210 
1211 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1212 					unsigned int num_pages,
1213 					struct dm_balloon_response *bl_resp,
1214 					int alloc_unit)
1215 {
1216 	unsigned int i = 0;
1217 	struct page *pg;
1218 
1219 	if (num_pages < alloc_unit)
1220 		return 0;
1221 
1222 	for (i = 0; (i * alloc_unit) < num_pages; i++) {
1223 		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1224 			PAGE_SIZE)
1225 			return i * alloc_unit;
1226 
1227 		/*
1228 		 * We execute this code in a thread context. Furthermore,
1229 		 * we don't want the kernel to try too hard.
1230 		 */
1231 		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1232 				__GFP_NOMEMALLOC | __GFP_NOWARN,
1233 				get_order(alloc_unit << PAGE_SHIFT));
1234 
1235 		if (!pg)
1236 			return i * alloc_unit;
1237 
1238 		dm->num_pages_ballooned += alloc_unit;
1239 
1240 		/*
1241 		 * If we allocatted 2M pages; split them so we
1242 		 * can free them in any order we get.
1243 		 */
1244 
1245 		if (alloc_unit != 1)
1246 			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1247 
1248 		bl_resp->range_count++;
1249 		bl_resp->range_array[i].finfo.start_page =
1250 			page_to_pfn(pg);
1251 		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1252 		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1253 
1254 	}
1255 
1256 	return num_pages;
1257 }
1258 
1259 static void balloon_up(struct work_struct *dummy)
1260 {
1261 	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1262 	unsigned int num_ballooned = 0;
1263 	struct dm_balloon_response *bl_resp;
1264 	int alloc_unit;
1265 	int ret;
1266 	bool done = false;
1267 	int i;
1268 	long avail_pages;
1269 	unsigned long floor;
1270 
1271 	/* The host balloons pages in 2M granularity. */
1272 	WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1273 
1274 	/*
1275 	 * We will attempt 2M allocations. However, if we fail to
1276 	 * allocate 2M chunks, we will go back to 4k allocations.
1277 	 */
1278 	alloc_unit = 512;
1279 
1280 	avail_pages = si_mem_available();
1281 	floor = compute_balloon_floor();
1282 
1283 	/* Refuse to balloon below the floor, keep the 2M granularity. */
1284 	if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1285 		pr_warn("Balloon request will be partially fulfilled. %s\n",
1286 			avail_pages < num_pages ? "Not enough memory." :
1287 			"Balloon floor reached.");
1288 
1289 		num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1290 		num_pages -= num_pages % PAGES_IN_2M;
1291 	}
1292 
1293 	while (!done) {
1294 		bl_resp = (struct dm_balloon_response *)send_buffer;
1295 		memset(send_buffer, 0, PAGE_SIZE);
1296 		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1297 		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1298 		bl_resp->more_pages = 1;
1299 
1300 		num_pages -= num_ballooned;
1301 		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1302 						    bl_resp, alloc_unit);
1303 
1304 		if (alloc_unit != 1 && num_ballooned == 0) {
1305 			alloc_unit = 1;
1306 			continue;
1307 		}
1308 
1309 		if (num_ballooned == 0 || num_ballooned == num_pages) {
1310 			pr_debug("Ballooned %u out of %u requested pages.\n",
1311 				num_pages, dm_device.balloon_wrk.num_pages);
1312 
1313 			bl_resp->more_pages = 0;
1314 			done = true;
1315 			dm_device.state = DM_INITIALIZED;
1316 		}
1317 
1318 		/*
1319 		 * We are pushing a lot of data through the channel;
1320 		 * deal with transient failures caused because of the
1321 		 * lack of space in the ring buffer.
1322 		 */
1323 
1324 		do {
1325 			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1326 			ret = vmbus_sendpacket(dm_device.dev->channel,
1327 						bl_resp,
1328 						bl_resp->hdr.size,
1329 						(unsigned long)NULL,
1330 						VM_PKT_DATA_INBAND, 0);
1331 
1332 			if (ret == -EAGAIN)
1333 				msleep(20);
1334 			post_status(&dm_device);
1335 		} while (ret == -EAGAIN);
1336 
1337 		if (ret) {
1338 			/*
1339 			 * Free up the memory we allocatted.
1340 			 */
1341 			pr_err("Balloon response failed\n");
1342 
1343 			for (i = 0; i < bl_resp->range_count; i++)
1344 				free_balloon_pages(&dm_device,
1345 						 &bl_resp->range_array[i]);
1346 
1347 			done = true;
1348 		}
1349 	}
1350 
1351 }
1352 
1353 static void balloon_down(struct hv_dynmem_device *dm,
1354 			struct dm_unballoon_request *req)
1355 {
1356 	union dm_mem_page_range *range_array = req->range_array;
1357 	int range_count = req->range_count;
1358 	struct dm_unballoon_response resp;
1359 	int i;
1360 	unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1361 
1362 	for (i = 0; i < range_count; i++) {
1363 		free_balloon_pages(dm, &range_array[i]);
1364 		complete(&dm_device.config_event);
1365 	}
1366 
1367 	pr_debug("Freed %u ballooned pages.\n",
1368 		prev_pages_ballooned - dm->num_pages_ballooned);
1369 
1370 	if (req->more_pages == 1)
1371 		return;
1372 
1373 	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1374 	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1375 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1376 	resp.hdr.size = sizeof(struct dm_unballoon_response);
1377 
1378 	vmbus_sendpacket(dm_device.dev->channel, &resp,
1379 				sizeof(struct dm_unballoon_response),
1380 				(unsigned long)NULL,
1381 				VM_PKT_DATA_INBAND, 0);
1382 
1383 	dm->state = DM_INITIALIZED;
1384 }
1385 
1386 static void balloon_onchannelcallback(void *context);
1387 
1388 static int dm_thread_func(void *dm_dev)
1389 {
1390 	struct hv_dynmem_device *dm = dm_dev;
1391 
1392 	while (!kthread_should_stop()) {
1393 		wait_for_completion_interruptible_timeout(
1394 						&dm_device.config_event, 1*HZ);
1395 		/*
1396 		 * The host expects us to post information on the memory
1397 		 * pressure every second.
1398 		 */
1399 		reinit_completion(&dm_device.config_event);
1400 		post_status(dm);
1401 	}
1402 
1403 	return 0;
1404 }
1405 
1406 
1407 static void version_resp(struct hv_dynmem_device *dm,
1408 			struct dm_version_response *vresp)
1409 {
1410 	struct dm_version_request version_req;
1411 	int ret;
1412 
1413 	if (vresp->is_accepted) {
1414 		/*
1415 		 * We are done; wakeup the
1416 		 * context waiting for version
1417 		 * negotiation.
1418 		 */
1419 		complete(&dm->host_event);
1420 		return;
1421 	}
1422 	/*
1423 	 * If there are more versions to try, continue
1424 	 * with negotiations; if not
1425 	 * shutdown the service since we are not able
1426 	 * to negotiate a suitable version number
1427 	 * with the host.
1428 	 */
1429 	if (dm->next_version == 0)
1430 		goto version_error;
1431 
1432 	memset(&version_req, 0, sizeof(struct dm_version_request));
1433 	version_req.hdr.type = DM_VERSION_REQUEST;
1434 	version_req.hdr.size = sizeof(struct dm_version_request);
1435 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1436 	version_req.version.version = dm->next_version;
1437 	dm->version = version_req.version.version;
1438 
1439 	/*
1440 	 * Set the next version to try in case current version fails.
1441 	 * Win7 protocol ought to be the last one to try.
1442 	 */
1443 	switch (version_req.version.version) {
1444 	case DYNMEM_PROTOCOL_VERSION_WIN8:
1445 		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1446 		version_req.is_last_attempt = 0;
1447 		break;
1448 	default:
1449 		dm->next_version = 0;
1450 		version_req.is_last_attempt = 1;
1451 	}
1452 
1453 	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1454 				sizeof(struct dm_version_request),
1455 				(unsigned long)NULL,
1456 				VM_PKT_DATA_INBAND, 0);
1457 
1458 	if (ret)
1459 		goto version_error;
1460 
1461 	return;
1462 
1463 version_error:
1464 	dm->state = DM_INIT_ERROR;
1465 	complete(&dm->host_event);
1466 }
1467 
1468 static void cap_resp(struct hv_dynmem_device *dm,
1469 			struct dm_capabilities_resp_msg *cap_resp)
1470 {
1471 	if (!cap_resp->is_accepted) {
1472 		pr_err("Capabilities not accepted by host\n");
1473 		dm->state = DM_INIT_ERROR;
1474 	}
1475 	complete(&dm->host_event);
1476 }
1477 
1478 static void balloon_onchannelcallback(void *context)
1479 {
1480 	struct hv_device *dev = context;
1481 	u32 recvlen;
1482 	u64 requestid;
1483 	struct dm_message *dm_msg;
1484 	struct dm_header *dm_hdr;
1485 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1486 	struct dm_balloon *bal_msg;
1487 	struct dm_hot_add *ha_msg;
1488 	union dm_mem_page_range *ha_pg_range;
1489 	union dm_mem_page_range *ha_region;
1490 
1491 	memset(recv_buffer, 0, sizeof(recv_buffer));
1492 	vmbus_recvpacket(dev->channel, recv_buffer,
1493 			 PAGE_SIZE, &recvlen, &requestid);
1494 
1495 	if (recvlen > 0) {
1496 		dm_msg = (struct dm_message *)recv_buffer;
1497 		dm_hdr = &dm_msg->hdr;
1498 
1499 		switch (dm_hdr->type) {
1500 		case DM_VERSION_RESPONSE:
1501 			version_resp(dm,
1502 				 (struct dm_version_response *)dm_msg);
1503 			break;
1504 
1505 		case DM_CAPABILITIES_RESPONSE:
1506 			cap_resp(dm,
1507 				 (struct dm_capabilities_resp_msg *)dm_msg);
1508 			break;
1509 
1510 		case DM_BALLOON_REQUEST:
1511 			if (dm->state == DM_BALLOON_UP)
1512 				pr_warn("Currently ballooning\n");
1513 			bal_msg = (struct dm_balloon *)recv_buffer;
1514 			dm->state = DM_BALLOON_UP;
1515 			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1516 			schedule_work(&dm_device.balloon_wrk.wrk);
1517 			break;
1518 
1519 		case DM_UNBALLOON_REQUEST:
1520 			dm->state = DM_BALLOON_DOWN;
1521 			balloon_down(dm,
1522 				 (struct dm_unballoon_request *)recv_buffer);
1523 			break;
1524 
1525 		case DM_MEM_HOT_ADD_REQUEST:
1526 			if (dm->state == DM_HOT_ADD)
1527 				pr_warn("Currently hot-adding\n");
1528 			dm->state = DM_HOT_ADD;
1529 			ha_msg = (struct dm_hot_add *)recv_buffer;
1530 			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1531 				/*
1532 				 * This is a normal hot-add request specifying
1533 				 * hot-add memory.
1534 				 */
1535 				dm->host_specified_ha_region = false;
1536 				ha_pg_range = &ha_msg->range;
1537 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1538 				dm->ha_wrk.ha_region_range.page_range = 0;
1539 			} else {
1540 				/*
1541 				 * Host is specifying that we first hot-add
1542 				 * a region and then partially populate this
1543 				 * region.
1544 				 */
1545 				dm->host_specified_ha_region = true;
1546 				ha_pg_range = &ha_msg->range;
1547 				ha_region = &ha_pg_range[1];
1548 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1549 				dm->ha_wrk.ha_region_range = *ha_region;
1550 			}
1551 			schedule_work(&dm_device.ha_wrk.wrk);
1552 			break;
1553 
1554 		case DM_INFO_MESSAGE:
1555 			process_info(dm, (struct dm_info_msg *)dm_msg);
1556 			break;
1557 
1558 		default:
1559 			pr_warn("Unhandled message: type: %d\n", dm_hdr->type);
1560 
1561 		}
1562 	}
1563 
1564 }
1565 
1566 static int balloon_probe(struct hv_device *dev,
1567 			const struct hv_vmbus_device_id *dev_id)
1568 {
1569 	int ret;
1570 	unsigned long t;
1571 	struct dm_version_request version_req;
1572 	struct dm_capabilities cap_msg;
1573 
1574 #ifdef CONFIG_MEMORY_HOTPLUG
1575 	do_hot_add = hot_add;
1576 #else
1577 	do_hot_add = false;
1578 #endif
1579 
1580 	/*
1581 	 * First allocate a send buffer.
1582 	 */
1583 
1584 	send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1585 	if (!send_buffer)
1586 		return -ENOMEM;
1587 
1588 	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1589 			balloon_onchannelcallback, dev);
1590 
1591 	if (ret)
1592 		goto probe_error0;
1593 
1594 	dm_device.dev = dev;
1595 	dm_device.state = DM_INITIALIZING;
1596 	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1597 	init_completion(&dm_device.host_event);
1598 	init_completion(&dm_device.config_event);
1599 	INIT_LIST_HEAD(&dm_device.ha_region_list);
1600 	spin_lock_init(&dm_device.ha_lock);
1601 	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1602 	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1603 	dm_device.host_specified_ha_region = false;
1604 
1605 	dm_device.thread =
1606 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1607 	if (IS_ERR(dm_device.thread)) {
1608 		ret = PTR_ERR(dm_device.thread);
1609 		goto probe_error1;
1610 	}
1611 
1612 #ifdef CONFIG_MEMORY_HOTPLUG
1613 	set_online_page_callback(&hv_online_page);
1614 	register_memory_notifier(&hv_memory_nb);
1615 #endif
1616 
1617 	hv_set_drvdata(dev, &dm_device);
1618 	/*
1619 	 * Initiate the hand shake with the host and negotiate
1620 	 * a version that the host can support. We start with the
1621 	 * highest version number and go down if the host cannot
1622 	 * support it.
1623 	 */
1624 	memset(&version_req, 0, sizeof(struct dm_version_request));
1625 	version_req.hdr.type = DM_VERSION_REQUEST;
1626 	version_req.hdr.size = sizeof(struct dm_version_request);
1627 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1628 	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1629 	version_req.is_last_attempt = 0;
1630 	dm_device.version = version_req.version.version;
1631 
1632 	ret = vmbus_sendpacket(dev->channel, &version_req,
1633 				sizeof(struct dm_version_request),
1634 				(unsigned long)NULL,
1635 				VM_PKT_DATA_INBAND, 0);
1636 	if (ret)
1637 		goto probe_error2;
1638 
1639 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1640 	if (t == 0) {
1641 		ret = -ETIMEDOUT;
1642 		goto probe_error2;
1643 	}
1644 
1645 	/*
1646 	 * If we could not negotiate a compatible version with the host
1647 	 * fail the probe function.
1648 	 */
1649 	if (dm_device.state == DM_INIT_ERROR) {
1650 		ret = -ETIMEDOUT;
1651 		goto probe_error2;
1652 	}
1653 
1654 	pr_info("Using Dynamic Memory protocol version %u.%u\n",
1655 		DYNMEM_MAJOR_VERSION(dm_device.version),
1656 		DYNMEM_MINOR_VERSION(dm_device.version));
1657 
1658 	/*
1659 	 * Now submit our capabilities to the host.
1660 	 */
1661 	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1662 	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1663 	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1664 	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1665 
1666 	cap_msg.caps.cap_bits.balloon = 1;
1667 	cap_msg.caps.cap_bits.hot_add = 1;
1668 
1669 	/*
1670 	 * Specify our alignment requirements as it relates
1671 	 * memory hot-add. Specify 128MB alignment.
1672 	 */
1673 	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1674 
1675 	/*
1676 	 * Currently the host does not use these
1677 	 * values and we set them to what is done in the
1678 	 * Windows driver.
1679 	 */
1680 	cap_msg.min_page_cnt = 0;
1681 	cap_msg.max_page_number = -1;
1682 
1683 	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1684 				sizeof(struct dm_capabilities),
1685 				(unsigned long)NULL,
1686 				VM_PKT_DATA_INBAND, 0);
1687 	if (ret)
1688 		goto probe_error2;
1689 
1690 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1691 	if (t == 0) {
1692 		ret = -ETIMEDOUT;
1693 		goto probe_error2;
1694 	}
1695 
1696 	/*
1697 	 * If the host does not like our capabilities,
1698 	 * fail the probe function.
1699 	 */
1700 	if (dm_device.state == DM_INIT_ERROR) {
1701 		ret = -ETIMEDOUT;
1702 		goto probe_error2;
1703 	}
1704 
1705 	dm_device.state = DM_INITIALIZED;
1706 	last_post_time = jiffies;
1707 
1708 	return 0;
1709 
1710 probe_error2:
1711 #ifdef CONFIG_MEMORY_HOTPLUG
1712 	restore_online_page_callback(&hv_online_page);
1713 #endif
1714 	kthread_stop(dm_device.thread);
1715 
1716 probe_error1:
1717 	vmbus_close(dev->channel);
1718 probe_error0:
1719 	kfree(send_buffer);
1720 	return ret;
1721 }
1722 
1723 static int balloon_remove(struct hv_device *dev)
1724 {
1725 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1726 	struct hv_hotadd_state *has, *tmp;
1727 	struct hv_hotadd_gap *gap, *tmp_gap;
1728 	unsigned long flags;
1729 
1730 	if (dm->num_pages_ballooned != 0)
1731 		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1732 
1733 	cancel_work_sync(&dm->balloon_wrk.wrk);
1734 	cancel_work_sync(&dm->ha_wrk.wrk);
1735 
1736 	vmbus_close(dev->channel);
1737 	kthread_stop(dm->thread);
1738 	kfree(send_buffer);
1739 #ifdef CONFIG_MEMORY_HOTPLUG
1740 	restore_online_page_callback(&hv_online_page);
1741 	unregister_memory_notifier(&hv_memory_nb);
1742 #endif
1743 	spin_lock_irqsave(&dm_device.ha_lock, flags);
1744 	list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1745 		list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1746 			list_del(&gap->list);
1747 			kfree(gap);
1748 		}
1749 		list_del(&has->list);
1750 		kfree(has);
1751 	}
1752 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1753 
1754 	return 0;
1755 }
1756 
1757 static const struct hv_vmbus_device_id id_table[] = {
1758 	/* Dynamic Memory Class ID */
1759 	/* 525074DC-8985-46e2-8057-A307DC18A502 */
1760 	{ HV_DM_GUID, },
1761 	{ },
1762 };
1763 
1764 MODULE_DEVICE_TABLE(vmbus, id_table);
1765 
1766 static  struct hv_driver balloon_drv = {
1767 	.name = "hv_balloon",
1768 	.id_table = id_table,
1769 	.probe =  balloon_probe,
1770 	.remove =  balloon_remove,
1771 	.driver = {
1772 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1773 	},
1774 };
1775 
1776 static int __init init_balloon_drv(void)
1777 {
1778 
1779 	return vmbus_driver_register(&balloon_drv);
1780 }
1781 
1782 module_init(init_balloon_drv);
1783 
1784 MODULE_DESCRIPTION("Hyper-V Balloon");
1785 MODULE_LICENSE("GPL");
1786