1 /* 2 * Copyright (c) 2012, Microsoft Corporation. 3 * 4 * Author: 5 * K. Y. Srinivasan <kys@microsoft.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 as published 9 * by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, but 12 * WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 14 * NON INFRINGEMENT. See the GNU General Public License for more 15 * details. 16 * 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/jiffies.h> 23 #include <linux/mman.h> 24 #include <linux/delay.h> 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/kthread.h> 29 #include <linux/completion.h> 30 #include <linux/memory_hotplug.h> 31 #include <linux/memory.h> 32 #include <linux/notifier.h> 33 #include <linux/percpu_counter.h> 34 35 #include <linux/hyperv.h> 36 37 /* 38 * We begin with definitions supporting the Dynamic Memory protocol 39 * with the host. 40 * 41 * Begin protocol definitions. 42 */ 43 44 45 46 /* 47 * Protocol versions. The low word is the minor version, the high word the major 48 * version. 49 * 50 * History: 51 * Initial version 1.0 52 * Changed to 0.1 on 2009/03/25 53 * Changes to 0.2 on 2009/05/14 54 * Changes to 0.3 on 2009/12/03 55 * Changed to 1.0 on 2011/04/05 56 */ 57 58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor))) 59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16) 60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff) 61 62 enum { 63 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3), 64 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0), 65 DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0), 66 67 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1, 68 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2, 69 DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3, 70 71 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10 72 }; 73 74 75 76 /* 77 * Message Types 78 */ 79 80 enum dm_message_type { 81 /* 82 * Version 0.3 83 */ 84 DM_ERROR = 0, 85 DM_VERSION_REQUEST = 1, 86 DM_VERSION_RESPONSE = 2, 87 DM_CAPABILITIES_REPORT = 3, 88 DM_CAPABILITIES_RESPONSE = 4, 89 DM_STATUS_REPORT = 5, 90 DM_BALLOON_REQUEST = 6, 91 DM_BALLOON_RESPONSE = 7, 92 DM_UNBALLOON_REQUEST = 8, 93 DM_UNBALLOON_RESPONSE = 9, 94 DM_MEM_HOT_ADD_REQUEST = 10, 95 DM_MEM_HOT_ADD_RESPONSE = 11, 96 DM_VERSION_03_MAX = 11, 97 /* 98 * Version 1.0. 99 */ 100 DM_INFO_MESSAGE = 12, 101 DM_VERSION_1_MAX = 12 102 }; 103 104 105 /* 106 * Structures defining the dynamic memory management 107 * protocol. 108 */ 109 110 union dm_version { 111 struct { 112 __u16 minor_version; 113 __u16 major_version; 114 }; 115 __u32 version; 116 } __packed; 117 118 119 union dm_caps { 120 struct { 121 __u64 balloon:1; 122 __u64 hot_add:1; 123 /* 124 * To support guests that may have alignment 125 * limitations on hot-add, the guest can specify 126 * its alignment requirements; a value of n 127 * represents an alignment of 2^n in mega bytes. 128 */ 129 __u64 hot_add_alignment:4; 130 __u64 reservedz:58; 131 } cap_bits; 132 __u64 caps; 133 } __packed; 134 135 union dm_mem_page_range { 136 struct { 137 /* 138 * The PFN number of the first page in the range. 139 * 40 bits is the architectural limit of a PFN 140 * number for AMD64. 141 */ 142 __u64 start_page:40; 143 /* 144 * The number of pages in the range. 145 */ 146 __u64 page_cnt:24; 147 } finfo; 148 __u64 page_range; 149 } __packed; 150 151 152 153 /* 154 * The header for all dynamic memory messages: 155 * 156 * type: Type of the message. 157 * size: Size of the message in bytes; including the header. 158 * trans_id: The guest is responsible for manufacturing this ID. 159 */ 160 161 struct dm_header { 162 __u16 type; 163 __u16 size; 164 __u32 trans_id; 165 } __packed; 166 167 /* 168 * A generic message format for dynamic memory. 169 * Specific message formats are defined later in the file. 170 */ 171 172 struct dm_message { 173 struct dm_header hdr; 174 __u8 data[]; /* enclosed message */ 175 } __packed; 176 177 178 /* 179 * Specific message types supporting the dynamic memory protocol. 180 */ 181 182 /* 183 * Version negotiation message. Sent from the guest to the host. 184 * The guest is free to try different versions until the host 185 * accepts the version. 186 * 187 * dm_version: The protocol version requested. 188 * is_last_attempt: If TRUE, this is the last version guest will request. 189 * reservedz: Reserved field, set to zero. 190 */ 191 192 struct dm_version_request { 193 struct dm_header hdr; 194 union dm_version version; 195 __u32 is_last_attempt:1; 196 __u32 reservedz:31; 197 } __packed; 198 199 /* 200 * Version response message; Host to Guest and indicates 201 * if the host has accepted the version sent by the guest. 202 * 203 * is_accepted: If TRUE, host has accepted the version and the guest 204 * should proceed to the next stage of the protocol. FALSE indicates that 205 * guest should re-try with a different version. 206 * 207 * reservedz: Reserved field, set to zero. 208 */ 209 210 struct dm_version_response { 211 struct dm_header hdr; 212 __u64 is_accepted:1; 213 __u64 reservedz:63; 214 } __packed; 215 216 /* 217 * Message reporting capabilities. This is sent from the guest to the 218 * host. 219 */ 220 221 struct dm_capabilities { 222 struct dm_header hdr; 223 union dm_caps caps; 224 __u64 min_page_cnt; 225 __u64 max_page_number; 226 } __packed; 227 228 /* 229 * Response to the capabilities message. This is sent from the host to the 230 * guest. This message notifies if the host has accepted the guest's 231 * capabilities. If the host has not accepted, the guest must shutdown 232 * the service. 233 * 234 * is_accepted: Indicates if the host has accepted guest's capabilities. 235 * reservedz: Must be 0. 236 */ 237 238 struct dm_capabilities_resp_msg { 239 struct dm_header hdr; 240 __u64 is_accepted:1; 241 __u64 reservedz:63; 242 } __packed; 243 244 /* 245 * This message is used to report memory pressure from the guest. 246 * This message is not part of any transaction and there is no 247 * response to this message. 248 * 249 * num_avail: Available memory in pages. 250 * num_committed: Committed memory in pages. 251 * page_file_size: The accumulated size of all page files 252 * in the system in pages. 253 * zero_free: The nunber of zero and free pages. 254 * page_file_writes: The writes to the page file in pages. 255 * io_diff: An indicator of file cache efficiency or page file activity, 256 * calculated as File Cache Page Fault Count - Page Read Count. 257 * This value is in pages. 258 * 259 * Some of these metrics are Windows specific and fortunately 260 * the algorithm on the host side that computes the guest memory 261 * pressure only uses num_committed value. 262 */ 263 264 struct dm_status { 265 struct dm_header hdr; 266 __u64 num_avail; 267 __u64 num_committed; 268 __u64 page_file_size; 269 __u64 zero_free; 270 __u32 page_file_writes; 271 __u32 io_diff; 272 } __packed; 273 274 275 /* 276 * Message to ask the guest to allocate memory - balloon up message. 277 * This message is sent from the host to the guest. The guest may not be 278 * able to allocate as much memory as requested. 279 * 280 * num_pages: number of pages to allocate. 281 */ 282 283 struct dm_balloon { 284 struct dm_header hdr; 285 __u32 num_pages; 286 __u32 reservedz; 287 } __packed; 288 289 290 /* 291 * Balloon response message; this message is sent from the guest 292 * to the host in response to the balloon message. 293 * 294 * reservedz: Reserved; must be set to zero. 295 * more_pages: If FALSE, this is the last message of the transaction. 296 * if TRUE there will atleast one more message from the guest. 297 * 298 * range_count: The number of ranges in the range array. 299 * 300 * range_array: An array of page ranges returned to the host. 301 * 302 */ 303 304 struct dm_balloon_response { 305 struct dm_header hdr; 306 __u32 reservedz; 307 __u32 more_pages:1; 308 __u32 range_count:31; 309 union dm_mem_page_range range_array[]; 310 } __packed; 311 312 /* 313 * Un-balloon message; this message is sent from the host 314 * to the guest to give guest more memory. 315 * 316 * more_pages: If FALSE, this is the last message of the transaction. 317 * if TRUE there will atleast one more message from the guest. 318 * 319 * reservedz: Reserved; must be set to zero. 320 * 321 * range_count: The number of ranges in the range array. 322 * 323 * range_array: An array of page ranges returned to the host. 324 * 325 */ 326 327 struct dm_unballoon_request { 328 struct dm_header hdr; 329 __u32 more_pages:1; 330 __u32 reservedz:31; 331 __u32 range_count; 332 union dm_mem_page_range range_array[]; 333 } __packed; 334 335 /* 336 * Un-balloon response message; this message is sent from the guest 337 * to the host in response to an unballoon request. 338 * 339 */ 340 341 struct dm_unballoon_response { 342 struct dm_header hdr; 343 } __packed; 344 345 346 /* 347 * Hot add request message. Message sent from the host to the guest. 348 * 349 * mem_range: Memory range to hot add. 350 * 351 * On Linux we currently don't support this since we cannot hot add 352 * arbitrary granularity of memory. 353 */ 354 355 struct dm_hot_add { 356 struct dm_header hdr; 357 union dm_mem_page_range range; 358 } __packed; 359 360 /* 361 * Hot add response message. 362 * This message is sent by the guest to report the status of a hot add request. 363 * If page_count is less than the requested page count, then the host should 364 * assume all further hot add requests will fail, since this indicates that 365 * the guest has hit an upper physical memory barrier. 366 * 367 * Hot adds may also fail due to low resources; in this case, the guest must 368 * not complete this message until the hot add can succeed, and the host must 369 * not send a new hot add request until the response is sent. 370 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS 371 * times it fails the request. 372 * 373 * 374 * page_count: number of pages that were successfully hot added. 375 * 376 * result: result of the operation 1: success, 0: failure. 377 * 378 */ 379 380 struct dm_hot_add_response { 381 struct dm_header hdr; 382 __u32 page_count; 383 __u32 result; 384 } __packed; 385 386 /* 387 * Types of information sent from host to the guest. 388 */ 389 390 enum dm_info_type { 391 INFO_TYPE_MAX_PAGE_CNT = 0, 392 MAX_INFO_TYPE 393 }; 394 395 396 /* 397 * Header for the information message. 398 */ 399 400 struct dm_info_header { 401 enum dm_info_type type; 402 __u32 data_size; 403 } __packed; 404 405 /* 406 * This message is sent from the host to the guest to pass 407 * some relevant information (win8 addition). 408 * 409 * reserved: no used. 410 * info_size: size of the information blob. 411 * info: information blob. 412 */ 413 414 struct dm_info_msg { 415 struct dm_header hdr; 416 __u32 reserved; 417 __u32 info_size; 418 __u8 info[]; 419 }; 420 421 /* 422 * End protocol definitions. 423 */ 424 425 /* 426 * State to manage hot adding memory into the guest. 427 * The range start_pfn : end_pfn specifies the range 428 * that the host has asked us to hot add. The range 429 * start_pfn : ha_end_pfn specifies the range that we have 430 * currently hot added. We hot add in multiples of 128M 431 * chunks; it is possible that we may not be able to bring 432 * online all the pages in the region. The range 433 * covered_start_pfn:covered_end_pfn defines the pages that can 434 * be brough online. 435 */ 436 437 struct hv_hotadd_state { 438 struct list_head list; 439 unsigned long start_pfn; 440 unsigned long covered_start_pfn; 441 unsigned long covered_end_pfn; 442 unsigned long ha_end_pfn; 443 unsigned long end_pfn; 444 /* 445 * A list of gaps. 446 */ 447 struct list_head gap_list; 448 }; 449 450 struct hv_hotadd_gap { 451 struct list_head list; 452 unsigned long start_pfn; 453 unsigned long end_pfn; 454 }; 455 456 struct balloon_state { 457 __u32 num_pages; 458 struct work_struct wrk; 459 }; 460 461 struct hot_add_wrk { 462 union dm_mem_page_range ha_page_range; 463 union dm_mem_page_range ha_region_range; 464 struct work_struct wrk; 465 }; 466 467 static bool hot_add = true; 468 static bool do_hot_add; 469 /* 470 * Delay reporting memory pressure by 471 * the specified number of seconds. 472 */ 473 static uint pressure_report_delay = 45; 474 475 /* 476 * The last time we posted a pressure report to host. 477 */ 478 static unsigned long last_post_time; 479 480 module_param(hot_add, bool, (S_IRUGO | S_IWUSR)); 481 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add"); 482 483 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR)); 484 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure"); 485 static atomic_t trans_id = ATOMIC_INIT(0); 486 487 static int dm_ring_size = (5 * PAGE_SIZE); 488 489 /* 490 * Driver specific state. 491 */ 492 493 enum hv_dm_state { 494 DM_INITIALIZING = 0, 495 DM_INITIALIZED, 496 DM_BALLOON_UP, 497 DM_BALLOON_DOWN, 498 DM_HOT_ADD, 499 DM_INIT_ERROR 500 }; 501 502 503 static __u8 recv_buffer[PAGE_SIZE]; 504 static __u8 *send_buffer; 505 #define PAGES_IN_2M 512 506 #define HA_CHUNK (32 * 1024) 507 508 struct hv_dynmem_device { 509 struct hv_device *dev; 510 enum hv_dm_state state; 511 struct completion host_event; 512 struct completion config_event; 513 514 /* 515 * Number of pages we have currently ballooned out. 516 */ 517 unsigned int num_pages_ballooned; 518 unsigned int num_pages_onlined; 519 unsigned int num_pages_added; 520 521 /* 522 * State to manage the ballooning (up) operation. 523 */ 524 struct balloon_state balloon_wrk; 525 526 /* 527 * State to execute the "hot-add" operation. 528 */ 529 struct hot_add_wrk ha_wrk; 530 531 /* 532 * This state tracks if the host has specified a hot-add 533 * region. 534 */ 535 bool host_specified_ha_region; 536 537 /* 538 * State to synchronize hot-add. 539 */ 540 struct completion ol_waitevent; 541 bool ha_waiting; 542 /* 543 * This thread handles hot-add 544 * requests from the host as well as notifying 545 * the host with regards to memory pressure in 546 * the guest. 547 */ 548 struct task_struct *thread; 549 550 /* 551 * Protects ha_region_list, num_pages_onlined counter and individual 552 * regions from ha_region_list. 553 */ 554 spinlock_t ha_lock; 555 556 /* 557 * A list of hot-add regions. 558 */ 559 struct list_head ha_region_list; 560 561 /* 562 * We start with the highest version we can support 563 * and downgrade based on the host; we save here the 564 * next version to try. 565 */ 566 __u32 next_version; 567 568 /* 569 * The negotiated version agreed by host. 570 */ 571 __u32 version; 572 }; 573 574 static struct hv_dynmem_device dm_device; 575 576 static void post_status(struct hv_dynmem_device *dm); 577 578 #ifdef CONFIG_MEMORY_HOTPLUG 579 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val, 580 void *v) 581 { 582 struct memory_notify *mem = (struct memory_notify *)v; 583 unsigned long flags; 584 585 switch (val) { 586 case MEM_ONLINE: 587 spin_lock_irqsave(&dm_device.ha_lock, flags); 588 dm_device.num_pages_onlined += mem->nr_pages; 589 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 590 /* Fall through */ 591 case MEM_CANCEL_ONLINE: 592 if (dm_device.ha_waiting) { 593 dm_device.ha_waiting = false; 594 complete(&dm_device.ol_waitevent); 595 } 596 break; 597 598 case MEM_OFFLINE: 599 spin_lock_irqsave(&dm_device.ha_lock, flags); 600 dm_device.num_pages_onlined -= mem->nr_pages; 601 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 602 break; 603 case MEM_GOING_ONLINE: 604 case MEM_GOING_OFFLINE: 605 case MEM_CANCEL_OFFLINE: 606 break; 607 } 608 return NOTIFY_OK; 609 } 610 611 static struct notifier_block hv_memory_nb = { 612 .notifier_call = hv_memory_notifier, 613 .priority = 0 614 }; 615 616 /* Check if the particular page is backed and can be onlined and online it. */ 617 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg) 618 { 619 unsigned long cur_start_pgp; 620 unsigned long cur_end_pgp; 621 struct hv_hotadd_gap *gap; 622 623 cur_start_pgp = (unsigned long)pfn_to_page(has->covered_start_pfn); 624 cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn); 625 626 /* The page is not backed. */ 627 if (((unsigned long)pg < cur_start_pgp) || 628 ((unsigned long)pg >= cur_end_pgp)) 629 return; 630 631 /* Check for gaps. */ 632 list_for_each_entry(gap, &has->gap_list, list) { 633 cur_start_pgp = (unsigned long) 634 pfn_to_page(gap->start_pfn); 635 cur_end_pgp = (unsigned long) 636 pfn_to_page(gap->end_pfn); 637 if (((unsigned long)pg >= cur_start_pgp) && 638 ((unsigned long)pg < cur_end_pgp)) { 639 return; 640 } 641 } 642 643 /* This frame is currently backed; online the page. */ 644 __online_page_set_limits(pg); 645 __online_page_increment_counters(pg); 646 __online_page_free(pg); 647 } 648 649 static void hv_bring_pgs_online(struct hv_hotadd_state *has, 650 unsigned long start_pfn, unsigned long size) 651 { 652 int i; 653 654 pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn); 655 for (i = 0; i < size; i++) 656 hv_page_online_one(has, pfn_to_page(start_pfn + i)); 657 } 658 659 static void hv_mem_hot_add(unsigned long start, unsigned long size, 660 unsigned long pfn_count, 661 struct hv_hotadd_state *has) 662 { 663 int ret = 0; 664 int i, nid; 665 unsigned long start_pfn; 666 unsigned long processed_pfn; 667 unsigned long total_pfn = pfn_count; 668 unsigned long flags; 669 670 for (i = 0; i < (size/HA_CHUNK); i++) { 671 start_pfn = start + (i * HA_CHUNK); 672 673 spin_lock_irqsave(&dm_device.ha_lock, flags); 674 has->ha_end_pfn += HA_CHUNK; 675 676 if (total_pfn > HA_CHUNK) { 677 processed_pfn = HA_CHUNK; 678 total_pfn -= HA_CHUNK; 679 } else { 680 processed_pfn = total_pfn; 681 total_pfn = 0; 682 } 683 684 has->covered_end_pfn += processed_pfn; 685 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 686 687 init_completion(&dm_device.ol_waitevent); 688 dm_device.ha_waiting = !memhp_auto_online; 689 690 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn)); 691 ret = add_memory(nid, PFN_PHYS((start_pfn)), 692 (HA_CHUNK << PAGE_SHIFT)); 693 694 if (ret) { 695 pr_warn("hot_add memory failed error is %d\n", ret); 696 if (ret == -EEXIST) { 697 /* 698 * This error indicates that the error 699 * is not a transient failure. This is the 700 * case where the guest's physical address map 701 * precludes hot adding memory. Stop all further 702 * memory hot-add. 703 */ 704 do_hot_add = false; 705 } 706 spin_lock_irqsave(&dm_device.ha_lock, flags); 707 has->ha_end_pfn -= HA_CHUNK; 708 has->covered_end_pfn -= processed_pfn; 709 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 710 break; 711 } 712 713 /* 714 * Wait for the memory block to be onlined when memory onlining 715 * is done outside of kernel (memhp_auto_online). Since the hot 716 * add has succeeded, it is ok to proceed even if the pages in 717 * the hot added region have not been "onlined" within the 718 * allowed time. 719 */ 720 if (dm_device.ha_waiting) 721 wait_for_completion_timeout(&dm_device.ol_waitevent, 722 5*HZ); 723 post_status(&dm_device); 724 } 725 } 726 727 static void hv_online_page(struct page *pg) 728 { 729 struct hv_hotadd_state *has; 730 unsigned long cur_start_pgp; 731 unsigned long cur_end_pgp; 732 unsigned long flags; 733 734 spin_lock_irqsave(&dm_device.ha_lock, flags); 735 list_for_each_entry(has, &dm_device.ha_region_list, list) { 736 cur_start_pgp = (unsigned long) 737 pfn_to_page(has->start_pfn); 738 cur_end_pgp = (unsigned long)pfn_to_page(has->end_pfn); 739 740 /* The page belongs to a different HAS. */ 741 if (((unsigned long)pg < cur_start_pgp) || 742 ((unsigned long)pg >= cur_end_pgp)) 743 continue; 744 745 hv_page_online_one(has, pg); 746 break; 747 } 748 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 749 } 750 751 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt) 752 { 753 struct hv_hotadd_state *has; 754 struct hv_hotadd_gap *gap; 755 unsigned long residual, new_inc; 756 int ret = 0; 757 unsigned long flags; 758 759 spin_lock_irqsave(&dm_device.ha_lock, flags); 760 list_for_each_entry(has, &dm_device.ha_region_list, list) { 761 /* 762 * If the pfn range we are dealing with is not in the current 763 * "hot add block", move on. 764 */ 765 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn) 766 continue; 767 768 /* 769 * If the current start pfn is not where the covered_end 770 * is, create a gap and update covered_end_pfn. 771 */ 772 if (has->covered_end_pfn != start_pfn) { 773 gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC); 774 if (!gap) { 775 ret = -ENOMEM; 776 break; 777 } 778 779 INIT_LIST_HEAD(&gap->list); 780 gap->start_pfn = has->covered_end_pfn; 781 gap->end_pfn = start_pfn; 782 list_add_tail(&gap->list, &has->gap_list); 783 784 has->covered_end_pfn = start_pfn; 785 } 786 787 /* 788 * If the current hot add-request extends beyond 789 * our current limit; extend it. 790 */ 791 if ((start_pfn + pfn_cnt) > has->end_pfn) { 792 residual = (start_pfn + pfn_cnt - has->end_pfn); 793 /* 794 * Extend the region by multiples of HA_CHUNK. 795 */ 796 new_inc = (residual / HA_CHUNK) * HA_CHUNK; 797 if (residual % HA_CHUNK) 798 new_inc += HA_CHUNK; 799 800 has->end_pfn += new_inc; 801 } 802 803 ret = 1; 804 break; 805 } 806 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 807 808 return ret; 809 } 810 811 static unsigned long handle_pg_range(unsigned long pg_start, 812 unsigned long pg_count) 813 { 814 unsigned long start_pfn = pg_start; 815 unsigned long pfn_cnt = pg_count; 816 unsigned long size; 817 struct hv_hotadd_state *has; 818 unsigned long pgs_ol = 0; 819 unsigned long old_covered_state; 820 unsigned long res = 0, flags; 821 822 pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count, 823 pg_start); 824 825 spin_lock_irqsave(&dm_device.ha_lock, flags); 826 list_for_each_entry(has, &dm_device.ha_region_list, list) { 827 /* 828 * If the pfn range we are dealing with is not in the current 829 * "hot add block", move on. 830 */ 831 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn) 832 continue; 833 834 old_covered_state = has->covered_end_pfn; 835 836 if (start_pfn < has->ha_end_pfn) { 837 /* 838 * This is the case where we are backing pages 839 * in an already hot added region. Bring 840 * these pages online first. 841 */ 842 pgs_ol = has->ha_end_pfn - start_pfn; 843 if (pgs_ol > pfn_cnt) 844 pgs_ol = pfn_cnt; 845 846 has->covered_end_pfn += pgs_ol; 847 pfn_cnt -= pgs_ol; 848 /* 849 * Check if the corresponding memory block is already 850 * online by checking its last previously backed page. 851 * In case it is we need to bring rest (which was not 852 * backed previously) online too. 853 */ 854 if (start_pfn > has->start_pfn && 855 !PageReserved(pfn_to_page(start_pfn - 1))) 856 hv_bring_pgs_online(has, start_pfn, pgs_ol); 857 858 } 859 860 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) { 861 /* 862 * We have some residual hot add range 863 * that needs to be hot added; hot add 864 * it now. Hot add a multiple of 865 * of HA_CHUNK that fully covers the pages 866 * we have. 867 */ 868 size = (has->end_pfn - has->ha_end_pfn); 869 if (pfn_cnt <= size) { 870 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK); 871 if (pfn_cnt % HA_CHUNK) 872 size += HA_CHUNK; 873 } else { 874 pfn_cnt = size; 875 } 876 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 877 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has); 878 spin_lock_irqsave(&dm_device.ha_lock, flags); 879 } 880 /* 881 * If we managed to online any pages that were given to us, 882 * we declare success. 883 */ 884 res = has->covered_end_pfn - old_covered_state; 885 break; 886 } 887 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 888 889 return res; 890 } 891 892 static unsigned long process_hot_add(unsigned long pg_start, 893 unsigned long pfn_cnt, 894 unsigned long rg_start, 895 unsigned long rg_size) 896 { 897 struct hv_hotadd_state *ha_region = NULL; 898 int covered; 899 unsigned long flags; 900 901 if (pfn_cnt == 0) 902 return 0; 903 904 if (!dm_device.host_specified_ha_region) { 905 covered = pfn_covered(pg_start, pfn_cnt); 906 if (covered < 0) 907 return 0; 908 909 if (covered) 910 goto do_pg_range; 911 } 912 913 /* 914 * If the host has specified a hot-add range; deal with it first. 915 */ 916 917 if (rg_size != 0) { 918 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL); 919 if (!ha_region) 920 return 0; 921 922 INIT_LIST_HEAD(&ha_region->list); 923 INIT_LIST_HEAD(&ha_region->gap_list); 924 925 ha_region->start_pfn = rg_start; 926 ha_region->ha_end_pfn = rg_start; 927 ha_region->covered_start_pfn = pg_start; 928 ha_region->covered_end_pfn = pg_start; 929 ha_region->end_pfn = rg_start + rg_size; 930 931 spin_lock_irqsave(&dm_device.ha_lock, flags); 932 list_add_tail(&ha_region->list, &dm_device.ha_region_list); 933 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 934 } 935 936 do_pg_range: 937 /* 938 * Process the page range specified; bringing them 939 * online if possible. 940 */ 941 return handle_pg_range(pg_start, pfn_cnt); 942 } 943 944 #endif 945 946 static void hot_add_req(struct work_struct *dummy) 947 { 948 struct dm_hot_add_response resp; 949 #ifdef CONFIG_MEMORY_HOTPLUG 950 unsigned long pg_start, pfn_cnt; 951 unsigned long rg_start, rg_sz; 952 #endif 953 struct hv_dynmem_device *dm = &dm_device; 954 955 memset(&resp, 0, sizeof(struct dm_hot_add_response)); 956 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE; 957 resp.hdr.size = sizeof(struct dm_hot_add_response); 958 959 #ifdef CONFIG_MEMORY_HOTPLUG 960 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page; 961 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt; 962 963 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page; 964 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt; 965 966 if ((rg_start == 0) && (!dm->host_specified_ha_region)) { 967 unsigned long region_size; 968 unsigned long region_start; 969 970 /* 971 * The host has not specified the hot-add region. 972 * Based on the hot-add page range being specified, 973 * compute a hot-add region that can cover the pages 974 * that need to be hot-added while ensuring the alignment 975 * and size requirements of Linux as it relates to hot-add. 976 */ 977 region_start = pg_start; 978 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK; 979 if (pfn_cnt % HA_CHUNK) 980 region_size += HA_CHUNK; 981 982 region_start = (pg_start / HA_CHUNK) * HA_CHUNK; 983 984 rg_start = region_start; 985 rg_sz = region_size; 986 } 987 988 if (do_hot_add) 989 resp.page_count = process_hot_add(pg_start, pfn_cnt, 990 rg_start, rg_sz); 991 992 dm->num_pages_added += resp.page_count; 993 #endif 994 /* 995 * The result field of the response structure has the 996 * following semantics: 997 * 998 * 1. If all or some pages hot-added: Guest should return success. 999 * 1000 * 2. If no pages could be hot-added: 1001 * 1002 * If the guest returns success, then the host 1003 * will not attempt any further hot-add operations. This 1004 * signifies a permanent failure. 1005 * 1006 * If the guest returns failure, then this failure will be 1007 * treated as a transient failure and the host may retry the 1008 * hot-add operation after some delay. 1009 */ 1010 if (resp.page_count > 0) 1011 resp.result = 1; 1012 else if (!do_hot_add) 1013 resp.result = 1; 1014 else 1015 resp.result = 0; 1016 1017 if (!do_hot_add || (resp.page_count == 0)) 1018 pr_info("Memory hot add failed\n"); 1019 1020 dm->state = DM_INITIALIZED; 1021 resp.hdr.trans_id = atomic_inc_return(&trans_id); 1022 vmbus_sendpacket(dm->dev->channel, &resp, 1023 sizeof(struct dm_hot_add_response), 1024 (unsigned long)NULL, 1025 VM_PKT_DATA_INBAND, 0); 1026 } 1027 1028 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg) 1029 { 1030 struct dm_info_header *info_hdr; 1031 1032 info_hdr = (struct dm_info_header *)msg->info; 1033 1034 switch (info_hdr->type) { 1035 case INFO_TYPE_MAX_PAGE_CNT: 1036 if (info_hdr->data_size == sizeof(__u64)) { 1037 __u64 *max_page_count = (__u64 *)&info_hdr[1]; 1038 1039 pr_info("INFO_TYPE_MAX_PAGE_CNT = %llu\n", 1040 *max_page_count); 1041 } 1042 1043 break; 1044 default: 1045 pr_info("Received Unknown type: %d\n", info_hdr->type); 1046 } 1047 } 1048 1049 static unsigned long compute_balloon_floor(void) 1050 { 1051 unsigned long min_pages; 1052 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT)) 1053 /* Simple continuous piecewiese linear function: 1054 * max MiB -> min MiB gradient 1055 * 0 0 1056 * 16 16 1057 * 32 24 1058 * 128 72 (1/2) 1059 * 512 168 (1/4) 1060 * 2048 360 (1/8) 1061 * 8192 744 (1/16) 1062 * 32768 1512 (1/32) 1063 */ 1064 if (totalram_pages < MB2PAGES(128)) 1065 min_pages = MB2PAGES(8) + (totalram_pages >> 1); 1066 else if (totalram_pages < MB2PAGES(512)) 1067 min_pages = MB2PAGES(40) + (totalram_pages >> 2); 1068 else if (totalram_pages < MB2PAGES(2048)) 1069 min_pages = MB2PAGES(104) + (totalram_pages >> 3); 1070 else if (totalram_pages < MB2PAGES(8192)) 1071 min_pages = MB2PAGES(232) + (totalram_pages >> 4); 1072 else 1073 min_pages = MB2PAGES(488) + (totalram_pages >> 5); 1074 #undef MB2PAGES 1075 return min_pages; 1076 } 1077 1078 /* 1079 * Post our status as it relates memory pressure to the 1080 * host. Host expects the guests to post this status 1081 * periodically at 1 second intervals. 1082 * 1083 * The metrics specified in this protocol are very Windows 1084 * specific and so we cook up numbers here to convey our memory 1085 * pressure. 1086 */ 1087 1088 static void post_status(struct hv_dynmem_device *dm) 1089 { 1090 struct dm_status status; 1091 unsigned long now = jiffies; 1092 unsigned long last_post = last_post_time; 1093 1094 if (pressure_report_delay > 0) { 1095 --pressure_report_delay; 1096 return; 1097 } 1098 1099 if (!time_after(now, (last_post_time + HZ))) 1100 return; 1101 1102 memset(&status, 0, sizeof(struct dm_status)); 1103 status.hdr.type = DM_STATUS_REPORT; 1104 status.hdr.size = sizeof(struct dm_status); 1105 status.hdr.trans_id = atomic_inc_return(&trans_id); 1106 1107 /* 1108 * The host expects the guest to report free and committed memory. 1109 * Furthermore, the host expects the pressure information to include 1110 * the ballooned out pages. For a given amount of memory that we are 1111 * managing we need to compute a floor below which we should not 1112 * balloon. Compute this and add it to the pressure report. 1113 * We also need to report all offline pages (num_pages_added - 1114 * num_pages_onlined) as committed to the host, otherwise it can try 1115 * asking us to balloon them out. 1116 */ 1117 status.num_avail = si_mem_available(); 1118 status.num_committed = vm_memory_committed() + 1119 dm->num_pages_ballooned + 1120 (dm->num_pages_added > dm->num_pages_onlined ? 1121 dm->num_pages_added - dm->num_pages_onlined : 0) + 1122 compute_balloon_floor(); 1123 1124 /* 1125 * If our transaction ID is no longer current, just don't 1126 * send the status. This can happen if we were interrupted 1127 * after we picked our transaction ID. 1128 */ 1129 if (status.hdr.trans_id != atomic_read(&trans_id)) 1130 return; 1131 1132 /* 1133 * If the last post time that we sampled has changed, 1134 * we have raced, don't post the status. 1135 */ 1136 if (last_post != last_post_time) 1137 return; 1138 1139 last_post_time = jiffies; 1140 vmbus_sendpacket(dm->dev->channel, &status, 1141 sizeof(struct dm_status), 1142 (unsigned long)NULL, 1143 VM_PKT_DATA_INBAND, 0); 1144 1145 } 1146 1147 static void free_balloon_pages(struct hv_dynmem_device *dm, 1148 union dm_mem_page_range *range_array) 1149 { 1150 int num_pages = range_array->finfo.page_cnt; 1151 __u64 start_frame = range_array->finfo.start_page; 1152 struct page *pg; 1153 int i; 1154 1155 for (i = 0; i < num_pages; i++) { 1156 pg = pfn_to_page(i + start_frame); 1157 __free_page(pg); 1158 dm->num_pages_ballooned--; 1159 } 1160 } 1161 1162 1163 1164 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm, 1165 unsigned int num_pages, 1166 struct dm_balloon_response *bl_resp, 1167 int alloc_unit) 1168 { 1169 unsigned int i = 0; 1170 struct page *pg; 1171 1172 if (num_pages < alloc_unit) 1173 return 0; 1174 1175 for (i = 0; (i * alloc_unit) < num_pages; i++) { 1176 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) > 1177 PAGE_SIZE) 1178 return i * alloc_unit; 1179 1180 /* 1181 * We execute this code in a thread context. Furthermore, 1182 * we don't want the kernel to try too hard. 1183 */ 1184 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY | 1185 __GFP_NOMEMALLOC | __GFP_NOWARN, 1186 get_order(alloc_unit << PAGE_SHIFT)); 1187 1188 if (!pg) 1189 return i * alloc_unit; 1190 1191 dm->num_pages_ballooned += alloc_unit; 1192 1193 /* 1194 * If we allocatted 2M pages; split them so we 1195 * can free them in any order we get. 1196 */ 1197 1198 if (alloc_unit != 1) 1199 split_page(pg, get_order(alloc_unit << PAGE_SHIFT)); 1200 1201 bl_resp->range_count++; 1202 bl_resp->range_array[i].finfo.start_page = 1203 page_to_pfn(pg); 1204 bl_resp->range_array[i].finfo.page_cnt = alloc_unit; 1205 bl_resp->hdr.size += sizeof(union dm_mem_page_range); 1206 1207 } 1208 1209 return num_pages; 1210 } 1211 1212 static void balloon_up(struct work_struct *dummy) 1213 { 1214 unsigned int num_pages = dm_device.balloon_wrk.num_pages; 1215 unsigned int num_ballooned = 0; 1216 struct dm_balloon_response *bl_resp; 1217 int alloc_unit; 1218 int ret; 1219 bool done = false; 1220 int i; 1221 long avail_pages; 1222 unsigned long floor; 1223 1224 /* The host balloons pages in 2M granularity. */ 1225 WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0); 1226 1227 /* 1228 * We will attempt 2M allocations. However, if we fail to 1229 * allocate 2M chunks, we will go back to 4k allocations. 1230 */ 1231 alloc_unit = 512; 1232 1233 avail_pages = si_mem_available(); 1234 floor = compute_balloon_floor(); 1235 1236 /* Refuse to balloon below the floor, keep the 2M granularity. */ 1237 if (avail_pages < num_pages || avail_pages - num_pages < floor) { 1238 pr_warn("Balloon request will be partially fulfilled. %s\n", 1239 avail_pages < num_pages ? "Not enough memory." : 1240 "Balloon floor reached."); 1241 1242 num_pages = avail_pages > floor ? (avail_pages - floor) : 0; 1243 num_pages -= num_pages % PAGES_IN_2M; 1244 } 1245 1246 while (!done) { 1247 bl_resp = (struct dm_balloon_response *)send_buffer; 1248 memset(send_buffer, 0, PAGE_SIZE); 1249 bl_resp->hdr.type = DM_BALLOON_RESPONSE; 1250 bl_resp->hdr.size = sizeof(struct dm_balloon_response); 1251 bl_resp->more_pages = 1; 1252 1253 num_pages -= num_ballooned; 1254 num_ballooned = alloc_balloon_pages(&dm_device, num_pages, 1255 bl_resp, alloc_unit); 1256 1257 if (alloc_unit != 1 && num_ballooned == 0) { 1258 alloc_unit = 1; 1259 continue; 1260 } 1261 1262 if (num_ballooned == 0 || num_ballooned == num_pages) { 1263 pr_debug("Ballooned %u out of %u requested pages.\n", 1264 num_pages, dm_device.balloon_wrk.num_pages); 1265 1266 bl_resp->more_pages = 0; 1267 done = true; 1268 dm_device.state = DM_INITIALIZED; 1269 } 1270 1271 /* 1272 * We are pushing a lot of data through the channel; 1273 * deal with transient failures caused because of the 1274 * lack of space in the ring buffer. 1275 */ 1276 1277 do { 1278 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id); 1279 ret = vmbus_sendpacket(dm_device.dev->channel, 1280 bl_resp, 1281 bl_resp->hdr.size, 1282 (unsigned long)NULL, 1283 VM_PKT_DATA_INBAND, 0); 1284 1285 if (ret == -EAGAIN) 1286 msleep(20); 1287 post_status(&dm_device); 1288 } while (ret == -EAGAIN); 1289 1290 if (ret) { 1291 /* 1292 * Free up the memory we allocatted. 1293 */ 1294 pr_info("Balloon response failed\n"); 1295 1296 for (i = 0; i < bl_resp->range_count; i++) 1297 free_balloon_pages(&dm_device, 1298 &bl_resp->range_array[i]); 1299 1300 done = true; 1301 } 1302 } 1303 1304 } 1305 1306 static void balloon_down(struct hv_dynmem_device *dm, 1307 struct dm_unballoon_request *req) 1308 { 1309 union dm_mem_page_range *range_array = req->range_array; 1310 int range_count = req->range_count; 1311 struct dm_unballoon_response resp; 1312 int i; 1313 unsigned int prev_pages_ballooned = dm->num_pages_ballooned; 1314 1315 for (i = 0; i < range_count; i++) { 1316 free_balloon_pages(dm, &range_array[i]); 1317 complete(&dm_device.config_event); 1318 } 1319 1320 pr_debug("Freed %u ballooned pages.\n", 1321 prev_pages_ballooned - dm->num_pages_ballooned); 1322 1323 if (req->more_pages == 1) 1324 return; 1325 1326 memset(&resp, 0, sizeof(struct dm_unballoon_response)); 1327 resp.hdr.type = DM_UNBALLOON_RESPONSE; 1328 resp.hdr.trans_id = atomic_inc_return(&trans_id); 1329 resp.hdr.size = sizeof(struct dm_unballoon_response); 1330 1331 vmbus_sendpacket(dm_device.dev->channel, &resp, 1332 sizeof(struct dm_unballoon_response), 1333 (unsigned long)NULL, 1334 VM_PKT_DATA_INBAND, 0); 1335 1336 dm->state = DM_INITIALIZED; 1337 } 1338 1339 static void balloon_onchannelcallback(void *context); 1340 1341 static int dm_thread_func(void *dm_dev) 1342 { 1343 struct hv_dynmem_device *dm = dm_dev; 1344 1345 while (!kthread_should_stop()) { 1346 wait_for_completion_interruptible_timeout( 1347 &dm_device.config_event, 1*HZ); 1348 /* 1349 * The host expects us to post information on the memory 1350 * pressure every second. 1351 */ 1352 reinit_completion(&dm_device.config_event); 1353 post_status(dm); 1354 } 1355 1356 return 0; 1357 } 1358 1359 1360 static void version_resp(struct hv_dynmem_device *dm, 1361 struct dm_version_response *vresp) 1362 { 1363 struct dm_version_request version_req; 1364 int ret; 1365 1366 if (vresp->is_accepted) { 1367 /* 1368 * We are done; wakeup the 1369 * context waiting for version 1370 * negotiation. 1371 */ 1372 complete(&dm->host_event); 1373 return; 1374 } 1375 /* 1376 * If there are more versions to try, continue 1377 * with negotiations; if not 1378 * shutdown the service since we are not able 1379 * to negotiate a suitable version number 1380 * with the host. 1381 */ 1382 if (dm->next_version == 0) 1383 goto version_error; 1384 1385 memset(&version_req, 0, sizeof(struct dm_version_request)); 1386 version_req.hdr.type = DM_VERSION_REQUEST; 1387 version_req.hdr.size = sizeof(struct dm_version_request); 1388 version_req.hdr.trans_id = atomic_inc_return(&trans_id); 1389 version_req.version.version = dm->next_version; 1390 dm->version = version_req.version.version; 1391 1392 /* 1393 * Set the next version to try in case current version fails. 1394 * Win7 protocol ought to be the last one to try. 1395 */ 1396 switch (version_req.version.version) { 1397 case DYNMEM_PROTOCOL_VERSION_WIN8: 1398 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7; 1399 version_req.is_last_attempt = 0; 1400 break; 1401 default: 1402 dm->next_version = 0; 1403 version_req.is_last_attempt = 1; 1404 } 1405 1406 ret = vmbus_sendpacket(dm->dev->channel, &version_req, 1407 sizeof(struct dm_version_request), 1408 (unsigned long)NULL, 1409 VM_PKT_DATA_INBAND, 0); 1410 1411 if (ret) 1412 goto version_error; 1413 1414 return; 1415 1416 version_error: 1417 dm->state = DM_INIT_ERROR; 1418 complete(&dm->host_event); 1419 } 1420 1421 static void cap_resp(struct hv_dynmem_device *dm, 1422 struct dm_capabilities_resp_msg *cap_resp) 1423 { 1424 if (!cap_resp->is_accepted) { 1425 pr_info("Capabilities not accepted by host\n"); 1426 dm->state = DM_INIT_ERROR; 1427 } 1428 complete(&dm->host_event); 1429 } 1430 1431 static void balloon_onchannelcallback(void *context) 1432 { 1433 struct hv_device *dev = context; 1434 u32 recvlen; 1435 u64 requestid; 1436 struct dm_message *dm_msg; 1437 struct dm_header *dm_hdr; 1438 struct hv_dynmem_device *dm = hv_get_drvdata(dev); 1439 struct dm_balloon *bal_msg; 1440 struct dm_hot_add *ha_msg; 1441 union dm_mem_page_range *ha_pg_range; 1442 union dm_mem_page_range *ha_region; 1443 1444 memset(recv_buffer, 0, sizeof(recv_buffer)); 1445 vmbus_recvpacket(dev->channel, recv_buffer, 1446 PAGE_SIZE, &recvlen, &requestid); 1447 1448 if (recvlen > 0) { 1449 dm_msg = (struct dm_message *)recv_buffer; 1450 dm_hdr = &dm_msg->hdr; 1451 1452 switch (dm_hdr->type) { 1453 case DM_VERSION_RESPONSE: 1454 version_resp(dm, 1455 (struct dm_version_response *)dm_msg); 1456 break; 1457 1458 case DM_CAPABILITIES_RESPONSE: 1459 cap_resp(dm, 1460 (struct dm_capabilities_resp_msg *)dm_msg); 1461 break; 1462 1463 case DM_BALLOON_REQUEST: 1464 if (dm->state == DM_BALLOON_UP) 1465 pr_warn("Currently ballooning\n"); 1466 bal_msg = (struct dm_balloon *)recv_buffer; 1467 dm->state = DM_BALLOON_UP; 1468 dm_device.balloon_wrk.num_pages = bal_msg->num_pages; 1469 schedule_work(&dm_device.balloon_wrk.wrk); 1470 break; 1471 1472 case DM_UNBALLOON_REQUEST: 1473 dm->state = DM_BALLOON_DOWN; 1474 balloon_down(dm, 1475 (struct dm_unballoon_request *)recv_buffer); 1476 break; 1477 1478 case DM_MEM_HOT_ADD_REQUEST: 1479 if (dm->state == DM_HOT_ADD) 1480 pr_warn("Currently hot-adding\n"); 1481 dm->state = DM_HOT_ADD; 1482 ha_msg = (struct dm_hot_add *)recv_buffer; 1483 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) { 1484 /* 1485 * This is a normal hot-add request specifying 1486 * hot-add memory. 1487 */ 1488 dm->host_specified_ha_region = false; 1489 ha_pg_range = &ha_msg->range; 1490 dm->ha_wrk.ha_page_range = *ha_pg_range; 1491 dm->ha_wrk.ha_region_range.page_range = 0; 1492 } else { 1493 /* 1494 * Host is specifying that we first hot-add 1495 * a region and then partially populate this 1496 * region. 1497 */ 1498 dm->host_specified_ha_region = true; 1499 ha_pg_range = &ha_msg->range; 1500 ha_region = &ha_pg_range[1]; 1501 dm->ha_wrk.ha_page_range = *ha_pg_range; 1502 dm->ha_wrk.ha_region_range = *ha_region; 1503 } 1504 schedule_work(&dm_device.ha_wrk.wrk); 1505 break; 1506 1507 case DM_INFO_MESSAGE: 1508 process_info(dm, (struct dm_info_msg *)dm_msg); 1509 break; 1510 1511 default: 1512 pr_err("Unhandled message: type: %d\n", dm_hdr->type); 1513 1514 } 1515 } 1516 1517 } 1518 1519 static int balloon_probe(struct hv_device *dev, 1520 const struct hv_vmbus_device_id *dev_id) 1521 { 1522 int ret; 1523 unsigned long t; 1524 struct dm_version_request version_req; 1525 struct dm_capabilities cap_msg; 1526 1527 #ifdef CONFIG_MEMORY_HOTPLUG 1528 do_hot_add = hot_add; 1529 #else 1530 do_hot_add = false; 1531 #endif 1532 1533 /* 1534 * First allocate a send buffer. 1535 */ 1536 1537 send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL); 1538 if (!send_buffer) 1539 return -ENOMEM; 1540 1541 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0, 1542 balloon_onchannelcallback, dev); 1543 1544 if (ret) 1545 goto probe_error0; 1546 1547 dm_device.dev = dev; 1548 dm_device.state = DM_INITIALIZING; 1549 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8; 1550 init_completion(&dm_device.host_event); 1551 init_completion(&dm_device.config_event); 1552 INIT_LIST_HEAD(&dm_device.ha_region_list); 1553 spin_lock_init(&dm_device.ha_lock); 1554 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up); 1555 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req); 1556 dm_device.host_specified_ha_region = false; 1557 1558 dm_device.thread = 1559 kthread_run(dm_thread_func, &dm_device, "hv_balloon"); 1560 if (IS_ERR(dm_device.thread)) { 1561 ret = PTR_ERR(dm_device.thread); 1562 goto probe_error1; 1563 } 1564 1565 #ifdef CONFIG_MEMORY_HOTPLUG 1566 set_online_page_callback(&hv_online_page); 1567 register_memory_notifier(&hv_memory_nb); 1568 #endif 1569 1570 hv_set_drvdata(dev, &dm_device); 1571 /* 1572 * Initiate the hand shake with the host and negotiate 1573 * a version that the host can support. We start with the 1574 * highest version number and go down if the host cannot 1575 * support it. 1576 */ 1577 memset(&version_req, 0, sizeof(struct dm_version_request)); 1578 version_req.hdr.type = DM_VERSION_REQUEST; 1579 version_req.hdr.size = sizeof(struct dm_version_request); 1580 version_req.hdr.trans_id = atomic_inc_return(&trans_id); 1581 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10; 1582 version_req.is_last_attempt = 0; 1583 dm_device.version = version_req.version.version; 1584 1585 ret = vmbus_sendpacket(dev->channel, &version_req, 1586 sizeof(struct dm_version_request), 1587 (unsigned long)NULL, 1588 VM_PKT_DATA_INBAND, 0); 1589 if (ret) 1590 goto probe_error2; 1591 1592 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ); 1593 if (t == 0) { 1594 ret = -ETIMEDOUT; 1595 goto probe_error2; 1596 } 1597 1598 /* 1599 * If we could not negotiate a compatible version with the host 1600 * fail the probe function. 1601 */ 1602 if (dm_device.state == DM_INIT_ERROR) { 1603 ret = -ETIMEDOUT; 1604 goto probe_error2; 1605 } 1606 1607 pr_info("Using Dynamic Memory protocol version %u.%u\n", 1608 DYNMEM_MAJOR_VERSION(dm_device.version), 1609 DYNMEM_MINOR_VERSION(dm_device.version)); 1610 1611 /* 1612 * Now submit our capabilities to the host. 1613 */ 1614 memset(&cap_msg, 0, sizeof(struct dm_capabilities)); 1615 cap_msg.hdr.type = DM_CAPABILITIES_REPORT; 1616 cap_msg.hdr.size = sizeof(struct dm_capabilities); 1617 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id); 1618 1619 cap_msg.caps.cap_bits.balloon = 1; 1620 cap_msg.caps.cap_bits.hot_add = 1; 1621 1622 /* 1623 * Specify our alignment requirements as it relates 1624 * memory hot-add. Specify 128MB alignment. 1625 */ 1626 cap_msg.caps.cap_bits.hot_add_alignment = 7; 1627 1628 /* 1629 * Currently the host does not use these 1630 * values and we set them to what is done in the 1631 * Windows driver. 1632 */ 1633 cap_msg.min_page_cnt = 0; 1634 cap_msg.max_page_number = -1; 1635 1636 ret = vmbus_sendpacket(dev->channel, &cap_msg, 1637 sizeof(struct dm_capabilities), 1638 (unsigned long)NULL, 1639 VM_PKT_DATA_INBAND, 0); 1640 if (ret) 1641 goto probe_error2; 1642 1643 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ); 1644 if (t == 0) { 1645 ret = -ETIMEDOUT; 1646 goto probe_error2; 1647 } 1648 1649 /* 1650 * If the host does not like our capabilities, 1651 * fail the probe function. 1652 */ 1653 if (dm_device.state == DM_INIT_ERROR) { 1654 ret = -ETIMEDOUT; 1655 goto probe_error2; 1656 } 1657 1658 dm_device.state = DM_INITIALIZED; 1659 1660 return 0; 1661 1662 probe_error2: 1663 #ifdef CONFIG_MEMORY_HOTPLUG 1664 restore_online_page_callback(&hv_online_page); 1665 #endif 1666 kthread_stop(dm_device.thread); 1667 1668 probe_error1: 1669 vmbus_close(dev->channel); 1670 probe_error0: 1671 kfree(send_buffer); 1672 return ret; 1673 } 1674 1675 static int balloon_remove(struct hv_device *dev) 1676 { 1677 struct hv_dynmem_device *dm = hv_get_drvdata(dev); 1678 struct hv_hotadd_state *has, *tmp; 1679 struct hv_hotadd_gap *gap, *tmp_gap; 1680 unsigned long flags; 1681 1682 if (dm->num_pages_ballooned != 0) 1683 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned); 1684 1685 cancel_work_sync(&dm->balloon_wrk.wrk); 1686 cancel_work_sync(&dm->ha_wrk.wrk); 1687 1688 vmbus_close(dev->channel); 1689 kthread_stop(dm->thread); 1690 kfree(send_buffer); 1691 #ifdef CONFIG_MEMORY_HOTPLUG 1692 restore_online_page_callback(&hv_online_page); 1693 unregister_memory_notifier(&hv_memory_nb); 1694 #endif 1695 spin_lock_irqsave(&dm_device.ha_lock, flags); 1696 list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) { 1697 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) { 1698 list_del(&gap->list); 1699 kfree(gap); 1700 } 1701 list_del(&has->list); 1702 kfree(has); 1703 } 1704 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 1705 1706 return 0; 1707 } 1708 1709 static const struct hv_vmbus_device_id id_table[] = { 1710 /* Dynamic Memory Class ID */ 1711 /* 525074DC-8985-46e2-8057-A307DC18A502 */ 1712 { HV_DM_GUID, }, 1713 { }, 1714 }; 1715 1716 MODULE_DEVICE_TABLE(vmbus, id_table); 1717 1718 static struct hv_driver balloon_drv = { 1719 .name = "hv_balloon", 1720 .id_table = id_table, 1721 .probe = balloon_probe, 1722 .remove = balloon_remove, 1723 }; 1724 1725 static int __init init_balloon_drv(void) 1726 { 1727 1728 return vmbus_driver_register(&balloon_drv); 1729 } 1730 1731 module_init(init_balloon_drv); 1732 1733 MODULE_DESCRIPTION("Hyper-V Balloon"); 1734 MODULE_LICENSE("GPL"); 1735