xref: /openbmc/linux/drivers/hv/hv_balloon.c (revision 4bb1eb3c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012, Microsoft Corporation.
4  *
5  * Author:
6  *   K. Y. Srinivasan <kys@microsoft.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/jiffies.h>
13 #include <linux/mman.h>
14 #include <linux/delay.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/kthread.h>
19 #include <linux/completion.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/memory.h>
22 #include <linux/notifier.h>
23 #include <linux/percpu_counter.h>
24 
25 #include <linux/hyperv.h>
26 #include <asm/hyperv-tlfs.h>
27 
28 #include <asm/mshyperv.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include "hv_trace_balloon.h"
32 
33 /*
34  * We begin with definitions supporting the Dynamic Memory protocol
35  * with the host.
36  *
37  * Begin protocol definitions.
38  */
39 
40 
41 
42 /*
43  * Protocol versions. The low word is the minor version, the high word the major
44  * version.
45  *
46  * History:
47  * Initial version 1.0
48  * Changed to 0.1 on 2009/03/25
49  * Changes to 0.2 on 2009/05/14
50  * Changes to 0.3 on 2009/12/03
51  * Changed to 1.0 on 2011/04/05
52  */
53 
54 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
55 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
56 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
57 
58 enum {
59 	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
60 	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
61 	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
62 
63 	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
64 	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
65 	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
66 
67 	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
68 };
69 
70 
71 
72 /*
73  * Message Types
74  */
75 
76 enum dm_message_type {
77 	/*
78 	 * Version 0.3
79 	 */
80 	DM_ERROR			= 0,
81 	DM_VERSION_REQUEST		= 1,
82 	DM_VERSION_RESPONSE		= 2,
83 	DM_CAPABILITIES_REPORT		= 3,
84 	DM_CAPABILITIES_RESPONSE	= 4,
85 	DM_STATUS_REPORT		= 5,
86 	DM_BALLOON_REQUEST		= 6,
87 	DM_BALLOON_RESPONSE		= 7,
88 	DM_UNBALLOON_REQUEST		= 8,
89 	DM_UNBALLOON_RESPONSE		= 9,
90 	DM_MEM_HOT_ADD_REQUEST		= 10,
91 	DM_MEM_HOT_ADD_RESPONSE		= 11,
92 	DM_VERSION_03_MAX		= 11,
93 	/*
94 	 * Version 1.0.
95 	 */
96 	DM_INFO_MESSAGE			= 12,
97 	DM_VERSION_1_MAX		= 12
98 };
99 
100 
101 /*
102  * Structures defining the dynamic memory management
103  * protocol.
104  */
105 
106 union dm_version {
107 	struct {
108 		__u16 minor_version;
109 		__u16 major_version;
110 	};
111 	__u32 version;
112 } __packed;
113 
114 
115 union dm_caps {
116 	struct {
117 		__u64 balloon:1;
118 		__u64 hot_add:1;
119 		/*
120 		 * To support guests that may have alignment
121 		 * limitations on hot-add, the guest can specify
122 		 * its alignment requirements; a value of n
123 		 * represents an alignment of 2^n in mega bytes.
124 		 */
125 		__u64 hot_add_alignment:4;
126 		__u64 reservedz:58;
127 	} cap_bits;
128 	__u64 caps;
129 } __packed;
130 
131 union dm_mem_page_range {
132 	struct  {
133 		/*
134 		 * The PFN number of the first page in the range.
135 		 * 40 bits is the architectural limit of a PFN
136 		 * number for AMD64.
137 		 */
138 		__u64 start_page:40;
139 		/*
140 		 * The number of pages in the range.
141 		 */
142 		__u64 page_cnt:24;
143 	} finfo;
144 	__u64  page_range;
145 } __packed;
146 
147 
148 
149 /*
150  * The header for all dynamic memory messages:
151  *
152  * type: Type of the message.
153  * size: Size of the message in bytes; including the header.
154  * trans_id: The guest is responsible for manufacturing this ID.
155  */
156 
157 struct dm_header {
158 	__u16 type;
159 	__u16 size;
160 	__u32 trans_id;
161 } __packed;
162 
163 /*
164  * A generic message format for dynamic memory.
165  * Specific message formats are defined later in the file.
166  */
167 
168 struct dm_message {
169 	struct dm_header hdr;
170 	__u8 data[]; /* enclosed message */
171 } __packed;
172 
173 
174 /*
175  * Specific message types supporting the dynamic memory protocol.
176  */
177 
178 /*
179  * Version negotiation message. Sent from the guest to the host.
180  * The guest is free to try different versions until the host
181  * accepts the version.
182  *
183  * dm_version: The protocol version requested.
184  * is_last_attempt: If TRUE, this is the last version guest will request.
185  * reservedz: Reserved field, set to zero.
186  */
187 
188 struct dm_version_request {
189 	struct dm_header hdr;
190 	union dm_version version;
191 	__u32 is_last_attempt:1;
192 	__u32 reservedz:31;
193 } __packed;
194 
195 /*
196  * Version response message; Host to Guest and indicates
197  * if the host has accepted the version sent by the guest.
198  *
199  * is_accepted: If TRUE, host has accepted the version and the guest
200  * should proceed to the next stage of the protocol. FALSE indicates that
201  * guest should re-try with a different version.
202  *
203  * reservedz: Reserved field, set to zero.
204  */
205 
206 struct dm_version_response {
207 	struct dm_header hdr;
208 	__u64 is_accepted:1;
209 	__u64 reservedz:63;
210 } __packed;
211 
212 /*
213  * Message reporting capabilities. This is sent from the guest to the
214  * host.
215  */
216 
217 struct dm_capabilities {
218 	struct dm_header hdr;
219 	union dm_caps caps;
220 	__u64 min_page_cnt;
221 	__u64 max_page_number;
222 } __packed;
223 
224 /*
225  * Response to the capabilities message. This is sent from the host to the
226  * guest. This message notifies if the host has accepted the guest's
227  * capabilities. If the host has not accepted, the guest must shutdown
228  * the service.
229  *
230  * is_accepted: Indicates if the host has accepted guest's capabilities.
231  * reservedz: Must be 0.
232  */
233 
234 struct dm_capabilities_resp_msg {
235 	struct dm_header hdr;
236 	__u64 is_accepted:1;
237 	__u64 reservedz:63;
238 } __packed;
239 
240 /*
241  * This message is used to report memory pressure from the guest.
242  * This message is not part of any transaction and there is no
243  * response to this message.
244  *
245  * num_avail: Available memory in pages.
246  * num_committed: Committed memory in pages.
247  * page_file_size: The accumulated size of all page files
248  *		   in the system in pages.
249  * zero_free: The nunber of zero and free pages.
250  * page_file_writes: The writes to the page file in pages.
251  * io_diff: An indicator of file cache efficiency or page file activity,
252  *	    calculated as File Cache Page Fault Count - Page Read Count.
253  *	    This value is in pages.
254  *
255  * Some of these metrics are Windows specific and fortunately
256  * the algorithm on the host side that computes the guest memory
257  * pressure only uses num_committed value.
258  */
259 
260 struct dm_status {
261 	struct dm_header hdr;
262 	__u64 num_avail;
263 	__u64 num_committed;
264 	__u64 page_file_size;
265 	__u64 zero_free;
266 	__u32 page_file_writes;
267 	__u32 io_diff;
268 } __packed;
269 
270 
271 /*
272  * Message to ask the guest to allocate memory - balloon up message.
273  * This message is sent from the host to the guest. The guest may not be
274  * able to allocate as much memory as requested.
275  *
276  * num_pages: number of pages to allocate.
277  */
278 
279 struct dm_balloon {
280 	struct dm_header hdr;
281 	__u32 num_pages;
282 	__u32 reservedz;
283 } __packed;
284 
285 
286 /*
287  * Balloon response message; this message is sent from the guest
288  * to the host in response to the balloon message.
289  *
290  * reservedz: Reserved; must be set to zero.
291  * more_pages: If FALSE, this is the last message of the transaction.
292  * if TRUE there will atleast one more message from the guest.
293  *
294  * range_count: The number of ranges in the range array.
295  *
296  * range_array: An array of page ranges returned to the host.
297  *
298  */
299 
300 struct dm_balloon_response {
301 	struct dm_header hdr;
302 	__u32 reservedz;
303 	__u32 more_pages:1;
304 	__u32 range_count:31;
305 	union dm_mem_page_range range_array[];
306 } __packed;
307 
308 /*
309  * Un-balloon message; this message is sent from the host
310  * to the guest to give guest more memory.
311  *
312  * more_pages: If FALSE, this is the last message of the transaction.
313  * if TRUE there will atleast one more message from the guest.
314  *
315  * reservedz: Reserved; must be set to zero.
316  *
317  * range_count: The number of ranges in the range array.
318  *
319  * range_array: An array of page ranges returned to the host.
320  *
321  */
322 
323 struct dm_unballoon_request {
324 	struct dm_header hdr;
325 	__u32 more_pages:1;
326 	__u32 reservedz:31;
327 	__u32 range_count;
328 	union dm_mem_page_range range_array[];
329 } __packed;
330 
331 /*
332  * Un-balloon response message; this message is sent from the guest
333  * to the host in response to an unballoon request.
334  *
335  */
336 
337 struct dm_unballoon_response {
338 	struct dm_header hdr;
339 } __packed;
340 
341 
342 /*
343  * Hot add request message. Message sent from the host to the guest.
344  *
345  * mem_range: Memory range to hot add.
346  *
347  */
348 
349 struct dm_hot_add {
350 	struct dm_header hdr;
351 	union dm_mem_page_range range;
352 } __packed;
353 
354 /*
355  * Hot add response message.
356  * This message is sent by the guest to report the status of a hot add request.
357  * If page_count is less than the requested page count, then the host should
358  * assume all further hot add requests will fail, since this indicates that
359  * the guest has hit an upper physical memory barrier.
360  *
361  * Hot adds may also fail due to low resources; in this case, the guest must
362  * not complete this message until the hot add can succeed, and the host must
363  * not send a new hot add request until the response is sent.
364  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
365  * times it fails the request.
366  *
367  *
368  * page_count: number of pages that were successfully hot added.
369  *
370  * result: result of the operation 1: success, 0: failure.
371  *
372  */
373 
374 struct dm_hot_add_response {
375 	struct dm_header hdr;
376 	__u32 page_count;
377 	__u32 result;
378 } __packed;
379 
380 /*
381  * Types of information sent from host to the guest.
382  */
383 
384 enum dm_info_type {
385 	INFO_TYPE_MAX_PAGE_CNT = 0,
386 	MAX_INFO_TYPE
387 };
388 
389 
390 /*
391  * Header for the information message.
392  */
393 
394 struct dm_info_header {
395 	enum dm_info_type type;
396 	__u32 data_size;
397 } __packed;
398 
399 /*
400  * This message is sent from the host to the guest to pass
401  * some relevant information (win8 addition).
402  *
403  * reserved: no used.
404  * info_size: size of the information blob.
405  * info: information blob.
406  */
407 
408 struct dm_info_msg {
409 	struct dm_header hdr;
410 	__u32 reserved;
411 	__u32 info_size;
412 	__u8  info[];
413 };
414 
415 /*
416  * End protocol definitions.
417  */
418 
419 /*
420  * State to manage hot adding memory into the guest.
421  * The range start_pfn : end_pfn specifies the range
422  * that the host has asked us to hot add. The range
423  * start_pfn : ha_end_pfn specifies the range that we have
424  * currently hot added. We hot add in multiples of 128M
425  * chunks; it is possible that we may not be able to bring
426  * online all the pages in the region. The range
427  * covered_start_pfn:covered_end_pfn defines the pages that can
428  * be brough online.
429  */
430 
431 struct hv_hotadd_state {
432 	struct list_head list;
433 	unsigned long start_pfn;
434 	unsigned long covered_start_pfn;
435 	unsigned long covered_end_pfn;
436 	unsigned long ha_end_pfn;
437 	unsigned long end_pfn;
438 	/*
439 	 * A list of gaps.
440 	 */
441 	struct list_head gap_list;
442 };
443 
444 struct hv_hotadd_gap {
445 	struct list_head list;
446 	unsigned long start_pfn;
447 	unsigned long end_pfn;
448 };
449 
450 struct balloon_state {
451 	__u32 num_pages;
452 	struct work_struct wrk;
453 };
454 
455 struct hot_add_wrk {
456 	union dm_mem_page_range ha_page_range;
457 	union dm_mem_page_range ha_region_range;
458 	struct work_struct wrk;
459 };
460 
461 static bool allow_hibernation;
462 static bool hot_add = true;
463 static bool do_hot_add;
464 /*
465  * Delay reporting memory pressure by
466  * the specified number of seconds.
467  */
468 static uint pressure_report_delay = 45;
469 
470 /*
471  * The last time we posted a pressure report to host.
472  */
473 static unsigned long last_post_time;
474 
475 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
476 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
477 
478 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
479 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
480 static atomic_t trans_id = ATOMIC_INIT(0);
481 
482 static int dm_ring_size = 20 * 1024;
483 
484 /*
485  * Driver specific state.
486  */
487 
488 enum hv_dm_state {
489 	DM_INITIALIZING = 0,
490 	DM_INITIALIZED,
491 	DM_BALLOON_UP,
492 	DM_BALLOON_DOWN,
493 	DM_HOT_ADD,
494 	DM_INIT_ERROR
495 };
496 
497 
498 static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
499 static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
500 #define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
501 #define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
502 
503 struct hv_dynmem_device {
504 	struct hv_device *dev;
505 	enum hv_dm_state state;
506 	struct completion host_event;
507 	struct completion config_event;
508 
509 	/*
510 	 * Number of pages we have currently ballooned out.
511 	 */
512 	unsigned int num_pages_ballooned;
513 	unsigned int num_pages_onlined;
514 	unsigned int num_pages_added;
515 
516 	/*
517 	 * State to manage the ballooning (up) operation.
518 	 */
519 	struct balloon_state balloon_wrk;
520 
521 	/*
522 	 * State to execute the "hot-add" operation.
523 	 */
524 	struct hot_add_wrk ha_wrk;
525 
526 	/*
527 	 * This state tracks if the host has specified a hot-add
528 	 * region.
529 	 */
530 	bool host_specified_ha_region;
531 
532 	/*
533 	 * State to synchronize hot-add.
534 	 */
535 	struct completion  ol_waitevent;
536 	/*
537 	 * This thread handles hot-add
538 	 * requests from the host as well as notifying
539 	 * the host with regards to memory pressure in
540 	 * the guest.
541 	 */
542 	struct task_struct *thread;
543 
544 	/*
545 	 * Protects ha_region_list, num_pages_onlined counter and individual
546 	 * regions from ha_region_list.
547 	 */
548 	spinlock_t ha_lock;
549 
550 	/*
551 	 * A list of hot-add regions.
552 	 */
553 	struct list_head ha_region_list;
554 
555 	/*
556 	 * We start with the highest version we can support
557 	 * and downgrade based on the host; we save here the
558 	 * next version to try.
559 	 */
560 	__u32 next_version;
561 
562 	/*
563 	 * The negotiated version agreed by host.
564 	 */
565 	__u32 version;
566 };
567 
568 static struct hv_dynmem_device dm_device;
569 
570 static void post_status(struct hv_dynmem_device *dm);
571 
572 #ifdef CONFIG_MEMORY_HOTPLUG
573 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
574 				     unsigned long pfn)
575 {
576 	struct hv_hotadd_gap *gap;
577 
578 	/* The page is not backed. */
579 	if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
580 		return false;
581 
582 	/* Check for gaps. */
583 	list_for_each_entry(gap, &has->gap_list, list) {
584 		if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
585 			return false;
586 	}
587 
588 	return true;
589 }
590 
591 static unsigned long hv_page_offline_check(unsigned long start_pfn,
592 					   unsigned long nr_pages)
593 {
594 	unsigned long pfn = start_pfn, count = 0;
595 	struct hv_hotadd_state *has;
596 	bool found;
597 
598 	while (pfn < start_pfn + nr_pages) {
599 		/*
600 		 * Search for HAS which covers the pfn and when we find one
601 		 * count how many consequitive PFNs are covered.
602 		 */
603 		found = false;
604 		list_for_each_entry(has, &dm_device.ha_region_list, list) {
605 			while ((pfn >= has->start_pfn) &&
606 			       (pfn < has->end_pfn) &&
607 			       (pfn < start_pfn + nr_pages)) {
608 				found = true;
609 				if (has_pfn_is_backed(has, pfn))
610 					count++;
611 				pfn++;
612 			}
613 		}
614 
615 		/*
616 		 * This PFN is not in any HAS (e.g. we're offlining a region
617 		 * which was present at boot), no need to account for it. Go
618 		 * to the next one.
619 		 */
620 		if (!found)
621 			pfn++;
622 	}
623 
624 	return count;
625 }
626 
627 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
628 			      void *v)
629 {
630 	struct memory_notify *mem = (struct memory_notify *)v;
631 	unsigned long flags, pfn_count;
632 
633 	switch (val) {
634 	case MEM_ONLINE:
635 	case MEM_CANCEL_ONLINE:
636 		complete(&dm_device.ol_waitevent);
637 		break;
638 
639 	case MEM_OFFLINE:
640 		spin_lock_irqsave(&dm_device.ha_lock, flags);
641 		pfn_count = hv_page_offline_check(mem->start_pfn,
642 						  mem->nr_pages);
643 		if (pfn_count <= dm_device.num_pages_onlined) {
644 			dm_device.num_pages_onlined -= pfn_count;
645 		} else {
646 			/*
647 			 * We're offlining more pages than we managed to online.
648 			 * This is unexpected. In any case don't let
649 			 * num_pages_onlined wrap around zero.
650 			 */
651 			WARN_ON_ONCE(1);
652 			dm_device.num_pages_onlined = 0;
653 		}
654 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
655 		break;
656 	case MEM_GOING_ONLINE:
657 	case MEM_GOING_OFFLINE:
658 	case MEM_CANCEL_OFFLINE:
659 		break;
660 	}
661 	return NOTIFY_OK;
662 }
663 
664 static struct notifier_block hv_memory_nb = {
665 	.notifier_call = hv_memory_notifier,
666 	.priority = 0
667 };
668 
669 /* Check if the particular page is backed and can be onlined and online it. */
670 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
671 {
672 	if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
673 		if (!PageOffline(pg))
674 			__SetPageOffline(pg);
675 		return;
676 	}
677 	if (PageOffline(pg))
678 		__ClearPageOffline(pg);
679 
680 	/* This frame is currently backed; online the page. */
681 	generic_online_page(pg, 0);
682 
683 	lockdep_assert_held(&dm_device.ha_lock);
684 	dm_device.num_pages_onlined++;
685 }
686 
687 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
688 				unsigned long start_pfn, unsigned long size)
689 {
690 	int i;
691 
692 	pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
693 	for (i = 0; i < size; i++)
694 		hv_page_online_one(has, pfn_to_page(start_pfn + i));
695 }
696 
697 static void hv_mem_hot_add(unsigned long start, unsigned long size,
698 				unsigned long pfn_count,
699 				struct hv_hotadd_state *has)
700 {
701 	int ret = 0;
702 	int i, nid;
703 	unsigned long start_pfn;
704 	unsigned long processed_pfn;
705 	unsigned long total_pfn = pfn_count;
706 	unsigned long flags;
707 
708 	for (i = 0; i < (size/HA_CHUNK); i++) {
709 		start_pfn = start + (i * HA_CHUNK);
710 
711 		spin_lock_irqsave(&dm_device.ha_lock, flags);
712 		has->ha_end_pfn +=  HA_CHUNK;
713 
714 		if (total_pfn > HA_CHUNK) {
715 			processed_pfn = HA_CHUNK;
716 			total_pfn -= HA_CHUNK;
717 		} else {
718 			processed_pfn = total_pfn;
719 			total_pfn = 0;
720 		}
721 
722 		has->covered_end_pfn +=  processed_pfn;
723 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
724 
725 		reinit_completion(&dm_device.ol_waitevent);
726 
727 		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
728 		ret = add_memory(nid, PFN_PHYS((start_pfn)),
729 				(HA_CHUNK << PAGE_SHIFT));
730 
731 		if (ret) {
732 			pr_err("hot_add memory failed error is %d\n", ret);
733 			if (ret == -EEXIST) {
734 				/*
735 				 * This error indicates that the error
736 				 * is not a transient failure. This is the
737 				 * case where the guest's physical address map
738 				 * precludes hot adding memory. Stop all further
739 				 * memory hot-add.
740 				 */
741 				do_hot_add = false;
742 			}
743 			spin_lock_irqsave(&dm_device.ha_lock, flags);
744 			has->ha_end_pfn -= HA_CHUNK;
745 			has->covered_end_pfn -=  processed_pfn;
746 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
747 			break;
748 		}
749 
750 		/*
751 		 * Wait for memory to get onlined. If the kernel onlined the
752 		 * memory when adding it, this will return directly. Otherwise,
753 		 * it will wait for user space to online the memory. This helps
754 		 * to avoid adding memory faster than it is getting onlined. As
755 		 * adding succeeded, it is ok to proceed even if the memory was
756 		 * not onlined in time.
757 		 */
758 		wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
759 		post_status(&dm_device);
760 	}
761 }
762 
763 static void hv_online_page(struct page *pg, unsigned int order)
764 {
765 	struct hv_hotadd_state *has;
766 	unsigned long flags;
767 	unsigned long pfn = page_to_pfn(pg);
768 
769 	spin_lock_irqsave(&dm_device.ha_lock, flags);
770 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
771 		/* The page belongs to a different HAS. */
772 		if ((pfn < has->start_pfn) ||
773 				(pfn + (1UL << order) > has->end_pfn))
774 			continue;
775 
776 		hv_bring_pgs_online(has, pfn, 1UL << order);
777 		break;
778 	}
779 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
780 }
781 
782 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
783 {
784 	struct hv_hotadd_state *has;
785 	struct hv_hotadd_gap *gap;
786 	unsigned long residual, new_inc;
787 	int ret = 0;
788 	unsigned long flags;
789 
790 	spin_lock_irqsave(&dm_device.ha_lock, flags);
791 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
792 		/*
793 		 * If the pfn range we are dealing with is not in the current
794 		 * "hot add block", move on.
795 		 */
796 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
797 			continue;
798 
799 		/*
800 		 * If the current start pfn is not where the covered_end
801 		 * is, create a gap and update covered_end_pfn.
802 		 */
803 		if (has->covered_end_pfn != start_pfn) {
804 			gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
805 			if (!gap) {
806 				ret = -ENOMEM;
807 				break;
808 			}
809 
810 			INIT_LIST_HEAD(&gap->list);
811 			gap->start_pfn = has->covered_end_pfn;
812 			gap->end_pfn = start_pfn;
813 			list_add_tail(&gap->list, &has->gap_list);
814 
815 			has->covered_end_pfn = start_pfn;
816 		}
817 
818 		/*
819 		 * If the current hot add-request extends beyond
820 		 * our current limit; extend it.
821 		 */
822 		if ((start_pfn + pfn_cnt) > has->end_pfn) {
823 			residual = (start_pfn + pfn_cnt - has->end_pfn);
824 			/*
825 			 * Extend the region by multiples of HA_CHUNK.
826 			 */
827 			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
828 			if (residual % HA_CHUNK)
829 				new_inc += HA_CHUNK;
830 
831 			has->end_pfn += new_inc;
832 		}
833 
834 		ret = 1;
835 		break;
836 	}
837 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
838 
839 	return ret;
840 }
841 
842 static unsigned long handle_pg_range(unsigned long pg_start,
843 					unsigned long pg_count)
844 {
845 	unsigned long start_pfn = pg_start;
846 	unsigned long pfn_cnt = pg_count;
847 	unsigned long size;
848 	struct hv_hotadd_state *has;
849 	unsigned long pgs_ol = 0;
850 	unsigned long old_covered_state;
851 	unsigned long res = 0, flags;
852 
853 	pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
854 		pg_start);
855 
856 	spin_lock_irqsave(&dm_device.ha_lock, flags);
857 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
858 		/*
859 		 * If the pfn range we are dealing with is not in the current
860 		 * "hot add block", move on.
861 		 */
862 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
863 			continue;
864 
865 		old_covered_state = has->covered_end_pfn;
866 
867 		if (start_pfn < has->ha_end_pfn) {
868 			/*
869 			 * This is the case where we are backing pages
870 			 * in an already hot added region. Bring
871 			 * these pages online first.
872 			 */
873 			pgs_ol = has->ha_end_pfn - start_pfn;
874 			if (pgs_ol > pfn_cnt)
875 				pgs_ol = pfn_cnt;
876 
877 			has->covered_end_pfn +=  pgs_ol;
878 			pfn_cnt -= pgs_ol;
879 			/*
880 			 * Check if the corresponding memory block is already
881 			 * online. It is possible to observe struct pages still
882 			 * being uninitialized here so check section instead.
883 			 * In case the section is online we need to bring the
884 			 * rest of pfns (which were not backed previously)
885 			 * online too.
886 			 */
887 			if (start_pfn > has->start_pfn &&
888 			    online_section_nr(pfn_to_section_nr(start_pfn)))
889 				hv_bring_pgs_online(has, start_pfn, pgs_ol);
890 
891 		}
892 
893 		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
894 			/*
895 			 * We have some residual hot add range
896 			 * that needs to be hot added; hot add
897 			 * it now. Hot add a multiple of
898 			 * of HA_CHUNK that fully covers the pages
899 			 * we have.
900 			 */
901 			size = (has->end_pfn - has->ha_end_pfn);
902 			if (pfn_cnt <= size) {
903 				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
904 				if (pfn_cnt % HA_CHUNK)
905 					size += HA_CHUNK;
906 			} else {
907 				pfn_cnt = size;
908 			}
909 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
910 			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
911 			spin_lock_irqsave(&dm_device.ha_lock, flags);
912 		}
913 		/*
914 		 * If we managed to online any pages that were given to us,
915 		 * we declare success.
916 		 */
917 		res = has->covered_end_pfn - old_covered_state;
918 		break;
919 	}
920 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
921 
922 	return res;
923 }
924 
925 static unsigned long process_hot_add(unsigned long pg_start,
926 					unsigned long pfn_cnt,
927 					unsigned long rg_start,
928 					unsigned long rg_size)
929 {
930 	struct hv_hotadd_state *ha_region = NULL;
931 	int covered;
932 	unsigned long flags;
933 
934 	if (pfn_cnt == 0)
935 		return 0;
936 
937 	if (!dm_device.host_specified_ha_region) {
938 		covered = pfn_covered(pg_start, pfn_cnt);
939 		if (covered < 0)
940 			return 0;
941 
942 		if (covered)
943 			goto do_pg_range;
944 	}
945 
946 	/*
947 	 * If the host has specified a hot-add range; deal with it first.
948 	 */
949 
950 	if (rg_size != 0) {
951 		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
952 		if (!ha_region)
953 			return 0;
954 
955 		INIT_LIST_HEAD(&ha_region->list);
956 		INIT_LIST_HEAD(&ha_region->gap_list);
957 
958 		ha_region->start_pfn = rg_start;
959 		ha_region->ha_end_pfn = rg_start;
960 		ha_region->covered_start_pfn = pg_start;
961 		ha_region->covered_end_pfn = pg_start;
962 		ha_region->end_pfn = rg_start + rg_size;
963 
964 		spin_lock_irqsave(&dm_device.ha_lock, flags);
965 		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
966 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
967 	}
968 
969 do_pg_range:
970 	/*
971 	 * Process the page range specified; bringing them
972 	 * online if possible.
973 	 */
974 	return handle_pg_range(pg_start, pfn_cnt);
975 }
976 
977 #endif
978 
979 static void hot_add_req(struct work_struct *dummy)
980 {
981 	struct dm_hot_add_response resp;
982 #ifdef CONFIG_MEMORY_HOTPLUG
983 	unsigned long pg_start, pfn_cnt;
984 	unsigned long rg_start, rg_sz;
985 #endif
986 	struct hv_dynmem_device *dm = &dm_device;
987 
988 	memset(&resp, 0, sizeof(struct dm_hot_add_response));
989 	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
990 	resp.hdr.size = sizeof(struct dm_hot_add_response);
991 
992 #ifdef CONFIG_MEMORY_HOTPLUG
993 	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
994 	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
995 
996 	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
997 	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
998 
999 	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1000 		unsigned long region_size;
1001 		unsigned long region_start;
1002 
1003 		/*
1004 		 * The host has not specified the hot-add region.
1005 		 * Based on the hot-add page range being specified,
1006 		 * compute a hot-add region that can cover the pages
1007 		 * that need to be hot-added while ensuring the alignment
1008 		 * and size requirements of Linux as it relates to hot-add.
1009 		 */
1010 		region_start = pg_start;
1011 		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1012 		if (pfn_cnt % HA_CHUNK)
1013 			region_size += HA_CHUNK;
1014 
1015 		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1016 
1017 		rg_start = region_start;
1018 		rg_sz = region_size;
1019 	}
1020 
1021 	if (do_hot_add)
1022 		resp.page_count = process_hot_add(pg_start, pfn_cnt,
1023 						rg_start, rg_sz);
1024 
1025 	dm->num_pages_added += resp.page_count;
1026 #endif
1027 	/*
1028 	 * The result field of the response structure has the
1029 	 * following semantics:
1030 	 *
1031 	 * 1. If all or some pages hot-added: Guest should return success.
1032 	 *
1033 	 * 2. If no pages could be hot-added:
1034 	 *
1035 	 * If the guest returns success, then the host
1036 	 * will not attempt any further hot-add operations. This
1037 	 * signifies a permanent failure.
1038 	 *
1039 	 * If the guest returns failure, then this failure will be
1040 	 * treated as a transient failure and the host may retry the
1041 	 * hot-add operation after some delay.
1042 	 */
1043 	if (resp.page_count > 0)
1044 		resp.result = 1;
1045 	else if (!do_hot_add)
1046 		resp.result = 1;
1047 	else
1048 		resp.result = 0;
1049 
1050 	if (!do_hot_add || resp.page_count == 0) {
1051 		if (!allow_hibernation)
1052 			pr_err("Memory hot add failed\n");
1053 		else
1054 			pr_info("Ignore hot-add request!\n");
1055 	}
1056 
1057 	dm->state = DM_INITIALIZED;
1058 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1059 	vmbus_sendpacket(dm->dev->channel, &resp,
1060 			sizeof(struct dm_hot_add_response),
1061 			(unsigned long)NULL,
1062 			VM_PKT_DATA_INBAND, 0);
1063 }
1064 
1065 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1066 {
1067 	struct dm_info_header *info_hdr;
1068 
1069 	info_hdr = (struct dm_info_header *)msg->info;
1070 
1071 	switch (info_hdr->type) {
1072 	case INFO_TYPE_MAX_PAGE_CNT:
1073 		if (info_hdr->data_size == sizeof(__u64)) {
1074 			__u64 *max_page_count = (__u64 *)&info_hdr[1];
1075 
1076 			pr_info("Max. dynamic memory size: %llu MB\n",
1077 				(*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1078 		}
1079 
1080 		break;
1081 	default:
1082 		pr_warn("Received Unknown type: %d\n", info_hdr->type);
1083 	}
1084 }
1085 
1086 static unsigned long compute_balloon_floor(void)
1087 {
1088 	unsigned long min_pages;
1089 	unsigned long nr_pages = totalram_pages();
1090 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1091 	/* Simple continuous piecewiese linear function:
1092 	 *  max MiB -> min MiB  gradient
1093 	 *       0         0
1094 	 *      16        16
1095 	 *      32        24
1096 	 *     128        72    (1/2)
1097 	 *     512       168    (1/4)
1098 	 *    2048       360    (1/8)
1099 	 *    8192       744    (1/16)
1100 	 *   32768      1512	(1/32)
1101 	 */
1102 	if (nr_pages < MB2PAGES(128))
1103 		min_pages = MB2PAGES(8) + (nr_pages >> 1);
1104 	else if (nr_pages < MB2PAGES(512))
1105 		min_pages = MB2PAGES(40) + (nr_pages >> 2);
1106 	else if (nr_pages < MB2PAGES(2048))
1107 		min_pages = MB2PAGES(104) + (nr_pages >> 3);
1108 	else if (nr_pages < MB2PAGES(8192))
1109 		min_pages = MB2PAGES(232) + (nr_pages >> 4);
1110 	else
1111 		min_pages = MB2PAGES(488) + (nr_pages >> 5);
1112 #undef MB2PAGES
1113 	return min_pages;
1114 }
1115 
1116 /*
1117  * Post our status as it relates memory pressure to the
1118  * host. Host expects the guests to post this status
1119  * periodically at 1 second intervals.
1120  *
1121  * The metrics specified in this protocol are very Windows
1122  * specific and so we cook up numbers here to convey our memory
1123  * pressure.
1124  */
1125 
1126 static void post_status(struct hv_dynmem_device *dm)
1127 {
1128 	struct dm_status status;
1129 	unsigned long now = jiffies;
1130 	unsigned long last_post = last_post_time;
1131 
1132 	if (pressure_report_delay > 0) {
1133 		--pressure_report_delay;
1134 		return;
1135 	}
1136 
1137 	if (!time_after(now, (last_post_time + HZ)))
1138 		return;
1139 
1140 	memset(&status, 0, sizeof(struct dm_status));
1141 	status.hdr.type = DM_STATUS_REPORT;
1142 	status.hdr.size = sizeof(struct dm_status);
1143 	status.hdr.trans_id = atomic_inc_return(&trans_id);
1144 
1145 	/*
1146 	 * The host expects the guest to report free and committed memory.
1147 	 * Furthermore, the host expects the pressure information to include
1148 	 * the ballooned out pages. For a given amount of memory that we are
1149 	 * managing we need to compute a floor below which we should not
1150 	 * balloon. Compute this and add it to the pressure report.
1151 	 * We also need to report all offline pages (num_pages_added -
1152 	 * num_pages_onlined) as committed to the host, otherwise it can try
1153 	 * asking us to balloon them out.
1154 	 */
1155 	status.num_avail = si_mem_available();
1156 	status.num_committed = vm_memory_committed() +
1157 		dm->num_pages_ballooned +
1158 		(dm->num_pages_added > dm->num_pages_onlined ?
1159 		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1160 		compute_balloon_floor();
1161 
1162 	trace_balloon_status(status.num_avail, status.num_committed,
1163 			     vm_memory_committed(), dm->num_pages_ballooned,
1164 			     dm->num_pages_added, dm->num_pages_onlined);
1165 	/*
1166 	 * If our transaction ID is no longer current, just don't
1167 	 * send the status. This can happen if we were interrupted
1168 	 * after we picked our transaction ID.
1169 	 */
1170 	if (status.hdr.trans_id != atomic_read(&trans_id))
1171 		return;
1172 
1173 	/*
1174 	 * If the last post time that we sampled has changed,
1175 	 * we have raced, don't post the status.
1176 	 */
1177 	if (last_post != last_post_time)
1178 		return;
1179 
1180 	last_post_time = jiffies;
1181 	vmbus_sendpacket(dm->dev->channel, &status,
1182 				sizeof(struct dm_status),
1183 				(unsigned long)NULL,
1184 				VM_PKT_DATA_INBAND, 0);
1185 
1186 }
1187 
1188 static void free_balloon_pages(struct hv_dynmem_device *dm,
1189 			 union dm_mem_page_range *range_array)
1190 {
1191 	int num_pages = range_array->finfo.page_cnt;
1192 	__u64 start_frame = range_array->finfo.start_page;
1193 	struct page *pg;
1194 	int i;
1195 
1196 	for (i = 0; i < num_pages; i++) {
1197 		pg = pfn_to_page(i + start_frame);
1198 		__ClearPageOffline(pg);
1199 		__free_page(pg);
1200 		dm->num_pages_ballooned--;
1201 	}
1202 }
1203 
1204 
1205 
1206 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1207 					unsigned int num_pages,
1208 					struct dm_balloon_response *bl_resp,
1209 					int alloc_unit)
1210 {
1211 	unsigned int i, j;
1212 	struct page *pg;
1213 
1214 	for (i = 0; i < num_pages / alloc_unit; i++) {
1215 		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1216 			HV_HYP_PAGE_SIZE)
1217 			return i * alloc_unit;
1218 
1219 		/*
1220 		 * We execute this code in a thread context. Furthermore,
1221 		 * we don't want the kernel to try too hard.
1222 		 */
1223 		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1224 				__GFP_NOMEMALLOC | __GFP_NOWARN,
1225 				get_order(alloc_unit << PAGE_SHIFT));
1226 
1227 		if (!pg)
1228 			return i * alloc_unit;
1229 
1230 		dm->num_pages_ballooned += alloc_unit;
1231 
1232 		/*
1233 		 * If we allocatted 2M pages; split them so we
1234 		 * can free them in any order we get.
1235 		 */
1236 
1237 		if (alloc_unit != 1)
1238 			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1239 
1240 		/* mark all pages offline */
1241 		for (j = 0; j < (1 << get_order(alloc_unit << PAGE_SHIFT)); j++)
1242 			__SetPageOffline(pg + j);
1243 
1244 		bl_resp->range_count++;
1245 		bl_resp->range_array[i].finfo.start_page =
1246 			page_to_pfn(pg);
1247 		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1248 		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1249 
1250 	}
1251 
1252 	return i * alloc_unit;
1253 }
1254 
1255 static void balloon_up(struct work_struct *dummy)
1256 {
1257 	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1258 	unsigned int num_ballooned = 0;
1259 	struct dm_balloon_response *bl_resp;
1260 	int alloc_unit;
1261 	int ret;
1262 	bool done = false;
1263 	int i;
1264 	long avail_pages;
1265 	unsigned long floor;
1266 
1267 	/*
1268 	 * We will attempt 2M allocations. However, if we fail to
1269 	 * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1270 	 */
1271 	alloc_unit = PAGES_IN_2M;
1272 
1273 	avail_pages = si_mem_available();
1274 	floor = compute_balloon_floor();
1275 
1276 	/* Refuse to balloon below the floor. */
1277 	if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1278 		pr_warn("Balloon request will be partially fulfilled. %s\n",
1279 			avail_pages < num_pages ? "Not enough memory." :
1280 			"Balloon floor reached.");
1281 
1282 		num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1283 	}
1284 
1285 	while (!done) {
1286 		memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1287 		bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1288 		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1289 		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1290 		bl_resp->more_pages = 1;
1291 
1292 		num_pages -= num_ballooned;
1293 		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1294 						    bl_resp, alloc_unit);
1295 
1296 		if (alloc_unit != 1 && num_ballooned == 0) {
1297 			alloc_unit = 1;
1298 			continue;
1299 		}
1300 
1301 		if (num_ballooned == 0 || num_ballooned == num_pages) {
1302 			pr_debug("Ballooned %u out of %u requested pages.\n",
1303 				num_pages, dm_device.balloon_wrk.num_pages);
1304 
1305 			bl_resp->more_pages = 0;
1306 			done = true;
1307 			dm_device.state = DM_INITIALIZED;
1308 		}
1309 
1310 		/*
1311 		 * We are pushing a lot of data through the channel;
1312 		 * deal with transient failures caused because of the
1313 		 * lack of space in the ring buffer.
1314 		 */
1315 
1316 		do {
1317 			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1318 			ret = vmbus_sendpacket(dm_device.dev->channel,
1319 						bl_resp,
1320 						bl_resp->hdr.size,
1321 						(unsigned long)NULL,
1322 						VM_PKT_DATA_INBAND, 0);
1323 
1324 			if (ret == -EAGAIN)
1325 				msleep(20);
1326 			post_status(&dm_device);
1327 		} while (ret == -EAGAIN);
1328 
1329 		if (ret) {
1330 			/*
1331 			 * Free up the memory we allocatted.
1332 			 */
1333 			pr_err("Balloon response failed\n");
1334 
1335 			for (i = 0; i < bl_resp->range_count; i++)
1336 				free_balloon_pages(&dm_device,
1337 						 &bl_resp->range_array[i]);
1338 
1339 			done = true;
1340 		}
1341 	}
1342 
1343 }
1344 
1345 static void balloon_down(struct hv_dynmem_device *dm,
1346 			struct dm_unballoon_request *req)
1347 {
1348 	union dm_mem_page_range *range_array = req->range_array;
1349 	int range_count = req->range_count;
1350 	struct dm_unballoon_response resp;
1351 	int i;
1352 	unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1353 
1354 	for (i = 0; i < range_count; i++) {
1355 		free_balloon_pages(dm, &range_array[i]);
1356 		complete(&dm_device.config_event);
1357 	}
1358 
1359 	pr_debug("Freed %u ballooned pages.\n",
1360 		prev_pages_ballooned - dm->num_pages_ballooned);
1361 
1362 	if (req->more_pages == 1)
1363 		return;
1364 
1365 	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1366 	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1367 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1368 	resp.hdr.size = sizeof(struct dm_unballoon_response);
1369 
1370 	vmbus_sendpacket(dm_device.dev->channel, &resp,
1371 				sizeof(struct dm_unballoon_response),
1372 				(unsigned long)NULL,
1373 				VM_PKT_DATA_INBAND, 0);
1374 
1375 	dm->state = DM_INITIALIZED;
1376 }
1377 
1378 static void balloon_onchannelcallback(void *context);
1379 
1380 static int dm_thread_func(void *dm_dev)
1381 {
1382 	struct hv_dynmem_device *dm = dm_dev;
1383 
1384 	while (!kthread_should_stop()) {
1385 		wait_for_completion_interruptible_timeout(
1386 						&dm_device.config_event, 1*HZ);
1387 		/*
1388 		 * The host expects us to post information on the memory
1389 		 * pressure every second.
1390 		 */
1391 		reinit_completion(&dm_device.config_event);
1392 		post_status(dm);
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 
1399 static void version_resp(struct hv_dynmem_device *dm,
1400 			struct dm_version_response *vresp)
1401 {
1402 	struct dm_version_request version_req;
1403 	int ret;
1404 
1405 	if (vresp->is_accepted) {
1406 		/*
1407 		 * We are done; wakeup the
1408 		 * context waiting for version
1409 		 * negotiation.
1410 		 */
1411 		complete(&dm->host_event);
1412 		return;
1413 	}
1414 	/*
1415 	 * If there are more versions to try, continue
1416 	 * with negotiations; if not
1417 	 * shutdown the service since we are not able
1418 	 * to negotiate a suitable version number
1419 	 * with the host.
1420 	 */
1421 	if (dm->next_version == 0)
1422 		goto version_error;
1423 
1424 	memset(&version_req, 0, sizeof(struct dm_version_request));
1425 	version_req.hdr.type = DM_VERSION_REQUEST;
1426 	version_req.hdr.size = sizeof(struct dm_version_request);
1427 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1428 	version_req.version.version = dm->next_version;
1429 	dm->version = version_req.version.version;
1430 
1431 	/*
1432 	 * Set the next version to try in case current version fails.
1433 	 * Win7 protocol ought to be the last one to try.
1434 	 */
1435 	switch (version_req.version.version) {
1436 	case DYNMEM_PROTOCOL_VERSION_WIN8:
1437 		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1438 		version_req.is_last_attempt = 0;
1439 		break;
1440 	default:
1441 		dm->next_version = 0;
1442 		version_req.is_last_attempt = 1;
1443 	}
1444 
1445 	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1446 				sizeof(struct dm_version_request),
1447 				(unsigned long)NULL,
1448 				VM_PKT_DATA_INBAND, 0);
1449 
1450 	if (ret)
1451 		goto version_error;
1452 
1453 	return;
1454 
1455 version_error:
1456 	dm->state = DM_INIT_ERROR;
1457 	complete(&dm->host_event);
1458 }
1459 
1460 static void cap_resp(struct hv_dynmem_device *dm,
1461 			struct dm_capabilities_resp_msg *cap_resp)
1462 {
1463 	if (!cap_resp->is_accepted) {
1464 		pr_err("Capabilities not accepted by host\n");
1465 		dm->state = DM_INIT_ERROR;
1466 	}
1467 	complete(&dm->host_event);
1468 }
1469 
1470 static void balloon_onchannelcallback(void *context)
1471 {
1472 	struct hv_device *dev = context;
1473 	u32 recvlen;
1474 	u64 requestid;
1475 	struct dm_message *dm_msg;
1476 	struct dm_header *dm_hdr;
1477 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1478 	struct dm_balloon *bal_msg;
1479 	struct dm_hot_add *ha_msg;
1480 	union dm_mem_page_range *ha_pg_range;
1481 	union dm_mem_page_range *ha_region;
1482 
1483 	memset(recv_buffer, 0, sizeof(recv_buffer));
1484 	vmbus_recvpacket(dev->channel, recv_buffer,
1485 			 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1486 
1487 	if (recvlen > 0) {
1488 		dm_msg = (struct dm_message *)recv_buffer;
1489 		dm_hdr = &dm_msg->hdr;
1490 
1491 		switch (dm_hdr->type) {
1492 		case DM_VERSION_RESPONSE:
1493 			version_resp(dm,
1494 				 (struct dm_version_response *)dm_msg);
1495 			break;
1496 
1497 		case DM_CAPABILITIES_RESPONSE:
1498 			cap_resp(dm,
1499 				 (struct dm_capabilities_resp_msg *)dm_msg);
1500 			break;
1501 
1502 		case DM_BALLOON_REQUEST:
1503 			if (allow_hibernation) {
1504 				pr_info("Ignore balloon-up request!\n");
1505 				break;
1506 			}
1507 
1508 			if (dm->state == DM_BALLOON_UP)
1509 				pr_warn("Currently ballooning\n");
1510 			bal_msg = (struct dm_balloon *)recv_buffer;
1511 			dm->state = DM_BALLOON_UP;
1512 			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1513 			schedule_work(&dm_device.balloon_wrk.wrk);
1514 			break;
1515 
1516 		case DM_UNBALLOON_REQUEST:
1517 			if (allow_hibernation) {
1518 				pr_info("Ignore balloon-down request!\n");
1519 				break;
1520 			}
1521 
1522 			dm->state = DM_BALLOON_DOWN;
1523 			balloon_down(dm,
1524 				 (struct dm_unballoon_request *)recv_buffer);
1525 			break;
1526 
1527 		case DM_MEM_HOT_ADD_REQUEST:
1528 			if (dm->state == DM_HOT_ADD)
1529 				pr_warn("Currently hot-adding\n");
1530 			dm->state = DM_HOT_ADD;
1531 			ha_msg = (struct dm_hot_add *)recv_buffer;
1532 			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1533 				/*
1534 				 * This is a normal hot-add request specifying
1535 				 * hot-add memory.
1536 				 */
1537 				dm->host_specified_ha_region = false;
1538 				ha_pg_range = &ha_msg->range;
1539 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1540 				dm->ha_wrk.ha_region_range.page_range = 0;
1541 			} else {
1542 				/*
1543 				 * Host is specifying that we first hot-add
1544 				 * a region and then partially populate this
1545 				 * region.
1546 				 */
1547 				dm->host_specified_ha_region = true;
1548 				ha_pg_range = &ha_msg->range;
1549 				ha_region = &ha_pg_range[1];
1550 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1551 				dm->ha_wrk.ha_region_range = *ha_region;
1552 			}
1553 			schedule_work(&dm_device.ha_wrk.wrk);
1554 			break;
1555 
1556 		case DM_INFO_MESSAGE:
1557 			process_info(dm, (struct dm_info_msg *)dm_msg);
1558 			break;
1559 
1560 		default:
1561 			pr_warn("Unhandled message: type: %d\n", dm_hdr->type);
1562 
1563 		}
1564 	}
1565 
1566 }
1567 
1568 static int balloon_connect_vsp(struct hv_device *dev)
1569 {
1570 	struct dm_version_request version_req;
1571 	struct dm_capabilities cap_msg;
1572 	unsigned long t;
1573 	int ret;
1574 
1575 	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1576 			 balloon_onchannelcallback, dev);
1577 	if (ret)
1578 		return ret;
1579 
1580 	/*
1581 	 * Initiate the hand shake with the host and negotiate
1582 	 * a version that the host can support. We start with the
1583 	 * highest version number and go down if the host cannot
1584 	 * support it.
1585 	 */
1586 	memset(&version_req, 0, sizeof(struct dm_version_request));
1587 	version_req.hdr.type = DM_VERSION_REQUEST;
1588 	version_req.hdr.size = sizeof(struct dm_version_request);
1589 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1590 	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1591 	version_req.is_last_attempt = 0;
1592 	dm_device.version = version_req.version.version;
1593 
1594 	ret = vmbus_sendpacket(dev->channel, &version_req,
1595 			       sizeof(struct dm_version_request),
1596 			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1597 	if (ret)
1598 		goto out;
1599 
1600 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1601 	if (t == 0) {
1602 		ret = -ETIMEDOUT;
1603 		goto out;
1604 	}
1605 
1606 	/*
1607 	 * If we could not negotiate a compatible version with the host
1608 	 * fail the probe function.
1609 	 */
1610 	if (dm_device.state == DM_INIT_ERROR) {
1611 		ret = -EPROTO;
1612 		goto out;
1613 	}
1614 
1615 	pr_info("Using Dynamic Memory protocol version %u.%u\n",
1616 		DYNMEM_MAJOR_VERSION(dm_device.version),
1617 		DYNMEM_MINOR_VERSION(dm_device.version));
1618 
1619 	/*
1620 	 * Now submit our capabilities to the host.
1621 	 */
1622 	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1623 	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1624 	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1625 	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1626 
1627 	/*
1628 	 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1629 	 * currently still requires the bits to be set, so we have to add code
1630 	 * to fail the host's hot-add and balloon up/down requests, if any.
1631 	 */
1632 	cap_msg.caps.cap_bits.balloon = 1;
1633 	cap_msg.caps.cap_bits.hot_add = 1;
1634 
1635 	/*
1636 	 * Specify our alignment requirements as it relates
1637 	 * memory hot-add. Specify 128MB alignment.
1638 	 */
1639 	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1640 
1641 	/*
1642 	 * Currently the host does not use these
1643 	 * values and we set them to what is done in the
1644 	 * Windows driver.
1645 	 */
1646 	cap_msg.min_page_cnt = 0;
1647 	cap_msg.max_page_number = -1;
1648 
1649 	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1650 			       sizeof(struct dm_capabilities),
1651 			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1652 	if (ret)
1653 		goto out;
1654 
1655 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1656 	if (t == 0) {
1657 		ret = -ETIMEDOUT;
1658 		goto out;
1659 	}
1660 
1661 	/*
1662 	 * If the host does not like our capabilities,
1663 	 * fail the probe function.
1664 	 */
1665 	if (dm_device.state == DM_INIT_ERROR) {
1666 		ret = -EPROTO;
1667 		goto out;
1668 	}
1669 
1670 	return 0;
1671 out:
1672 	vmbus_close(dev->channel);
1673 	return ret;
1674 }
1675 
1676 static int balloon_probe(struct hv_device *dev,
1677 			 const struct hv_vmbus_device_id *dev_id)
1678 {
1679 	int ret;
1680 
1681 	allow_hibernation = hv_is_hibernation_supported();
1682 	if (allow_hibernation)
1683 		hot_add = false;
1684 
1685 #ifdef CONFIG_MEMORY_HOTPLUG
1686 	do_hot_add = hot_add;
1687 #else
1688 	do_hot_add = false;
1689 #endif
1690 	dm_device.dev = dev;
1691 	dm_device.state = DM_INITIALIZING;
1692 	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1693 	init_completion(&dm_device.host_event);
1694 	init_completion(&dm_device.config_event);
1695 	INIT_LIST_HEAD(&dm_device.ha_region_list);
1696 	spin_lock_init(&dm_device.ha_lock);
1697 	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1698 	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1699 	dm_device.host_specified_ha_region = false;
1700 
1701 #ifdef CONFIG_MEMORY_HOTPLUG
1702 	set_online_page_callback(&hv_online_page);
1703 	init_completion(&dm_device.ol_waitevent);
1704 	register_memory_notifier(&hv_memory_nb);
1705 #endif
1706 
1707 	hv_set_drvdata(dev, &dm_device);
1708 
1709 	ret = balloon_connect_vsp(dev);
1710 	if (ret != 0)
1711 		return ret;
1712 
1713 	dm_device.state = DM_INITIALIZED;
1714 
1715 	dm_device.thread =
1716 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1717 	if (IS_ERR(dm_device.thread)) {
1718 		ret = PTR_ERR(dm_device.thread);
1719 		goto probe_error;
1720 	}
1721 
1722 	return 0;
1723 
1724 probe_error:
1725 	dm_device.state = DM_INIT_ERROR;
1726 	dm_device.thread  = NULL;
1727 	vmbus_close(dev->channel);
1728 #ifdef CONFIG_MEMORY_HOTPLUG
1729 	unregister_memory_notifier(&hv_memory_nb);
1730 	restore_online_page_callback(&hv_online_page);
1731 #endif
1732 	return ret;
1733 }
1734 
1735 static int balloon_remove(struct hv_device *dev)
1736 {
1737 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1738 	struct hv_hotadd_state *has, *tmp;
1739 	struct hv_hotadd_gap *gap, *tmp_gap;
1740 	unsigned long flags;
1741 
1742 	if (dm->num_pages_ballooned != 0)
1743 		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1744 
1745 	cancel_work_sync(&dm->balloon_wrk.wrk);
1746 	cancel_work_sync(&dm->ha_wrk.wrk);
1747 
1748 	kthread_stop(dm->thread);
1749 	vmbus_close(dev->channel);
1750 #ifdef CONFIG_MEMORY_HOTPLUG
1751 	unregister_memory_notifier(&hv_memory_nb);
1752 	restore_online_page_callback(&hv_online_page);
1753 #endif
1754 	spin_lock_irqsave(&dm_device.ha_lock, flags);
1755 	list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1756 		list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1757 			list_del(&gap->list);
1758 			kfree(gap);
1759 		}
1760 		list_del(&has->list);
1761 		kfree(has);
1762 	}
1763 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1764 
1765 	return 0;
1766 }
1767 
1768 static int balloon_suspend(struct hv_device *hv_dev)
1769 {
1770 	struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
1771 
1772 	tasklet_disable(&hv_dev->channel->callback_event);
1773 
1774 	cancel_work_sync(&dm->balloon_wrk.wrk);
1775 	cancel_work_sync(&dm->ha_wrk.wrk);
1776 
1777 	if (dm->thread) {
1778 		kthread_stop(dm->thread);
1779 		dm->thread = NULL;
1780 		vmbus_close(hv_dev->channel);
1781 	}
1782 
1783 	tasklet_enable(&hv_dev->channel->callback_event);
1784 
1785 	return 0;
1786 
1787 }
1788 
1789 static int balloon_resume(struct hv_device *dev)
1790 {
1791 	int ret;
1792 
1793 	dm_device.state = DM_INITIALIZING;
1794 
1795 	ret = balloon_connect_vsp(dev);
1796 
1797 	if (ret != 0)
1798 		goto out;
1799 
1800 	dm_device.thread =
1801 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1802 	if (IS_ERR(dm_device.thread)) {
1803 		ret = PTR_ERR(dm_device.thread);
1804 		dm_device.thread = NULL;
1805 		goto close_channel;
1806 	}
1807 
1808 	dm_device.state = DM_INITIALIZED;
1809 	return 0;
1810 close_channel:
1811 	vmbus_close(dev->channel);
1812 out:
1813 	dm_device.state = DM_INIT_ERROR;
1814 #ifdef CONFIG_MEMORY_HOTPLUG
1815 	unregister_memory_notifier(&hv_memory_nb);
1816 	restore_online_page_callback(&hv_online_page);
1817 #endif
1818 	return ret;
1819 }
1820 
1821 static const struct hv_vmbus_device_id id_table[] = {
1822 	/* Dynamic Memory Class ID */
1823 	/* 525074DC-8985-46e2-8057-A307DC18A502 */
1824 	{ HV_DM_GUID, },
1825 	{ },
1826 };
1827 
1828 MODULE_DEVICE_TABLE(vmbus, id_table);
1829 
1830 static  struct hv_driver balloon_drv = {
1831 	.name = "hv_balloon",
1832 	.id_table = id_table,
1833 	.probe =  balloon_probe,
1834 	.remove =  balloon_remove,
1835 	.suspend = balloon_suspend,
1836 	.resume = balloon_resume,
1837 	.driver = {
1838 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1839 	},
1840 };
1841 
1842 static int __init init_balloon_drv(void)
1843 {
1844 
1845 	return vmbus_driver_register(&balloon_drv);
1846 }
1847 
1848 module_init(init_balloon_drv);
1849 
1850 MODULE_DESCRIPTION("Hyper-V Balloon");
1851 MODULE_LICENSE("GPL");
1852