xref: /openbmc/linux/drivers/hv/hv_balloon.c (revision 06d5d6b7f9948a89543e1160ef852d57892c750d)
1 /*
2  * Copyright (c) 2012, Microsoft Corporation.
3  *
4  * Author:
5  *   K. Y. Srinivasan <kys@microsoft.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  * NON INFRINGEMENT.  See the GNU General Public License for more
15  * details.
16  *
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/jiffies.h>
23 #include <linux/mman.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/kthread.h>
29 #include <linux/completion.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memory.h>
32 #include <linux/notifier.h>
33 #include <linux/percpu_counter.h>
34 
35 #include <linux/hyperv.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include "hv_trace_balloon.h"
39 
40 /*
41  * We begin with definitions supporting the Dynamic Memory protocol
42  * with the host.
43  *
44  * Begin protocol definitions.
45  */
46 
47 
48 
49 /*
50  * Protocol versions. The low word is the minor version, the high word the major
51  * version.
52  *
53  * History:
54  * Initial version 1.0
55  * Changed to 0.1 on 2009/03/25
56  * Changes to 0.2 on 2009/05/14
57  * Changes to 0.3 on 2009/12/03
58  * Changed to 1.0 on 2011/04/05
59  */
60 
61 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
62 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
63 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
64 
65 enum {
66 	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
67 	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
68 	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
69 
70 	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
71 	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
72 	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
73 
74 	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
75 };
76 
77 
78 
79 /*
80  * Message Types
81  */
82 
83 enum dm_message_type {
84 	/*
85 	 * Version 0.3
86 	 */
87 	DM_ERROR			= 0,
88 	DM_VERSION_REQUEST		= 1,
89 	DM_VERSION_RESPONSE		= 2,
90 	DM_CAPABILITIES_REPORT		= 3,
91 	DM_CAPABILITIES_RESPONSE	= 4,
92 	DM_STATUS_REPORT		= 5,
93 	DM_BALLOON_REQUEST		= 6,
94 	DM_BALLOON_RESPONSE		= 7,
95 	DM_UNBALLOON_REQUEST		= 8,
96 	DM_UNBALLOON_RESPONSE		= 9,
97 	DM_MEM_HOT_ADD_REQUEST		= 10,
98 	DM_MEM_HOT_ADD_RESPONSE		= 11,
99 	DM_VERSION_03_MAX		= 11,
100 	/*
101 	 * Version 1.0.
102 	 */
103 	DM_INFO_MESSAGE			= 12,
104 	DM_VERSION_1_MAX		= 12
105 };
106 
107 
108 /*
109  * Structures defining the dynamic memory management
110  * protocol.
111  */
112 
113 union dm_version {
114 	struct {
115 		__u16 minor_version;
116 		__u16 major_version;
117 	};
118 	__u32 version;
119 } __packed;
120 
121 
122 union dm_caps {
123 	struct {
124 		__u64 balloon:1;
125 		__u64 hot_add:1;
126 		/*
127 		 * To support guests that may have alignment
128 		 * limitations on hot-add, the guest can specify
129 		 * its alignment requirements; a value of n
130 		 * represents an alignment of 2^n in mega bytes.
131 		 */
132 		__u64 hot_add_alignment:4;
133 		__u64 reservedz:58;
134 	} cap_bits;
135 	__u64 caps;
136 } __packed;
137 
138 union dm_mem_page_range {
139 	struct  {
140 		/*
141 		 * The PFN number of the first page in the range.
142 		 * 40 bits is the architectural limit of a PFN
143 		 * number for AMD64.
144 		 */
145 		__u64 start_page:40;
146 		/*
147 		 * The number of pages in the range.
148 		 */
149 		__u64 page_cnt:24;
150 	} finfo;
151 	__u64  page_range;
152 } __packed;
153 
154 
155 
156 /*
157  * The header for all dynamic memory messages:
158  *
159  * type: Type of the message.
160  * size: Size of the message in bytes; including the header.
161  * trans_id: The guest is responsible for manufacturing this ID.
162  */
163 
164 struct dm_header {
165 	__u16 type;
166 	__u16 size;
167 	__u32 trans_id;
168 } __packed;
169 
170 /*
171  * A generic message format for dynamic memory.
172  * Specific message formats are defined later in the file.
173  */
174 
175 struct dm_message {
176 	struct dm_header hdr;
177 	__u8 data[]; /* enclosed message */
178 } __packed;
179 
180 
181 /*
182  * Specific message types supporting the dynamic memory protocol.
183  */
184 
185 /*
186  * Version negotiation message. Sent from the guest to the host.
187  * The guest is free to try different versions until the host
188  * accepts the version.
189  *
190  * dm_version: The protocol version requested.
191  * is_last_attempt: If TRUE, this is the last version guest will request.
192  * reservedz: Reserved field, set to zero.
193  */
194 
195 struct dm_version_request {
196 	struct dm_header hdr;
197 	union dm_version version;
198 	__u32 is_last_attempt:1;
199 	__u32 reservedz:31;
200 } __packed;
201 
202 /*
203  * Version response message; Host to Guest and indicates
204  * if the host has accepted the version sent by the guest.
205  *
206  * is_accepted: If TRUE, host has accepted the version and the guest
207  * should proceed to the next stage of the protocol. FALSE indicates that
208  * guest should re-try with a different version.
209  *
210  * reservedz: Reserved field, set to zero.
211  */
212 
213 struct dm_version_response {
214 	struct dm_header hdr;
215 	__u64 is_accepted:1;
216 	__u64 reservedz:63;
217 } __packed;
218 
219 /*
220  * Message reporting capabilities. This is sent from the guest to the
221  * host.
222  */
223 
224 struct dm_capabilities {
225 	struct dm_header hdr;
226 	union dm_caps caps;
227 	__u64 min_page_cnt;
228 	__u64 max_page_number;
229 } __packed;
230 
231 /*
232  * Response to the capabilities message. This is sent from the host to the
233  * guest. This message notifies if the host has accepted the guest's
234  * capabilities. If the host has not accepted, the guest must shutdown
235  * the service.
236  *
237  * is_accepted: Indicates if the host has accepted guest's capabilities.
238  * reservedz: Must be 0.
239  */
240 
241 struct dm_capabilities_resp_msg {
242 	struct dm_header hdr;
243 	__u64 is_accepted:1;
244 	__u64 reservedz:63;
245 } __packed;
246 
247 /*
248  * This message is used to report memory pressure from the guest.
249  * This message is not part of any transaction and there is no
250  * response to this message.
251  *
252  * num_avail: Available memory in pages.
253  * num_committed: Committed memory in pages.
254  * page_file_size: The accumulated size of all page files
255  *		   in the system in pages.
256  * zero_free: The nunber of zero and free pages.
257  * page_file_writes: The writes to the page file in pages.
258  * io_diff: An indicator of file cache efficiency or page file activity,
259  *	    calculated as File Cache Page Fault Count - Page Read Count.
260  *	    This value is in pages.
261  *
262  * Some of these metrics are Windows specific and fortunately
263  * the algorithm on the host side that computes the guest memory
264  * pressure only uses num_committed value.
265  */
266 
267 struct dm_status {
268 	struct dm_header hdr;
269 	__u64 num_avail;
270 	__u64 num_committed;
271 	__u64 page_file_size;
272 	__u64 zero_free;
273 	__u32 page_file_writes;
274 	__u32 io_diff;
275 } __packed;
276 
277 
278 /*
279  * Message to ask the guest to allocate memory - balloon up message.
280  * This message is sent from the host to the guest. The guest may not be
281  * able to allocate as much memory as requested.
282  *
283  * num_pages: number of pages to allocate.
284  */
285 
286 struct dm_balloon {
287 	struct dm_header hdr;
288 	__u32 num_pages;
289 	__u32 reservedz;
290 } __packed;
291 
292 
293 /*
294  * Balloon response message; this message is sent from the guest
295  * to the host in response to the balloon message.
296  *
297  * reservedz: Reserved; must be set to zero.
298  * more_pages: If FALSE, this is the last message of the transaction.
299  * if TRUE there will atleast one more message from the guest.
300  *
301  * range_count: The number of ranges in the range array.
302  *
303  * range_array: An array of page ranges returned to the host.
304  *
305  */
306 
307 struct dm_balloon_response {
308 	struct dm_header hdr;
309 	__u32 reservedz;
310 	__u32 more_pages:1;
311 	__u32 range_count:31;
312 	union dm_mem_page_range range_array[];
313 } __packed;
314 
315 /*
316  * Un-balloon message; this message is sent from the host
317  * to the guest to give guest more memory.
318  *
319  * more_pages: If FALSE, this is the last message of the transaction.
320  * if TRUE there will atleast one more message from the guest.
321  *
322  * reservedz: Reserved; must be set to zero.
323  *
324  * range_count: The number of ranges in the range array.
325  *
326  * range_array: An array of page ranges returned to the host.
327  *
328  */
329 
330 struct dm_unballoon_request {
331 	struct dm_header hdr;
332 	__u32 more_pages:1;
333 	__u32 reservedz:31;
334 	__u32 range_count;
335 	union dm_mem_page_range range_array[];
336 } __packed;
337 
338 /*
339  * Un-balloon response message; this message is sent from the guest
340  * to the host in response to an unballoon request.
341  *
342  */
343 
344 struct dm_unballoon_response {
345 	struct dm_header hdr;
346 } __packed;
347 
348 
349 /*
350  * Hot add request message. Message sent from the host to the guest.
351  *
352  * mem_range: Memory range to hot add.
353  *
354  * On Linux we currently don't support this since we cannot hot add
355  * arbitrary granularity of memory.
356  */
357 
358 struct dm_hot_add {
359 	struct dm_header hdr;
360 	union dm_mem_page_range range;
361 } __packed;
362 
363 /*
364  * Hot add response message.
365  * This message is sent by the guest to report the status of a hot add request.
366  * If page_count is less than the requested page count, then the host should
367  * assume all further hot add requests will fail, since this indicates that
368  * the guest has hit an upper physical memory barrier.
369  *
370  * Hot adds may also fail due to low resources; in this case, the guest must
371  * not complete this message until the hot add can succeed, and the host must
372  * not send a new hot add request until the response is sent.
373  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
374  * times it fails the request.
375  *
376  *
377  * page_count: number of pages that were successfully hot added.
378  *
379  * result: result of the operation 1: success, 0: failure.
380  *
381  */
382 
383 struct dm_hot_add_response {
384 	struct dm_header hdr;
385 	__u32 page_count;
386 	__u32 result;
387 } __packed;
388 
389 /*
390  * Types of information sent from host to the guest.
391  */
392 
393 enum dm_info_type {
394 	INFO_TYPE_MAX_PAGE_CNT = 0,
395 	MAX_INFO_TYPE
396 };
397 
398 
399 /*
400  * Header for the information message.
401  */
402 
403 struct dm_info_header {
404 	enum dm_info_type type;
405 	__u32 data_size;
406 } __packed;
407 
408 /*
409  * This message is sent from the host to the guest to pass
410  * some relevant information (win8 addition).
411  *
412  * reserved: no used.
413  * info_size: size of the information blob.
414  * info: information blob.
415  */
416 
417 struct dm_info_msg {
418 	struct dm_header hdr;
419 	__u32 reserved;
420 	__u32 info_size;
421 	__u8  info[];
422 };
423 
424 /*
425  * End protocol definitions.
426  */
427 
428 /*
429  * State to manage hot adding memory into the guest.
430  * The range start_pfn : end_pfn specifies the range
431  * that the host has asked us to hot add. The range
432  * start_pfn : ha_end_pfn specifies the range that we have
433  * currently hot added. We hot add in multiples of 128M
434  * chunks; it is possible that we may not be able to bring
435  * online all the pages in the region. The range
436  * covered_start_pfn:covered_end_pfn defines the pages that can
437  * be brough online.
438  */
439 
440 struct hv_hotadd_state {
441 	struct list_head list;
442 	unsigned long start_pfn;
443 	unsigned long covered_start_pfn;
444 	unsigned long covered_end_pfn;
445 	unsigned long ha_end_pfn;
446 	unsigned long end_pfn;
447 	/*
448 	 * A list of gaps.
449 	 */
450 	struct list_head gap_list;
451 };
452 
453 struct hv_hotadd_gap {
454 	struct list_head list;
455 	unsigned long start_pfn;
456 	unsigned long end_pfn;
457 };
458 
459 struct balloon_state {
460 	__u32 num_pages;
461 	struct work_struct wrk;
462 };
463 
464 struct hot_add_wrk {
465 	union dm_mem_page_range ha_page_range;
466 	union dm_mem_page_range ha_region_range;
467 	struct work_struct wrk;
468 };
469 
470 static bool hot_add = true;
471 static bool do_hot_add;
472 /*
473  * Delay reporting memory pressure by
474  * the specified number of seconds.
475  */
476 static uint pressure_report_delay = 45;
477 
478 /*
479  * The last time we posted a pressure report to host.
480  */
481 static unsigned long last_post_time;
482 
483 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
484 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
485 
486 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
487 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
488 static atomic_t trans_id = ATOMIC_INIT(0);
489 
490 static int dm_ring_size = (5 * PAGE_SIZE);
491 
492 /*
493  * Driver specific state.
494  */
495 
496 enum hv_dm_state {
497 	DM_INITIALIZING = 0,
498 	DM_INITIALIZED,
499 	DM_BALLOON_UP,
500 	DM_BALLOON_DOWN,
501 	DM_HOT_ADD,
502 	DM_INIT_ERROR
503 };
504 
505 
506 static __u8 recv_buffer[PAGE_SIZE];
507 static __u8 *send_buffer;
508 #define PAGES_IN_2M	512
509 #define HA_CHUNK (32 * 1024)
510 
511 struct hv_dynmem_device {
512 	struct hv_device *dev;
513 	enum hv_dm_state state;
514 	struct completion host_event;
515 	struct completion config_event;
516 
517 	/*
518 	 * Number of pages we have currently ballooned out.
519 	 */
520 	unsigned int num_pages_ballooned;
521 	unsigned int num_pages_onlined;
522 	unsigned int num_pages_added;
523 
524 	/*
525 	 * State to manage the ballooning (up) operation.
526 	 */
527 	struct balloon_state balloon_wrk;
528 
529 	/*
530 	 * State to execute the "hot-add" operation.
531 	 */
532 	struct hot_add_wrk ha_wrk;
533 
534 	/*
535 	 * This state tracks if the host has specified a hot-add
536 	 * region.
537 	 */
538 	bool host_specified_ha_region;
539 
540 	/*
541 	 * State to synchronize hot-add.
542 	 */
543 	struct completion  ol_waitevent;
544 	bool ha_waiting;
545 	/*
546 	 * This thread handles hot-add
547 	 * requests from the host as well as notifying
548 	 * the host with regards to memory pressure in
549 	 * the guest.
550 	 */
551 	struct task_struct *thread;
552 
553 	/*
554 	 * Protects ha_region_list, num_pages_onlined counter and individual
555 	 * regions from ha_region_list.
556 	 */
557 	spinlock_t ha_lock;
558 
559 	/*
560 	 * A list of hot-add regions.
561 	 */
562 	struct list_head ha_region_list;
563 
564 	/*
565 	 * We start with the highest version we can support
566 	 * and downgrade based on the host; we save here the
567 	 * next version to try.
568 	 */
569 	__u32 next_version;
570 
571 	/*
572 	 * The negotiated version agreed by host.
573 	 */
574 	__u32 version;
575 };
576 
577 static struct hv_dynmem_device dm_device;
578 
579 static void post_status(struct hv_dynmem_device *dm);
580 
581 #ifdef CONFIG_MEMORY_HOTPLUG
582 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
583 				     unsigned long pfn)
584 {
585 	struct hv_hotadd_gap *gap;
586 
587 	/* The page is not backed. */
588 	if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
589 		return false;
590 
591 	/* Check for gaps. */
592 	list_for_each_entry(gap, &has->gap_list, list) {
593 		if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
594 			return false;
595 	}
596 
597 	return true;
598 }
599 
600 static unsigned long hv_page_offline_check(unsigned long start_pfn,
601 					   unsigned long nr_pages)
602 {
603 	unsigned long pfn = start_pfn, count = 0;
604 	struct hv_hotadd_state *has;
605 	bool found;
606 
607 	while (pfn < start_pfn + nr_pages) {
608 		/*
609 		 * Search for HAS which covers the pfn and when we find one
610 		 * count how many consequitive PFNs are covered.
611 		 */
612 		found = false;
613 		list_for_each_entry(has, &dm_device.ha_region_list, list) {
614 			while ((pfn >= has->start_pfn) &&
615 			       (pfn < has->end_pfn) &&
616 			       (pfn < start_pfn + nr_pages)) {
617 				found = true;
618 				if (has_pfn_is_backed(has, pfn))
619 					count++;
620 				pfn++;
621 			}
622 		}
623 
624 		/*
625 		 * This PFN is not in any HAS (e.g. we're offlining a region
626 		 * which was present at boot), no need to account for it. Go
627 		 * to the next one.
628 		 */
629 		if (!found)
630 			pfn++;
631 	}
632 
633 	return count;
634 }
635 
636 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
637 			      void *v)
638 {
639 	struct memory_notify *mem = (struct memory_notify *)v;
640 	unsigned long flags, pfn_count;
641 
642 	switch (val) {
643 	case MEM_ONLINE:
644 	case MEM_CANCEL_ONLINE:
645 		if (dm_device.ha_waiting) {
646 			dm_device.ha_waiting = false;
647 			complete(&dm_device.ol_waitevent);
648 		}
649 		break;
650 
651 	case MEM_OFFLINE:
652 		spin_lock_irqsave(&dm_device.ha_lock, flags);
653 		pfn_count = hv_page_offline_check(mem->start_pfn,
654 						  mem->nr_pages);
655 		if (pfn_count <= dm_device.num_pages_onlined) {
656 			dm_device.num_pages_onlined -= pfn_count;
657 		} else {
658 			/*
659 			 * We're offlining more pages than we managed to online.
660 			 * This is unexpected. In any case don't let
661 			 * num_pages_onlined wrap around zero.
662 			 */
663 			WARN_ON_ONCE(1);
664 			dm_device.num_pages_onlined = 0;
665 		}
666 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
667 		break;
668 	case MEM_GOING_ONLINE:
669 	case MEM_GOING_OFFLINE:
670 	case MEM_CANCEL_OFFLINE:
671 		break;
672 	}
673 	return NOTIFY_OK;
674 }
675 
676 static struct notifier_block hv_memory_nb = {
677 	.notifier_call = hv_memory_notifier,
678 	.priority = 0
679 };
680 
681 /* Check if the particular page is backed and can be onlined and online it. */
682 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
683 {
684 	if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
685 		if (!PageOffline(pg))
686 			__SetPageOffline(pg);
687 		return;
688 	}
689 	if (PageOffline(pg))
690 		__ClearPageOffline(pg);
691 
692 	/* This frame is currently backed; online the page. */
693 	__online_page_set_limits(pg);
694 	__online_page_increment_counters(pg);
695 	__online_page_free(pg);
696 
697 	lockdep_assert_held(&dm_device.ha_lock);
698 	dm_device.num_pages_onlined++;
699 }
700 
701 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
702 				unsigned long start_pfn, unsigned long size)
703 {
704 	int i;
705 
706 	pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
707 	for (i = 0; i < size; i++)
708 		hv_page_online_one(has, pfn_to_page(start_pfn + i));
709 }
710 
711 static void hv_mem_hot_add(unsigned long start, unsigned long size,
712 				unsigned long pfn_count,
713 				struct hv_hotadd_state *has)
714 {
715 	int ret = 0;
716 	int i, nid;
717 	unsigned long start_pfn;
718 	unsigned long processed_pfn;
719 	unsigned long total_pfn = pfn_count;
720 	unsigned long flags;
721 
722 	for (i = 0; i < (size/HA_CHUNK); i++) {
723 		start_pfn = start + (i * HA_CHUNK);
724 
725 		spin_lock_irqsave(&dm_device.ha_lock, flags);
726 		has->ha_end_pfn +=  HA_CHUNK;
727 
728 		if (total_pfn > HA_CHUNK) {
729 			processed_pfn = HA_CHUNK;
730 			total_pfn -= HA_CHUNK;
731 		} else {
732 			processed_pfn = total_pfn;
733 			total_pfn = 0;
734 		}
735 
736 		has->covered_end_pfn +=  processed_pfn;
737 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
738 
739 		init_completion(&dm_device.ol_waitevent);
740 		dm_device.ha_waiting = !memhp_auto_online;
741 
742 		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
743 		ret = add_memory(nid, PFN_PHYS((start_pfn)),
744 				(HA_CHUNK << PAGE_SHIFT));
745 
746 		if (ret) {
747 			pr_err("hot_add memory failed error is %d\n", ret);
748 			if (ret == -EEXIST) {
749 				/*
750 				 * This error indicates that the error
751 				 * is not a transient failure. This is the
752 				 * case where the guest's physical address map
753 				 * precludes hot adding memory. Stop all further
754 				 * memory hot-add.
755 				 */
756 				do_hot_add = false;
757 			}
758 			spin_lock_irqsave(&dm_device.ha_lock, flags);
759 			has->ha_end_pfn -= HA_CHUNK;
760 			has->covered_end_pfn -=  processed_pfn;
761 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
762 			break;
763 		}
764 
765 		/*
766 		 * Wait for the memory block to be onlined when memory onlining
767 		 * is done outside of kernel (memhp_auto_online). Since the hot
768 		 * add has succeeded, it is ok to proceed even if the pages in
769 		 * the hot added region have not been "onlined" within the
770 		 * allowed time.
771 		 */
772 		if (dm_device.ha_waiting)
773 			wait_for_completion_timeout(&dm_device.ol_waitevent,
774 						    5*HZ);
775 		post_status(&dm_device);
776 	}
777 }
778 
779 static void hv_online_page(struct page *pg, unsigned int order)
780 {
781 	struct hv_hotadd_state *has;
782 	unsigned long flags;
783 	unsigned long pfn = page_to_pfn(pg);
784 
785 	spin_lock_irqsave(&dm_device.ha_lock, flags);
786 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
787 		/* The page belongs to a different HAS. */
788 		if ((pfn < has->start_pfn) ||
789 				(pfn + (1UL << order) > has->end_pfn))
790 			continue;
791 
792 		hv_bring_pgs_online(has, pfn, 1UL << order);
793 		break;
794 	}
795 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
796 }
797 
798 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
799 {
800 	struct hv_hotadd_state *has;
801 	struct hv_hotadd_gap *gap;
802 	unsigned long residual, new_inc;
803 	int ret = 0;
804 	unsigned long flags;
805 
806 	spin_lock_irqsave(&dm_device.ha_lock, flags);
807 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
808 		/*
809 		 * If the pfn range we are dealing with is not in the current
810 		 * "hot add block", move on.
811 		 */
812 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
813 			continue;
814 
815 		/*
816 		 * If the current start pfn is not where the covered_end
817 		 * is, create a gap and update covered_end_pfn.
818 		 */
819 		if (has->covered_end_pfn != start_pfn) {
820 			gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
821 			if (!gap) {
822 				ret = -ENOMEM;
823 				break;
824 			}
825 
826 			INIT_LIST_HEAD(&gap->list);
827 			gap->start_pfn = has->covered_end_pfn;
828 			gap->end_pfn = start_pfn;
829 			list_add_tail(&gap->list, &has->gap_list);
830 
831 			has->covered_end_pfn = start_pfn;
832 		}
833 
834 		/*
835 		 * If the current hot add-request extends beyond
836 		 * our current limit; extend it.
837 		 */
838 		if ((start_pfn + pfn_cnt) > has->end_pfn) {
839 			residual = (start_pfn + pfn_cnt - has->end_pfn);
840 			/*
841 			 * Extend the region by multiples of HA_CHUNK.
842 			 */
843 			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
844 			if (residual % HA_CHUNK)
845 				new_inc += HA_CHUNK;
846 
847 			has->end_pfn += new_inc;
848 		}
849 
850 		ret = 1;
851 		break;
852 	}
853 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
854 
855 	return ret;
856 }
857 
858 static unsigned long handle_pg_range(unsigned long pg_start,
859 					unsigned long pg_count)
860 {
861 	unsigned long start_pfn = pg_start;
862 	unsigned long pfn_cnt = pg_count;
863 	unsigned long size;
864 	struct hv_hotadd_state *has;
865 	unsigned long pgs_ol = 0;
866 	unsigned long old_covered_state;
867 	unsigned long res = 0, flags;
868 
869 	pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
870 		pg_start);
871 
872 	spin_lock_irqsave(&dm_device.ha_lock, flags);
873 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
874 		/*
875 		 * If the pfn range we are dealing with is not in the current
876 		 * "hot add block", move on.
877 		 */
878 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
879 			continue;
880 
881 		old_covered_state = has->covered_end_pfn;
882 
883 		if (start_pfn < has->ha_end_pfn) {
884 			/*
885 			 * This is the case where we are backing pages
886 			 * in an already hot added region. Bring
887 			 * these pages online first.
888 			 */
889 			pgs_ol = has->ha_end_pfn - start_pfn;
890 			if (pgs_ol > pfn_cnt)
891 				pgs_ol = pfn_cnt;
892 
893 			has->covered_end_pfn +=  pgs_ol;
894 			pfn_cnt -= pgs_ol;
895 			/*
896 			 * Check if the corresponding memory block is already
897 			 * online. It is possible to observe struct pages still
898 			 * being uninitialized here so check section instead.
899 			 * In case the section is online we need to bring the
900 			 * rest of pfns (which were not backed previously)
901 			 * online too.
902 			 */
903 			if (start_pfn > has->start_pfn &&
904 			    online_section_nr(pfn_to_section_nr(start_pfn)))
905 				hv_bring_pgs_online(has, start_pfn, pgs_ol);
906 
907 		}
908 
909 		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
910 			/*
911 			 * We have some residual hot add range
912 			 * that needs to be hot added; hot add
913 			 * it now. Hot add a multiple of
914 			 * of HA_CHUNK that fully covers the pages
915 			 * we have.
916 			 */
917 			size = (has->end_pfn - has->ha_end_pfn);
918 			if (pfn_cnt <= size) {
919 				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
920 				if (pfn_cnt % HA_CHUNK)
921 					size += HA_CHUNK;
922 			} else {
923 				pfn_cnt = size;
924 			}
925 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
926 			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
927 			spin_lock_irqsave(&dm_device.ha_lock, flags);
928 		}
929 		/*
930 		 * If we managed to online any pages that were given to us,
931 		 * we declare success.
932 		 */
933 		res = has->covered_end_pfn - old_covered_state;
934 		break;
935 	}
936 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
937 
938 	return res;
939 }
940 
941 static unsigned long process_hot_add(unsigned long pg_start,
942 					unsigned long pfn_cnt,
943 					unsigned long rg_start,
944 					unsigned long rg_size)
945 {
946 	struct hv_hotadd_state *ha_region = NULL;
947 	int covered;
948 	unsigned long flags;
949 
950 	if (pfn_cnt == 0)
951 		return 0;
952 
953 	if (!dm_device.host_specified_ha_region) {
954 		covered = pfn_covered(pg_start, pfn_cnt);
955 		if (covered < 0)
956 			return 0;
957 
958 		if (covered)
959 			goto do_pg_range;
960 	}
961 
962 	/*
963 	 * If the host has specified a hot-add range; deal with it first.
964 	 */
965 
966 	if (rg_size != 0) {
967 		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
968 		if (!ha_region)
969 			return 0;
970 
971 		INIT_LIST_HEAD(&ha_region->list);
972 		INIT_LIST_HEAD(&ha_region->gap_list);
973 
974 		ha_region->start_pfn = rg_start;
975 		ha_region->ha_end_pfn = rg_start;
976 		ha_region->covered_start_pfn = pg_start;
977 		ha_region->covered_end_pfn = pg_start;
978 		ha_region->end_pfn = rg_start + rg_size;
979 
980 		spin_lock_irqsave(&dm_device.ha_lock, flags);
981 		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
982 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
983 	}
984 
985 do_pg_range:
986 	/*
987 	 * Process the page range specified; bringing them
988 	 * online if possible.
989 	 */
990 	return handle_pg_range(pg_start, pfn_cnt);
991 }
992 
993 #endif
994 
995 static void hot_add_req(struct work_struct *dummy)
996 {
997 	struct dm_hot_add_response resp;
998 #ifdef CONFIG_MEMORY_HOTPLUG
999 	unsigned long pg_start, pfn_cnt;
1000 	unsigned long rg_start, rg_sz;
1001 #endif
1002 	struct hv_dynmem_device *dm = &dm_device;
1003 
1004 	memset(&resp, 0, sizeof(struct dm_hot_add_response));
1005 	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
1006 	resp.hdr.size = sizeof(struct dm_hot_add_response);
1007 
1008 #ifdef CONFIG_MEMORY_HOTPLUG
1009 	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1010 	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1011 
1012 	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1013 	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1014 
1015 	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1016 		unsigned long region_size;
1017 		unsigned long region_start;
1018 
1019 		/*
1020 		 * The host has not specified the hot-add region.
1021 		 * Based on the hot-add page range being specified,
1022 		 * compute a hot-add region that can cover the pages
1023 		 * that need to be hot-added while ensuring the alignment
1024 		 * and size requirements of Linux as it relates to hot-add.
1025 		 */
1026 		region_start = pg_start;
1027 		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1028 		if (pfn_cnt % HA_CHUNK)
1029 			region_size += HA_CHUNK;
1030 
1031 		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1032 
1033 		rg_start = region_start;
1034 		rg_sz = region_size;
1035 	}
1036 
1037 	if (do_hot_add)
1038 		resp.page_count = process_hot_add(pg_start, pfn_cnt,
1039 						rg_start, rg_sz);
1040 
1041 	dm->num_pages_added += resp.page_count;
1042 #endif
1043 	/*
1044 	 * The result field of the response structure has the
1045 	 * following semantics:
1046 	 *
1047 	 * 1. If all or some pages hot-added: Guest should return success.
1048 	 *
1049 	 * 2. If no pages could be hot-added:
1050 	 *
1051 	 * If the guest returns success, then the host
1052 	 * will not attempt any further hot-add operations. This
1053 	 * signifies a permanent failure.
1054 	 *
1055 	 * If the guest returns failure, then this failure will be
1056 	 * treated as a transient failure and the host may retry the
1057 	 * hot-add operation after some delay.
1058 	 */
1059 	if (resp.page_count > 0)
1060 		resp.result = 1;
1061 	else if (!do_hot_add)
1062 		resp.result = 1;
1063 	else
1064 		resp.result = 0;
1065 
1066 	if (!do_hot_add || (resp.page_count == 0))
1067 		pr_err("Memory hot add failed\n");
1068 
1069 	dm->state = DM_INITIALIZED;
1070 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1071 	vmbus_sendpacket(dm->dev->channel, &resp,
1072 			sizeof(struct dm_hot_add_response),
1073 			(unsigned long)NULL,
1074 			VM_PKT_DATA_INBAND, 0);
1075 }
1076 
1077 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1078 {
1079 	struct dm_info_header *info_hdr;
1080 
1081 	info_hdr = (struct dm_info_header *)msg->info;
1082 
1083 	switch (info_hdr->type) {
1084 	case INFO_TYPE_MAX_PAGE_CNT:
1085 		if (info_hdr->data_size == sizeof(__u64)) {
1086 			__u64 *max_page_count = (__u64 *)&info_hdr[1];
1087 
1088 			pr_info("Max. dynamic memory size: %llu MB\n",
1089 				(*max_page_count) >> (20 - PAGE_SHIFT));
1090 		}
1091 
1092 		break;
1093 	default:
1094 		pr_warn("Received Unknown type: %d\n", info_hdr->type);
1095 	}
1096 }
1097 
1098 static unsigned long compute_balloon_floor(void)
1099 {
1100 	unsigned long min_pages;
1101 	unsigned long nr_pages = totalram_pages();
1102 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1103 	/* Simple continuous piecewiese linear function:
1104 	 *  max MiB -> min MiB  gradient
1105 	 *       0         0
1106 	 *      16        16
1107 	 *      32        24
1108 	 *     128        72    (1/2)
1109 	 *     512       168    (1/4)
1110 	 *    2048       360    (1/8)
1111 	 *    8192       744    (1/16)
1112 	 *   32768      1512	(1/32)
1113 	 */
1114 	if (nr_pages < MB2PAGES(128))
1115 		min_pages = MB2PAGES(8) + (nr_pages >> 1);
1116 	else if (nr_pages < MB2PAGES(512))
1117 		min_pages = MB2PAGES(40) + (nr_pages >> 2);
1118 	else if (nr_pages < MB2PAGES(2048))
1119 		min_pages = MB2PAGES(104) + (nr_pages >> 3);
1120 	else if (nr_pages < MB2PAGES(8192))
1121 		min_pages = MB2PAGES(232) + (nr_pages >> 4);
1122 	else
1123 		min_pages = MB2PAGES(488) + (nr_pages >> 5);
1124 #undef MB2PAGES
1125 	return min_pages;
1126 }
1127 
1128 /*
1129  * Post our status as it relates memory pressure to the
1130  * host. Host expects the guests to post this status
1131  * periodically at 1 second intervals.
1132  *
1133  * The metrics specified in this protocol are very Windows
1134  * specific and so we cook up numbers here to convey our memory
1135  * pressure.
1136  */
1137 
1138 static void post_status(struct hv_dynmem_device *dm)
1139 {
1140 	struct dm_status status;
1141 	unsigned long now = jiffies;
1142 	unsigned long last_post = last_post_time;
1143 
1144 	if (pressure_report_delay > 0) {
1145 		--pressure_report_delay;
1146 		return;
1147 	}
1148 
1149 	if (!time_after(now, (last_post_time + HZ)))
1150 		return;
1151 
1152 	memset(&status, 0, sizeof(struct dm_status));
1153 	status.hdr.type = DM_STATUS_REPORT;
1154 	status.hdr.size = sizeof(struct dm_status);
1155 	status.hdr.trans_id = atomic_inc_return(&trans_id);
1156 
1157 	/*
1158 	 * The host expects the guest to report free and committed memory.
1159 	 * Furthermore, the host expects the pressure information to include
1160 	 * the ballooned out pages. For a given amount of memory that we are
1161 	 * managing we need to compute a floor below which we should not
1162 	 * balloon. Compute this and add it to the pressure report.
1163 	 * We also need to report all offline pages (num_pages_added -
1164 	 * num_pages_onlined) as committed to the host, otherwise it can try
1165 	 * asking us to balloon them out.
1166 	 */
1167 	status.num_avail = si_mem_available();
1168 	status.num_committed = vm_memory_committed() +
1169 		dm->num_pages_ballooned +
1170 		(dm->num_pages_added > dm->num_pages_onlined ?
1171 		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1172 		compute_balloon_floor();
1173 
1174 	trace_balloon_status(status.num_avail, status.num_committed,
1175 			     vm_memory_committed(), dm->num_pages_ballooned,
1176 			     dm->num_pages_added, dm->num_pages_onlined);
1177 	/*
1178 	 * If our transaction ID is no longer current, just don't
1179 	 * send the status. This can happen if we were interrupted
1180 	 * after we picked our transaction ID.
1181 	 */
1182 	if (status.hdr.trans_id != atomic_read(&trans_id))
1183 		return;
1184 
1185 	/*
1186 	 * If the last post time that we sampled has changed,
1187 	 * we have raced, don't post the status.
1188 	 */
1189 	if (last_post != last_post_time)
1190 		return;
1191 
1192 	last_post_time = jiffies;
1193 	vmbus_sendpacket(dm->dev->channel, &status,
1194 				sizeof(struct dm_status),
1195 				(unsigned long)NULL,
1196 				VM_PKT_DATA_INBAND, 0);
1197 
1198 }
1199 
1200 static void free_balloon_pages(struct hv_dynmem_device *dm,
1201 			 union dm_mem_page_range *range_array)
1202 {
1203 	int num_pages = range_array->finfo.page_cnt;
1204 	__u64 start_frame = range_array->finfo.start_page;
1205 	struct page *pg;
1206 	int i;
1207 
1208 	for (i = 0; i < num_pages; i++) {
1209 		pg = pfn_to_page(i + start_frame);
1210 		__ClearPageOffline(pg);
1211 		__free_page(pg);
1212 		dm->num_pages_ballooned--;
1213 	}
1214 }
1215 
1216 
1217 
1218 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1219 					unsigned int num_pages,
1220 					struct dm_balloon_response *bl_resp,
1221 					int alloc_unit)
1222 {
1223 	unsigned int i, j;
1224 	struct page *pg;
1225 
1226 	if (num_pages < alloc_unit)
1227 		return 0;
1228 
1229 	for (i = 0; (i * alloc_unit) < num_pages; i++) {
1230 		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1231 			PAGE_SIZE)
1232 			return i * alloc_unit;
1233 
1234 		/*
1235 		 * We execute this code in a thread context. Furthermore,
1236 		 * we don't want the kernel to try too hard.
1237 		 */
1238 		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1239 				__GFP_NOMEMALLOC | __GFP_NOWARN,
1240 				get_order(alloc_unit << PAGE_SHIFT));
1241 
1242 		if (!pg)
1243 			return i * alloc_unit;
1244 
1245 		dm->num_pages_ballooned += alloc_unit;
1246 
1247 		/*
1248 		 * If we allocatted 2M pages; split them so we
1249 		 * can free them in any order we get.
1250 		 */
1251 
1252 		if (alloc_unit != 1)
1253 			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1254 
1255 		/* mark all pages offline */
1256 		for (j = 0; j < (1 << get_order(alloc_unit << PAGE_SHIFT)); j++)
1257 			__SetPageOffline(pg + j);
1258 
1259 		bl_resp->range_count++;
1260 		bl_resp->range_array[i].finfo.start_page =
1261 			page_to_pfn(pg);
1262 		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1263 		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1264 
1265 	}
1266 
1267 	return num_pages;
1268 }
1269 
1270 static void balloon_up(struct work_struct *dummy)
1271 {
1272 	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1273 	unsigned int num_ballooned = 0;
1274 	struct dm_balloon_response *bl_resp;
1275 	int alloc_unit;
1276 	int ret;
1277 	bool done = false;
1278 	int i;
1279 	long avail_pages;
1280 	unsigned long floor;
1281 
1282 	/* The host balloons pages in 2M granularity. */
1283 	WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1284 
1285 	/*
1286 	 * We will attempt 2M allocations. However, if we fail to
1287 	 * allocate 2M chunks, we will go back to 4k allocations.
1288 	 */
1289 	alloc_unit = 512;
1290 
1291 	avail_pages = si_mem_available();
1292 	floor = compute_balloon_floor();
1293 
1294 	/* Refuse to balloon below the floor, keep the 2M granularity. */
1295 	if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1296 		pr_warn("Balloon request will be partially fulfilled. %s\n",
1297 			avail_pages < num_pages ? "Not enough memory." :
1298 			"Balloon floor reached.");
1299 
1300 		num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1301 		num_pages -= num_pages % PAGES_IN_2M;
1302 	}
1303 
1304 	while (!done) {
1305 		bl_resp = (struct dm_balloon_response *)send_buffer;
1306 		memset(send_buffer, 0, PAGE_SIZE);
1307 		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1308 		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1309 		bl_resp->more_pages = 1;
1310 
1311 		num_pages -= num_ballooned;
1312 		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1313 						    bl_resp, alloc_unit);
1314 
1315 		if (alloc_unit != 1 && num_ballooned == 0) {
1316 			alloc_unit = 1;
1317 			continue;
1318 		}
1319 
1320 		if (num_ballooned == 0 || num_ballooned == num_pages) {
1321 			pr_debug("Ballooned %u out of %u requested pages.\n",
1322 				num_pages, dm_device.balloon_wrk.num_pages);
1323 
1324 			bl_resp->more_pages = 0;
1325 			done = true;
1326 			dm_device.state = DM_INITIALIZED;
1327 		}
1328 
1329 		/*
1330 		 * We are pushing a lot of data through the channel;
1331 		 * deal with transient failures caused because of the
1332 		 * lack of space in the ring buffer.
1333 		 */
1334 
1335 		do {
1336 			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1337 			ret = vmbus_sendpacket(dm_device.dev->channel,
1338 						bl_resp,
1339 						bl_resp->hdr.size,
1340 						(unsigned long)NULL,
1341 						VM_PKT_DATA_INBAND, 0);
1342 
1343 			if (ret == -EAGAIN)
1344 				msleep(20);
1345 			post_status(&dm_device);
1346 		} while (ret == -EAGAIN);
1347 
1348 		if (ret) {
1349 			/*
1350 			 * Free up the memory we allocatted.
1351 			 */
1352 			pr_err("Balloon response failed\n");
1353 
1354 			for (i = 0; i < bl_resp->range_count; i++)
1355 				free_balloon_pages(&dm_device,
1356 						 &bl_resp->range_array[i]);
1357 
1358 			done = true;
1359 		}
1360 	}
1361 
1362 }
1363 
1364 static void balloon_down(struct hv_dynmem_device *dm,
1365 			struct dm_unballoon_request *req)
1366 {
1367 	union dm_mem_page_range *range_array = req->range_array;
1368 	int range_count = req->range_count;
1369 	struct dm_unballoon_response resp;
1370 	int i;
1371 	unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1372 
1373 	for (i = 0; i < range_count; i++) {
1374 		free_balloon_pages(dm, &range_array[i]);
1375 		complete(&dm_device.config_event);
1376 	}
1377 
1378 	pr_debug("Freed %u ballooned pages.\n",
1379 		prev_pages_ballooned - dm->num_pages_ballooned);
1380 
1381 	if (req->more_pages == 1)
1382 		return;
1383 
1384 	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1385 	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1386 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1387 	resp.hdr.size = sizeof(struct dm_unballoon_response);
1388 
1389 	vmbus_sendpacket(dm_device.dev->channel, &resp,
1390 				sizeof(struct dm_unballoon_response),
1391 				(unsigned long)NULL,
1392 				VM_PKT_DATA_INBAND, 0);
1393 
1394 	dm->state = DM_INITIALIZED;
1395 }
1396 
1397 static void balloon_onchannelcallback(void *context);
1398 
1399 static int dm_thread_func(void *dm_dev)
1400 {
1401 	struct hv_dynmem_device *dm = dm_dev;
1402 
1403 	while (!kthread_should_stop()) {
1404 		wait_for_completion_interruptible_timeout(
1405 						&dm_device.config_event, 1*HZ);
1406 		/*
1407 		 * The host expects us to post information on the memory
1408 		 * pressure every second.
1409 		 */
1410 		reinit_completion(&dm_device.config_event);
1411 		post_status(dm);
1412 	}
1413 
1414 	return 0;
1415 }
1416 
1417 
1418 static void version_resp(struct hv_dynmem_device *dm,
1419 			struct dm_version_response *vresp)
1420 {
1421 	struct dm_version_request version_req;
1422 	int ret;
1423 
1424 	if (vresp->is_accepted) {
1425 		/*
1426 		 * We are done; wakeup the
1427 		 * context waiting for version
1428 		 * negotiation.
1429 		 */
1430 		complete(&dm->host_event);
1431 		return;
1432 	}
1433 	/*
1434 	 * If there are more versions to try, continue
1435 	 * with negotiations; if not
1436 	 * shutdown the service since we are not able
1437 	 * to negotiate a suitable version number
1438 	 * with the host.
1439 	 */
1440 	if (dm->next_version == 0)
1441 		goto version_error;
1442 
1443 	memset(&version_req, 0, sizeof(struct dm_version_request));
1444 	version_req.hdr.type = DM_VERSION_REQUEST;
1445 	version_req.hdr.size = sizeof(struct dm_version_request);
1446 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1447 	version_req.version.version = dm->next_version;
1448 	dm->version = version_req.version.version;
1449 
1450 	/*
1451 	 * Set the next version to try in case current version fails.
1452 	 * Win7 protocol ought to be the last one to try.
1453 	 */
1454 	switch (version_req.version.version) {
1455 	case DYNMEM_PROTOCOL_VERSION_WIN8:
1456 		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1457 		version_req.is_last_attempt = 0;
1458 		break;
1459 	default:
1460 		dm->next_version = 0;
1461 		version_req.is_last_attempt = 1;
1462 	}
1463 
1464 	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1465 				sizeof(struct dm_version_request),
1466 				(unsigned long)NULL,
1467 				VM_PKT_DATA_INBAND, 0);
1468 
1469 	if (ret)
1470 		goto version_error;
1471 
1472 	return;
1473 
1474 version_error:
1475 	dm->state = DM_INIT_ERROR;
1476 	complete(&dm->host_event);
1477 }
1478 
1479 static void cap_resp(struct hv_dynmem_device *dm,
1480 			struct dm_capabilities_resp_msg *cap_resp)
1481 {
1482 	if (!cap_resp->is_accepted) {
1483 		pr_err("Capabilities not accepted by host\n");
1484 		dm->state = DM_INIT_ERROR;
1485 	}
1486 	complete(&dm->host_event);
1487 }
1488 
1489 static void balloon_onchannelcallback(void *context)
1490 {
1491 	struct hv_device *dev = context;
1492 	u32 recvlen;
1493 	u64 requestid;
1494 	struct dm_message *dm_msg;
1495 	struct dm_header *dm_hdr;
1496 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1497 	struct dm_balloon *bal_msg;
1498 	struct dm_hot_add *ha_msg;
1499 	union dm_mem_page_range *ha_pg_range;
1500 	union dm_mem_page_range *ha_region;
1501 
1502 	memset(recv_buffer, 0, sizeof(recv_buffer));
1503 	vmbus_recvpacket(dev->channel, recv_buffer,
1504 			 PAGE_SIZE, &recvlen, &requestid);
1505 
1506 	if (recvlen > 0) {
1507 		dm_msg = (struct dm_message *)recv_buffer;
1508 		dm_hdr = &dm_msg->hdr;
1509 
1510 		switch (dm_hdr->type) {
1511 		case DM_VERSION_RESPONSE:
1512 			version_resp(dm,
1513 				 (struct dm_version_response *)dm_msg);
1514 			break;
1515 
1516 		case DM_CAPABILITIES_RESPONSE:
1517 			cap_resp(dm,
1518 				 (struct dm_capabilities_resp_msg *)dm_msg);
1519 			break;
1520 
1521 		case DM_BALLOON_REQUEST:
1522 			if (dm->state == DM_BALLOON_UP)
1523 				pr_warn("Currently ballooning\n");
1524 			bal_msg = (struct dm_balloon *)recv_buffer;
1525 			dm->state = DM_BALLOON_UP;
1526 			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1527 			schedule_work(&dm_device.balloon_wrk.wrk);
1528 			break;
1529 
1530 		case DM_UNBALLOON_REQUEST:
1531 			dm->state = DM_BALLOON_DOWN;
1532 			balloon_down(dm,
1533 				 (struct dm_unballoon_request *)recv_buffer);
1534 			break;
1535 
1536 		case DM_MEM_HOT_ADD_REQUEST:
1537 			if (dm->state == DM_HOT_ADD)
1538 				pr_warn("Currently hot-adding\n");
1539 			dm->state = DM_HOT_ADD;
1540 			ha_msg = (struct dm_hot_add *)recv_buffer;
1541 			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1542 				/*
1543 				 * This is a normal hot-add request specifying
1544 				 * hot-add memory.
1545 				 */
1546 				dm->host_specified_ha_region = false;
1547 				ha_pg_range = &ha_msg->range;
1548 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1549 				dm->ha_wrk.ha_region_range.page_range = 0;
1550 			} else {
1551 				/*
1552 				 * Host is specifying that we first hot-add
1553 				 * a region and then partially populate this
1554 				 * region.
1555 				 */
1556 				dm->host_specified_ha_region = true;
1557 				ha_pg_range = &ha_msg->range;
1558 				ha_region = &ha_pg_range[1];
1559 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1560 				dm->ha_wrk.ha_region_range = *ha_region;
1561 			}
1562 			schedule_work(&dm_device.ha_wrk.wrk);
1563 			break;
1564 
1565 		case DM_INFO_MESSAGE:
1566 			process_info(dm, (struct dm_info_msg *)dm_msg);
1567 			break;
1568 
1569 		default:
1570 			pr_warn("Unhandled message: type: %d\n", dm_hdr->type);
1571 
1572 		}
1573 	}
1574 
1575 }
1576 
1577 static int balloon_probe(struct hv_device *dev,
1578 			const struct hv_vmbus_device_id *dev_id)
1579 {
1580 	int ret;
1581 	unsigned long t;
1582 	struct dm_version_request version_req;
1583 	struct dm_capabilities cap_msg;
1584 
1585 #ifdef CONFIG_MEMORY_HOTPLUG
1586 	do_hot_add = hot_add;
1587 #else
1588 	do_hot_add = false;
1589 #endif
1590 
1591 	/*
1592 	 * First allocate a send buffer.
1593 	 */
1594 
1595 	send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1596 	if (!send_buffer)
1597 		return -ENOMEM;
1598 
1599 	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1600 			balloon_onchannelcallback, dev);
1601 
1602 	if (ret)
1603 		goto probe_error0;
1604 
1605 	dm_device.dev = dev;
1606 	dm_device.state = DM_INITIALIZING;
1607 	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1608 	init_completion(&dm_device.host_event);
1609 	init_completion(&dm_device.config_event);
1610 	INIT_LIST_HEAD(&dm_device.ha_region_list);
1611 	spin_lock_init(&dm_device.ha_lock);
1612 	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1613 	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1614 	dm_device.host_specified_ha_region = false;
1615 
1616 	dm_device.thread =
1617 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1618 	if (IS_ERR(dm_device.thread)) {
1619 		ret = PTR_ERR(dm_device.thread);
1620 		goto probe_error1;
1621 	}
1622 
1623 #ifdef CONFIG_MEMORY_HOTPLUG
1624 	set_online_page_callback(&hv_online_page);
1625 	register_memory_notifier(&hv_memory_nb);
1626 #endif
1627 
1628 	hv_set_drvdata(dev, &dm_device);
1629 	/*
1630 	 * Initiate the hand shake with the host and negotiate
1631 	 * a version that the host can support. We start with the
1632 	 * highest version number and go down if the host cannot
1633 	 * support it.
1634 	 */
1635 	memset(&version_req, 0, sizeof(struct dm_version_request));
1636 	version_req.hdr.type = DM_VERSION_REQUEST;
1637 	version_req.hdr.size = sizeof(struct dm_version_request);
1638 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1639 	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1640 	version_req.is_last_attempt = 0;
1641 	dm_device.version = version_req.version.version;
1642 
1643 	ret = vmbus_sendpacket(dev->channel, &version_req,
1644 				sizeof(struct dm_version_request),
1645 				(unsigned long)NULL,
1646 				VM_PKT_DATA_INBAND, 0);
1647 	if (ret)
1648 		goto probe_error2;
1649 
1650 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1651 	if (t == 0) {
1652 		ret = -ETIMEDOUT;
1653 		goto probe_error2;
1654 	}
1655 
1656 	/*
1657 	 * If we could not negotiate a compatible version with the host
1658 	 * fail the probe function.
1659 	 */
1660 	if (dm_device.state == DM_INIT_ERROR) {
1661 		ret = -ETIMEDOUT;
1662 		goto probe_error2;
1663 	}
1664 
1665 	pr_info("Using Dynamic Memory protocol version %u.%u\n",
1666 		DYNMEM_MAJOR_VERSION(dm_device.version),
1667 		DYNMEM_MINOR_VERSION(dm_device.version));
1668 
1669 	/*
1670 	 * Now submit our capabilities to the host.
1671 	 */
1672 	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1673 	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1674 	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1675 	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1676 
1677 	cap_msg.caps.cap_bits.balloon = 1;
1678 	cap_msg.caps.cap_bits.hot_add = 1;
1679 
1680 	/*
1681 	 * Specify our alignment requirements as it relates
1682 	 * memory hot-add. Specify 128MB alignment.
1683 	 */
1684 	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1685 
1686 	/*
1687 	 * Currently the host does not use these
1688 	 * values and we set them to what is done in the
1689 	 * Windows driver.
1690 	 */
1691 	cap_msg.min_page_cnt = 0;
1692 	cap_msg.max_page_number = -1;
1693 
1694 	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1695 				sizeof(struct dm_capabilities),
1696 				(unsigned long)NULL,
1697 				VM_PKT_DATA_INBAND, 0);
1698 	if (ret)
1699 		goto probe_error2;
1700 
1701 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1702 	if (t == 0) {
1703 		ret = -ETIMEDOUT;
1704 		goto probe_error2;
1705 	}
1706 
1707 	/*
1708 	 * If the host does not like our capabilities,
1709 	 * fail the probe function.
1710 	 */
1711 	if (dm_device.state == DM_INIT_ERROR) {
1712 		ret = -ETIMEDOUT;
1713 		goto probe_error2;
1714 	}
1715 
1716 	dm_device.state = DM_INITIALIZED;
1717 	last_post_time = jiffies;
1718 
1719 	return 0;
1720 
1721 probe_error2:
1722 #ifdef CONFIG_MEMORY_HOTPLUG
1723 	restore_online_page_callback(&hv_online_page);
1724 #endif
1725 	kthread_stop(dm_device.thread);
1726 
1727 probe_error1:
1728 	vmbus_close(dev->channel);
1729 probe_error0:
1730 	kfree(send_buffer);
1731 	return ret;
1732 }
1733 
1734 static int balloon_remove(struct hv_device *dev)
1735 {
1736 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1737 	struct hv_hotadd_state *has, *tmp;
1738 	struct hv_hotadd_gap *gap, *tmp_gap;
1739 	unsigned long flags;
1740 
1741 	if (dm->num_pages_ballooned != 0)
1742 		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1743 
1744 	cancel_work_sync(&dm->balloon_wrk.wrk);
1745 	cancel_work_sync(&dm->ha_wrk.wrk);
1746 
1747 	vmbus_close(dev->channel);
1748 	kthread_stop(dm->thread);
1749 	kfree(send_buffer);
1750 #ifdef CONFIG_MEMORY_HOTPLUG
1751 	restore_online_page_callback(&hv_online_page);
1752 	unregister_memory_notifier(&hv_memory_nb);
1753 #endif
1754 	spin_lock_irqsave(&dm_device.ha_lock, flags);
1755 	list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1756 		list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1757 			list_del(&gap->list);
1758 			kfree(gap);
1759 		}
1760 		list_del(&has->list);
1761 		kfree(has);
1762 	}
1763 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1764 
1765 	return 0;
1766 }
1767 
1768 static const struct hv_vmbus_device_id id_table[] = {
1769 	/* Dynamic Memory Class ID */
1770 	/* 525074DC-8985-46e2-8057-A307DC18A502 */
1771 	{ HV_DM_GUID, },
1772 	{ },
1773 };
1774 
1775 MODULE_DEVICE_TABLE(vmbus, id_table);
1776 
1777 static  struct hv_driver balloon_drv = {
1778 	.name = "hv_balloon",
1779 	.id_table = id_table,
1780 	.probe =  balloon_probe,
1781 	.remove =  balloon_remove,
1782 	.driver = {
1783 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1784 	},
1785 };
1786 
1787 static int __init init_balloon_drv(void)
1788 {
1789 
1790 	return vmbus_driver_register(&balloon_drv);
1791 }
1792 
1793 module_init(init_balloon_drv);
1794 
1795 MODULE_DESCRIPTION("Hyper-V Balloon");
1796 MODULE_LICENSE("GPL");
1797