1 /* 2 * Copyright (c) 2012, Microsoft Corporation. 3 * 4 * Author: 5 * K. Y. Srinivasan <kys@microsoft.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 as published 9 * by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, but 12 * WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 14 * NON INFRINGEMENT. See the GNU General Public License for more 15 * details. 16 * 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/jiffies.h> 23 #include <linux/mman.h> 24 #include <linux/delay.h> 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/kthread.h> 29 #include <linux/completion.h> 30 #include <linux/memory_hotplug.h> 31 #include <linux/memory.h> 32 #include <linux/notifier.h> 33 #include <linux/percpu_counter.h> 34 35 #include <linux/hyperv.h> 36 37 #define CREATE_TRACE_POINTS 38 #include "hv_trace_balloon.h" 39 40 /* 41 * We begin with definitions supporting the Dynamic Memory protocol 42 * with the host. 43 * 44 * Begin protocol definitions. 45 */ 46 47 48 49 /* 50 * Protocol versions. The low word is the minor version, the high word the major 51 * version. 52 * 53 * History: 54 * Initial version 1.0 55 * Changed to 0.1 on 2009/03/25 56 * Changes to 0.2 on 2009/05/14 57 * Changes to 0.3 on 2009/12/03 58 * Changed to 1.0 on 2011/04/05 59 */ 60 61 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor))) 62 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16) 63 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff) 64 65 enum { 66 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3), 67 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0), 68 DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0), 69 70 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1, 71 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2, 72 DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3, 73 74 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10 75 }; 76 77 78 79 /* 80 * Message Types 81 */ 82 83 enum dm_message_type { 84 /* 85 * Version 0.3 86 */ 87 DM_ERROR = 0, 88 DM_VERSION_REQUEST = 1, 89 DM_VERSION_RESPONSE = 2, 90 DM_CAPABILITIES_REPORT = 3, 91 DM_CAPABILITIES_RESPONSE = 4, 92 DM_STATUS_REPORT = 5, 93 DM_BALLOON_REQUEST = 6, 94 DM_BALLOON_RESPONSE = 7, 95 DM_UNBALLOON_REQUEST = 8, 96 DM_UNBALLOON_RESPONSE = 9, 97 DM_MEM_HOT_ADD_REQUEST = 10, 98 DM_MEM_HOT_ADD_RESPONSE = 11, 99 DM_VERSION_03_MAX = 11, 100 /* 101 * Version 1.0. 102 */ 103 DM_INFO_MESSAGE = 12, 104 DM_VERSION_1_MAX = 12 105 }; 106 107 108 /* 109 * Structures defining the dynamic memory management 110 * protocol. 111 */ 112 113 union dm_version { 114 struct { 115 __u16 minor_version; 116 __u16 major_version; 117 }; 118 __u32 version; 119 } __packed; 120 121 122 union dm_caps { 123 struct { 124 __u64 balloon:1; 125 __u64 hot_add:1; 126 /* 127 * To support guests that may have alignment 128 * limitations on hot-add, the guest can specify 129 * its alignment requirements; a value of n 130 * represents an alignment of 2^n in mega bytes. 131 */ 132 __u64 hot_add_alignment:4; 133 __u64 reservedz:58; 134 } cap_bits; 135 __u64 caps; 136 } __packed; 137 138 union dm_mem_page_range { 139 struct { 140 /* 141 * The PFN number of the first page in the range. 142 * 40 bits is the architectural limit of a PFN 143 * number for AMD64. 144 */ 145 __u64 start_page:40; 146 /* 147 * The number of pages in the range. 148 */ 149 __u64 page_cnt:24; 150 } finfo; 151 __u64 page_range; 152 } __packed; 153 154 155 156 /* 157 * The header for all dynamic memory messages: 158 * 159 * type: Type of the message. 160 * size: Size of the message in bytes; including the header. 161 * trans_id: The guest is responsible for manufacturing this ID. 162 */ 163 164 struct dm_header { 165 __u16 type; 166 __u16 size; 167 __u32 trans_id; 168 } __packed; 169 170 /* 171 * A generic message format for dynamic memory. 172 * Specific message formats are defined later in the file. 173 */ 174 175 struct dm_message { 176 struct dm_header hdr; 177 __u8 data[]; /* enclosed message */ 178 } __packed; 179 180 181 /* 182 * Specific message types supporting the dynamic memory protocol. 183 */ 184 185 /* 186 * Version negotiation message. Sent from the guest to the host. 187 * The guest is free to try different versions until the host 188 * accepts the version. 189 * 190 * dm_version: The protocol version requested. 191 * is_last_attempt: If TRUE, this is the last version guest will request. 192 * reservedz: Reserved field, set to zero. 193 */ 194 195 struct dm_version_request { 196 struct dm_header hdr; 197 union dm_version version; 198 __u32 is_last_attempt:1; 199 __u32 reservedz:31; 200 } __packed; 201 202 /* 203 * Version response message; Host to Guest and indicates 204 * if the host has accepted the version sent by the guest. 205 * 206 * is_accepted: If TRUE, host has accepted the version and the guest 207 * should proceed to the next stage of the protocol. FALSE indicates that 208 * guest should re-try with a different version. 209 * 210 * reservedz: Reserved field, set to zero. 211 */ 212 213 struct dm_version_response { 214 struct dm_header hdr; 215 __u64 is_accepted:1; 216 __u64 reservedz:63; 217 } __packed; 218 219 /* 220 * Message reporting capabilities. This is sent from the guest to the 221 * host. 222 */ 223 224 struct dm_capabilities { 225 struct dm_header hdr; 226 union dm_caps caps; 227 __u64 min_page_cnt; 228 __u64 max_page_number; 229 } __packed; 230 231 /* 232 * Response to the capabilities message. This is sent from the host to the 233 * guest. This message notifies if the host has accepted the guest's 234 * capabilities. If the host has not accepted, the guest must shutdown 235 * the service. 236 * 237 * is_accepted: Indicates if the host has accepted guest's capabilities. 238 * reservedz: Must be 0. 239 */ 240 241 struct dm_capabilities_resp_msg { 242 struct dm_header hdr; 243 __u64 is_accepted:1; 244 __u64 reservedz:63; 245 } __packed; 246 247 /* 248 * This message is used to report memory pressure from the guest. 249 * This message is not part of any transaction and there is no 250 * response to this message. 251 * 252 * num_avail: Available memory in pages. 253 * num_committed: Committed memory in pages. 254 * page_file_size: The accumulated size of all page files 255 * in the system in pages. 256 * zero_free: The nunber of zero and free pages. 257 * page_file_writes: The writes to the page file in pages. 258 * io_diff: An indicator of file cache efficiency or page file activity, 259 * calculated as File Cache Page Fault Count - Page Read Count. 260 * This value is in pages. 261 * 262 * Some of these metrics are Windows specific and fortunately 263 * the algorithm on the host side that computes the guest memory 264 * pressure only uses num_committed value. 265 */ 266 267 struct dm_status { 268 struct dm_header hdr; 269 __u64 num_avail; 270 __u64 num_committed; 271 __u64 page_file_size; 272 __u64 zero_free; 273 __u32 page_file_writes; 274 __u32 io_diff; 275 } __packed; 276 277 278 /* 279 * Message to ask the guest to allocate memory - balloon up message. 280 * This message is sent from the host to the guest. The guest may not be 281 * able to allocate as much memory as requested. 282 * 283 * num_pages: number of pages to allocate. 284 */ 285 286 struct dm_balloon { 287 struct dm_header hdr; 288 __u32 num_pages; 289 __u32 reservedz; 290 } __packed; 291 292 293 /* 294 * Balloon response message; this message is sent from the guest 295 * to the host in response to the balloon message. 296 * 297 * reservedz: Reserved; must be set to zero. 298 * more_pages: If FALSE, this is the last message of the transaction. 299 * if TRUE there will atleast one more message from the guest. 300 * 301 * range_count: The number of ranges in the range array. 302 * 303 * range_array: An array of page ranges returned to the host. 304 * 305 */ 306 307 struct dm_balloon_response { 308 struct dm_header hdr; 309 __u32 reservedz; 310 __u32 more_pages:1; 311 __u32 range_count:31; 312 union dm_mem_page_range range_array[]; 313 } __packed; 314 315 /* 316 * Un-balloon message; this message is sent from the host 317 * to the guest to give guest more memory. 318 * 319 * more_pages: If FALSE, this is the last message of the transaction. 320 * if TRUE there will atleast one more message from the guest. 321 * 322 * reservedz: Reserved; must be set to zero. 323 * 324 * range_count: The number of ranges in the range array. 325 * 326 * range_array: An array of page ranges returned to the host. 327 * 328 */ 329 330 struct dm_unballoon_request { 331 struct dm_header hdr; 332 __u32 more_pages:1; 333 __u32 reservedz:31; 334 __u32 range_count; 335 union dm_mem_page_range range_array[]; 336 } __packed; 337 338 /* 339 * Un-balloon response message; this message is sent from the guest 340 * to the host in response to an unballoon request. 341 * 342 */ 343 344 struct dm_unballoon_response { 345 struct dm_header hdr; 346 } __packed; 347 348 349 /* 350 * Hot add request message. Message sent from the host to the guest. 351 * 352 * mem_range: Memory range to hot add. 353 * 354 * On Linux we currently don't support this since we cannot hot add 355 * arbitrary granularity of memory. 356 */ 357 358 struct dm_hot_add { 359 struct dm_header hdr; 360 union dm_mem_page_range range; 361 } __packed; 362 363 /* 364 * Hot add response message. 365 * This message is sent by the guest to report the status of a hot add request. 366 * If page_count is less than the requested page count, then the host should 367 * assume all further hot add requests will fail, since this indicates that 368 * the guest has hit an upper physical memory barrier. 369 * 370 * Hot adds may also fail due to low resources; in this case, the guest must 371 * not complete this message until the hot add can succeed, and the host must 372 * not send a new hot add request until the response is sent. 373 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS 374 * times it fails the request. 375 * 376 * 377 * page_count: number of pages that were successfully hot added. 378 * 379 * result: result of the operation 1: success, 0: failure. 380 * 381 */ 382 383 struct dm_hot_add_response { 384 struct dm_header hdr; 385 __u32 page_count; 386 __u32 result; 387 } __packed; 388 389 /* 390 * Types of information sent from host to the guest. 391 */ 392 393 enum dm_info_type { 394 INFO_TYPE_MAX_PAGE_CNT = 0, 395 MAX_INFO_TYPE 396 }; 397 398 399 /* 400 * Header for the information message. 401 */ 402 403 struct dm_info_header { 404 enum dm_info_type type; 405 __u32 data_size; 406 } __packed; 407 408 /* 409 * This message is sent from the host to the guest to pass 410 * some relevant information (win8 addition). 411 * 412 * reserved: no used. 413 * info_size: size of the information blob. 414 * info: information blob. 415 */ 416 417 struct dm_info_msg { 418 struct dm_header hdr; 419 __u32 reserved; 420 __u32 info_size; 421 __u8 info[]; 422 }; 423 424 /* 425 * End protocol definitions. 426 */ 427 428 /* 429 * State to manage hot adding memory into the guest. 430 * The range start_pfn : end_pfn specifies the range 431 * that the host has asked us to hot add. The range 432 * start_pfn : ha_end_pfn specifies the range that we have 433 * currently hot added. We hot add in multiples of 128M 434 * chunks; it is possible that we may not be able to bring 435 * online all the pages in the region. The range 436 * covered_start_pfn:covered_end_pfn defines the pages that can 437 * be brough online. 438 */ 439 440 struct hv_hotadd_state { 441 struct list_head list; 442 unsigned long start_pfn; 443 unsigned long covered_start_pfn; 444 unsigned long covered_end_pfn; 445 unsigned long ha_end_pfn; 446 unsigned long end_pfn; 447 /* 448 * A list of gaps. 449 */ 450 struct list_head gap_list; 451 }; 452 453 struct hv_hotadd_gap { 454 struct list_head list; 455 unsigned long start_pfn; 456 unsigned long end_pfn; 457 }; 458 459 struct balloon_state { 460 __u32 num_pages; 461 struct work_struct wrk; 462 }; 463 464 struct hot_add_wrk { 465 union dm_mem_page_range ha_page_range; 466 union dm_mem_page_range ha_region_range; 467 struct work_struct wrk; 468 }; 469 470 static bool hot_add = true; 471 static bool do_hot_add; 472 /* 473 * Delay reporting memory pressure by 474 * the specified number of seconds. 475 */ 476 static uint pressure_report_delay = 45; 477 478 /* 479 * The last time we posted a pressure report to host. 480 */ 481 static unsigned long last_post_time; 482 483 module_param(hot_add, bool, (S_IRUGO | S_IWUSR)); 484 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add"); 485 486 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR)); 487 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure"); 488 static atomic_t trans_id = ATOMIC_INIT(0); 489 490 static int dm_ring_size = (5 * PAGE_SIZE); 491 492 /* 493 * Driver specific state. 494 */ 495 496 enum hv_dm_state { 497 DM_INITIALIZING = 0, 498 DM_INITIALIZED, 499 DM_BALLOON_UP, 500 DM_BALLOON_DOWN, 501 DM_HOT_ADD, 502 DM_INIT_ERROR 503 }; 504 505 506 static __u8 recv_buffer[PAGE_SIZE]; 507 static __u8 *send_buffer; 508 #define PAGES_IN_2M 512 509 #define HA_CHUNK (32 * 1024) 510 511 struct hv_dynmem_device { 512 struct hv_device *dev; 513 enum hv_dm_state state; 514 struct completion host_event; 515 struct completion config_event; 516 517 /* 518 * Number of pages we have currently ballooned out. 519 */ 520 unsigned int num_pages_ballooned; 521 unsigned int num_pages_onlined; 522 unsigned int num_pages_added; 523 524 /* 525 * State to manage the ballooning (up) operation. 526 */ 527 struct balloon_state balloon_wrk; 528 529 /* 530 * State to execute the "hot-add" operation. 531 */ 532 struct hot_add_wrk ha_wrk; 533 534 /* 535 * This state tracks if the host has specified a hot-add 536 * region. 537 */ 538 bool host_specified_ha_region; 539 540 /* 541 * State to synchronize hot-add. 542 */ 543 struct completion ol_waitevent; 544 bool ha_waiting; 545 /* 546 * This thread handles hot-add 547 * requests from the host as well as notifying 548 * the host with regards to memory pressure in 549 * the guest. 550 */ 551 struct task_struct *thread; 552 553 /* 554 * Protects ha_region_list, num_pages_onlined counter and individual 555 * regions from ha_region_list. 556 */ 557 spinlock_t ha_lock; 558 559 /* 560 * A list of hot-add regions. 561 */ 562 struct list_head ha_region_list; 563 564 /* 565 * We start with the highest version we can support 566 * and downgrade based on the host; we save here the 567 * next version to try. 568 */ 569 __u32 next_version; 570 571 /* 572 * The negotiated version agreed by host. 573 */ 574 __u32 version; 575 }; 576 577 static struct hv_dynmem_device dm_device; 578 579 static void post_status(struct hv_dynmem_device *dm); 580 581 #ifdef CONFIG_MEMORY_HOTPLUG 582 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has, 583 unsigned long pfn) 584 { 585 struct hv_hotadd_gap *gap; 586 587 /* The page is not backed. */ 588 if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn)) 589 return false; 590 591 /* Check for gaps. */ 592 list_for_each_entry(gap, &has->gap_list, list) { 593 if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn)) 594 return false; 595 } 596 597 return true; 598 } 599 600 static unsigned long hv_page_offline_check(unsigned long start_pfn, 601 unsigned long nr_pages) 602 { 603 unsigned long pfn = start_pfn, count = 0; 604 struct hv_hotadd_state *has; 605 bool found; 606 607 while (pfn < start_pfn + nr_pages) { 608 /* 609 * Search for HAS which covers the pfn and when we find one 610 * count how many consequitive PFNs are covered. 611 */ 612 found = false; 613 list_for_each_entry(has, &dm_device.ha_region_list, list) { 614 while ((pfn >= has->start_pfn) && 615 (pfn < has->end_pfn) && 616 (pfn < start_pfn + nr_pages)) { 617 found = true; 618 if (has_pfn_is_backed(has, pfn)) 619 count++; 620 pfn++; 621 } 622 } 623 624 /* 625 * This PFN is not in any HAS (e.g. we're offlining a region 626 * which was present at boot), no need to account for it. Go 627 * to the next one. 628 */ 629 if (!found) 630 pfn++; 631 } 632 633 return count; 634 } 635 636 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val, 637 void *v) 638 { 639 struct memory_notify *mem = (struct memory_notify *)v; 640 unsigned long flags, pfn_count; 641 642 switch (val) { 643 case MEM_ONLINE: 644 case MEM_CANCEL_ONLINE: 645 if (dm_device.ha_waiting) { 646 dm_device.ha_waiting = false; 647 complete(&dm_device.ol_waitevent); 648 } 649 break; 650 651 case MEM_OFFLINE: 652 spin_lock_irqsave(&dm_device.ha_lock, flags); 653 pfn_count = hv_page_offline_check(mem->start_pfn, 654 mem->nr_pages); 655 if (pfn_count <= dm_device.num_pages_onlined) { 656 dm_device.num_pages_onlined -= pfn_count; 657 } else { 658 /* 659 * We're offlining more pages than we managed to online. 660 * This is unexpected. In any case don't let 661 * num_pages_onlined wrap around zero. 662 */ 663 WARN_ON_ONCE(1); 664 dm_device.num_pages_onlined = 0; 665 } 666 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 667 break; 668 case MEM_GOING_ONLINE: 669 case MEM_GOING_OFFLINE: 670 case MEM_CANCEL_OFFLINE: 671 break; 672 } 673 return NOTIFY_OK; 674 } 675 676 static struct notifier_block hv_memory_nb = { 677 .notifier_call = hv_memory_notifier, 678 .priority = 0 679 }; 680 681 /* Check if the particular page is backed and can be onlined and online it. */ 682 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg) 683 { 684 if (!has_pfn_is_backed(has, page_to_pfn(pg))) 685 return; 686 687 /* This frame is currently backed; online the page. */ 688 __online_page_set_limits(pg); 689 __online_page_increment_counters(pg); 690 __online_page_free(pg); 691 692 lockdep_assert_held(&dm_device.ha_lock); 693 dm_device.num_pages_onlined++; 694 } 695 696 static void hv_bring_pgs_online(struct hv_hotadd_state *has, 697 unsigned long start_pfn, unsigned long size) 698 { 699 int i; 700 701 pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn); 702 for (i = 0; i < size; i++) 703 hv_page_online_one(has, pfn_to_page(start_pfn + i)); 704 } 705 706 static void hv_mem_hot_add(unsigned long start, unsigned long size, 707 unsigned long pfn_count, 708 struct hv_hotadd_state *has) 709 { 710 int ret = 0; 711 int i, nid; 712 unsigned long start_pfn; 713 unsigned long processed_pfn; 714 unsigned long total_pfn = pfn_count; 715 unsigned long flags; 716 717 for (i = 0; i < (size/HA_CHUNK); i++) { 718 start_pfn = start + (i * HA_CHUNK); 719 720 spin_lock_irqsave(&dm_device.ha_lock, flags); 721 has->ha_end_pfn += HA_CHUNK; 722 723 if (total_pfn > HA_CHUNK) { 724 processed_pfn = HA_CHUNK; 725 total_pfn -= HA_CHUNK; 726 } else { 727 processed_pfn = total_pfn; 728 total_pfn = 0; 729 } 730 731 has->covered_end_pfn += processed_pfn; 732 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 733 734 init_completion(&dm_device.ol_waitevent); 735 dm_device.ha_waiting = !memhp_auto_online; 736 737 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn)); 738 ret = add_memory(nid, PFN_PHYS((start_pfn)), 739 (HA_CHUNK << PAGE_SHIFT)); 740 741 if (ret) { 742 pr_err("hot_add memory failed error is %d\n", ret); 743 if (ret == -EEXIST) { 744 /* 745 * This error indicates that the error 746 * is not a transient failure. This is the 747 * case where the guest's physical address map 748 * precludes hot adding memory. Stop all further 749 * memory hot-add. 750 */ 751 do_hot_add = false; 752 } 753 spin_lock_irqsave(&dm_device.ha_lock, flags); 754 has->ha_end_pfn -= HA_CHUNK; 755 has->covered_end_pfn -= processed_pfn; 756 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 757 break; 758 } 759 760 /* 761 * Wait for the memory block to be onlined when memory onlining 762 * is done outside of kernel (memhp_auto_online). Since the hot 763 * add has succeeded, it is ok to proceed even if the pages in 764 * the hot added region have not been "onlined" within the 765 * allowed time. 766 */ 767 if (dm_device.ha_waiting) 768 wait_for_completion_timeout(&dm_device.ol_waitevent, 769 5*HZ); 770 post_status(&dm_device); 771 } 772 } 773 774 static void hv_online_page(struct page *pg) 775 { 776 struct hv_hotadd_state *has; 777 unsigned long flags; 778 unsigned long pfn = page_to_pfn(pg); 779 780 spin_lock_irqsave(&dm_device.ha_lock, flags); 781 list_for_each_entry(has, &dm_device.ha_region_list, list) { 782 /* The page belongs to a different HAS. */ 783 if ((pfn < has->start_pfn) || (pfn >= has->end_pfn)) 784 continue; 785 786 hv_page_online_one(has, pg); 787 break; 788 } 789 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 790 } 791 792 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt) 793 { 794 struct hv_hotadd_state *has; 795 struct hv_hotadd_gap *gap; 796 unsigned long residual, new_inc; 797 int ret = 0; 798 unsigned long flags; 799 800 spin_lock_irqsave(&dm_device.ha_lock, flags); 801 list_for_each_entry(has, &dm_device.ha_region_list, list) { 802 /* 803 * If the pfn range we are dealing with is not in the current 804 * "hot add block", move on. 805 */ 806 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn) 807 continue; 808 809 /* 810 * If the current start pfn is not where the covered_end 811 * is, create a gap and update covered_end_pfn. 812 */ 813 if (has->covered_end_pfn != start_pfn) { 814 gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC); 815 if (!gap) { 816 ret = -ENOMEM; 817 break; 818 } 819 820 INIT_LIST_HEAD(&gap->list); 821 gap->start_pfn = has->covered_end_pfn; 822 gap->end_pfn = start_pfn; 823 list_add_tail(&gap->list, &has->gap_list); 824 825 has->covered_end_pfn = start_pfn; 826 } 827 828 /* 829 * If the current hot add-request extends beyond 830 * our current limit; extend it. 831 */ 832 if ((start_pfn + pfn_cnt) > has->end_pfn) { 833 residual = (start_pfn + pfn_cnt - has->end_pfn); 834 /* 835 * Extend the region by multiples of HA_CHUNK. 836 */ 837 new_inc = (residual / HA_CHUNK) * HA_CHUNK; 838 if (residual % HA_CHUNK) 839 new_inc += HA_CHUNK; 840 841 has->end_pfn += new_inc; 842 } 843 844 ret = 1; 845 break; 846 } 847 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 848 849 return ret; 850 } 851 852 static unsigned long handle_pg_range(unsigned long pg_start, 853 unsigned long pg_count) 854 { 855 unsigned long start_pfn = pg_start; 856 unsigned long pfn_cnt = pg_count; 857 unsigned long size; 858 struct hv_hotadd_state *has; 859 unsigned long pgs_ol = 0; 860 unsigned long old_covered_state; 861 unsigned long res = 0, flags; 862 863 pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count, 864 pg_start); 865 866 spin_lock_irqsave(&dm_device.ha_lock, flags); 867 list_for_each_entry(has, &dm_device.ha_region_list, list) { 868 /* 869 * If the pfn range we are dealing with is not in the current 870 * "hot add block", move on. 871 */ 872 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn) 873 continue; 874 875 old_covered_state = has->covered_end_pfn; 876 877 if (start_pfn < has->ha_end_pfn) { 878 /* 879 * This is the case where we are backing pages 880 * in an already hot added region. Bring 881 * these pages online first. 882 */ 883 pgs_ol = has->ha_end_pfn - start_pfn; 884 if (pgs_ol > pfn_cnt) 885 pgs_ol = pfn_cnt; 886 887 has->covered_end_pfn += pgs_ol; 888 pfn_cnt -= pgs_ol; 889 /* 890 * Check if the corresponding memory block is already 891 * online by checking its last previously backed page. 892 * In case it is we need to bring rest (which was not 893 * backed previously) online too. 894 */ 895 if (start_pfn > has->start_pfn && 896 !PageReserved(pfn_to_page(start_pfn - 1))) 897 hv_bring_pgs_online(has, start_pfn, pgs_ol); 898 899 } 900 901 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) { 902 /* 903 * We have some residual hot add range 904 * that needs to be hot added; hot add 905 * it now. Hot add a multiple of 906 * of HA_CHUNK that fully covers the pages 907 * we have. 908 */ 909 size = (has->end_pfn - has->ha_end_pfn); 910 if (pfn_cnt <= size) { 911 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK); 912 if (pfn_cnt % HA_CHUNK) 913 size += HA_CHUNK; 914 } else { 915 pfn_cnt = size; 916 } 917 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 918 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has); 919 spin_lock_irqsave(&dm_device.ha_lock, flags); 920 } 921 /* 922 * If we managed to online any pages that were given to us, 923 * we declare success. 924 */ 925 res = has->covered_end_pfn - old_covered_state; 926 break; 927 } 928 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 929 930 return res; 931 } 932 933 static unsigned long process_hot_add(unsigned long pg_start, 934 unsigned long pfn_cnt, 935 unsigned long rg_start, 936 unsigned long rg_size) 937 { 938 struct hv_hotadd_state *ha_region = NULL; 939 int covered; 940 unsigned long flags; 941 942 if (pfn_cnt == 0) 943 return 0; 944 945 if (!dm_device.host_specified_ha_region) { 946 covered = pfn_covered(pg_start, pfn_cnt); 947 if (covered < 0) 948 return 0; 949 950 if (covered) 951 goto do_pg_range; 952 } 953 954 /* 955 * If the host has specified a hot-add range; deal with it first. 956 */ 957 958 if (rg_size != 0) { 959 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL); 960 if (!ha_region) 961 return 0; 962 963 INIT_LIST_HEAD(&ha_region->list); 964 INIT_LIST_HEAD(&ha_region->gap_list); 965 966 ha_region->start_pfn = rg_start; 967 ha_region->ha_end_pfn = rg_start; 968 ha_region->covered_start_pfn = pg_start; 969 ha_region->covered_end_pfn = pg_start; 970 ha_region->end_pfn = rg_start + rg_size; 971 972 spin_lock_irqsave(&dm_device.ha_lock, flags); 973 list_add_tail(&ha_region->list, &dm_device.ha_region_list); 974 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 975 } 976 977 do_pg_range: 978 /* 979 * Process the page range specified; bringing them 980 * online if possible. 981 */ 982 return handle_pg_range(pg_start, pfn_cnt); 983 } 984 985 #endif 986 987 static void hot_add_req(struct work_struct *dummy) 988 { 989 struct dm_hot_add_response resp; 990 #ifdef CONFIG_MEMORY_HOTPLUG 991 unsigned long pg_start, pfn_cnt; 992 unsigned long rg_start, rg_sz; 993 #endif 994 struct hv_dynmem_device *dm = &dm_device; 995 996 memset(&resp, 0, sizeof(struct dm_hot_add_response)); 997 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE; 998 resp.hdr.size = sizeof(struct dm_hot_add_response); 999 1000 #ifdef CONFIG_MEMORY_HOTPLUG 1001 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page; 1002 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt; 1003 1004 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page; 1005 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt; 1006 1007 if ((rg_start == 0) && (!dm->host_specified_ha_region)) { 1008 unsigned long region_size; 1009 unsigned long region_start; 1010 1011 /* 1012 * The host has not specified the hot-add region. 1013 * Based on the hot-add page range being specified, 1014 * compute a hot-add region that can cover the pages 1015 * that need to be hot-added while ensuring the alignment 1016 * and size requirements of Linux as it relates to hot-add. 1017 */ 1018 region_start = pg_start; 1019 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK; 1020 if (pfn_cnt % HA_CHUNK) 1021 region_size += HA_CHUNK; 1022 1023 region_start = (pg_start / HA_CHUNK) * HA_CHUNK; 1024 1025 rg_start = region_start; 1026 rg_sz = region_size; 1027 } 1028 1029 if (do_hot_add) 1030 resp.page_count = process_hot_add(pg_start, pfn_cnt, 1031 rg_start, rg_sz); 1032 1033 dm->num_pages_added += resp.page_count; 1034 #endif 1035 /* 1036 * The result field of the response structure has the 1037 * following semantics: 1038 * 1039 * 1. If all or some pages hot-added: Guest should return success. 1040 * 1041 * 2. If no pages could be hot-added: 1042 * 1043 * If the guest returns success, then the host 1044 * will not attempt any further hot-add operations. This 1045 * signifies a permanent failure. 1046 * 1047 * If the guest returns failure, then this failure will be 1048 * treated as a transient failure and the host may retry the 1049 * hot-add operation after some delay. 1050 */ 1051 if (resp.page_count > 0) 1052 resp.result = 1; 1053 else if (!do_hot_add) 1054 resp.result = 1; 1055 else 1056 resp.result = 0; 1057 1058 if (!do_hot_add || (resp.page_count == 0)) 1059 pr_err("Memory hot add failed\n"); 1060 1061 dm->state = DM_INITIALIZED; 1062 resp.hdr.trans_id = atomic_inc_return(&trans_id); 1063 vmbus_sendpacket(dm->dev->channel, &resp, 1064 sizeof(struct dm_hot_add_response), 1065 (unsigned long)NULL, 1066 VM_PKT_DATA_INBAND, 0); 1067 } 1068 1069 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg) 1070 { 1071 struct dm_info_header *info_hdr; 1072 1073 info_hdr = (struct dm_info_header *)msg->info; 1074 1075 switch (info_hdr->type) { 1076 case INFO_TYPE_MAX_PAGE_CNT: 1077 if (info_hdr->data_size == sizeof(__u64)) { 1078 __u64 *max_page_count = (__u64 *)&info_hdr[1]; 1079 1080 pr_info("Max. dynamic memory size: %llu MB\n", 1081 (*max_page_count) >> (20 - PAGE_SHIFT)); 1082 } 1083 1084 break; 1085 default: 1086 pr_warn("Received Unknown type: %d\n", info_hdr->type); 1087 } 1088 } 1089 1090 static unsigned long compute_balloon_floor(void) 1091 { 1092 unsigned long min_pages; 1093 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT)) 1094 /* Simple continuous piecewiese linear function: 1095 * max MiB -> min MiB gradient 1096 * 0 0 1097 * 16 16 1098 * 32 24 1099 * 128 72 (1/2) 1100 * 512 168 (1/4) 1101 * 2048 360 (1/8) 1102 * 8192 744 (1/16) 1103 * 32768 1512 (1/32) 1104 */ 1105 if (totalram_pages < MB2PAGES(128)) 1106 min_pages = MB2PAGES(8) + (totalram_pages >> 1); 1107 else if (totalram_pages < MB2PAGES(512)) 1108 min_pages = MB2PAGES(40) + (totalram_pages >> 2); 1109 else if (totalram_pages < MB2PAGES(2048)) 1110 min_pages = MB2PAGES(104) + (totalram_pages >> 3); 1111 else if (totalram_pages < MB2PAGES(8192)) 1112 min_pages = MB2PAGES(232) + (totalram_pages >> 4); 1113 else 1114 min_pages = MB2PAGES(488) + (totalram_pages >> 5); 1115 #undef MB2PAGES 1116 return min_pages; 1117 } 1118 1119 /* 1120 * Post our status as it relates memory pressure to the 1121 * host. Host expects the guests to post this status 1122 * periodically at 1 second intervals. 1123 * 1124 * The metrics specified in this protocol are very Windows 1125 * specific and so we cook up numbers here to convey our memory 1126 * pressure. 1127 */ 1128 1129 static void post_status(struct hv_dynmem_device *dm) 1130 { 1131 struct dm_status status; 1132 unsigned long now = jiffies; 1133 unsigned long last_post = last_post_time; 1134 1135 if (pressure_report_delay > 0) { 1136 --pressure_report_delay; 1137 return; 1138 } 1139 1140 if (!time_after(now, (last_post_time + HZ))) 1141 return; 1142 1143 memset(&status, 0, sizeof(struct dm_status)); 1144 status.hdr.type = DM_STATUS_REPORT; 1145 status.hdr.size = sizeof(struct dm_status); 1146 status.hdr.trans_id = atomic_inc_return(&trans_id); 1147 1148 /* 1149 * The host expects the guest to report free and committed memory. 1150 * Furthermore, the host expects the pressure information to include 1151 * the ballooned out pages. For a given amount of memory that we are 1152 * managing we need to compute a floor below which we should not 1153 * balloon. Compute this and add it to the pressure report. 1154 * We also need to report all offline pages (num_pages_added - 1155 * num_pages_onlined) as committed to the host, otherwise it can try 1156 * asking us to balloon them out. 1157 */ 1158 status.num_avail = si_mem_available(); 1159 status.num_committed = vm_memory_committed() + 1160 dm->num_pages_ballooned + 1161 (dm->num_pages_added > dm->num_pages_onlined ? 1162 dm->num_pages_added - dm->num_pages_onlined : 0) + 1163 compute_balloon_floor(); 1164 1165 trace_balloon_status(status.num_avail, status.num_committed, 1166 vm_memory_committed(), dm->num_pages_ballooned, 1167 dm->num_pages_added, dm->num_pages_onlined); 1168 /* 1169 * If our transaction ID is no longer current, just don't 1170 * send the status. This can happen if we were interrupted 1171 * after we picked our transaction ID. 1172 */ 1173 if (status.hdr.trans_id != atomic_read(&trans_id)) 1174 return; 1175 1176 /* 1177 * If the last post time that we sampled has changed, 1178 * we have raced, don't post the status. 1179 */ 1180 if (last_post != last_post_time) 1181 return; 1182 1183 last_post_time = jiffies; 1184 vmbus_sendpacket(dm->dev->channel, &status, 1185 sizeof(struct dm_status), 1186 (unsigned long)NULL, 1187 VM_PKT_DATA_INBAND, 0); 1188 1189 } 1190 1191 static void free_balloon_pages(struct hv_dynmem_device *dm, 1192 union dm_mem_page_range *range_array) 1193 { 1194 int num_pages = range_array->finfo.page_cnt; 1195 __u64 start_frame = range_array->finfo.start_page; 1196 struct page *pg; 1197 int i; 1198 1199 for (i = 0; i < num_pages; i++) { 1200 pg = pfn_to_page(i + start_frame); 1201 __free_page(pg); 1202 dm->num_pages_ballooned--; 1203 } 1204 } 1205 1206 1207 1208 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm, 1209 unsigned int num_pages, 1210 struct dm_balloon_response *bl_resp, 1211 int alloc_unit) 1212 { 1213 unsigned int i = 0; 1214 struct page *pg; 1215 1216 if (num_pages < alloc_unit) 1217 return 0; 1218 1219 for (i = 0; (i * alloc_unit) < num_pages; i++) { 1220 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) > 1221 PAGE_SIZE) 1222 return i * alloc_unit; 1223 1224 /* 1225 * We execute this code in a thread context. Furthermore, 1226 * we don't want the kernel to try too hard. 1227 */ 1228 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY | 1229 __GFP_NOMEMALLOC | __GFP_NOWARN, 1230 get_order(alloc_unit << PAGE_SHIFT)); 1231 1232 if (!pg) 1233 return i * alloc_unit; 1234 1235 dm->num_pages_ballooned += alloc_unit; 1236 1237 /* 1238 * If we allocatted 2M pages; split them so we 1239 * can free them in any order we get. 1240 */ 1241 1242 if (alloc_unit != 1) 1243 split_page(pg, get_order(alloc_unit << PAGE_SHIFT)); 1244 1245 bl_resp->range_count++; 1246 bl_resp->range_array[i].finfo.start_page = 1247 page_to_pfn(pg); 1248 bl_resp->range_array[i].finfo.page_cnt = alloc_unit; 1249 bl_resp->hdr.size += sizeof(union dm_mem_page_range); 1250 1251 } 1252 1253 return num_pages; 1254 } 1255 1256 static void balloon_up(struct work_struct *dummy) 1257 { 1258 unsigned int num_pages = dm_device.balloon_wrk.num_pages; 1259 unsigned int num_ballooned = 0; 1260 struct dm_balloon_response *bl_resp; 1261 int alloc_unit; 1262 int ret; 1263 bool done = false; 1264 int i; 1265 long avail_pages; 1266 unsigned long floor; 1267 1268 /* The host balloons pages in 2M granularity. */ 1269 WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0); 1270 1271 /* 1272 * We will attempt 2M allocations. However, if we fail to 1273 * allocate 2M chunks, we will go back to 4k allocations. 1274 */ 1275 alloc_unit = 512; 1276 1277 avail_pages = si_mem_available(); 1278 floor = compute_balloon_floor(); 1279 1280 /* Refuse to balloon below the floor, keep the 2M granularity. */ 1281 if (avail_pages < num_pages || avail_pages - num_pages < floor) { 1282 pr_warn("Balloon request will be partially fulfilled. %s\n", 1283 avail_pages < num_pages ? "Not enough memory." : 1284 "Balloon floor reached."); 1285 1286 num_pages = avail_pages > floor ? (avail_pages - floor) : 0; 1287 num_pages -= num_pages % PAGES_IN_2M; 1288 } 1289 1290 while (!done) { 1291 bl_resp = (struct dm_balloon_response *)send_buffer; 1292 memset(send_buffer, 0, PAGE_SIZE); 1293 bl_resp->hdr.type = DM_BALLOON_RESPONSE; 1294 bl_resp->hdr.size = sizeof(struct dm_balloon_response); 1295 bl_resp->more_pages = 1; 1296 1297 num_pages -= num_ballooned; 1298 num_ballooned = alloc_balloon_pages(&dm_device, num_pages, 1299 bl_resp, alloc_unit); 1300 1301 if (alloc_unit != 1 && num_ballooned == 0) { 1302 alloc_unit = 1; 1303 continue; 1304 } 1305 1306 if (num_ballooned == 0 || num_ballooned == num_pages) { 1307 pr_debug("Ballooned %u out of %u requested pages.\n", 1308 num_pages, dm_device.balloon_wrk.num_pages); 1309 1310 bl_resp->more_pages = 0; 1311 done = true; 1312 dm_device.state = DM_INITIALIZED; 1313 } 1314 1315 /* 1316 * We are pushing a lot of data through the channel; 1317 * deal with transient failures caused because of the 1318 * lack of space in the ring buffer. 1319 */ 1320 1321 do { 1322 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id); 1323 ret = vmbus_sendpacket(dm_device.dev->channel, 1324 bl_resp, 1325 bl_resp->hdr.size, 1326 (unsigned long)NULL, 1327 VM_PKT_DATA_INBAND, 0); 1328 1329 if (ret == -EAGAIN) 1330 msleep(20); 1331 post_status(&dm_device); 1332 } while (ret == -EAGAIN); 1333 1334 if (ret) { 1335 /* 1336 * Free up the memory we allocatted. 1337 */ 1338 pr_err("Balloon response failed\n"); 1339 1340 for (i = 0; i < bl_resp->range_count; i++) 1341 free_balloon_pages(&dm_device, 1342 &bl_resp->range_array[i]); 1343 1344 done = true; 1345 } 1346 } 1347 1348 } 1349 1350 static void balloon_down(struct hv_dynmem_device *dm, 1351 struct dm_unballoon_request *req) 1352 { 1353 union dm_mem_page_range *range_array = req->range_array; 1354 int range_count = req->range_count; 1355 struct dm_unballoon_response resp; 1356 int i; 1357 unsigned int prev_pages_ballooned = dm->num_pages_ballooned; 1358 1359 for (i = 0; i < range_count; i++) { 1360 free_balloon_pages(dm, &range_array[i]); 1361 complete(&dm_device.config_event); 1362 } 1363 1364 pr_debug("Freed %u ballooned pages.\n", 1365 prev_pages_ballooned - dm->num_pages_ballooned); 1366 1367 if (req->more_pages == 1) 1368 return; 1369 1370 memset(&resp, 0, sizeof(struct dm_unballoon_response)); 1371 resp.hdr.type = DM_UNBALLOON_RESPONSE; 1372 resp.hdr.trans_id = atomic_inc_return(&trans_id); 1373 resp.hdr.size = sizeof(struct dm_unballoon_response); 1374 1375 vmbus_sendpacket(dm_device.dev->channel, &resp, 1376 sizeof(struct dm_unballoon_response), 1377 (unsigned long)NULL, 1378 VM_PKT_DATA_INBAND, 0); 1379 1380 dm->state = DM_INITIALIZED; 1381 } 1382 1383 static void balloon_onchannelcallback(void *context); 1384 1385 static int dm_thread_func(void *dm_dev) 1386 { 1387 struct hv_dynmem_device *dm = dm_dev; 1388 1389 while (!kthread_should_stop()) { 1390 wait_for_completion_interruptible_timeout( 1391 &dm_device.config_event, 1*HZ); 1392 /* 1393 * The host expects us to post information on the memory 1394 * pressure every second. 1395 */ 1396 reinit_completion(&dm_device.config_event); 1397 post_status(dm); 1398 } 1399 1400 return 0; 1401 } 1402 1403 1404 static void version_resp(struct hv_dynmem_device *dm, 1405 struct dm_version_response *vresp) 1406 { 1407 struct dm_version_request version_req; 1408 int ret; 1409 1410 if (vresp->is_accepted) { 1411 /* 1412 * We are done; wakeup the 1413 * context waiting for version 1414 * negotiation. 1415 */ 1416 complete(&dm->host_event); 1417 return; 1418 } 1419 /* 1420 * If there are more versions to try, continue 1421 * with negotiations; if not 1422 * shutdown the service since we are not able 1423 * to negotiate a suitable version number 1424 * with the host. 1425 */ 1426 if (dm->next_version == 0) 1427 goto version_error; 1428 1429 memset(&version_req, 0, sizeof(struct dm_version_request)); 1430 version_req.hdr.type = DM_VERSION_REQUEST; 1431 version_req.hdr.size = sizeof(struct dm_version_request); 1432 version_req.hdr.trans_id = atomic_inc_return(&trans_id); 1433 version_req.version.version = dm->next_version; 1434 dm->version = version_req.version.version; 1435 1436 /* 1437 * Set the next version to try in case current version fails. 1438 * Win7 protocol ought to be the last one to try. 1439 */ 1440 switch (version_req.version.version) { 1441 case DYNMEM_PROTOCOL_VERSION_WIN8: 1442 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7; 1443 version_req.is_last_attempt = 0; 1444 break; 1445 default: 1446 dm->next_version = 0; 1447 version_req.is_last_attempt = 1; 1448 } 1449 1450 ret = vmbus_sendpacket(dm->dev->channel, &version_req, 1451 sizeof(struct dm_version_request), 1452 (unsigned long)NULL, 1453 VM_PKT_DATA_INBAND, 0); 1454 1455 if (ret) 1456 goto version_error; 1457 1458 return; 1459 1460 version_error: 1461 dm->state = DM_INIT_ERROR; 1462 complete(&dm->host_event); 1463 } 1464 1465 static void cap_resp(struct hv_dynmem_device *dm, 1466 struct dm_capabilities_resp_msg *cap_resp) 1467 { 1468 if (!cap_resp->is_accepted) { 1469 pr_err("Capabilities not accepted by host\n"); 1470 dm->state = DM_INIT_ERROR; 1471 } 1472 complete(&dm->host_event); 1473 } 1474 1475 static void balloon_onchannelcallback(void *context) 1476 { 1477 struct hv_device *dev = context; 1478 u32 recvlen; 1479 u64 requestid; 1480 struct dm_message *dm_msg; 1481 struct dm_header *dm_hdr; 1482 struct hv_dynmem_device *dm = hv_get_drvdata(dev); 1483 struct dm_balloon *bal_msg; 1484 struct dm_hot_add *ha_msg; 1485 union dm_mem_page_range *ha_pg_range; 1486 union dm_mem_page_range *ha_region; 1487 1488 memset(recv_buffer, 0, sizeof(recv_buffer)); 1489 vmbus_recvpacket(dev->channel, recv_buffer, 1490 PAGE_SIZE, &recvlen, &requestid); 1491 1492 if (recvlen > 0) { 1493 dm_msg = (struct dm_message *)recv_buffer; 1494 dm_hdr = &dm_msg->hdr; 1495 1496 switch (dm_hdr->type) { 1497 case DM_VERSION_RESPONSE: 1498 version_resp(dm, 1499 (struct dm_version_response *)dm_msg); 1500 break; 1501 1502 case DM_CAPABILITIES_RESPONSE: 1503 cap_resp(dm, 1504 (struct dm_capabilities_resp_msg *)dm_msg); 1505 break; 1506 1507 case DM_BALLOON_REQUEST: 1508 if (dm->state == DM_BALLOON_UP) 1509 pr_warn("Currently ballooning\n"); 1510 bal_msg = (struct dm_balloon *)recv_buffer; 1511 dm->state = DM_BALLOON_UP; 1512 dm_device.balloon_wrk.num_pages = bal_msg->num_pages; 1513 schedule_work(&dm_device.balloon_wrk.wrk); 1514 break; 1515 1516 case DM_UNBALLOON_REQUEST: 1517 dm->state = DM_BALLOON_DOWN; 1518 balloon_down(dm, 1519 (struct dm_unballoon_request *)recv_buffer); 1520 break; 1521 1522 case DM_MEM_HOT_ADD_REQUEST: 1523 if (dm->state == DM_HOT_ADD) 1524 pr_warn("Currently hot-adding\n"); 1525 dm->state = DM_HOT_ADD; 1526 ha_msg = (struct dm_hot_add *)recv_buffer; 1527 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) { 1528 /* 1529 * This is a normal hot-add request specifying 1530 * hot-add memory. 1531 */ 1532 dm->host_specified_ha_region = false; 1533 ha_pg_range = &ha_msg->range; 1534 dm->ha_wrk.ha_page_range = *ha_pg_range; 1535 dm->ha_wrk.ha_region_range.page_range = 0; 1536 } else { 1537 /* 1538 * Host is specifying that we first hot-add 1539 * a region and then partially populate this 1540 * region. 1541 */ 1542 dm->host_specified_ha_region = true; 1543 ha_pg_range = &ha_msg->range; 1544 ha_region = &ha_pg_range[1]; 1545 dm->ha_wrk.ha_page_range = *ha_pg_range; 1546 dm->ha_wrk.ha_region_range = *ha_region; 1547 } 1548 schedule_work(&dm_device.ha_wrk.wrk); 1549 break; 1550 1551 case DM_INFO_MESSAGE: 1552 process_info(dm, (struct dm_info_msg *)dm_msg); 1553 break; 1554 1555 default: 1556 pr_warn("Unhandled message: type: %d\n", dm_hdr->type); 1557 1558 } 1559 } 1560 1561 } 1562 1563 static int balloon_probe(struct hv_device *dev, 1564 const struct hv_vmbus_device_id *dev_id) 1565 { 1566 int ret; 1567 unsigned long t; 1568 struct dm_version_request version_req; 1569 struct dm_capabilities cap_msg; 1570 1571 #ifdef CONFIG_MEMORY_HOTPLUG 1572 do_hot_add = hot_add; 1573 #else 1574 do_hot_add = false; 1575 #endif 1576 1577 /* 1578 * First allocate a send buffer. 1579 */ 1580 1581 send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL); 1582 if (!send_buffer) 1583 return -ENOMEM; 1584 1585 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0, 1586 balloon_onchannelcallback, dev); 1587 1588 if (ret) 1589 goto probe_error0; 1590 1591 dm_device.dev = dev; 1592 dm_device.state = DM_INITIALIZING; 1593 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8; 1594 init_completion(&dm_device.host_event); 1595 init_completion(&dm_device.config_event); 1596 INIT_LIST_HEAD(&dm_device.ha_region_list); 1597 spin_lock_init(&dm_device.ha_lock); 1598 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up); 1599 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req); 1600 dm_device.host_specified_ha_region = false; 1601 1602 dm_device.thread = 1603 kthread_run(dm_thread_func, &dm_device, "hv_balloon"); 1604 if (IS_ERR(dm_device.thread)) { 1605 ret = PTR_ERR(dm_device.thread); 1606 goto probe_error1; 1607 } 1608 1609 #ifdef CONFIG_MEMORY_HOTPLUG 1610 set_online_page_callback(&hv_online_page); 1611 register_memory_notifier(&hv_memory_nb); 1612 #endif 1613 1614 hv_set_drvdata(dev, &dm_device); 1615 /* 1616 * Initiate the hand shake with the host and negotiate 1617 * a version that the host can support. We start with the 1618 * highest version number and go down if the host cannot 1619 * support it. 1620 */ 1621 memset(&version_req, 0, sizeof(struct dm_version_request)); 1622 version_req.hdr.type = DM_VERSION_REQUEST; 1623 version_req.hdr.size = sizeof(struct dm_version_request); 1624 version_req.hdr.trans_id = atomic_inc_return(&trans_id); 1625 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10; 1626 version_req.is_last_attempt = 0; 1627 dm_device.version = version_req.version.version; 1628 1629 ret = vmbus_sendpacket(dev->channel, &version_req, 1630 sizeof(struct dm_version_request), 1631 (unsigned long)NULL, 1632 VM_PKT_DATA_INBAND, 0); 1633 if (ret) 1634 goto probe_error2; 1635 1636 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ); 1637 if (t == 0) { 1638 ret = -ETIMEDOUT; 1639 goto probe_error2; 1640 } 1641 1642 /* 1643 * If we could not negotiate a compatible version with the host 1644 * fail the probe function. 1645 */ 1646 if (dm_device.state == DM_INIT_ERROR) { 1647 ret = -ETIMEDOUT; 1648 goto probe_error2; 1649 } 1650 1651 pr_info("Using Dynamic Memory protocol version %u.%u\n", 1652 DYNMEM_MAJOR_VERSION(dm_device.version), 1653 DYNMEM_MINOR_VERSION(dm_device.version)); 1654 1655 /* 1656 * Now submit our capabilities to the host. 1657 */ 1658 memset(&cap_msg, 0, sizeof(struct dm_capabilities)); 1659 cap_msg.hdr.type = DM_CAPABILITIES_REPORT; 1660 cap_msg.hdr.size = sizeof(struct dm_capabilities); 1661 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id); 1662 1663 cap_msg.caps.cap_bits.balloon = 1; 1664 cap_msg.caps.cap_bits.hot_add = 1; 1665 1666 /* 1667 * Specify our alignment requirements as it relates 1668 * memory hot-add. Specify 128MB alignment. 1669 */ 1670 cap_msg.caps.cap_bits.hot_add_alignment = 7; 1671 1672 /* 1673 * Currently the host does not use these 1674 * values and we set them to what is done in the 1675 * Windows driver. 1676 */ 1677 cap_msg.min_page_cnt = 0; 1678 cap_msg.max_page_number = -1; 1679 1680 ret = vmbus_sendpacket(dev->channel, &cap_msg, 1681 sizeof(struct dm_capabilities), 1682 (unsigned long)NULL, 1683 VM_PKT_DATA_INBAND, 0); 1684 if (ret) 1685 goto probe_error2; 1686 1687 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ); 1688 if (t == 0) { 1689 ret = -ETIMEDOUT; 1690 goto probe_error2; 1691 } 1692 1693 /* 1694 * If the host does not like our capabilities, 1695 * fail the probe function. 1696 */ 1697 if (dm_device.state == DM_INIT_ERROR) { 1698 ret = -ETIMEDOUT; 1699 goto probe_error2; 1700 } 1701 1702 dm_device.state = DM_INITIALIZED; 1703 last_post_time = jiffies; 1704 1705 return 0; 1706 1707 probe_error2: 1708 #ifdef CONFIG_MEMORY_HOTPLUG 1709 restore_online_page_callback(&hv_online_page); 1710 #endif 1711 kthread_stop(dm_device.thread); 1712 1713 probe_error1: 1714 vmbus_close(dev->channel); 1715 probe_error0: 1716 kfree(send_buffer); 1717 return ret; 1718 } 1719 1720 static int balloon_remove(struct hv_device *dev) 1721 { 1722 struct hv_dynmem_device *dm = hv_get_drvdata(dev); 1723 struct hv_hotadd_state *has, *tmp; 1724 struct hv_hotadd_gap *gap, *tmp_gap; 1725 unsigned long flags; 1726 1727 if (dm->num_pages_ballooned != 0) 1728 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned); 1729 1730 cancel_work_sync(&dm->balloon_wrk.wrk); 1731 cancel_work_sync(&dm->ha_wrk.wrk); 1732 1733 vmbus_close(dev->channel); 1734 kthread_stop(dm->thread); 1735 kfree(send_buffer); 1736 #ifdef CONFIG_MEMORY_HOTPLUG 1737 restore_online_page_callback(&hv_online_page); 1738 unregister_memory_notifier(&hv_memory_nb); 1739 #endif 1740 spin_lock_irqsave(&dm_device.ha_lock, flags); 1741 list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) { 1742 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) { 1743 list_del(&gap->list); 1744 kfree(gap); 1745 } 1746 list_del(&has->list); 1747 kfree(has); 1748 } 1749 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 1750 1751 return 0; 1752 } 1753 1754 static const struct hv_vmbus_device_id id_table[] = { 1755 /* Dynamic Memory Class ID */ 1756 /* 525074DC-8985-46e2-8057-A307DC18A502 */ 1757 { HV_DM_GUID, }, 1758 { }, 1759 }; 1760 1761 MODULE_DEVICE_TABLE(vmbus, id_table); 1762 1763 static struct hv_driver balloon_drv = { 1764 .name = "hv_balloon", 1765 .id_table = id_table, 1766 .probe = balloon_probe, 1767 .remove = balloon_remove, 1768 .driver = { 1769 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 1770 }, 1771 }; 1772 1773 static int __init init_balloon_drv(void) 1774 { 1775 1776 return vmbus_driver_register(&balloon_drv); 1777 } 1778 1779 module_init(init_balloon_drv); 1780 1781 MODULE_DESCRIPTION("Hyper-V Balloon"); 1782 MODULE_LICENSE("GPL"); 1783