xref: /openbmc/linux/drivers/hv/hv.c (revision 9659281c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/hyperv.h>
16 #include <linux/random.h>
17 #include <linux/clockchips.h>
18 #include <linux/delay.h>
19 #include <linux/interrupt.h>
20 #include <clocksource/hyperv_timer.h>
21 #include <asm/mshyperv.h>
22 #include "hyperv_vmbus.h"
23 
24 /* The one and only */
25 struct hv_context hv_context;
26 
27 /*
28  * hv_init - Main initialization routine.
29  *
30  * This routine must be called before any other routines in here are called
31  */
32 int hv_init(void)
33 {
34 	hv_context.cpu_context = alloc_percpu(struct hv_per_cpu_context);
35 	if (!hv_context.cpu_context)
36 		return -ENOMEM;
37 	return 0;
38 }
39 
40 /*
41  * Functions for allocating and freeing memory with size and
42  * alignment HV_HYP_PAGE_SIZE. These functions are needed because
43  * the guest page size may not be the same as the Hyper-V page
44  * size. We depend upon kmalloc() aligning power-of-two size
45  * allocations to the allocation size boundary, so that the
46  * allocated memory appears to Hyper-V as a page of the size
47  * it expects.
48  */
49 
50 void *hv_alloc_hyperv_page(void)
51 {
52 	BUILD_BUG_ON(PAGE_SIZE <  HV_HYP_PAGE_SIZE);
53 
54 	if (PAGE_SIZE == HV_HYP_PAGE_SIZE)
55 		return (void *)__get_free_page(GFP_KERNEL);
56 	else
57 		return kmalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
58 }
59 
60 void *hv_alloc_hyperv_zeroed_page(void)
61 {
62 	if (PAGE_SIZE == HV_HYP_PAGE_SIZE)
63 		return (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
64 	else
65 		return kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
66 }
67 
68 void hv_free_hyperv_page(unsigned long addr)
69 {
70 	if (PAGE_SIZE == HV_HYP_PAGE_SIZE)
71 		free_page(addr);
72 	else
73 		kfree((void *)addr);
74 }
75 
76 /*
77  * hv_post_message - Post a message using the hypervisor message IPC.
78  *
79  * This involves a hypercall.
80  */
81 int hv_post_message(union hv_connection_id connection_id,
82 		  enum hv_message_type message_type,
83 		  void *payload, size_t payload_size)
84 {
85 	struct hv_input_post_message *aligned_msg;
86 	struct hv_per_cpu_context *hv_cpu;
87 	u64 status;
88 
89 	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
90 		return -EMSGSIZE;
91 
92 	hv_cpu = get_cpu_ptr(hv_context.cpu_context);
93 	aligned_msg = hv_cpu->post_msg_page;
94 	aligned_msg->connectionid = connection_id;
95 	aligned_msg->reserved = 0;
96 	aligned_msg->message_type = message_type;
97 	aligned_msg->payload_size = payload_size;
98 	memcpy((void *)aligned_msg->payload, payload, payload_size);
99 
100 	status = hv_do_hypercall(HVCALL_POST_MESSAGE, aligned_msg, NULL);
101 
102 	/* Preemption must remain disabled until after the hypercall
103 	 * so some other thread can't get scheduled onto this cpu and
104 	 * corrupt the per-cpu post_msg_page
105 	 */
106 	put_cpu_ptr(hv_cpu);
107 
108 	return hv_result(status);
109 }
110 
111 int hv_synic_alloc(void)
112 {
113 	int cpu;
114 	struct hv_per_cpu_context *hv_cpu;
115 
116 	/*
117 	 * First, zero all per-cpu memory areas so hv_synic_free() can
118 	 * detect what memory has been allocated and cleanup properly
119 	 * after any failures.
120 	 */
121 	for_each_present_cpu(cpu) {
122 		hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
123 		memset(hv_cpu, 0, sizeof(*hv_cpu));
124 	}
125 
126 	hv_context.hv_numa_map = kcalloc(nr_node_ids, sizeof(struct cpumask),
127 					 GFP_KERNEL);
128 	if (hv_context.hv_numa_map == NULL) {
129 		pr_err("Unable to allocate NUMA map\n");
130 		goto err;
131 	}
132 
133 	for_each_present_cpu(cpu) {
134 		hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
135 
136 		tasklet_init(&hv_cpu->msg_dpc,
137 			     vmbus_on_msg_dpc, (unsigned long) hv_cpu);
138 
139 		hv_cpu->synic_message_page =
140 			(void *)get_zeroed_page(GFP_ATOMIC);
141 		if (hv_cpu->synic_message_page == NULL) {
142 			pr_err("Unable to allocate SYNIC message page\n");
143 			goto err;
144 		}
145 
146 		hv_cpu->synic_event_page = (void *)get_zeroed_page(GFP_ATOMIC);
147 		if (hv_cpu->synic_event_page == NULL) {
148 			pr_err("Unable to allocate SYNIC event page\n");
149 			goto err;
150 		}
151 
152 		hv_cpu->post_msg_page = (void *)get_zeroed_page(GFP_ATOMIC);
153 		if (hv_cpu->post_msg_page == NULL) {
154 			pr_err("Unable to allocate post msg page\n");
155 			goto err;
156 		}
157 	}
158 
159 	return 0;
160 err:
161 	/*
162 	 * Any memory allocations that succeeded will be freed when
163 	 * the caller cleans up by calling hv_synic_free()
164 	 */
165 	return -ENOMEM;
166 }
167 
168 
169 void hv_synic_free(void)
170 {
171 	int cpu;
172 
173 	for_each_present_cpu(cpu) {
174 		struct hv_per_cpu_context *hv_cpu
175 			= per_cpu_ptr(hv_context.cpu_context, cpu);
176 
177 		free_page((unsigned long)hv_cpu->synic_event_page);
178 		free_page((unsigned long)hv_cpu->synic_message_page);
179 		free_page((unsigned long)hv_cpu->post_msg_page);
180 	}
181 
182 	kfree(hv_context.hv_numa_map);
183 }
184 
185 /*
186  * hv_synic_init - Initialize the Synthetic Interrupt Controller.
187  *
188  * If it is already initialized by another entity (ie x2v shim), we need to
189  * retrieve the initialized message and event pages.  Otherwise, we create and
190  * initialize the message and event pages.
191  */
192 void hv_synic_enable_regs(unsigned int cpu)
193 {
194 	struct hv_per_cpu_context *hv_cpu
195 		= per_cpu_ptr(hv_context.cpu_context, cpu);
196 	union hv_synic_simp simp;
197 	union hv_synic_siefp siefp;
198 	union hv_synic_sint shared_sint;
199 	union hv_synic_scontrol sctrl;
200 
201 	/* Setup the Synic's message page */
202 	simp.as_uint64 = hv_get_register(HV_REGISTER_SIMP);
203 	simp.simp_enabled = 1;
204 	simp.base_simp_gpa = virt_to_phys(hv_cpu->synic_message_page)
205 		>> HV_HYP_PAGE_SHIFT;
206 
207 	hv_set_register(HV_REGISTER_SIMP, simp.as_uint64);
208 
209 	/* Setup the Synic's event page */
210 	siefp.as_uint64 = hv_get_register(HV_REGISTER_SIEFP);
211 	siefp.siefp_enabled = 1;
212 	siefp.base_siefp_gpa = virt_to_phys(hv_cpu->synic_event_page)
213 		>> HV_HYP_PAGE_SHIFT;
214 
215 	hv_set_register(HV_REGISTER_SIEFP, siefp.as_uint64);
216 
217 	/* Setup the shared SINT. */
218 	if (vmbus_irq != -1)
219 		enable_percpu_irq(vmbus_irq, 0);
220 	shared_sint.as_uint64 = hv_get_register(HV_REGISTER_SINT0 +
221 					VMBUS_MESSAGE_SINT);
222 
223 	shared_sint.vector = vmbus_interrupt;
224 	shared_sint.masked = false;
225 
226 	/*
227 	 * On architectures where Hyper-V doesn't support AEOI (e.g., ARM64),
228 	 * it doesn't provide a recommendation flag and AEOI must be disabled.
229 	 */
230 #ifdef HV_DEPRECATING_AEOI_RECOMMENDED
231 	shared_sint.auto_eoi =
232 			!(ms_hyperv.hints & HV_DEPRECATING_AEOI_RECOMMENDED);
233 #else
234 	shared_sint.auto_eoi = 0;
235 #endif
236 	hv_set_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT,
237 				shared_sint.as_uint64);
238 
239 	/* Enable the global synic bit */
240 	sctrl.as_uint64 = hv_get_register(HV_REGISTER_SCONTROL);
241 	sctrl.enable = 1;
242 
243 	hv_set_register(HV_REGISTER_SCONTROL, sctrl.as_uint64);
244 }
245 
246 int hv_synic_init(unsigned int cpu)
247 {
248 	hv_synic_enable_regs(cpu);
249 
250 	hv_stimer_legacy_init(cpu, VMBUS_MESSAGE_SINT);
251 
252 	return 0;
253 }
254 
255 /*
256  * hv_synic_cleanup - Cleanup routine for hv_synic_init().
257  */
258 void hv_synic_disable_regs(unsigned int cpu)
259 {
260 	union hv_synic_sint shared_sint;
261 	union hv_synic_simp simp;
262 	union hv_synic_siefp siefp;
263 	union hv_synic_scontrol sctrl;
264 
265 	shared_sint.as_uint64 = hv_get_register(HV_REGISTER_SINT0 +
266 					VMBUS_MESSAGE_SINT);
267 
268 	shared_sint.masked = 1;
269 
270 	/* Need to correctly cleanup in the case of SMP!!! */
271 	/* Disable the interrupt */
272 	hv_set_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT,
273 				shared_sint.as_uint64);
274 
275 	simp.as_uint64 = hv_get_register(HV_REGISTER_SIMP);
276 	simp.simp_enabled = 0;
277 	simp.base_simp_gpa = 0;
278 
279 	hv_set_register(HV_REGISTER_SIMP, simp.as_uint64);
280 
281 	siefp.as_uint64 = hv_get_register(HV_REGISTER_SIEFP);
282 	siefp.siefp_enabled = 0;
283 	siefp.base_siefp_gpa = 0;
284 
285 	hv_set_register(HV_REGISTER_SIEFP, siefp.as_uint64);
286 
287 	/* Disable the global synic bit */
288 	sctrl.as_uint64 = hv_get_register(HV_REGISTER_SCONTROL);
289 	sctrl.enable = 0;
290 	hv_set_register(HV_REGISTER_SCONTROL, sctrl.as_uint64);
291 
292 	if (vmbus_irq != -1)
293 		disable_percpu_irq(vmbus_irq);
294 }
295 
296 #define HV_MAX_TRIES 3
297 /*
298  * Scan the event flags page of 'this' CPU looking for any bit that is set.  If we find one
299  * bit set, then wait for a few milliseconds.  Repeat these steps for a maximum of 3 times.
300  * Return 'true', if there is still any set bit after this operation; 'false', otherwise.
301  *
302  * If a bit is set, that means there is a pending channel interrupt.  The expectation is
303  * that the normal interrupt handling mechanism will find and process the channel interrupt
304  * "very soon", and in the process clear the bit.
305  */
306 static bool hv_synic_event_pending(void)
307 {
308 	struct hv_per_cpu_context *hv_cpu = this_cpu_ptr(hv_context.cpu_context);
309 	union hv_synic_event_flags *event =
310 		(union hv_synic_event_flags *)hv_cpu->synic_event_page + VMBUS_MESSAGE_SINT;
311 	unsigned long *recv_int_page = event->flags; /* assumes VMBus version >= VERSION_WIN8 */
312 	bool pending;
313 	u32 relid;
314 	int tries = 0;
315 
316 retry:
317 	pending = false;
318 	for_each_set_bit(relid, recv_int_page, HV_EVENT_FLAGS_COUNT) {
319 		/* Special case - VMBus channel protocol messages */
320 		if (relid == 0)
321 			continue;
322 		pending = true;
323 		break;
324 	}
325 	if (pending && tries++ < HV_MAX_TRIES) {
326 		usleep_range(10000, 20000);
327 		goto retry;
328 	}
329 	return pending;
330 }
331 
332 int hv_synic_cleanup(unsigned int cpu)
333 {
334 	struct vmbus_channel *channel, *sc;
335 	bool channel_found = false;
336 
337 	if (vmbus_connection.conn_state != CONNECTED)
338 		goto always_cleanup;
339 
340 	/*
341 	 * Hyper-V does not provide a way to change the connect CPU once
342 	 * it is set; we must prevent the connect CPU from going offline
343 	 * while the VM is running normally. But in the panic or kexec()
344 	 * path where the vmbus is already disconnected, the CPU must be
345 	 * allowed to shut down.
346 	 */
347 	if (cpu == VMBUS_CONNECT_CPU)
348 		return -EBUSY;
349 
350 	/*
351 	 * Search for channels which are bound to the CPU we're about to
352 	 * cleanup.  In case we find one and vmbus is still connected, we
353 	 * fail; this will effectively prevent CPU offlining.
354 	 *
355 	 * TODO: Re-bind the channels to different CPUs.
356 	 */
357 	mutex_lock(&vmbus_connection.channel_mutex);
358 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
359 		if (channel->target_cpu == cpu) {
360 			channel_found = true;
361 			break;
362 		}
363 		list_for_each_entry(sc, &channel->sc_list, sc_list) {
364 			if (sc->target_cpu == cpu) {
365 				channel_found = true;
366 				break;
367 			}
368 		}
369 		if (channel_found)
370 			break;
371 	}
372 	mutex_unlock(&vmbus_connection.channel_mutex);
373 
374 	if (channel_found)
375 		return -EBUSY;
376 
377 	/*
378 	 * channel_found == false means that any channels that were previously
379 	 * assigned to the CPU have been reassigned elsewhere with a call of
380 	 * vmbus_send_modifychannel().  Scan the event flags page looking for
381 	 * bits that are set and waiting with a timeout for vmbus_chan_sched()
382 	 * to process such bits.  If bits are still set after this operation
383 	 * and VMBus is connected, fail the CPU offlining operation.
384 	 */
385 	if (vmbus_proto_version >= VERSION_WIN10_V4_1 && hv_synic_event_pending())
386 		return -EBUSY;
387 
388 always_cleanup:
389 	hv_stimer_legacy_cleanup(cpu);
390 
391 	hv_synic_disable_regs(cpu);
392 
393 	return 0;
394 }
395