xref: /openbmc/linux/drivers/hv/hv.c (revision 84cc6674)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/io.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/hyperv.h>
17 #include <linux/random.h>
18 #include <linux/clockchips.h>
19 #include <linux/delay.h>
20 #include <linux/interrupt.h>
21 #include <clocksource/hyperv_timer.h>
22 #include <asm/mshyperv.h>
23 #include "hyperv_vmbus.h"
24 
25 /* The one and only */
26 struct hv_context hv_context;
27 
28 /*
29  * hv_init - Main initialization routine.
30  *
31  * This routine must be called before any other routines in here are called
32  */
33 int hv_init(void)
34 {
35 	hv_context.cpu_context = alloc_percpu(struct hv_per_cpu_context);
36 	if (!hv_context.cpu_context)
37 		return -ENOMEM;
38 	return 0;
39 }
40 
41 /*
42  * Functions for allocating and freeing memory with size and
43  * alignment HV_HYP_PAGE_SIZE. These functions are needed because
44  * the guest page size may not be the same as the Hyper-V page
45  * size. We depend upon kmalloc() aligning power-of-two size
46  * allocations to the allocation size boundary, so that the
47  * allocated memory appears to Hyper-V as a page of the size
48  * it expects.
49  */
50 
51 void *hv_alloc_hyperv_page(void)
52 {
53 	BUILD_BUG_ON(PAGE_SIZE <  HV_HYP_PAGE_SIZE);
54 
55 	if (PAGE_SIZE == HV_HYP_PAGE_SIZE)
56 		return (void *)__get_free_page(GFP_KERNEL);
57 	else
58 		return kmalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
59 }
60 
61 void *hv_alloc_hyperv_zeroed_page(void)
62 {
63 	if (PAGE_SIZE == HV_HYP_PAGE_SIZE)
64 		return (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
65 	else
66 		return kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
67 }
68 
69 void hv_free_hyperv_page(unsigned long addr)
70 {
71 	if (PAGE_SIZE == HV_HYP_PAGE_SIZE)
72 		free_page(addr);
73 	else
74 		kfree((void *)addr);
75 }
76 
77 /*
78  * hv_post_message - Post a message using the hypervisor message IPC.
79  *
80  * This involves a hypercall.
81  */
82 int hv_post_message(union hv_connection_id connection_id,
83 		  enum hv_message_type message_type,
84 		  void *payload, size_t payload_size)
85 {
86 	struct hv_input_post_message *aligned_msg;
87 	struct hv_per_cpu_context *hv_cpu;
88 	u64 status;
89 
90 	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
91 		return -EMSGSIZE;
92 
93 	hv_cpu = get_cpu_ptr(hv_context.cpu_context);
94 	aligned_msg = hv_cpu->post_msg_page;
95 	aligned_msg->connectionid = connection_id;
96 	aligned_msg->reserved = 0;
97 	aligned_msg->message_type = message_type;
98 	aligned_msg->payload_size = payload_size;
99 	memcpy((void *)aligned_msg->payload, payload, payload_size);
100 
101 	if (hv_isolation_type_snp())
102 		status = hv_ghcb_hypercall(HVCALL_POST_MESSAGE,
103 				(void *)aligned_msg, NULL,
104 				sizeof(*aligned_msg));
105 	else
106 		status = hv_do_hypercall(HVCALL_POST_MESSAGE,
107 				aligned_msg, NULL);
108 
109 	/* Preemption must remain disabled until after the hypercall
110 	 * so some other thread can't get scheduled onto this cpu and
111 	 * corrupt the per-cpu post_msg_page
112 	 */
113 	put_cpu_ptr(hv_cpu);
114 
115 	return hv_result(status);
116 }
117 
118 int hv_synic_alloc(void)
119 {
120 	int cpu;
121 	struct hv_per_cpu_context *hv_cpu;
122 
123 	/*
124 	 * First, zero all per-cpu memory areas so hv_synic_free() can
125 	 * detect what memory has been allocated and cleanup properly
126 	 * after any failures.
127 	 */
128 	for_each_present_cpu(cpu) {
129 		hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
130 		memset(hv_cpu, 0, sizeof(*hv_cpu));
131 	}
132 
133 	hv_context.hv_numa_map = kcalloc(nr_node_ids, sizeof(struct cpumask),
134 					 GFP_KERNEL);
135 	if (hv_context.hv_numa_map == NULL) {
136 		pr_err("Unable to allocate NUMA map\n");
137 		goto err;
138 	}
139 
140 	for_each_present_cpu(cpu) {
141 		hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
142 
143 		tasklet_init(&hv_cpu->msg_dpc,
144 			     vmbus_on_msg_dpc, (unsigned long) hv_cpu);
145 
146 		/*
147 		 * Synic message and event pages are allocated by paravisor.
148 		 * Skip these pages allocation here.
149 		 */
150 		if (!hv_isolation_type_snp() && !hv_root_partition) {
151 			hv_cpu->synic_message_page =
152 				(void *)get_zeroed_page(GFP_ATOMIC);
153 			if (hv_cpu->synic_message_page == NULL) {
154 				pr_err("Unable to allocate SYNIC message page\n");
155 				goto err;
156 			}
157 
158 			hv_cpu->synic_event_page =
159 				(void *)get_zeroed_page(GFP_ATOMIC);
160 			if (hv_cpu->synic_event_page == NULL) {
161 				pr_err("Unable to allocate SYNIC event page\n");
162 				goto err;
163 			}
164 		}
165 
166 		hv_cpu->post_msg_page = (void *)get_zeroed_page(GFP_ATOMIC);
167 		if (hv_cpu->post_msg_page == NULL) {
168 			pr_err("Unable to allocate post msg page\n");
169 			goto err;
170 		}
171 	}
172 
173 	return 0;
174 err:
175 	/*
176 	 * Any memory allocations that succeeded will be freed when
177 	 * the caller cleans up by calling hv_synic_free()
178 	 */
179 	return -ENOMEM;
180 }
181 
182 
183 void hv_synic_free(void)
184 {
185 	int cpu;
186 
187 	for_each_present_cpu(cpu) {
188 		struct hv_per_cpu_context *hv_cpu
189 			= per_cpu_ptr(hv_context.cpu_context, cpu);
190 
191 		free_page((unsigned long)hv_cpu->synic_event_page);
192 		free_page((unsigned long)hv_cpu->synic_message_page);
193 		free_page((unsigned long)hv_cpu->post_msg_page);
194 	}
195 
196 	kfree(hv_context.hv_numa_map);
197 }
198 
199 /*
200  * hv_synic_init - Initialize the Synthetic Interrupt Controller.
201  *
202  * If it is already initialized by another entity (ie x2v shim), we need to
203  * retrieve the initialized message and event pages.  Otherwise, we create and
204  * initialize the message and event pages.
205  */
206 void hv_synic_enable_regs(unsigned int cpu)
207 {
208 	struct hv_per_cpu_context *hv_cpu
209 		= per_cpu_ptr(hv_context.cpu_context, cpu);
210 	union hv_synic_simp simp;
211 	union hv_synic_siefp siefp;
212 	union hv_synic_sint shared_sint;
213 	union hv_synic_scontrol sctrl;
214 
215 	/* Setup the Synic's message page */
216 	simp.as_uint64 = hv_get_register(HV_REGISTER_SIMP);
217 	simp.simp_enabled = 1;
218 
219 	if (hv_isolation_type_snp() || hv_root_partition) {
220 		hv_cpu->synic_message_page
221 			= memremap(simp.base_simp_gpa << HV_HYP_PAGE_SHIFT,
222 				   HV_HYP_PAGE_SIZE, MEMREMAP_WB);
223 		if (!hv_cpu->synic_message_page)
224 			pr_err("Fail to map syinc message page.\n");
225 	} else {
226 		simp.base_simp_gpa = virt_to_phys(hv_cpu->synic_message_page)
227 			>> HV_HYP_PAGE_SHIFT;
228 	}
229 
230 	hv_set_register(HV_REGISTER_SIMP, simp.as_uint64);
231 
232 	/* Setup the Synic's event page */
233 	siefp.as_uint64 = hv_get_register(HV_REGISTER_SIEFP);
234 	siefp.siefp_enabled = 1;
235 
236 	if (hv_isolation_type_snp() || hv_root_partition) {
237 		hv_cpu->synic_event_page =
238 			memremap(siefp.base_siefp_gpa << HV_HYP_PAGE_SHIFT,
239 				 HV_HYP_PAGE_SIZE, MEMREMAP_WB);
240 
241 		if (!hv_cpu->synic_event_page)
242 			pr_err("Fail to map syinc event page.\n");
243 	} else {
244 		siefp.base_siefp_gpa = virt_to_phys(hv_cpu->synic_event_page)
245 			>> HV_HYP_PAGE_SHIFT;
246 	}
247 
248 	hv_set_register(HV_REGISTER_SIEFP, siefp.as_uint64);
249 
250 	/* Setup the shared SINT. */
251 	if (vmbus_irq != -1)
252 		enable_percpu_irq(vmbus_irq, 0);
253 	shared_sint.as_uint64 = hv_get_register(HV_REGISTER_SINT0 +
254 					VMBUS_MESSAGE_SINT);
255 
256 	shared_sint.vector = vmbus_interrupt;
257 	shared_sint.masked = false;
258 
259 	/*
260 	 * On architectures where Hyper-V doesn't support AEOI (e.g., ARM64),
261 	 * it doesn't provide a recommendation flag and AEOI must be disabled.
262 	 */
263 #ifdef HV_DEPRECATING_AEOI_RECOMMENDED
264 	shared_sint.auto_eoi =
265 			!(ms_hyperv.hints & HV_DEPRECATING_AEOI_RECOMMENDED);
266 #else
267 	shared_sint.auto_eoi = 0;
268 #endif
269 	hv_set_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT,
270 				shared_sint.as_uint64);
271 
272 	/* Enable the global synic bit */
273 	sctrl.as_uint64 = hv_get_register(HV_REGISTER_SCONTROL);
274 	sctrl.enable = 1;
275 
276 	hv_set_register(HV_REGISTER_SCONTROL, sctrl.as_uint64);
277 }
278 
279 int hv_synic_init(unsigned int cpu)
280 {
281 	hv_synic_enable_regs(cpu);
282 
283 	hv_stimer_legacy_init(cpu, VMBUS_MESSAGE_SINT);
284 
285 	return 0;
286 }
287 
288 /*
289  * hv_synic_cleanup - Cleanup routine for hv_synic_init().
290  */
291 void hv_synic_disable_regs(unsigned int cpu)
292 {
293 	struct hv_per_cpu_context *hv_cpu
294 		= per_cpu_ptr(hv_context.cpu_context, cpu);
295 	union hv_synic_sint shared_sint;
296 	union hv_synic_simp simp;
297 	union hv_synic_siefp siefp;
298 	union hv_synic_scontrol sctrl;
299 
300 	shared_sint.as_uint64 = hv_get_register(HV_REGISTER_SINT0 +
301 					VMBUS_MESSAGE_SINT);
302 
303 	shared_sint.masked = 1;
304 
305 	/* Need to correctly cleanup in the case of SMP!!! */
306 	/* Disable the interrupt */
307 	hv_set_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT,
308 				shared_sint.as_uint64);
309 
310 	simp.as_uint64 = hv_get_register(HV_REGISTER_SIMP);
311 	/*
312 	 * In Isolation VM, sim and sief pages are allocated by
313 	 * paravisor. These pages also will be used by kdump
314 	 * kernel. So just reset enable bit here and keep page
315 	 * addresses.
316 	 */
317 	simp.simp_enabled = 0;
318 	if (hv_isolation_type_snp() || hv_root_partition) {
319 		memunmap(hv_cpu->synic_message_page);
320 		hv_cpu->synic_message_page = NULL;
321 	} else {
322 		simp.base_simp_gpa = 0;
323 	}
324 
325 	hv_set_register(HV_REGISTER_SIMP, simp.as_uint64);
326 
327 	siefp.as_uint64 = hv_get_register(HV_REGISTER_SIEFP);
328 	siefp.siefp_enabled = 0;
329 
330 	if (hv_isolation_type_snp() || hv_root_partition) {
331 		memunmap(hv_cpu->synic_event_page);
332 		hv_cpu->synic_event_page = NULL;
333 	} else {
334 		siefp.base_siefp_gpa = 0;
335 	}
336 
337 	hv_set_register(HV_REGISTER_SIEFP, siefp.as_uint64);
338 
339 	/* Disable the global synic bit */
340 	sctrl.as_uint64 = hv_get_register(HV_REGISTER_SCONTROL);
341 	sctrl.enable = 0;
342 	hv_set_register(HV_REGISTER_SCONTROL, sctrl.as_uint64);
343 
344 	if (vmbus_irq != -1)
345 		disable_percpu_irq(vmbus_irq);
346 }
347 
348 #define HV_MAX_TRIES 3
349 /*
350  * Scan the event flags page of 'this' CPU looking for any bit that is set.  If we find one
351  * bit set, then wait for a few milliseconds.  Repeat these steps for a maximum of 3 times.
352  * Return 'true', if there is still any set bit after this operation; 'false', otherwise.
353  *
354  * If a bit is set, that means there is a pending channel interrupt.  The expectation is
355  * that the normal interrupt handling mechanism will find and process the channel interrupt
356  * "very soon", and in the process clear the bit.
357  */
358 static bool hv_synic_event_pending(void)
359 {
360 	struct hv_per_cpu_context *hv_cpu = this_cpu_ptr(hv_context.cpu_context);
361 	union hv_synic_event_flags *event =
362 		(union hv_synic_event_flags *)hv_cpu->synic_event_page + VMBUS_MESSAGE_SINT;
363 	unsigned long *recv_int_page = event->flags; /* assumes VMBus version >= VERSION_WIN8 */
364 	bool pending;
365 	u32 relid;
366 	int tries = 0;
367 
368 retry:
369 	pending = false;
370 	for_each_set_bit(relid, recv_int_page, HV_EVENT_FLAGS_COUNT) {
371 		/* Special case - VMBus channel protocol messages */
372 		if (relid == 0)
373 			continue;
374 		pending = true;
375 		break;
376 	}
377 	if (pending && tries++ < HV_MAX_TRIES) {
378 		usleep_range(10000, 20000);
379 		goto retry;
380 	}
381 	return pending;
382 }
383 
384 int hv_synic_cleanup(unsigned int cpu)
385 {
386 	struct vmbus_channel *channel, *sc;
387 	bool channel_found = false;
388 
389 	if (vmbus_connection.conn_state != CONNECTED)
390 		goto always_cleanup;
391 
392 	/*
393 	 * Hyper-V does not provide a way to change the connect CPU once
394 	 * it is set; we must prevent the connect CPU from going offline
395 	 * while the VM is running normally. But in the panic or kexec()
396 	 * path where the vmbus is already disconnected, the CPU must be
397 	 * allowed to shut down.
398 	 */
399 	if (cpu == VMBUS_CONNECT_CPU)
400 		return -EBUSY;
401 
402 	/*
403 	 * Search for channels which are bound to the CPU we're about to
404 	 * cleanup.  In case we find one and vmbus is still connected, we
405 	 * fail; this will effectively prevent CPU offlining.
406 	 *
407 	 * TODO: Re-bind the channels to different CPUs.
408 	 */
409 	mutex_lock(&vmbus_connection.channel_mutex);
410 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
411 		if (channel->target_cpu == cpu) {
412 			channel_found = true;
413 			break;
414 		}
415 		list_for_each_entry(sc, &channel->sc_list, sc_list) {
416 			if (sc->target_cpu == cpu) {
417 				channel_found = true;
418 				break;
419 			}
420 		}
421 		if (channel_found)
422 			break;
423 	}
424 	mutex_unlock(&vmbus_connection.channel_mutex);
425 
426 	if (channel_found)
427 		return -EBUSY;
428 
429 	/*
430 	 * channel_found == false means that any channels that were previously
431 	 * assigned to the CPU have been reassigned elsewhere with a call of
432 	 * vmbus_send_modifychannel().  Scan the event flags page looking for
433 	 * bits that are set and waiting with a timeout for vmbus_chan_sched()
434 	 * to process such bits.  If bits are still set after this operation
435 	 * and VMBus is connected, fail the CPU offlining operation.
436 	 */
437 	if (vmbus_proto_version >= VERSION_WIN10_V4_1 && hv_synic_event_pending())
438 		return -EBUSY;
439 
440 always_cleanup:
441 	hv_stimer_legacy_cleanup(cpu);
442 
443 	hv_synic_disable_regs(cpu);
444 
445 	return 0;
446 }
447