xref: /openbmc/linux/drivers/hv/channel_mgmt.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  */
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 
23 #include <linux/kernel.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/wait.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/completion.h>
32 #include <linux/delay.h>
33 #include <linux/hyperv.h>
34 #include <asm/mshyperv.h>
35 
36 #include "hyperv_vmbus.h"
37 
38 static void init_vp_index(struct vmbus_channel *channel, u16 dev_type);
39 
40 static const struct vmbus_device vmbus_devs[] = {
41 	/* IDE */
42 	{ .dev_type = HV_IDE,
43 	  HV_IDE_GUID,
44 	  .perf_device = true,
45 	},
46 
47 	/* SCSI */
48 	{ .dev_type = HV_SCSI,
49 	  HV_SCSI_GUID,
50 	  .perf_device = true,
51 	},
52 
53 	/* Fibre Channel */
54 	{ .dev_type = HV_FC,
55 	  HV_SYNTHFC_GUID,
56 	  .perf_device = true,
57 	},
58 
59 	/* Synthetic NIC */
60 	{ .dev_type = HV_NIC,
61 	  HV_NIC_GUID,
62 	  .perf_device = true,
63 	},
64 
65 	/* Network Direct */
66 	{ .dev_type = HV_ND,
67 	  HV_ND_GUID,
68 	  .perf_device = true,
69 	},
70 
71 	/* PCIE */
72 	{ .dev_type = HV_PCIE,
73 	  HV_PCIE_GUID,
74 	  .perf_device = true,
75 	},
76 
77 	/* Synthetic Frame Buffer */
78 	{ .dev_type = HV_FB,
79 	  HV_SYNTHVID_GUID,
80 	  .perf_device = false,
81 	},
82 
83 	/* Synthetic Keyboard */
84 	{ .dev_type = HV_KBD,
85 	  HV_KBD_GUID,
86 	  .perf_device = false,
87 	},
88 
89 	/* Synthetic MOUSE */
90 	{ .dev_type = HV_MOUSE,
91 	  HV_MOUSE_GUID,
92 	  .perf_device = false,
93 	},
94 
95 	/* KVP */
96 	{ .dev_type = HV_KVP,
97 	  HV_KVP_GUID,
98 	  .perf_device = false,
99 	},
100 
101 	/* Time Synch */
102 	{ .dev_type = HV_TS,
103 	  HV_TS_GUID,
104 	  .perf_device = false,
105 	},
106 
107 	/* Heartbeat */
108 	{ .dev_type = HV_HB,
109 	  HV_HEART_BEAT_GUID,
110 	  .perf_device = false,
111 	},
112 
113 	/* Shutdown */
114 	{ .dev_type = HV_SHUTDOWN,
115 	  HV_SHUTDOWN_GUID,
116 	  .perf_device = false,
117 	},
118 
119 	/* File copy */
120 	{ .dev_type = HV_FCOPY,
121 	  HV_FCOPY_GUID,
122 	  .perf_device = false,
123 	},
124 
125 	/* Backup */
126 	{ .dev_type = HV_BACKUP,
127 	  HV_VSS_GUID,
128 	  .perf_device = false,
129 	},
130 
131 	/* Dynamic Memory */
132 	{ .dev_type = HV_DM,
133 	  HV_DM_GUID,
134 	  .perf_device = false,
135 	},
136 
137 	/* Unknown GUID */
138 	{ .dev_type = HV_UNKNOWN,
139 	  .perf_device = false,
140 	},
141 };
142 
143 static const struct {
144 	uuid_le guid;
145 } vmbus_unsupported_devs[] = {
146 	{ HV_AVMA1_GUID },
147 	{ HV_AVMA2_GUID },
148 	{ HV_RDV_GUID	},
149 };
150 
151 /*
152  * The rescinded channel may be blocked waiting for a response from the host;
153  * take care of that.
154  */
155 static void vmbus_rescind_cleanup(struct vmbus_channel *channel)
156 {
157 	struct vmbus_channel_msginfo *msginfo;
158 	unsigned long flags;
159 
160 
161 	spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags);
162 	channel->rescind = true;
163 	list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list,
164 				msglistentry) {
165 
166 		if (msginfo->waiting_channel == channel) {
167 			complete(&msginfo->waitevent);
168 			break;
169 		}
170 	}
171 	spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags);
172 }
173 
174 static bool is_unsupported_vmbus_devs(const uuid_le *guid)
175 {
176 	int i;
177 
178 	for (i = 0; i < ARRAY_SIZE(vmbus_unsupported_devs); i++)
179 		if (!uuid_le_cmp(*guid, vmbus_unsupported_devs[i].guid))
180 			return true;
181 	return false;
182 }
183 
184 static u16 hv_get_dev_type(const struct vmbus_channel *channel)
185 {
186 	const uuid_le *guid = &channel->offermsg.offer.if_type;
187 	u16 i;
188 
189 	if (is_hvsock_channel(channel) || is_unsupported_vmbus_devs(guid))
190 		return HV_UNKNOWN;
191 
192 	for (i = HV_IDE; i < HV_UNKNOWN; i++) {
193 		if (!uuid_le_cmp(*guid, vmbus_devs[i].guid))
194 			return i;
195 	}
196 	pr_info("Unknown GUID: %pUl\n", guid);
197 	return i;
198 }
199 
200 /**
201  * vmbus_prep_negotiate_resp() - Create default response for Hyper-V Negotiate message
202  * @icmsghdrp: Pointer to msg header structure
203  * @icmsg_negotiate: Pointer to negotiate message structure
204  * @buf: Raw buffer channel data
205  *
206  * @icmsghdrp is of type &struct icmsg_hdr.
207  * Set up and fill in default negotiate response message.
208  *
209  * The fw_version and fw_vercnt specifies the framework version that
210  * we can support.
211  *
212  * The srv_version and srv_vercnt specifies the service
213  * versions we can support.
214  *
215  * Versions are given in decreasing order.
216  *
217  * nego_fw_version and nego_srv_version store the selected protocol versions.
218  *
219  * Mainly used by Hyper-V drivers.
220  */
221 bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp,
222 				u8 *buf, const int *fw_version, int fw_vercnt,
223 				const int *srv_version, int srv_vercnt,
224 				int *nego_fw_version, int *nego_srv_version)
225 {
226 	int icframe_major, icframe_minor;
227 	int icmsg_major, icmsg_minor;
228 	int fw_major, fw_minor;
229 	int srv_major, srv_minor;
230 	int i, j;
231 	bool found_match = false;
232 	struct icmsg_negotiate *negop;
233 
234 	icmsghdrp->icmsgsize = 0x10;
235 	negop = (struct icmsg_negotiate *)&buf[
236 		sizeof(struct vmbuspipe_hdr) +
237 		sizeof(struct icmsg_hdr)];
238 
239 	icframe_major = negop->icframe_vercnt;
240 	icframe_minor = 0;
241 
242 	icmsg_major = negop->icmsg_vercnt;
243 	icmsg_minor = 0;
244 
245 	/*
246 	 * Select the framework version number we will
247 	 * support.
248 	 */
249 
250 	for (i = 0; i < fw_vercnt; i++) {
251 		fw_major = (fw_version[i] >> 16);
252 		fw_minor = (fw_version[i] & 0xFFFF);
253 
254 		for (j = 0; j < negop->icframe_vercnt; j++) {
255 			if ((negop->icversion_data[j].major == fw_major) &&
256 			    (negop->icversion_data[j].minor == fw_minor)) {
257 				icframe_major = negop->icversion_data[j].major;
258 				icframe_minor = negop->icversion_data[j].minor;
259 				found_match = true;
260 				break;
261 			}
262 		}
263 
264 		if (found_match)
265 			break;
266 	}
267 
268 	if (!found_match)
269 		goto fw_error;
270 
271 	found_match = false;
272 
273 	for (i = 0; i < srv_vercnt; i++) {
274 		srv_major = (srv_version[i] >> 16);
275 		srv_minor = (srv_version[i] & 0xFFFF);
276 
277 		for (j = negop->icframe_vercnt;
278 			(j < negop->icframe_vercnt + negop->icmsg_vercnt);
279 			j++) {
280 
281 			if ((negop->icversion_data[j].major == srv_major) &&
282 				(negop->icversion_data[j].minor == srv_minor)) {
283 
284 				icmsg_major = negop->icversion_data[j].major;
285 				icmsg_minor = negop->icversion_data[j].minor;
286 				found_match = true;
287 				break;
288 			}
289 		}
290 
291 		if (found_match)
292 			break;
293 	}
294 
295 	/*
296 	 * Respond with the framework and service
297 	 * version numbers we can support.
298 	 */
299 
300 fw_error:
301 	if (!found_match) {
302 		negop->icframe_vercnt = 0;
303 		negop->icmsg_vercnt = 0;
304 	} else {
305 		negop->icframe_vercnt = 1;
306 		negop->icmsg_vercnt = 1;
307 	}
308 
309 	if (nego_fw_version)
310 		*nego_fw_version = (icframe_major << 16) | icframe_minor;
311 
312 	if (nego_srv_version)
313 		*nego_srv_version = (icmsg_major << 16) | icmsg_minor;
314 
315 	negop->icversion_data[0].major = icframe_major;
316 	negop->icversion_data[0].minor = icframe_minor;
317 	negop->icversion_data[1].major = icmsg_major;
318 	negop->icversion_data[1].minor = icmsg_minor;
319 	return found_match;
320 }
321 
322 EXPORT_SYMBOL_GPL(vmbus_prep_negotiate_resp);
323 
324 /*
325  * alloc_channel - Allocate and initialize a vmbus channel object
326  */
327 static struct vmbus_channel *alloc_channel(void)
328 {
329 	struct vmbus_channel *channel;
330 
331 	channel = kzalloc(sizeof(*channel), GFP_ATOMIC);
332 	if (!channel)
333 		return NULL;
334 
335 	spin_lock_init(&channel->lock);
336 	init_completion(&channel->rescind_event);
337 
338 	INIT_LIST_HEAD(&channel->sc_list);
339 	INIT_LIST_HEAD(&channel->percpu_list);
340 
341 	tasklet_init(&channel->callback_event,
342 		     vmbus_on_event, (unsigned long)channel);
343 
344 	return channel;
345 }
346 
347 /*
348  * free_channel - Release the resources used by the vmbus channel object
349  */
350 static void free_channel(struct vmbus_channel *channel)
351 {
352 	tasklet_kill(&channel->callback_event);
353 
354 	kobject_put(&channel->kobj);
355 }
356 
357 static void percpu_channel_enq(void *arg)
358 {
359 	struct vmbus_channel *channel = arg;
360 	struct hv_per_cpu_context *hv_cpu
361 		= this_cpu_ptr(hv_context.cpu_context);
362 
363 	list_add_tail_rcu(&channel->percpu_list, &hv_cpu->chan_list);
364 }
365 
366 static void percpu_channel_deq(void *arg)
367 {
368 	struct vmbus_channel *channel = arg;
369 
370 	list_del_rcu(&channel->percpu_list);
371 }
372 
373 
374 static void vmbus_release_relid(u32 relid)
375 {
376 	struct vmbus_channel_relid_released msg;
377 	int ret;
378 
379 	memset(&msg, 0, sizeof(struct vmbus_channel_relid_released));
380 	msg.child_relid = relid;
381 	msg.header.msgtype = CHANNELMSG_RELID_RELEASED;
382 	ret = vmbus_post_msg(&msg, sizeof(struct vmbus_channel_relid_released),
383 			     true);
384 
385 	trace_vmbus_release_relid(&msg, ret);
386 }
387 
388 void hv_process_channel_removal(u32 relid)
389 {
390 	unsigned long flags;
391 	struct vmbus_channel *primary_channel, *channel;
392 
393 	BUG_ON(!mutex_is_locked(&vmbus_connection.channel_mutex));
394 
395 	/*
396 	 * Make sure channel is valid as we may have raced.
397 	 */
398 	channel = relid2channel(relid);
399 	if (!channel)
400 		return;
401 
402 	BUG_ON(!channel->rescind);
403 	if (channel->target_cpu != get_cpu()) {
404 		put_cpu();
405 		smp_call_function_single(channel->target_cpu,
406 					 percpu_channel_deq, channel, true);
407 	} else {
408 		percpu_channel_deq(channel);
409 		put_cpu();
410 	}
411 
412 	if (channel->primary_channel == NULL) {
413 		list_del(&channel->listentry);
414 
415 		primary_channel = channel;
416 	} else {
417 		primary_channel = channel->primary_channel;
418 		spin_lock_irqsave(&primary_channel->lock, flags);
419 		list_del(&channel->sc_list);
420 		primary_channel->num_sc--;
421 		spin_unlock_irqrestore(&primary_channel->lock, flags);
422 	}
423 
424 	/*
425 	 * We need to free the bit for init_vp_index() to work in the case
426 	 * of sub-channel, when we reload drivers like hv_netvsc.
427 	 */
428 	if (channel->affinity_policy == HV_LOCALIZED)
429 		cpumask_clear_cpu(channel->target_cpu,
430 				  &primary_channel->alloced_cpus_in_node);
431 
432 	vmbus_release_relid(relid);
433 
434 	free_channel(channel);
435 }
436 
437 void vmbus_free_channels(void)
438 {
439 	struct vmbus_channel *channel, *tmp;
440 
441 	list_for_each_entry_safe(channel, tmp, &vmbus_connection.chn_list,
442 		listentry) {
443 		/* hv_process_channel_removal() needs this */
444 		channel->rescind = true;
445 
446 		vmbus_device_unregister(channel->device_obj);
447 	}
448 }
449 
450 /*
451  * vmbus_process_offer - Process the offer by creating a channel/device
452  * associated with this offer
453  */
454 static void vmbus_process_offer(struct vmbus_channel *newchannel)
455 {
456 	struct vmbus_channel *channel;
457 	bool fnew = true;
458 	unsigned long flags;
459 	u16 dev_type;
460 	int ret;
461 
462 	/* Make sure this is a new offer */
463 	mutex_lock(&vmbus_connection.channel_mutex);
464 
465 	/*
466 	 * Now that we have acquired the channel_mutex,
467 	 * we can release the potentially racing rescind thread.
468 	 */
469 	atomic_dec(&vmbus_connection.offer_in_progress);
470 
471 	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
472 		if (!uuid_le_cmp(channel->offermsg.offer.if_type,
473 			newchannel->offermsg.offer.if_type) &&
474 			!uuid_le_cmp(channel->offermsg.offer.if_instance,
475 				newchannel->offermsg.offer.if_instance)) {
476 			fnew = false;
477 			break;
478 		}
479 	}
480 
481 	if (fnew)
482 		list_add_tail(&newchannel->listentry,
483 			      &vmbus_connection.chn_list);
484 
485 	mutex_unlock(&vmbus_connection.channel_mutex);
486 
487 	if (!fnew) {
488 		/*
489 		 * Check to see if this is a sub-channel.
490 		 */
491 		if (newchannel->offermsg.offer.sub_channel_index != 0) {
492 			/*
493 			 * Process the sub-channel.
494 			 */
495 			newchannel->primary_channel = channel;
496 			spin_lock_irqsave(&channel->lock, flags);
497 			list_add_tail(&newchannel->sc_list, &channel->sc_list);
498 			channel->num_sc++;
499 			spin_unlock_irqrestore(&channel->lock, flags);
500 		} else {
501 			goto err_free_chan;
502 		}
503 	}
504 
505 	dev_type = hv_get_dev_type(newchannel);
506 
507 	init_vp_index(newchannel, dev_type);
508 
509 	if (newchannel->target_cpu != get_cpu()) {
510 		put_cpu();
511 		smp_call_function_single(newchannel->target_cpu,
512 					 percpu_channel_enq,
513 					 newchannel, true);
514 	} else {
515 		percpu_channel_enq(newchannel);
516 		put_cpu();
517 	}
518 
519 	/*
520 	 * This state is used to indicate a successful open
521 	 * so that when we do close the channel normally, we
522 	 * can cleanup properly
523 	 */
524 	newchannel->state = CHANNEL_OPEN_STATE;
525 
526 	if (!fnew) {
527 		struct hv_device *dev
528 			= newchannel->primary_channel->device_obj;
529 
530 		if (vmbus_add_channel_kobj(dev, newchannel)) {
531 			atomic_dec(&vmbus_connection.offer_in_progress);
532 			goto err_free_chan;
533 		}
534 
535 		if (channel->sc_creation_callback != NULL)
536 			channel->sc_creation_callback(newchannel);
537 		newchannel->probe_done = true;
538 		return;
539 	}
540 
541 	/*
542 	 * Start the process of binding this offer to the driver
543 	 * We need to set the DeviceObject field before calling
544 	 * vmbus_child_dev_add()
545 	 */
546 	newchannel->device_obj = vmbus_device_create(
547 		&newchannel->offermsg.offer.if_type,
548 		&newchannel->offermsg.offer.if_instance,
549 		newchannel);
550 	if (!newchannel->device_obj)
551 		goto err_deq_chan;
552 
553 	newchannel->device_obj->device_id = dev_type;
554 	/*
555 	 * Add the new device to the bus. This will kick off device-driver
556 	 * binding which eventually invokes the device driver's AddDevice()
557 	 * method.
558 	 */
559 	ret = vmbus_device_register(newchannel->device_obj);
560 
561 	if (ret != 0) {
562 		pr_err("unable to add child device object (relid %d)\n",
563 			newchannel->offermsg.child_relid);
564 		kfree(newchannel->device_obj);
565 		goto err_deq_chan;
566 	}
567 
568 	newchannel->probe_done = true;
569 	return;
570 
571 err_deq_chan:
572 	mutex_lock(&vmbus_connection.channel_mutex);
573 	list_del(&newchannel->listentry);
574 	mutex_unlock(&vmbus_connection.channel_mutex);
575 
576 	if (newchannel->target_cpu != get_cpu()) {
577 		put_cpu();
578 		smp_call_function_single(newchannel->target_cpu,
579 					 percpu_channel_deq, newchannel, true);
580 	} else {
581 		percpu_channel_deq(newchannel);
582 		put_cpu();
583 	}
584 
585 	vmbus_release_relid(newchannel->offermsg.child_relid);
586 
587 err_free_chan:
588 	free_channel(newchannel);
589 }
590 
591 /*
592  * We use this state to statically distribute the channel interrupt load.
593  */
594 static int next_numa_node_id;
595 
596 /*
597  * Starting with Win8, we can statically distribute the incoming
598  * channel interrupt load by binding a channel to VCPU.
599  * We do this in a hierarchical fashion:
600  * First distribute the primary channels across available NUMA nodes
601  * and then distribute the subchannels amongst the CPUs in the NUMA
602  * node assigned to the primary channel.
603  *
604  * For pre-win8 hosts or non-performance critical channels we assign the
605  * first CPU in the first NUMA node.
606  */
607 static void init_vp_index(struct vmbus_channel *channel, u16 dev_type)
608 {
609 	u32 cur_cpu;
610 	bool perf_chn = vmbus_devs[dev_type].perf_device;
611 	struct vmbus_channel *primary = channel->primary_channel;
612 	int next_node;
613 	struct cpumask available_mask;
614 	struct cpumask *alloced_mask;
615 
616 	if ((vmbus_proto_version == VERSION_WS2008) ||
617 	    (vmbus_proto_version == VERSION_WIN7) || (!perf_chn)) {
618 		/*
619 		 * Prior to win8, all channel interrupts are
620 		 * delivered on cpu 0.
621 		 * Also if the channel is not a performance critical
622 		 * channel, bind it to cpu 0.
623 		 */
624 		channel->numa_node = 0;
625 		channel->target_cpu = 0;
626 		channel->target_vp = hv_cpu_number_to_vp_number(0);
627 		return;
628 	}
629 
630 	/*
631 	 * Based on the channel affinity policy, we will assign the NUMA
632 	 * nodes.
633 	 */
634 
635 	if ((channel->affinity_policy == HV_BALANCED) || (!primary)) {
636 		while (true) {
637 			next_node = next_numa_node_id++;
638 			if (next_node == nr_node_ids) {
639 				next_node = next_numa_node_id = 0;
640 				continue;
641 			}
642 			if (cpumask_empty(cpumask_of_node(next_node)))
643 				continue;
644 			break;
645 		}
646 		channel->numa_node = next_node;
647 		primary = channel;
648 	}
649 	alloced_mask = &hv_context.hv_numa_map[primary->numa_node];
650 
651 	if (cpumask_weight(alloced_mask) ==
652 	    cpumask_weight(cpumask_of_node(primary->numa_node))) {
653 		/*
654 		 * We have cycled through all the CPUs in the node;
655 		 * reset the alloced map.
656 		 */
657 		cpumask_clear(alloced_mask);
658 	}
659 
660 	cpumask_xor(&available_mask, alloced_mask,
661 		    cpumask_of_node(primary->numa_node));
662 
663 	cur_cpu = -1;
664 
665 	if (primary->affinity_policy == HV_LOCALIZED) {
666 		/*
667 		 * Normally Hyper-V host doesn't create more subchannels
668 		 * than there are VCPUs on the node but it is possible when not
669 		 * all present VCPUs on the node are initialized by guest.
670 		 * Clear the alloced_cpus_in_node to start over.
671 		 */
672 		if (cpumask_equal(&primary->alloced_cpus_in_node,
673 				  cpumask_of_node(primary->numa_node)))
674 			cpumask_clear(&primary->alloced_cpus_in_node);
675 	}
676 
677 	while (true) {
678 		cur_cpu = cpumask_next(cur_cpu, &available_mask);
679 		if (cur_cpu >= nr_cpu_ids) {
680 			cur_cpu = -1;
681 			cpumask_copy(&available_mask,
682 				     cpumask_of_node(primary->numa_node));
683 			continue;
684 		}
685 
686 		if (primary->affinity_policy == HV_LOCALIZED) {
687 			/*
688 			 * NOTE: in the case of sub-channel, we clear the
689 			 * sub-channel related bit(s) in
690 			 * primary->alloced_cpus_in_node in
691 			 * hv_process_channel_removal(), so when we
692 			 * reload drivers like hv_netvsc in SMP guest, here
693 			 * we're able to re-allocate
694 			 * bit from primary->alloced_cpus_in_node.
695 			 */
696 			if (!cpumask_test_cpu(cur_cpu,
697 					      &primary->alloced_cpus_in_node)) {
698 				cpumask_set_cpu(cur_cpu,
699 						&primary->alloced_cpus_in_node);
700 				cpumask_set_cpu(cur_cpu, alloced_mask);
701 				break;
702 			}
703 		} else {
704 			cpumask_set_cpu(cur_cpu, alloced_mask);
705 			break;
706 		}
707 	}
708 
709 	channel->target_cpu = cur_cpu;
710 	channel->target_vp = hv_cpu_number_to_vp_number(cur_cpu);
711 }
712 
713 static void vmbus_wait_for_unload(void)
714 {
715 	int cpu;
716 	void *page_addr;
717 	struct hv_message *msg;
718 	struct vmbus_channel_message_header *hdr;
719 	u32 message_type;
720 
721 	/*
722 	 * CHANNELMSG_UNLOAD_RESPONSE is always delivered to the CPU which was
723 	 * used for initial contact or to CPU0 depending on host version. When
724 	 * we're crashing on a different CPU let's hope that IRQ handler on
725 	 * the cpu which receives CHANNELMSG_UNLOAD_RESPONSE is still
726 	 * functional and vmbus_unload_response() will complete
727 	 * vmbus_connection.unload_event. If not, the last thing we can do is
728 	 * read message pages for all CPUs directly.
729 	 */
730 	while (1) {
731 		if (completion_done(&vmbus_connection.unload_event))
732 			break;
733 
734 		for_each_online_cpu(cpu) {
735 			struct hv_per_cpu_context *hv_cpu
736 				= per_cpu_ptr(hv_context.cpu_context, cpu);
737 
738 			page_addr = hv_cpu->synic_message_page;
739 			msg = (struct hv_message *)page_addr
740 				+ VMBUS_MESSAGE_SINT;
741 
742 			message_type = READ_ONCE(msg->header.message_type);
743 			if (message_type == HVMSG_NONE)
744 				continue;
745 
746 			hdr = (struct vmbus_channel_message_header *)
747 				msg->u.payload;
748 
749 			if (hdr->msgtype == CHANNELMSG_UNLOAD_RESPONSE)
750 				complete(&vmbus_connection.unload_event);
751 
752 			vmbus_signal_eom(msg, message_type);
753 		}
754 
755 		mdelay(10);
756 	}
757 
758 	/*
759 	 * We're crashing and already got the UNLOAD_RESPONSE, cleanup all
760 	 * maybe-pending messages on all CPUs to be able to receive new
761 	 * messages after we reconnect.
762 	 */
763 	for_each_online_cpu(cpu) {
764 		struct hv_per_cpu_context *hv_cpu
765 			= per_cpu_ptr(hv_context.cpu_context, cpu);
766 
767 		page_addr = hv_cpu->synic_message_page;
768 		msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
769 		msg->header.message_type = HVMSG_NONE;
770 	}
771 }
772 
773 /*
774  * vmbus_unload_response - Handler for the unload response.
775  */
776 static void vmbus_unload_response(struct vmbus_channel_message_header *hdr)
777 {
778 	/*
779 	 * This is a global event; just wakeup the waiting thread.
780 	 * Once we successfully unload, we can cleanup the monitor state.
781 	 */
782 	complete(&vmbus_connection.unload_event);
783 }
784 
785 void vmbus_initiate_unload(bool crash)
786 {
787 	struct vmbus_channel_message_header hdr;
788 
789 	/* Pre-Win2012R2 hosts don't support reconnect */
790 	if (vmbus_proto_version < VERSION_WIN8_1)
791 		return;
792 
793 	init_completion(&vmbus_connection.unload_event);
794 	memset(&hdr, 0, sizeof(struct vmbus_channel_message_header));
795 	hdr.msgtype = CHANNELMSG_UNLOAD;
796 	vmbus_post_msg(&hdr, sizeof(struct vmbus_channel_message_header),
797 		       !crash);
798 
799 	/*
800 	 * vmbus_initiate_unload() is also called on crash and the crash can be
801 	 * happening in an interrupt context, where scheduling is impossible.
802 	 */
803 	if (!crash)
804 		wait_for_completion(&vmbus_connection.unload_event);
805 	else
806 		vmbus_wait_for_unload();
807 }
808 
809 /*
810  * vmbus_onoffer - Handler for channel offers from vmbus in parent partition.
811  *
812  */
813 static void vmbus_onoffer(struct vmbus_channel_message_header *hdr)
814 {
815 	struct vmbus_channel_offer_channel *offer;
816 	struct vmbus_channel *newchannel;
817 
818 	offer = (struct vmbus_channel_offer_channel *)hdr;
819 
820 	trace_vmbus_onoffer(offer);
821 
822 	/* Allocate the channel object and save this offer. */
823 	newchannel = alloc_channel();
824 	if (!newchannel) {
825 		vmbus_release_relid(offer->child_relid);
826 		atomic_dec(&vmbus_connection.offer_in_progress);
827 		pr_err("Unable to allocate channel object\n");
828 		return;
829 	}
830 
831 	/*
832 	 * Setup state for signalling the host.
833 	 */
834 	newchannel->sig_event = VMBUS_EVENT_CONNECTION_ID;
835 
836 	if (vmbus_proto_version != VERSION_WS2008) {
837 		newchannel->is_dedicated_interrupt =
838 				(offer->is_dedicated_interrupt != 0);
839 		newchannel->sig_event = offer->connection_id;
840 	}
841 
842 	memcpy(&newchannel->offermsg, offer,
843 	       sizeof(struct vmbus_channel_offer_channel));
844 	newchannel->monitor_grp = (u8)offer->monitorid / 32;
845 	newchannel->monitor_bit = (u8)offer->monitorid % 32;
846 
847 	vmbus_process_offer(newchannel);
848 }
849 
850 /*
851  * vmbus_onoffer_rescind - Rescind offer handler.
852  *
853  * We queue a work item to process this offer synchronously
854  */
855 static void vmbus_onoffer_rescind(struct vmbus_channel_message_header *hdr)
856 {
857 	struct vmbus_channel_rescind_offer *rescind;
858 	struct vmbus_channel *channel;
859 	struct device *dev;
860 
861 	rescind = (struct vmbus_channel_rescind_offer *)hdr;
862 
863 	trace_vmbus_onoffer_rescind(rescind);
864 
865 	/*
866 	 * The offer msg and the corresponding rescind msg
867 	 * from the host are guranteed to be ordered -
868 	 * offer comes in first and then the rescind.
869 	 * Since we process these events in work elements,
870 	 * and with preemption, we may end up processing
871 	 * the events out of order. Given that we handle these
872 	 * work elements on the same CPU, this is possible only
873 	 * in the case of preemption. In any case wait here
874 	 * until the offer processing has moved beyond the
875 	 * point where the channel is discoverable.
876 	 */
877 
878 	while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
879 		/*
880 		 * We wait here until any channel offer is currently
881 		 * being processed.
882 		 */
883 		msleep(1);
884 	}
885 
886 	mutex_lock(&vmbus_connection.channel_mutex);
887 	channel = relid2channel(rescind->child_relid);
888 	mutex_unlock(&vmbus_connection.channel_mutex);
889 
890 	if (channel == NULL) {
891 		/*
892 		 * We failed in processing the offer message;
893 		 * we would have cleaned up the relid in that
894 		 * failure path.
895 		 */
896 		return;
897 	}
898 
899 	/*
900 	 * Now wait for offer handling to complete.
901 	 */
902 	vmbus_rescind_cleanup(channel);
903 	while (READ_ONCE(channel->probe_done) == false) {
904 		/*
905 		 * We wait here until any channel offer is currently
906 		 * being processed.
907 		 */
908 		msleep(1);
909 	}
910 
911 	/*
912 	 * At this point, the rescind handling can proceed safely.
913 	 */
914 
915 	if (channel->device_obj) {
916 		if (channel->chn_rescind_callback) {
917 			channel->chn_rescind_callback(channel);
918 			return;
919 		}
920 		/*
921 		 * We will have to unregister this device from the
922 		 * driver core.
923 		 */
924 		dev = get_device(&channel->device_obj->device);
925 		if (dev) {
926 			vmbus_device_unregister(channel->device_obj);
927 			put_device(dev);
928 		}
929 	}
930 	if (channel->primary_channel != NULL) {
931 		/*
932 		 * Sub-channel is being rescinded. Following is the channel
933 		 * close sequence when initiated from the driveri (refer to
934 		 * vmbus_close() for details):
935 		 * 1. Close all sub-channels first
936 		 * 2. Then close the primary channel.
937 		 */
938 		mutex_lock(&vmbus_connection.channel_mutex);
939 		if (channel->state == CHANNEL_OPEN_STATE) {
940 			/*
941 			 * The channel is currently not open;
942 			 * it is safe for us to cleanup the channel.
943 			 */
944 			hv_process_channel_removal(rescind->child_relid);
945 		} else {
946 			complete(&channel->rescind_event);
947 		}
948 		mutex_unlock(&vmbus_connection.channel_mutex);
949 	}
950 }
951 
952 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel)
953 {
954 	BUG_ON(!is_hvsock_channel(channel));
955 
956 	/* We always get a rescind msg when a connection is closed. */
957 	while (!READ_ONCE(channel->probe_done) || !READ_ONCE(channel->rescind))
958 		msleep(1);
959 
960 	vmbus_device_unregister(channel->device_obj);
961 }
962 EXPORT_SYMBOL_GPL(vmbus_hvsock_device_unregister);
963 
964 
965 /*
966  * vmbus_onoffers_delivered -
967  * This is invoked when all offers have been delivered.
968  *
969  * Nothing to do here.
970  */
971 static void vmbus_onoffers_delivered(
972 			struct vmbus_channel_message_header *hdr)
973 {
974 }
975 
976 /*
977  * vmbus_onopen_result - Open result handler.
978  *
979  * This is invoked when we received a response to our channel open request.
980  * Find the matching request, copy the response and signal the requesting
981  * thread.
982  */
983 static void vmbus_onopen_result(struct vmbus_channel_message_header *hdr)
984 {
985 	struct vmbus_channel_open_result *result;
986 	struct vmbus_channel_msginfo *msginfo;
987 	struct vmbus_channel_message_header *requestheader;
988 	struct vmbus_channel_open_channel *openmsg;
989 	unsigned long flags;
990 
991 	result = (struct vmbus_channel_open_result *)hdr;
992 
993 	trace_vmbus_onopen_result(result);
994 
995 	/*
996 	 * Find the open msg, copy the result and signal/unblock the wait event
997 	 */
998 	spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags);
999 
1000 	list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list,
1001 				msglistentry) {
1002 		requestheader =
1003 			(struct vmbus_channel_message_header *)msginfo->msg;
1004 
1005 		if (requestheader->msgtype == CHANNELMSG_OPENCHANNEL) {
1006 			openmsg =
1007 			(struct vmbus_channel_open_channel *)msginfo->msg;
1008 			if (openmsg->child_relid == result->child_relid &&
1009 			    openmsg->openid == result->openid) {
1010 				memcpy(&msginfo->response.open_result,
1011 				       result,
1012 				       sizeof(
1013 					struct vmbus_channel_open_result));
1014 				complete(&msginfo->waitevent);
1015 				break;
1016 			}
1017 		}
1018 	}
1019 	spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags);
1020 }
1021 
1022 /*
1023  * vmbus_ongpadl_created - GPADL created handler.
1024  *
1025  * This is invoked when we received a response to our gpadl create request.
1026  * Find the matching request, copy the response and signal the requesting
1027  * thread.
1028  */
1029 static void vmbus_ongpadl_created(struct vmbus_channel_message_header *hdr)
1030 {
1031 	struct vmbus_channel_gpadl_created *gpadlcreated;
1032 	struct vmbus_channel_msginfo *msginfo;
1033 	struct vmbus_channel_message_header *requestheader;
1034 	struct vmbus_channel_gpadl_header *gpadlheader;
1035 	unsigned long flags;
1036 
1037 	gpadlcreated = (struct vmbus_channel_gpadl_created *)hdr;
1038 
1039 	trace_vmbus_ongpadl_created(gpadlcreated);
1040 
1041 	/*
1042 	 * Find the establish msg, copy the result and signal/unblock the wait
1043 	 * event
1044 	 */
1045 	spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags);
1046 
1047 	list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list,
1048 				msglistentry) {
1049 		requestheader =
1050 			(struct vmbus_channel_message_header *)msginfo->msg;
1051 
1052 		if (requestheader->msgtype == CHANNELMSG_GPADL_HEADER) {
1053 			gpadlheader =
1054 			(struct vmbus_channel_gpadl_header *)requestheader;
1055 
1056 			if ((gpadlcreated->child_relid ==
1057 			     gpadlheader->child_relid) &&
1058 			    (gpadlcreated->gpadl == gpadlheader->gpadl)) {
1059 				memcpy(&msginfo->response.gpadl_created,
1060 				       gpadlcreated,
1061 				       sizeof(
1062 					struct vmbus_channel_gpadl_created));
1063 				complete(&msginfo->waitevent);
1064 				break;
1065 			}
1066 		}
1067 	}
1068 	spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags);
1069 }
1070 
1071 /*
1072  * vmbus_ongpadl_torndown - GPADL torndown handler.
1073  *
1074  * This is invoked when we received a response to our gpadl teardown request.
1075  * Find the matching request, copy the response and signal the requesting
1076  * thread.
1077  */
1078 static void vmbus_ongpadl_torndown(
1079 			struct vmbus_channel_message_header *hdr)
1080 {
1081 	struct vmbus_channel_gpadl_torndown *gpadl_torndown;
1082 	struct vmbus_channel_msginfo *msginfo;
1083 	struct vmbus_channel_message_header *requestheader;
1084 	struct vmbus_channel_gpadl_teardown *gpadl_teardown;
1085 	unsigned long flags;
1086 
1087 	gpadl_torndown = (struct vmbus_channel_gpadl_torndown *)hdr;
1088 
1089 	trace_vmbus_ongpadl_torndown(gpadl_torndown);
1090 
1091 	/*
1092 	 * Find the open msg, copy the result and signal/unblock the wait event
1093 	 */
1094 	spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags);
1095 
1096 	list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list,
1097 				msglistentry) {
1098 		requestheader =
1099 			(struct vmbus_channel_message_header *)msginfo->msg;
1100 
1101 		if (requestheader->msgtype == CHANNELMSG_GPADL_TEARDOWN) {
1102 			gpadl_teardown =
1103 			(struct vmbus_channel_gpadl_teardown *)requestheader;
1104 
1105 			if (gpadl_torndown->gpadl == gpadl_teardown->gpadl) {
1106 				memcpy(&msginfo->response.gpadl_torndown,
1107 				       gpadl_torndown,
1108 				       sizeof(
1109 					struct vmbus_channel_gpadl_torndown));
1110 				complete(&msginfo->waitevent);
1111 				break;
1112 			}
1113 		}
1114 	}
1115 	spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags);
1116 }
1117 
1118 /*
1119  * vmbus_onversion_response - Version response handler
1120  *
1121  * This is invoked when we received a response to our initiate contact request.
1122  * Find the matching request, copy the response and signal the requesting
1123  * thread.
1124  */
1125 static void vmbus_onversion_response(
1126 		struct vmbus_channel_message_header *hdr)
1127 {
1128 	struct vmbus_channel_msginfo *msginfo;
1129 	struct vmbus_channel_message_header *requestheader;
1130 	struct vmbus_channel_version_response *version_response;
1131 	unsigned long flags;
1132 
1133 	version_response = (struct vmbus_channel_version_response *)hdr;
1134 
1135 	trace_vmbus_onversion_response(version_response);
1136 
1137 	spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags);
1138 
1139 	list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list,
1140 				msglistentry) {
1141 		requestheader =
1142 			(struct vmbus_channel_message_header *)msginfo->msg;
1143 
1144 		if (requestheader->msgtype ==
1145 		    CHANNELMSG_INITIATE_CONTACT) {
1146 			memcpy(&msginfo->response.version_response,
1147 			      version_response,
1148 			      sizeof(struct vmbus_channel_version_response));
1149 			complete(&msginfo->waitevent);
1150 		}
1151 	}
1152 	spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags);
1153 }
1154 
1155 /* Channel message dispatch table */
1156 const struct vmbus_channel_message_table_entry
1157 channel_message_table[CHANNELMSG_COUNT] = {
1158 	{ CHANNELMSG_INVALID,			0, NULL },
1159 	{ CHANNELMSG_OFFERCHANNEL,		0, vmbus_onoffer },
1160 	{ CHANNELMSG_RESCIND_CHANNELOFFER,	0, vmbus_onoffer_rescind },
1161 	{ CHANNELMSG_REQUESTOFFERS,		0, NULL },
1162 	{ CHANNELMSG_ALLOFFERS_DELIVERED,	1, vmbus_onoffers_delivered },
1163 	{ CHANNELMSG_OPENCHANNEL,		0, NULL },
1164 	{ CHANNELMSG_OPENCHANNEL_RESULT,	1, vmbus_onopen_result },
1165 	{ CHANNELMSG_CLOSECHANNEL,		0, NULL },
1166 	{ CHANNELMSG_GPADL_HEADER,		0, NULL },
1167 	{ CHANNELMSG_GPADL_BODY,		0, NULL },
1168 	{ CHANNELMSG_GPADL_CREATED,		1, vmbus_ongpadl_created },
1169 	{ CHANNELMSG_GPADL_TEARDOWN,		0, NULL },
1170 	{ CHANNELMSG_GPADL_TORNDOWN,		1, vmbus_ongpadl_torndown },
1171 	{ CHANNELMSG_RELID_RELEASED,		0, NULL },
1172 	{ CHANNELMSG_INITIATE_CONTACT,		0, NULL },
1173 	{ CHANNELMSG_VERSION_RESPONSE,		1, vmbus_onversion_response },
1174 	{ CHANNELMSG_UNLOAD,			0, NULL },
1175 	{ CHANNELMSG_UNLOAD_RESPONSE,		1, vmbus_unload_response },
1176 	{ CHANNELMSG_18,			0, NULL },
1177 	{ CHANNELMSG_19,			0, NULL },
1178 	{ CHANNELMSG_20,			0, NULL },
1179 	{ CHANNELMSG_TL_CONNECT_REQUEST,	0, NULL },
1180 };
1181 
1182 /*
1183  * vmbus_onmessage - Handler for channel protocol messages.
1184  *
1185  * This is invoked in the vmbus worker thread context.
1186  */
1187 void vmbus_onmessage(void *context)
1188 {
1189 	struct hv_message *msg = context;
1190 	struct vmbus_channel_message_header *hdr;
1191 	int size;
1192 
1193 	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
1194 	size = msg->header.payload_size;
1195 
1196 	trace_vmbus_on_message(hdr);
1197 
1198 	if (hdr->msgtype >= CHANNELMSG_COUNT) {
1199 		pr_err("Received invalid channel message type %d size %d\n",
1200 			   hdr->msgtype, size);
1201 		print_hex_dump_bytes("", DUMP_PREFIX_NONE,
1202 				     (unsigned char *)msg->u.payload, size);
1203 		return;
1204 	}
1205 
1206 	if (channel_message_table[hdr->msgtype].message_handler)
1207 		channel_message_table[hdr->msgtype].message_handler(hdr);
1208 	else
1209 		pr_err("Unhandled channel message type %d\n", hdr->msgtype);
1210 }
1211 
1212 /*
1213  * vmbus_request_offers - Send a request to get all our pending offers.
1214  */
1215 int vmbus_request_offers(void)
1216 {
1217 	struct vmbus_channel_message_header *msg;
1218 	struct vmbus_channel_msginfo *msginfo;
1219 	int ret;
1220 
1221 	msginfo = kmalloc(sizeof(*msginfo) +
1222 			  sizeof(struct vmbus_channel_message_header),
1223 			  GFP_KERNEL);
1224 	if (!msginfo)
1225 		return -ENOMEM;
1226 
1227 	msg = (struct vmbus_channel_message_header *)msginfo->msg;
1228 
1229 	msg->msgtype = CHANNELMSG_REQUESTOFFERS;
1230 
1231 	ret = vmbus_post_msg(msg, sizeof(struct vmbus_channel_message_header),
1232 			     true);
1233 
1234 	trace_vmbus_request_offers(ret);
1235 
1236 	if (ret != 0) {
1237 		pr_err("Unable to request offers - %d\n", ret);
1238 
1239 		goto cleanup;
1240 	}
1241 
1242 cleanup:
1243 	kfree(msginfo);
1244 
1245 	return ret;
1246 }
1247 
1248 /*
1249  * Retrieve the (sub) channel on which to send an outgoing request.
1250  * When a primary channel has multiple sub-channels, we try to
1251  * distribute the load equally amongst all available channels.
1252  */
1253 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary)
1254 {
1255 	struct list_head *cur, *tmp;
1256 	int cur_cpu;
1257 	struct vmbus_channel *cur_channel;
1258 	struct vmbus_channel *outgoing_channel = primary;
1259 	int next_channel;
1260 	int i = 1;
1261 
1262 	if (list_empty(&primary->sc_list))
1263 		return outgoing_channel;
1264 
1265 	next_channel = primary->next_oc++;
1266 
1267 	if (next_channel > (primary->num_sc)) {
1268 		primary->next_oc = 0;
1269 		return outgoing_channel;
1270 	}
1271 
1272 	cur_cpu = hv_cpu_number_to_vp_number(smp_processor_id());
1273 	list_for_each_safe(cur, tmp, &primary->sc_list) {
1274 		cur_channel = list_entry(cur, struct vmbus_channel, sc_list);
1275 		if (cur_channel->state != CHANNEL_OPENED_STATE)
1276 			continue;
1277 
1278 		if (cur_channel->target_vp == cur_cpu)
1279 			return cur_channel;
1280 
1281 		if (i == next_channel)
1282 			return cur_channel;
1283 
1284 		i++;
1285 	}
1286 
1287 	return outgoing_channel;
1288 }
1289 EXPORT_SYMBOL_GPL(vmbus_get_outgoing_channel);
1290 
1291 static void invoke_sc_cb(struct vmbus_channel *primary_channel)
1292 {
1293 	struct list_head *cur, *tmp;
1294 	struct vmbus_channel *cur_channel;
1295 
1296 	if (primary_channel->sc_creation_callback == NULL)
1297 		return;
1298 
1299 	list_for_each_safe(cur, tmp, &primary_channel->sc_list) {
1300 		cur_channel = list_entry(cur, struct vmbus_channel, sc_list);
1301 
1302 		primary_channel->sc_creation_callback(cur_channel);
1303 	}
1304 }
1305 
1306 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1307 				void (*sc_cr_cb)(struct vmbus_channel *new_sc))
1308 {
1309 	primary_channel->sc_creation_callback = sc_cr_cb;
1310 }
1311 EXPORT_SYMBOL_GPL(vmbus_set_sc_create_callback);
1312 
1313 bool vmbus_are_subchannels_present(struct vmbus_channel *primary)
1314 {
1315 	bool ret;
1316 
1317 	ret = !list_empty(&primary->sc_list);
1318 
1319 	if (ret) {
1320 		/*
1321 		 * Invoke the callback on sub-channel creation.
1322 		 * This will present a uniform interface to the
1323 		 * clients.
1324 		 */
1325 		invoke_sc_cb(primary);
1326 	}
1327 
1328 	return ret;
1329 }
1330 EXPORT_SYMBOL_GPL(vmbus_are_subchannels_present);
1331 
1332 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1333 		void (*chn_rescind_cb)(struct vmbus_channel *))
1334 {
1335 	channel->chn_rescind_callback = chn_rescind_cb;
1336 }
1337 EXPORT_SYMBOL_GPL(vmbus_set_chn_rescind_callback);
1338