xref: /openbmc/linux/drivers/hte/hte.c (revision 82806c25)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2021-2022 NVIDIA Corporation
4  *
5  * Author: Dipen Patel <dipenp@nvidia.com>
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/err.h>
11 #include <linux/slab.h>
12 #include <linux/of.h>
13 #include <linux/of_device.h>
14 #include <linux/mutex.h>
15 #include <linux/uaccess.h>
16 #include <linux/hte.h>
17 #include <linux/delay.h>
18 #include <linux/debugfs.h>
19 
20 #define HTE_TS_NAME_LEN		10
21 
22 /* Global list of the HTE devices */
23 static DEFINE_SPINLOCK(hte_lock);
24 static LIST_HEAD(hte_devices);
25 
26 enum {
27 	HTE_TS_REGISTERED,
28 	HTE_TS_REQ,
29 	HTE_TS_DISABLE,
30 	HTE_TS_QUEUE_WK,
31 };
32 
33 /**
34  * struct hte_ts_info - Information related to requested timestamp.
35  *
36  * @xlated_id: Timestamp ID as understood between HTE subsys and HTE provider,
37  * See xlate callback API.
38  * @flags: Flags holding state information.
39  * @hte_cb_flags: Callback related flags.
40  * @seq: Timestamp sequence counter.
41  * @line_name: HTE allocated line name.
42  * @free_attr_name: If set, free the attr name.
43  * @cb: A nonsleeping callback function provided by clients.
44  * @tcb: A secondary sleeping callback function provided by clients.
45  * @dropped_ts: Dropped timestamps.
46  * @slock: Spin lock to synchronize between disable/enable,
47  * request/release APIs.
48  * @cb_work: callback workqueue, used when tcb is specified.
49  * @req_mlock: Lock during timestamp request/release APIs.
50  * @ts_dbg_root: Root for the debug fs.
51  * @gdev: HTE abstract device that this timestamp information belongs to.
52  * @cl_data: Client specific data.
53  */
54 struct hte_ts_info {
55 	u32 xlated_id;
56 	unsigned long flags;
57 	unsigned long hte_cb_flags;
58 	u64 seq;
59 	char *line_name;
60 	bool free_attr_name;
61 	hte_ts_cb_t cb;
62 	hte_ts_sec_cb_t tcb;
63 	atomic_t dropped_ts;
64 	spinlock_t slock;
65 	struct work_struct cb_work;
66 	struct mutex req_mlock;
67 	struct dentry *ts_dbg_root;
68 	struct hte_device *gdev;
69 	void *cl_data;
70 };
71 
72 /**
73  * struct hte_device - HTE abstract device
74  * @nlines: Number of entities this device supports.
75  * @ts_req: Total number of entities requested.
76  * @sdev: Device used at various debug prints.
77  * @dbg_root: Root directory for debug fs.
78  * @list: List node to store hte_device for each provider.
79  * @chip: HTE chip providing this HTE device.
80  * @owner: helps prevent removal of modules when in use.
81  * @ei: Timestamp information.
82  */
83 struct hte_device {
84 	u32 nlines;
85 	atomic_t ts_req;
86 	struct device *sdev;
87 	struct dentry *dbg_root;
88 	struct list_head list;
89 	struct hte_chip *chip;
90 	struct module *owner;
91 	struct hte_ts_info ei[];
92 };
93 
94 #ifdef CONFIG_DEBUG_FS
95 
96 static struct dentry *hte_root;
97 
98 static int __init hte_subsys_dbgfs_init(void)
99 {
100 	/* creates /sys/kernel/debug/hte/ */
101 	hte_root = debugfs_create_dir("hte", NULL);
102 
103 	return 0;
104 }
105 subsys_initcall(hte_subsys_dbgfs_init);
106 
107 static void hte_chip_dbgfs_init(struct hte_device *gdev)
108 {
109 	const struct hte_chip *chip = gdev->chip;
110 	const char *name = chip->name ? chip->name : dev_name(chip->dev);
111 
112 	gdev->dbg_root = debugfs_create_dir(name, hte_root);
113 
114 	debugfs_create_atomic_t("ts_requested", 0444, gdev->dbg_root,
115 				&gdev->ts_req);
116 	debugfs_create_u32("total_ts", 0444, gdev->dbg_root,
117 			   &gdev->nlines);
118 }
119 
120 static void hte_ts_dbgfs_init(const char *name, struct hte_ts_info *ei)
121 {
122 	if (!ei->gdev->dbg_root || !name)
123 		return;
124 
125 	ei->ts_dbg_root = debugfs_create_dir(name, ei->gdev->dbg_root);
126 
127 	debugfs_create_atomic_t("dropped_timestamps", 0444, ei->ts_dbg_root,
128 				&ei->dropped_ts);
129 }
130 
131 #else
132 
133 static void hte_chip_dbgfs_init(struct hte_device *gdev)
134 {
135 }
136 
137 static void hte_ts_dbgfs_init(const char *name, struct hte_ts_info *ei)
138 {
139 }
140 
141 #endif
142 
143 /**
144  * hte_ts_put() - Release and disable timestamp for the given desc.
145  *
146  * @desc: timestamp descriptor.
147  *
148  * Context: debugfs_remove_recursive() function call may use sleeping locks,
149  *	    not suitable from atomic context.
150  * Returns: 0 on success or a negative error code on failure.
151  */
152 int hte_ts_put(struct hte_ts_desc *desc)
153 {
154 	int ret = 0;
155 	unsigned long flag;
156 	struct hte_device *gdev;
157 	struct hte_ts_info *ei;
158 
159 	if (!desc)
160 		return -EINVAL;
161 
162 	ei = desc->hte_data;
163 
164 	if (!ei || !ei->gdev)
165 		return -EINVAL;
166 
167 	gdev = ei->gdev;
168 
169 	mutex_lock(&ei->req_mlock);
170 
171 	if (unlikely(!test_bit(HTE_TS_REQ, &ei->flags) &&
172 	    !test_bit(HTE_TS_REGISTERED, &ei->flags))) {
173 		dev_info(gdev->sdev, "id:%d is not requested\n",
174 			 desc->attr.line_id);
175 		ret = -EINVAL;
176 		goto unlock;
177 	}
178 
179 	if (unlikely(!test_bit(HTE_TS_REQ, &ei->flags) &&
180 	    test_bit(HTE_TS_REGISTERED, &ei->flags))) {
181 		dev_info(gdev->sdev, "id:%d is registered but not requested\n",
182 			 desc->attr.line_id);
183 		ret = -EINVAL;
184 		goto unlock;
185 	}
186 
187 	if (test_bit(HTE_TS_REQ, &ei->flags) &&
188 	    !test_bit(HTE_TS_REGISTERED, &ei->flags)) {
189 		clear_bit(HTE_TS_REQ, &ei->flags);
190 		desc->hte_data = NULL;
191 		ret = 0;
192 		goto mod_put;
193 	}
194 
195 	ret = gdev->chip->ops->release(gdev->chip, desc, ei->xlated_id);
196 	if (ret) {
197 		dev_err(gdev->sdev, "id: %d free failed\n",
198 			desc->attr.line_id);
199 		goto unlock;
200 	}
201 
202 	kfree(ei->line_name);
203 	if (ei->free_attr_name)
204 		kfree_const(desc->attr.name);
205 
206 	debugfs_remove_recursive(ei->ts_dbg_root);
207 
208 	spin_lock_irqsave(&ei->slock, flag);
209 
210 	if (test_bit(HTE_TS_QUEUE_WK, &ei->flags)) {
211 		spin_unlock_irqrestore(&ei->slock, flag);
212 		flush_work(&ei->cb_work);
213 		spin_lock_irqsave(&ei->slock, flag);
214 	}
215 
216 	atomic_dec(&gdev->ts_req);
217 	atomic_set(&ei->dropped_ts, 0);
218 
219 	ei->seq = 1;
220 	ei->flags = 0;
221 	desc->hte_data = NULL;
222 
223 	spin_unlock_irqrestore(&ei->slock, flag);
224 
225 	ei->cb = NULL;
226 	ei->tcb = NULL;
227 	ei->cl_data = NULL;
228 
229 mod_put:
230 	module_put(gdev->owner);
231 unlock:
232 	mutex_unlock(&ei->req_mlock);
233 	dev_dbg(gdev->sdev, "release id: %d\n", desc->attr.line_id);
234 
235 	return ret;
236 }
237 EXPORT_SYMBOL_GPL(hte_ts_put);
238 
239 static int hte_ts_dis_en_common(struct hte_ts_desc *desc, bool en)
240 {
241 	u32 ts_id;
242 	struct hte_device *gdev;
243 	struct hte_ts_info *ei;
244 	int ret;
245 	unsigned long flag;
246 
247 	if (!desc)
248 		return -EINVAL;
249 
250 	ei = desc->hte_data;
251 
252 	if (!ei || !ei->gdev)
253 		return -EINVAL;
254 
255 	gdev = ei->gdev;
256 	ts_id = desc->attr.line_id;
257 
258 	mutex_lock(&ei->req_mlock);
259 
260 	if (!test_bit(HTE_TS_REGISTERED, &ei->flags)) {
261 		dev_dbg(gdev->sdev, "id:%d is not registered", ts_id);
262 		ret = -EUSERS;
263 		goto out;
264 	}
265 
266 	spin_lock_irqsave(&ei->slock, flag);
267 
268 	if (en) {
269 		if (!test_bit(HTE_TS_DISABLE, &ei->flags)) {
270 			ret = 0;
271 			goto out_unlock;
272 		}
273 
274 		spin_unlock_irqrestore(&ei->slock, flag);
275 		ret = gdev->chip->ops->enable(gdev->chip, ei->xlated_id);
276 		if (ret) {
277 			dev_warn(gdev->sdev, "id: %d enable failed\n",
278 				 ts_id);
279 			goto out;
280 		}
281 
282 		spin_lock_irqsave(&ei->slock, flag);
283 		clear_bit(HTE_TS_DISABLE, &ei->flags);
284 	} else {
285 		if (test_bit(HTE_TS_DISABLE, &ei->flags)) {
286 			ret = 0;
287 			goto out_unlock;
288 		}
289 
290 		spin_unlock_irqrestore(&ei->slock, flag);
291 		ret = gdev->chip->ops->disable(gdev->chip, ei->xlated_id);
292 		if (ret) {
293 			dev_warn(gdev->sdev, "id: %d disable failed\n",
294 				 ts_id);
295 			goto out;
296 		}
297 
298 		spin_lock_irqsave(&ei->slock, flag);
299 		set_bit(HTE_TS_DISABLE, &ei->flags);
300 	}
301 
302 out_unlock:
303 	spin_unlock_irqrestore(&ei->slock, flag);
304 out:
305 	mutex_unlock(&ei->req_mlock);
306 	return ret;
307 }
308 
309 /**
310  * hte_disable_ts() - Disable timestamp on given descriptor.
311  *
312  * The API does not release any resources associated with desc.
313  *
314  * @desc: ts descriptor, this is the same as returned by the request API.
315  *
316  * Context: Holds mutex lock, not suitable from atomic context.
317  * Returns: 0 on success or a negative error code on failure.
318  */
319 int hte_disable_ts(struct hte_ts_desc *desc)
320 {
321 	return hte_ts_dis_en_common(desc, false);
322 }
323 EXPORT_SYMBOL_GPL(hte_disable_ts);
324 
325 /**
326  * hte_enable_ts() - Enable timestamp on given descriptor.
327  *
328  * @desc: ts descriptor, this is the same as returned by the request API.
329  *
330  * Context: Holds mutex lock, not suitable from atomic context.
331  * Returns: 0 on success or a negative error code on failure.
332  */
333 int hte_enable_ts(struct hte_ts_desc *desc)
334 {
335 	return hte_ts_dis_en_common(desc, true);
336 }
337 EXPORT_SYMBOL_GPL(hte_enable_ts);
338 
339 static void hte_do_cb_work(struct work_struct *w)
340 {
341 	unsigned long flag;
342 	struct hte_ts_info *ei = container_of(w, struct hte_ts_info, cb_work);
343 
344 	if (unlikely(!ei->tcb))
345 		return;
346 
347 	ei->tcb(ei->cl_data);
348 
349 	spin_lock_irqsave(&ei->slock, flag);
350 	clear_bit(HTE_TS_QUEUE_WK, &ei->flags);
351 	spin_unlock_irqrestore(&ei->slock, flag);
352 }
353 
354 static int __hte_req_ts(struct hte_ts_desc *desc, hte_ts_cb_t cb,
355 			hte_ts_sec_cb_t tcb, void *data)
356 {
357 	int ret;
358 	struct hte_device *gdev;
359 	struct hte_ts_info *ei = desc->hte_data;
360 
361 	gdev = ei->gdev;
362 	/*
363 	 * There is a chance that multiple consumers requesting same entity,
364 	 * lock here.
365 	 */
366 	mutex_lock(&ei->req_mlock);
367 
368 	if (test_bit(HTE_TS_REGISTERED, &ei->flags) ||
369 	    !test_bit(HTE_TS_REQ, &ei->flags)) {
370 		dev_dbg(gdev->chip->dev, "id:%u req failed\n",
371 			desc->attr.line_id);
372 		ret = -EUSERS;
373 		goto unlock;
374 	}
375 
376 	ei->cb = cb;
377 	ei->tcb = tcb;
378 	if (tcb)
379 		INIT_WORK(&ei->cb_work, hte_do_cb_work);
380 
381 	ret = gdev->chip->ops->request(gdev->chip, desc, ei->xlated_id);
382 	if (ret < 0) {
383 		dev_err(gdev->chip->dev, "ts request failed\n");
384 		goto unlock;
385 	}
386 
387 	ei->cl_data = data;
388 	ei->seq = 1;
389 
390 	atomic_inc(&gdev->ts_req);
391 
392 	ei->line_name = NULL;
393 	if (!desc->attr.name) {
394 		ei->line_name = kzalloc(HTE_TS_NAME_LEN, GFP_KERNEL);
395 		if (ei->line_name)
396 			scnprintf(ei->line_name, HTE_TS_NAME_LEN, "ts_%u",
397 				  desc->attr.line_id);
398 	}
399 
400 	hte_ts_dbgfs_init(desc->attr.name == NULL ?
401 			  ei->line_name : desc->attr.name, ei);
402 	set_bit(HTE_TS_REGISTERED, &ei->flags);
403 
404 	dev_dbg(gdev->chip->dev, "id: %u, xlated id:%u",
405 		desc->attr.line_id, ei->xlated_id);
406 
407 	ret = 0;
408 
409 unlock:
410 	mutex_unlock(&ei->req_mlock);
411 
412 	return ret;
413 }
414 
415 static int hte_bind_ts_info_locked(struct hte_ts_info *ei,
416 				   struct hte_ts_desc *desc, u32 x_id)
417 {
418 	int ret = 0;
419 
420 	mutex_lock(&ei->req_mlock);
421 
422 	if (test_bit(HTE_TS_REQ, &ei->flags)) {
423 		dev_dbg(ei->gdev->chip->dev, "id:%u is already requested\n",
424 			desc->attr.line_id);
425 		ret = -EUSERS;
426 		goto out;
427 	}
428 
429 	set_bit(HTE_TS_REQ, &ei->flags);
430 	desc->hte_data = ei;
431 	ei->xlated_id = x_id;
432 
433 out:
434 	mutex_unlock(&ei->req_mlock);
435 
436 	return ret;
437 }
438 
439 static struct hte_device *of_node_to_htedevice(struct device_node *np)
440 {
441 	struct hte_device *gdev;
442 
443 	spin_lock(&hte_lock);
444 
445 	list_for_each_entry(gdev, &hte_devices, list)
446 		if (gdev->chip && gdev->chip->dev &&
447 		    gdev->chip->dev->of_node == np) {
448 			spin_unlock(&hte_lock);
449 			return gdev;
450 		}
451 
452 	spin_unlock(&hte_lock);
453 
454 	return ERR_PTR(-ENODEV);
455 }
456 
457 static struct hte_device *hte_find_dev_from_linedata(struct hte_ts_desc *desc)
458 {
459 	struct hte_device *gdev;
460 
461 	spin_lock(&hte_lock);
462 
463 	list_for_each_entry(gdev, &hte_devices, list)
464 		if (gdev->chip && gdev->chip->match_from_linedata) {
465 			if (!gdev->chip->match_from_linedata(gdev->chip, desc))
466 				continue;
467 			spin_unlock(&hte_lock);
468 			return gdev;
469 		}
470 
471 	spin_unlock(&hte_lock);
472 
473 	return ERR_PTR(-ENODEV);
474 }
475 
476 /**
477  * of_hte_req_count - Return the number of entities to timestamp.
478  *
479  * The function returns the total count of the requested entities to timestamp
480  * by parsing device tree.
481  *
482  * @dev: The HTE consumer.
483  *
484  * Returns: Positive number on success, -ENOENT if no entries,
485  * -EINVAL for other errors.
486  */
487 int of_hte_req_count(struct device *dev)
488 {
489 	int count;
490 
491 	if (!dev || !dev->of_node)
492 		return -EINVAL;
493 
494 	count = of_count_phandle_with_args(dev->of_node, "timestamps",
495 					   "#timestamp-cells");
496 
497 	return count ? count : -ENOENT;
498 }
499 EXPORT_SYMBOL_GPL(of_hte_req_count);
500 
501 static inline struct hte_device *hte_get_dev(struct hte_ts_desc *desc)
502 {
503 	return hte_find_dev_from_linedata(desc);
504 }
505 
506 static struct hte_device *hte_of_get_dev(struct device *dev,
507 					 struct hte_ts_desc *desc,
508 					 int index,
509 					 struct of_phandle_args *args,
510 					 bool *free_name)
511 {
512 	int ret;
513 	struct device_node *np;
514 	char *temp;
515 
516 	if (!dev->of_node)
517 		return ERR_PTR(-EINVAL);
518 
519 	np = dev->of_node;
520 
521 	if (!of_find_property(np, "timestamp-names", NULL)) {
522 		/* Let hte core construct it during request time */
523 		desc->attr.name = NULL;
524 	} else {
525 		ret = of_property_read_string_index(np, "timestamp-names",
526 						    index, &desc->attr.name);
527 		if (ret) {
528 			pr_err("can't parse \"timestamp-names\" property\n");
529 			return ERR_PTR(ret);
530 		}
531 		*free_name = false;
532 		if (desc->attr.name) {
533 			temp = skip_spaces(desc->attr.name);
534 			if (!*temp)
535 				desc->attr.name = NULL;
536 		}
537 	}
538 
539 	ret = of_parse_phandle_with_args(np, "timestamps", "#timestamp-cells",
540 					 index, args);
541 	if (ret) {
542 		pr_err("%s(): can't parse \"timestamps\" property\n",
543 		       __func__);
544 		return ERR_PTR(ret);
545 	}
546 
547 	of_node_put(args->np);
548 
549 	return of_node_to_htedevice(args->np);
550 }
551 
552 /**
553  * hte_ts_get() - The function to initialize and obtain HTE desc.
554  *
555  * The function initializes the consumer provided HTE descriptor. If consumer
556  * has device tree node, index is used to parse the line id and other details.
557  * The function needs to be called before using any request APIs.
558  *
559  * @dev: HTE consumer/client device, used in case of parsing device tree node.
560  * @desc: Pre-allocated timestamp descriptor.
561  * @index: The index will be used as an index to parse line_id from the
562  * device tree node if node is present.
563  *
564  * Context: Holds mutex lock.
565  * Returns: Returns 0 on success or negative error code on failure.
566  */
567 int hte_ts_get(struct device *dev, struct hte_ts_desc *desc, int index)
568 {
569 	struct hte_device *gdev;
570 	struct hte_ts_info *ei;
571 	const struct fwnode_handle *fwnode;
572 	struct of_phandle_args args;
573 	u32 xlated_id;
574 	int ret;
575 	bool free_name = false;
576 
577 	if (!desc)
578 		return -EINVAL;
579 
580 	fwnode = dev ? dev_fwnode(dev) : NULL;
581 
582 	if (is_of_node(fwnode))
583 		gdev = hte_of_get_dev(dev, desc, index, &args, &free_name);
584 	else
585 		gdev = hte_get_dev(desc);
586 
587 	if (IS_ERR(gdev)) {
588 		pr_err("%s() no hte dev found\n", __func__);
589 		return PTR_ERR(gdev);
590 	}
591 
592 	if (!try_module_get(gdev->owner))
593 		return -ENODEV;
594 
595 	if (!gdev->chip) {
596 		pr_err("%s(): requested id does not have provider\n",
597 		       __func__);
598 		ret = -ENODEV;
599 		goto put;
600 	}
601 
602 	if (is_of_node(fwnode)) {
603 		if (!gdev->chip->xlate_of)
604 			ret = -EINVAL;
605 		else
606 			ret = gdev->chip->xlate_of(gdev->chip, &args,
607 						   desc, &xlated_id);
608 	} else {
609 		if (!gdev->chip->xlate_plat)
610 			ret = -EINVAL;
611 		else
612 			ret = gdev->chip->xlate_plat(gdev->chip, desc,
613 						     &xlated_id);
614 	}
615 
616 	if (ret < 0)
617 		goto put;
618 
619 	ei = &gdev->ei[xlated_id];
620 
621 	ret = hte_bind_ts_info_locked(ei, desc, xlated_id);
622 	if (ret)
623 		goto put;
624 
625 	ei->free_attr_name = free_name;
626 
627 	return 0;
628 
629 put:
630 	module_put(gdev->owner);
631 	return ret;
632 }
633 EXPORT_SYMBOL_GPL(hte_ts_get);
634 
635 static void __devm_hte_release_ts(void *res)
636 {
637 	hte_ts_put(res);
638 }
639 
640 /**
641  * hte_request_ts_ns() - The API to request and enable hardware timestamp in
642  * nanoseconds.
643  *
644  * The entity is provider specific for example, GPIO lines, signals, buses
645  * etc...The API allocates necessary resources and enables the timestamp.
646  *
647  * @desc: Pre-allocated and initialized timestamp descriptor.
648  * @cb: Callback to push the timestamp data to consumer.
649  * @tcb: Optional callback. If its provided, subsystem initializes
650  * workqueue. It is called when cb returns HTE_RUN_SECOND_CB.
651  * @data: Client data, used during cb and tcb callbacks.
652  *
653  * Context: Holds mutex lock.
654  * Returns: Returns 0 on success or negative error code on failure.
655  */
656 int hte_request_ts_ns(struct hte_ts_desc *desc, hte_ts_cb_t cb,
657 		      hte_ts_sec_cb_t tcb, void *data)
658 {
659 	int ret;
660 	struct hte_ts_info *ei;
661 
662 	if (!desc || !desc->hte_data || !cb)
663 		return -EINVAL;
664 
665 	ei = desc->hte_data;
666 	if (!ei || !ei->gdev)
667 		return -EINVAL;
668 
669 	ret = __hte_req_ts(desc, cb, tcb, data);
670 	if (ret < 0) {
671 		dev_err(ei->gdev->chip->dev,
672 			"failed to request id: %d\n", desc->attr.line_id);
673 		return ret;
674 	}
675 
676 	return 0;
677 }
678 EXPORT_SYMBOL_GPL(hte_request_ts_ns);
679 
680 /**
681  * devm_hte_request_ts_ns() - Resource managed API to request and enable
682  * hardware timestamp in nanoseconds.
683  *
684  * The entity is provider specific for example, GPIO lines, signals, buses
685  * etc...The API allocates necessary resources and enables the timestamp. It
686  * deallocates and disables automatically when the consumer exits.
687  *
688  * @dev: HTE consumer/client device.
689  * @desc: Pre-allocated and initialized timestamp descriptor.
690  * @cb: Callback to push the timestamp data to consumer.
691  * @tcb: Optional callback. If its provided, subsystem initializes
692  * workqueue. It is called when cb returns HTE_RUN_SECOND_CB.
693  * @data: Client data, used during cb and tcb callbacks.
694  *
695  * Context: Holds mutex lock.
696  * Returns: Returns 0 on success or negative error code on failure.
697  */
698 int devm_hte_request_ts_ns(struct device *dev, struct hte_ts_desc *desc,
699 			   hte_ts_cb_t cb, hte_ts_sec_cb_t tcb,
700 			   void *data)
701 {
702 	int err;
703 
704 	if (!dev)
705 		return -EINVAL;
706 
707 	err = hte_request_ts_ns(desc, cb, tcb, data);
708 	if (err)
709 		return err;
710 
711 	err = devm_add_action_or_reset(dev, __devm_hte_release_ts, desc);
712 	if (err)
713 		return err;
714 
715 	return 0;
716 }
717 EXPORT_SYMBOL_GPL(devm_hte_request_ts_ns);
718 
719 /**
720  * hte_init_line_attr() - Initialize line attributes.
721  *
722  * Zeroes out line attributes and initializes with provided arguments.
723  * The function needs to be called before calling any consumer facing
724  * functions.
725  *
726  * @desc: Pre-allocated timestamp descriptor.
727  * @line_id: line id.
728  * @edge_flags: edge flags related to line_id.
729  * @name: name of the line.
730  * @data: line data related to line_id.
731  *
732  * Context: Any.
733  * Returns: 0 on success or negative error code for the failure.
734  */
735 int hte_init_line_attr(struct hte_ts_desc *desc, u32 line_id,
736 		       unsigned long edge_flags, const char *name, void *data)
737 {
738 	if (!desc)
739 		return -EINVAL;
740 
741 	memset(&desc->attr, 0, sizeof(desc->attr));
742 
743 	desc->attr.edge_flags = edge_flags;
744 	desc->attr.line_id = line_id;
745 	desc->attr.line_data = data;
746 	if (name) {
747 		name =  kstrdup_const(name, GFP_KERNEL);
748 		if (!name)
749 			return -ENOMEM;
750 	}
751 
752 	desc->attr.name = name;
753 
754 	return 0;
755 }
756 EXPORT_SYMBOL_GPL(hte_init_line_attr);
757 
758 /**
759  * hte_get_clk_src_info() - Get the clock source information for a ts
760  * descriptor.
761  *
762  * @desc: ts descriptor, same as returned from request API.
763  * @ci: The API fills this structure with the clock information data.
764  *
765  * Context: Any context.
766  * Returns: 0 on success else negative error code on failure.
767  */
768 int hte_get_clk_src_info(const struct hte_ts_desc *desc,
769 			 struct hte_clk_info *ci)
770 {
771 	struct hte_chip *chip;
772 	struct hte_ts_info *ei;
773 
774 	if (!desc || !desc->hte_data || !ci) {
775 		pr_debug("%s:%d\n", __func__, __LINE__);
776 		return -EINVAL;
777 	}
778 
779 	ei = desc->hte_data;
780 	if (!ei->gdev || !ei->gdev->chip)
781 		return -EINVAL;
782 
783 	chip = ei->gdev->chip;
784 	if (!chip->ops->get_clk_src_info)
785 		return -EOPNOTSUPP;
786 
787 	return chip->ops->get_clk_src_info(chip, ci);
788 }
789 EXPORT_SYMBOL_GPL(hte_get_clk_src_info);
790 
791 /**
792  * hte_push_ts_ns() - Push timestamp data in nanoseconds.
793  *
794  * It is used by the provider to push timestamp data.
795  *
796  * @chip: The HTE chip, used during the registration.
797  * @xlated_id: entity id understood by both subsystem and provider, this is
798  * obtained from xlate callback during request API.
799  * @data: timestamp data.
800  *
801  * Returns: 0 on success or a negative error code on failure.
802  */
803 int hte_push_ts_ns(const struct hte_chip *chip, u32 xlated_id,
804 		   struct hte_ts_data *data)
805 {
806 	enum hte_return ret;
807 	int st = 0;
808 	struct hte_ts_info *ei;
809 	unsigned long flag;
810 
811 	if (!chip || !data || !chip->gdev)
812 		return -EINVAL;
813 
814 	if (xlated_id >= chip->nlines)
815 		return -EINVAL;
816 
817 	ei = &chip->gdev->ei[xlated_id];
818 
819 	spin_lock_irqsave(&ei->slock, flag);
820 
821 	/* timestamp sequence counter */
822 	data->seq = ei->seq++;
823 
824 	if (!test_bit(HTE_TS_REGISTERED, &ei->flags) ||
825 	    test_bit(HTE_TS_DISABLE, &ei->flags)) {
826 		dev_dbg(chip->dev, "Unknown timestamp push\n");
827 		atomic_inc(&ei->dropped_ts);
828 		st = -EINVAL;
829 		goto unlock;
830 	}
831 
832 	ret = ei->cb(data, ei->cl_data);
833 	if (ret == HTE_RUN_SECOND_CB && ei->tcb) {
834 		queue_work(system_unbound_wq, &ei->cb_work);
835 		set_bit(HTE_TS_QUEUE_WK, &ei->flags);
836 	}
837 
838 unlock:
839 	spin_unlock_irqrestore(&ei->slock, flag);
840 
841 	return st;
842 }
843 EXPORT_SYMBOL_GPL(hte_push_ts_ns);
844 
845 static int hte_register_chip(struct hte_chip *chip)
846 {
847 	struct hte_device *gdev;
848 	u32 i;
849 
850 	if (!chip || !chip->dev || !chip->dev->of_node)
851 		return -EINVAL;
852 
853 	if (!chip->ops || !chip->ops->request || !chip->ops->release) {
854 		dev_err(chip->dev, "Driver needs to provide ops\n");
855 		return -EINVAL;
856 	}
857 
858 	gdev = kzalloc(struct_size(gdev, ei, chip->nlines), GFP_KERNEL);
859 	if (!gdev)
860 		return -ENOMEM;
861 
862 	gdev->chip = chip;
863 	chip->gdev = gdev;
864 	gdev->nlines = chip->nlines;
865 	gdev->sdev = chip->dev;
866 
867 	for (i = 0; i < chip->nlines; i++) {
868 		gdev->ei[i].gdev = gdev;
869 		mutex_init(&gdev->ei[i].req_mlock);
870 		spin_lock_init(&gdev->ei[i].slock);
871 	}
872 
873 	if (chip->dev->driver)
874 		gdev->owner = chip->dev->driver->owner;
875 	else
876 		gdev->owner = THIS_MODULE;
877 
878 	of_node_get(chip->dev->of_node);
879 
880 	INIT_LIST_HEAD(&gdev->list);
881 
882 	spin_lock(&hte_lock);
883 	list_add_tail(&gdev->list, &hte_devices);
884 	spin_unlock(&hte_lock);
885 
886 	hte_chip_dbgfs_init(gdev);
887 
888 	dev_dbg(chip->dev, "Added hte chip\n");
889 
890 	return 0;
891 }
892 
893 static int hte_unregister_chip(struct hte_chip *chip)
894 {
895 	struct hte_device *gdev;
896 
897 	if (!chip)
898 		return -EINVAL;
899 
900 	gdev = chip->gdev;
901 
902 	spin_lock(&hte_lock);
903 	list_del(&gdev->list);
904 	spin_unlock(&hte_lock);
905 
906 	gdev->chip = NULL;
907 
908 	of_node_put(chip->dev->of_node);
909 	debugfs_remove_recursive(gdev->dbg_root);
910 	kfree(gdev);
911 
912 	dev_dbg(chip->dev, "Removed hte chip\n");
913 
914 	return 0;
915 }
916 
917 static void _hte_devm_unregister_chip(void *chip)
918 {
919 	hte_unregister_chip(chip);
920 }
921 
922 /**
923  * devm_hte_register_chip() - Resource managed API to register HTE chip.
924  *
925  * It is used by the provider to register itself with the HTE subsystem.
926  * The unregistration is done automatically when the provider exits.
927  *
928  * @chip: the HTE chip to add to subsystem.
929  *
930  * Returns: 0 on success or a negative error code on failure.
931  */
932 int devm_hte_register_chip(struct hte_chip *chip)
933 {
934 	int err;
935 
936 	err = hte_register_chip(chip);
937 	if (err)
938 		return err;
939 
940 	err = devm_add_action_or_reset(chip->dev, _hte_devm_unregister_chip,
941 				       chip);
942 	if (err)
943 		return err;
944 
945 	return 0;
946 }
947 EXPORT_SYMBOL_GPL(devm_hte_register_chip);
948