1 /* 2 * HIDPP protocol for Logitech Unifying receivers 3 * 4 * Copyright (c) 2011 Logitech (c) 5 * Copyright (c) 2012-2013 Google (c) 6 * Copyright (c) 2013-2014 Red Hat Inc. 7 */ 8 9 /* 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the Free 12 * Software Foundation; version 2 of the License. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/device.h> 18 #include <linux/input.h> 19 #include <linux/usb.h> 20 #include <linux/hid.h> 21 #include <linux/module.h> 22 #include <linux/slab.h> 23 #include <linux/sched.h> 24 #include <linux/kfifo.h> 25 #include <linux/input/mt.h> 26 #include <linux/workqueue.h> 27 #include <linux/atomic.h> 28 #include <linux/fixp-arith.h> 29 #include <asm/unaligned.h> 30 #include "usbhid/usbhid.h" 31 #include "hid-ids.h" 32 33 MODULE_LICENSE("GPL"); 34 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>"); 35 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>"); 36 37 static bool disable_raw_mode; 38 module_param(disable_raw_mode, bool, 0644); 39 MODULE_PARM_DESC(disable_raw_mode, 40 "Disable Raw mode reporting for touchpads and keep firmware gestures."); 41 42 static bool disable_tap_to_click; 43 module_param(disable_tap_to_click, bool, 0644); 44 MODULE_PARM_DESC(disable_tap_to_click, 45 "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently)."); 46 47 #define REPORT_ID_HIDPP_SHORT 0x10 48 #define REPORT_ID_HIDPP_LONG 0x11 49 #define REPORT_ID_HIDPP_VERY_LONG 0x12 50 51 #define HIDPP_REPORT_SHORT_LENGTH 7 52 #define HIDPP_REPORT_LONG_LENGTH 20 53 #define HIDPP_REPORT_VERY_LONG_LENGTH 64 54 55 #define HIDPP_QUIRK_CLASS_WTP BIT(0) 56 #define HIDPP_QUIRK_CLASS_M560 BIT(1) 57 #define HIDPP_QUIRK_CLASS_K400 BIT(2) 58 #define HIDPP_QUIRK_CLASS_G920 BIT(3) 59 #define HIDPP_QUIRK_CLASS_K750 BIT(4) 60 61 /* bits 2..20 are reserved for classes */ 62 /* #define HIDPP_QUIRK_CONNECT_EVENTS BIT(21) disabled */ 63 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS BIT(22) 64 #define HIDPP_QUIRK_NO_HIDINPUT BIT(23) 65 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS BIT(24) 66 #define HIDPP_QUIRK_UNIFYING BIT(25) 67 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0 BIT(26) 68 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120 BIT(27) 69 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121 BIT(28) 70 71 /* Convenience constant to check for any high-res support. */ 72 #define HIDPP_QUIRK_HI_RES_SCROLL (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \ 73 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \ 74 HIDPP_QUIRK_HI_RES_SCROLL_X2121) 75 76 #define HIDPP_QUIRK_DELAYED_INIT HIDPP_QUIRK_NO_HIDINPUT 77 78 #define HIDPP_CAPABILITY_HIDPP10_BATTERY BIT(0) 79 #define HIDPP_CAPABILITY_HIDPP20_BATTERY BIT(1) 80 #define HIDPP_CAPABILITY_BATTERY_MILEAGE BIT(2) 81 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS BIT(3) 82 83 /* 84 * There are two hidpp protocols in use, the first version hidpp10 is known 85 * as register access protocol or RAP, the second version hidpp20 is known as 86 * feature access protocol or FAP 87 * 88 * Most older devices (including the Unifying usb receiver) use the RAP protocol 89 * where as most newer devices use the FAP protocol. Both protocols are 90 * compatible with the underlying transport, which could be usb, Unifiying, or 91 * bluetooth. The message lengths are defined by the hid vendor specific report 92 * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and 93 * the HIDPP_LONG report type (total message length 20 bytes) 94 * 95 * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG 96 * messages. The Unifying receiver itself responds to RAP messages (device index 97 * is 0xFF for the receiver), and all messages (short or long) with a device 98 * index between 1 and 6 are passed untouched to the corresponding paired 99 * Unifying device. 100 * 101 * The paired device can be RAP or FAP, it will receive the message untouched 102 * from the Unifiying receiver. 103 */ 104 105 struct fap { 106 u8 feature_index; 107 u8 funcindex_clientid; 108 u8 params[HIDPP_REPORT_VERY_LONG_LENGTH - 4U]; 109 }; 110 111 struct rap { 112 u8 sub_id; 113 u8 reg_address; 114 u8 params[HIDPP_REPORT_VERY_LONG_LENGTH - 4U]; 115 }; 116 117 struct hidpp_report { 118 u8 report_id; 119 u8 device_index; 120 union { 121 struct fap fap; 122 struct rap rap; 123 u8 rawbytes[sizeof(struct fap)]; 124 }; 125 } __packed; 126 127 struct hidpp_battery { 128 u8 feature_index; 129 u8 solar_feature_index; 130 struct power_supply_desc desc; 131 struct power_supply *ps; 132 char name[64]; 133 int status; 134 int capacity; 135 int level; 136 bool online; 137 }; 138 139 struct hidpp_device { 140 struct hid_device *hid_dev; 141 struct mutex send_mutex; 142 void *send_receive_buf; 143 char *name; /* will never be NULL and should not be freed */ 144 wait_queue_head_t wait; 145 bool answer_available; 146 u8 protocol_major; 147 u8 protocol_minor; 148 149 void *private_data; 150 151 struct work_struct work; 152 struct kfifo delayed_work_fifo; 153 atomic_t connected; 154 struct input_dev *delayed_input; 155 156 unsigned long quirks; 157 unsigned long capabilities; 158 159 struct hidpp_battery battery; 160 struct hid_scroll_counter vertical_wheel_counter; 161 }; 162 163 /* HID++ 1.0 error codes */ 164 #define HIDPP_ERROR 0x8f 165 #define HIDPP_ERROR_SUCCESS 0x00 166 #define HIDPP_ERROR_INVALID_SUBID 0x01 167 #define HIDPP_ERROR_INVALID_ADRESS 0x02 168 #define HIDPP_ERROR_INVALID_VALUE 0x03 169 #define HIDPP_ERROR_CONNECT_FAIL 0x04 170 #define HIDPP_ERROR_TOO_MANY_DEVICES 0x05 171 #define HIDPP_ERROR_ALREADY_EXISTS 0x06 172 #define HIDPP_ERROR_BUSY 0x07 173 #define HIDPP_ERROR_UNKNOWN_DEVICE 0x08 174 #define HIDPP_ERROR_RESOURCE_ERROR 0x09 175 #define HIDPP_ERROR_REQUEST_UNAVAILABLE 0x0a 176 #define HIDPP_ERROR_INVALID_PARAM_VALUE 0x0b 177 #define HIDPP_ERROR_WRONG_PIN_CODE 0x0c 178 /* HID++ 2.0 error codes */ 179 #define HIDPP20_ERROR 0xff 180 181 static void hidpp_connect_event(struct hidpp_device *hidpp_dev); 182 183 static int __hidpp_send_report(struct hid_device *hdev, 184 struct hidpp_report *hidpp_report) 185 { 186 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 187 int fields_count, ret; 188 189 hidpp = hid_get_drvdata(hdev); 190 191 switch (hidpp_report->report_id) { 192 case REPORT_ID_HIDPP_SHORT: 193 fields_count = HIDPP_REPORT_SHORT_LENGTH; 194 break; 195 case REPORT_ID_HIDPP_LONG: 196 fields_count = HIDPP_REPORT_LONG_LENGTH; 197 break; 198 case REPORT_ID_HIDPP_VERY_LONG: 199 fields_count = HIDPP_REPORT_VERY_LONG_LENGTH; 200 break; 201 default: 202 return -ENODEV; 203 } 204 205 /* 206 * set the device_index as the receiver, it will be overwritten by 207 * hid_hw_request if needed 208 */ 209 hidpp_report->device_index = 0xff; 210 211 if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) { 212 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count); 213 } else { 214 ret = hid_hw_raw_request(hdev, hidpp_report->report_id, 215 (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT, 216 HID_REQ_SET_REPORT); 217 } 218 219 return ret == fields_count ? 0 : -1; 220 } 221 222 /** 223 * hidpp_send_message_sync() returns 0 in case of success, and something else 224 * in case of a failure. 225 * - If ' something else' is positive, that means that an error has been raised 226 * by the protocol itself. 227 * - If ' something else' is negative, that means that we had a classic error 228 * (-ENOMEM, -EPIPE, etc...) 229 */ 230 static int hidpp_send_message_sync(struct hidpp_device *hidpp, 231 struct hidpp_report *message, 232 struct hidpp_report *response) 233 { 234 int ret; 235 236 mutex_lock(&hidpp->send_mutex); 237 238 hidpp->send_receive_buf = response; 239 hidpp->answer_available = false; 240 241 /* 242 * So that we can later validate the answer when it arrives 243 * in hidpp_raw_event 244 */ 245 *response = *message; 246 247 ret = __hidpp_send_report(hidpp->hid_dev, message); 248 249 if (ret) { 250 dbg_hid("__hidpp_send_report returned err: %d\n", ret); 251 memset(response, 0, sizeof(struct hidpp_report)); 252 goto exit; 253 } 254 255 if (!wait_event_timeout(hidpp->wait, hidpp->answer_available, 256 5*HZ)) { 257 dbg_hid("%s:timeout waiting for response\n", __func__); 258 memset(response, 0, sizeof(struct hidpp_report)); 259 ret = -ETIMEDOUT; 260 } 261 262 if (response->report_id == REPORT_ID_HIDPP_SHORT && 263 response->rap.sub_id == HIDPP_ERROR) { 264 ret = response->rap.params[1]; 265 dbg_hid("%s:got hidpp error %02X\n", __func__, ret); 266 goto exit; 267 } 268 269 if ((response->report_id == REPORT_ID_HIDPP_LONG || 270 response->report_id == REPORT_ID_HIDPP_VERY_LONG) && 271 response->fap.feature_index == HIDPP20_ERROR) { 272 ret = response->fap.params[1]; 273 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret); 274 goto exit; 275 } 276 277 exit: 278 mutex_unlock(&hidpp->send_mutex); 279 return ret; 280 281 } 282 283 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp, 284 u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count, 285 struct hidpp_report *response) 286 { 287 struct hidpp_report *message; 288 int ret; 289 290 if (param_count > sizeof(message->fap.params)) 291 return -EINVAL; 292 293 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 294 if (!message) 295 return -ENOMEM; 296 297 if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4)) 298 message->report_id = REPORT_ID_HIDPP_VERY_LONG; 299 else 300 message->report_id = REPORT_ID_HIDPP_LONG; 301 message->fap.feature_index = feat_index; 302 message->fap.funcindex_clientid = funcindex_clientid; 303 memcpy(&message->fap.params, params, param_count); 304 305 ret = hidpp_send_message_sync(hidpp, message, response); 306 kfree(message); 307 return ret; 308 } 309 310 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev, 311 u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count, 312 struct hidpp_report *response) 313 { 314 struct hidpp_report *message; 315 int ret, max_count; 316 317 switch (report_id) { 318 case REPORT_ID_HIDPP_SHORT: 319 max_count = HIDPP_REPORT_SHORT_LENGTH - 4; 320 break; 321 case REPORT_ID_HIDPP_LONG: 322 max_count = HIDPP_REPORT_LONG_LENGTH - 4; 323 break; 324 case REPORT_ID_HIDPP_VERY_LONG: 325 max_count = HIDPP_REPORT_VERY_LONG_LENGTH - 4; 326 break; 327 default: 328 return -EINVAL; 329 } 330 331 if (param_count > max_count) 332 return -EINVAL; 333 334 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 335 if (!message) 336 return -ENOMEM; 337 message->report_id = report_id; 338 message->rap.sub_id = sub_id; 339 message->rap.reg_address = reg_address; 340 memcpy(&message->rap.params, params, param_count); 341 342 ret = hidpp_send_message_sync(hidpp_dev, message, response); 343 kfree(message); 344 return ret; 345 } 346 347 static void delayed_work_cb(struct work_struct *work) 348 { 349 struct hidpp_device *hidpp = container_of(work, struct hidpp_device, 350 work); 351 hidpp_connect_event(hidpp); 352 } 353 354 static inline bool hidpp_match_answer(struct hidpp_report *question, 355 struct hidpp_report *answer) 356 { 357 return (answer->fap.feature_index == question->fap.feature_index) && 358 (answer->fap.funcindex_clientid == question->fap.funcindex_clientid); 359 } 360 361 static inline bool hidpp_match_error(struct hidpp_report *question, 362 struct hidpp_report *answer) 363 { 364 return ((answer->rap.sub_id == HIDPP_ERROR) || 365 (answer->fap.feature_index == HIDPP20_ERROR)) && 366 (answer->fap.funcindex_clientid == question->fap.feature_index) && 367 (answer->fap.params[0] == question->fap.funcindex_clientid); 368 } 369 370 static inline bool hidpp_report_is_connect_event(struct hidpp_report *report) 371 { 372 return (report->report_id == REPORT_ID_HIDPP_SHORT) && 373 (report->rap.sub_id == 0x41); 374 } 375 376 /** 377 * hidpp_prefix_name() prefixes the current given name with "Logitech ". 378 */ 379 static void hidpp_prefix_name(char **name, int name_length) 380 { 381 #define PREFIX_LENGTH 9 /* "Logitech " */ 382 383 int new_length; 384 char *new_name; 385 386 if (name_length > PREFIX_LENGTH && 387 strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0) 388 /* The prefix has is already in the name */ 389 return; 390 391 new_length = PREFIX_LENGTH + name_length; 392 new_name = kzalloc(new_length, GFP_KERNEL); 393 if (!new_name) 394 return; 395 396 snprintf(new_name, new_length, "Logitech %s", *name); 397 398 kfree(*name); 399 400 *name = new_name; 401 } 402 403 /* -------------------------------------------------------------------------- */ 404 /* HIDP++ 1.0 commands */ 405 /* -------------------------------------------------------------------------- */ 406 407 #define HIDPP_SET_REGISTER 0x80 408 #define HIDPP_GET_REGISTER 0x81 409 #define HIDPP_SET_LONG_REGISTER 0x82 410 #define HIDPP_GET_LONG_REGISTER 0x83 411 412 /** 413 * hidpp10_set_register_bit() - Sets a single bit in a HID++ 1.0 register. 414 * @hidpp_dev: the device to set the register on. 415 * @register_address: the address of the register to modify. 416 * @byte: the byte of the register to modify. Should be less than 3. 417 * Return: 0 if successful, otherwise a negative error code. 418 */ 419 static int hidpp10_set_register_bit(struct hidpp_device *hidpp_dev, 420 u8 register_address, u8 byte, u8 bit) 421 { 422 struct hidpp_report response; 423 int ret; 424 u8 params[3] = { 0 }; 425 426 ret = hidpp_send_rap_command_sync(hidpp_dev, 427 REPORT_ID_HIDPP_SHORT, 428 HIDPP_GET_REGISTER, 429 register_address, 430 NULL, 0, &response); 431 if (ret) 432 return ret; 433 434 memcpy(params, response.rap.params, 3); 435 436 params[byte] |= BIT(bit); 437 438 return hidpp_send_rap_command_sync(hidpp_dev, 439 REPORT_ID_HIDPP_SHORT, 440 HIDPP_SET_REGISTER, 441 register_address, 442 params, 3, &response); 443 } 444 445 446 #define HIDPP_REG_GENERAL 0x00 447 448 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev) 449 { 450 return hidpp10_set_register_bit(hidpp_dev, HIDPP_REG_GENERAL, 0, 4); 451 } 452 453 #define HIDPP_REG_FEATURES 0x01 454 455 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */ 456 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev) 457 { 458 return hidpp10_set_register_bit(hidpp_dev, HIDPP_REG_FEATURES, 0, 6); 459 } 460 461 #define HIDPP_REG_BATTERY_STATUS 0x07 462 463 static int hidpp10_battery_status_map_level(u8 param) 464 { 465 int level; 466 467 switch (param) { 468 case 1 ... 2: 469 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 470 break; 471 case 3 ... 4: 472 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; 473 break; 474 case 5 ... 6: 475 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 476 break; 477 case 7: 478 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; 479 break; 480 default: 481 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 482 } 483 484 return level; 485 } 486 487 static int hidpp10_battery_status_map_status(u8 param) 488 { 489 int status; 490 491 switch (param) { 492 case 0x00: 493 /* discharging (in use) */ 494 status = POWER_SUPPLY_STATUS_DISCHARGING; 495 break; 496 case 0x21: /* (standard) charging */ 497 case 0x24: /* fast charging */ 498 case 0x25: /* slow charging */ 499 status = POWER_SUPPLY_STATUS_CHARGING; 500 break; 501 case 0x26: /* topping charge */ 502 case 0x22: /* charge complete */ 503 status = POWER_SUPPLY_STATUS_FULL; 504 break; 505 case 0x20: /* unknown */ 506 status = POWER_SUPPLY_STATUS_UNKNOWN; 507 break; 508 /* 509 * 0x01...0x1F = reserved (not charging) 510 * 0x23 = charging error 511 * 0x27..0xff = reserved 512 */ 513 default: 514 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 515 break; 516 } 517 518 return status; 519 } 520 521 static int hidpp10_query_battery_status(struct hidpp_device *hidpp) 522 { 523 struct hidpp_report response; 524 int ret, status; 525 526 ret = hidpp_send_rap_command_sync(hidpp, 527 REPORT_ID_HIDPP_SHORT, 528 HIDPP_GET_REGISTER, 529 HIDPP_REG_BATTERY_STATUS, 530 NULL, 0, &response); 531 if (ret) 532 return ret; 533 534 hidpp->battery.level = 535 hidpp10_battery_status_map_level(response.rap.params[0]); 536 status = hidpp10_battery_status_map_status(response.rap.params[1]); 537 hidpp->battery.status = status; 538 /* the capacity is only available when discharging or full */ 539 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 540 status == POWER_SUPPLY_STATUS_FULL; 541 542 return 0; 543 } 544 545 #define HIDPP_REG_BATTERY_MILEAGE 0x0D 546 547 static int hidpp10_battery_mileage_map_status(u8 param) 548 { 549 int status; 550 551 switch (param >> 6) { 552 case 0x00: 553 /* discharging (in use) */ 554 status = POWER_SUPPLY_STATUS_DISCHARGING; 555 break; 556 case 0x01: /* charging */ 557 status = POWER_SUPPLY_STATUS_CHARGING; 558 break; 559 case 0x02: /* charge complete */ 560 status = POWER_SUPPLY_STATUS_FULL; 561 break; 562 /* 563 * 0x03 = charging error 564 */ 565 default: 566 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 567 break; 568 } 569 570 return status; 571 } 572 573 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp) 574 { 575 struct hidpp_report response; 576 int ret, status; 577 578 ret = hidpp_send_rap_command_sync(hidpp, 579 REPORT_ID_HIDPP_SHORT, 580 HIDPP_GET_REGISTER, 581 HIDPP_REG_BATTERY_MILEAGE, 582 NULL, 0, &response); 583 if (ret) 584 return ret; 585 586 hidpp->battery.capacity = response.rap.params[0]; 587 status = hidpp10_battery_mileage_map_status(response.rap.params[2]); 588 hidpp->battery.status = status; 589 /* the capacity is only available when discharging or full */ 590 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 591 status == POWER_SUPPLY_STATUS_FULL; 592 593 return 0; 594 } 595 596 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size) 597 { 598 struct hidpp_report *report = (struct hidpp_report *)data; 599 int status, capacity, level; 600 bool changed; 601 602 if (report->report_id != REPORT_ID_HIDPP_SHORT) 603 return 0; 604 605 switch (report->rap.sub_id) { 606 case HIDPP_REG_BATTERY_STATUS: 607 capacity = hidpp->battery.capacity; 608 level = hidpp10_battery_status_map_level(report->rawbytes[1]); 609 status = hidpp10_battery_status_map_status(report->rawbytes[2]); 610 break; 611 case HIDPP_REG_BATTERY_MILEAGE: 612 capacity = report->rap.params[0]; 613 level = hidpp->battery.level; 614 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]); 615 break; 616 default: 617 return 0; 618 } 619 620 changed = capacity != hidpp->battery.capacity || 621 level != hidpp->battery.level || 622 status != hidpp->battery.status; 623 624 /* the capacity is only available when discharging or full */ 625 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 626 status == POWER_SUPPLY_STATUS_FULL; 627 628 if (changed) { 629 hidpp->battery.level = level; 630 hidpp->battery.status = status; 631 if (hidpp->battery.ps) 632 power_supply_changed(hidpp->battery.ps); 633 } 634 635 return 0; 636 } 637 638 #define HIDPP_REG_PAIRING_INFORMATION 0xB5 639 #define HIDPP_EXTENDED_PAIRING 0x30 640 #define HIDPP_DEVICE_NAME 0x40 641 642 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev) 643 { 644 struct hidpp_report response; 645 int ret; 646 u8 params[1] = { HIDPP_DEVICE_NAME }; 647 char *name; 648 int len; 649 650 ret = hidpp_send_rap_command_sync(hidpp_dev, 651 REPORT_ID_HIDPP_SHORT, 652 HIDPP_GET_LONG_REGISTER, 653 HIDPP_REG_PAIRING_INFORMATION, 654 params, 1, &response); 655 if (ret) 656 return NULL; 657 658 len = response.rap.params[1]; 659 660 if (2 + len > sizeof(response.rap.params)) 661 return NULL; 662 663 name = kzalloc(len + 1, GFP_KERNEL); 664 if (!name) 665 return NULL; 666 667 memcpy(name, &response.rap.params[2], len); 668 669 /* include the terminating '\0' */ 670 hidpp_prefix_name(&name, len + 1); 671 672 return name; 673 } 674 675 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial) 676 { 677 struct hidpp_report response; 678 int ret; 679 u8 params[1] = { HIDPP_EXTENDED_PAIRING }; 680 681 ret = hidpp_send_rap_command_sync(hidpp, 682 REPORT_ID_HIDPP_SHORT, 683 HIDPP_GET_LONG_REGISTER, 684 HIDPP_REG_PAIRING_INFORMATION, 685 params, 1, &response); 686 if (ret) 687 return ret; 688 689 /* 690 * We don't care about LE or BE, we will output it as a string 691 * with %4phD, so we need to keep the order. 692 */ 693 *serial = *((u32 *)&response.rap.params[1]); 694 return 0; 695 } 696 697 static int hidpp_unifying_init(struct hidpp_device *hidpp) 698 { 699 struct hid_device *hdev = hidpp->hid_dev; 700 const char *name; 701 u32 serial; 702 int ret; 703 704 ret = hidpp_unifying_get_serial(hidpp, &serial); 705 if (ret) 706 return ret; 707 708 snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD", 709 hdev->product, &serial); 710 dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq); 711 712 name = hidpp_unifying_get_name(hidpp); 713 if (!name) 714 return -EIO; 715 716 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 717 dbg_hid("HID++ Unifying: Got name: %s\n", name); 718 719 kfree(name); 720 return 0; 721 } 722 723 /* -------------------------------------------------------------------------- */ 724 /* 0x0000: Root */ 725 /* -------------------------------------------------------------------------- */ 726 727 #define HIDPP_PAGE_ROOT 0x0000 728 #define HIDPP_PAGE_ROOT_IDX 0x00 729 730 #define CMD_ROOT_GET_FEATURE 0x01 731 #define CMD_ROOT_GET_PROTOCOL_VERSION 0x11 732 733 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature, 734 u8 *feature_index, u8 *feature_type) 735 { 736 struct hidpp_report response; 737 int ret; 738 u8 params[2] = { feature >> 8, feature & 0x00FF }; 739 740 ret = hidpp_send_fap_command_sync(hidpp, 741 HIDPP_PAGE_ROOT_IDX, 742 CMD_ROOT_GET_FEATURE, 743 params, 2, &response); 744 if (ret) 745 return ret; 746 747 if (response.fap.params[0] == 0) 748 return -ENOENT; 749 750 *feature_index = response.fap.params[0]; 751 *feature_type = response.fap.params[1]; 752 753 return ret; 754 } 755 756 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp) 757 { 758 struct hidpp_report response; 759 int ret; 760 761 ret = hidpp_send_fap_command_sync(hidpp, 762 HIDPP_PAGE_ROOT_IDX, 763 CMD_ROOT_GET_PROTOCOL_VERSION, 764 NULL, 0, &response); 765 766 if (ret == HIDPP_ERROR_INVALID_SUBID) { 767 hidpp->protocol_major = 1; 768 hidpp->protocol_minor = 0; 769 return 0; 770 } 771 772 /* the device might not be connected */ 773 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 774 return -EIO; 775 776 if (ret > 0) { 777 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 778 __func__, ret); 779 return -EPROTO; 780 } 781 if (ret) 782 return ret; 783 784 hidpp->protocol_major = response.fap.params[0]; 785 hidpp->protocol_minor = response.fap.params[1]; 786 787 return ret; 788 } 789 790 static bool hidpp_is_connected(struct hidpp_device *hidpp) 791 { 792 int ret; 793 794 ret = hidpp_root_get_protocol_version(hidpp); 795 if (!ret) 796 hid_dbg(hidpp->hid_dev, "HID++ %u.%u device connected.\n", 797 hidpp->protocol_major, hidpp->protocol_minor); 798 return ret == 0; 799 } 800 801 /* -------------------------------------------------------------------------- */ 802 /* 0x0005: GetDeviceNameType */ 803 /* -------------------------------------------------------------------------- */ 804 805 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE 0x0005 806 807 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT 0x01 808 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME 0x11 809 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE 0x21 810 811 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp, 812 u8 feature_index, u8 *nameLength) 813 { 814 struct hidpp_report response; 815 int ret; 816 817 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 818 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response); 819 820 if (ret > 0) { 821 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 822 __func__, ret); 823 return -EPROTO; 824 } 825 if (ret) 826 return ret; 827 828 *nameLength = response.fap.params[0]; 829 830 return ret; 831 } 832 833 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp, 834 u8 feature_index, u8 char_index, char *device_name, int len_buf) 835 { 836 struct hidpp_report response; 837 int ret, i; 838 int count; 839 840 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 841 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1, 842 &response); 843 844 if (ret > 0) { 845 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 846 __func__, ret); 847 return -EPROTO; 848 } 849 if (ret) 850 return ret; 851 852 switch (response.report_id) { 853 case REPORT_ID_HIDPP_VERY_LONG: 854 count = HIDPP_REPORT_VERY_LONG_LENGTH - 4; 855 break; 856 case REPORT_ID_HIDPP_LONG: 857 count = HIDPP_REPORT_LONG_LENGTH - 4; 858 break; 859 case REPORT_ID_HIDPP_SHORT: 860 count = HIDPP_REPORT_SHORT_LENGTH - 4; 861 break; 862 default: 863 return -EPROTO; 864 } 865 866 if (len_buf < count) 867 count = len_buf; 868 869 for (i = 0; i < count; i++) 870 device_name[i] = response.fap.params[i]; 871 872 return count; 873 } 874 875 static char *hidpp_get_device_name(struct hidpp_device *hidpp) 876 { 877 u8 feature_type; 878 u8 feature_index; 879 u8 __name_length; 880 char *name; 881 unsigned index = 0; 882 int ret; 883 884 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE, 885 &feature_index, &feature_type); 886 if (ret) 887 return NULL; 888 889 ret = hidpp_devicenametype_get_count(hidpp, feature_index, 890 &__name_length); 891 if (ret) 892 return NULL; 893 894 name = kzalloc(__name_length + 1, GFP_KERNEL); 895 if (!name) 896 return NULL; 897 898 while (index < __name_length) { 899 ret = hidpp_devicenametype_get_device_name(hidpp, 900 feature_index, index, name + index, 901 __name_length - index); 902 if (ret <= 0) { 903 kfree(name); 904 return NULL; 905 } 906 index += ret; 907 } 908 909 /* include the terminating '\0' */ 910 hidpp_prefix_name(&name, __name_length + 1); 911 912 return name; 913 } 914 915 /* -------------------------------------------------------------------------- */ 916 /* 0x1000: Battery level status */ 917 /* -------------------------------------------------------------------------- */ 918 919 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS 0x1000 920 921 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS 0x00 922 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY 0x10 923 924 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST 0x00 925 926 #define FLAG_BATTERY_LEVEL_DISABLE_OSD BIT(0) 927 #define FLAG_BATTERY_LEVEL_MILEAGE BIT(1) 928 #define FLAG_BATTERY_LEVEL_RECHARGEABLE BIT(2) 929 930 static int hidpp_map_battery_level(int capacity) 931 { 932 if (capacity < 11) 933 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 934 else if (capacity < 31) 935 return POWER_SUPPLY_CAPACITY_LEVEL_LOW; 936 else if (capacity < 81) 937 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 938 return POWER_SUPPLY_CAPACITY_LEVEL_FULL; 939 } 940 941 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity, 942 int *next_capacity, 943 int *level) 944 { 945 int status; 946 947 *capacity = data[0]; 948 *next_capacity = data[1]; 949 *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 950 951 /* When discharging, we can rely on the device reported capacity. 952 * For all other states the device reports 0 (unknown). 953 */ 954 switch (data[2]) { 955 case 0: /* discharging (in use) */ 956 status = POWER_SUPPLY_STATUS_DISCHARGING; 957 *level = hidpp_map_battery_level(*capacity); 958 break; 959 case 1: /* recharging */ 960 status = POWER_SUPPLY_STATUS_CHARGING; 961 break; 962 case 2: /* charge in final stage */ 963 status = POWER_SUPPLY_STATUS_CHARGING; 964 break; 965 case 3: /* charge complete */ 966 status = POWER_SUPPLY_STATUS_FULL; 967 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 968 *capacity = 100; 969 break; 970 case 4: /* recharging below optimal speed */ 971 status = POWER_SUPPLY_STATUS_CHARGING; 972 break; 973 /* 5 = invalid battery type 974 6 = thermal error 975 7 = other charging error */ 976 default: 977 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 978 break; 979 } 980 981 return status; 982 } 983 984 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp, 985 u8 feature_index, 986 int *status, 987 int *capacity, 988 int *next_capacity, 989 int *level) 990 { 991 struct hidpp_report response; 992 int ret; 993 u8 *params = (u8 *)response.fap.params; 994 995 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 996 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS, 997 NULL, 0, &response); 998 if (ret > 0) { 999 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1000 __func__, ret); 1001 return -EPROTO; 1002 } 1003 if (ret) 1004 return ret; 1005 1006 *status = hidpp20_batterylevel_map_status_capacity(params, capacity, 1007 next_capacity, 1008 level); 1009 1010 return 0; 1011 } 1012 1013 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp, 1014 u8 feature_index) 1015 { 1016 struct hidpp_report response; 1017 int ret; 1018 u8 *params = (u8 *)response.fap.params; 1019 unsigned int level_count, flags; 1020 1021 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1022 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY, 1023 NULL, 0, &response); 1024 if (ret > 0) { 1025 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1026 __func__, ret); 1027 return -EPROTO; 1028 } 1029 if (ret) 1030 return ret; 1031 1032 level_count = params[0]; 1033 flags = params[1]; 1034 1035 if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE)) 1036 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 1037 else 1038 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1039 1040 return 0; 1041 } 1042 1043 static int hidpp20_query_battery_info(struct hidpp_device *hidpp) 1044 { 1045 u8 feature_type; 1046 int ret; 1047 int status, capacity, next_capacity, level; 1048 1049 if (hidpp->battery.feature_index == 0xff) { 1050 ret = hidpp_root_get_feature(hidpp, 1051 HIDPP_PAGE_BATTERY_LEVEL_STATUS, 1052 &hidpp->battery.feature_index, 1053 &feature_type); 1054 if (ret) 1055 return ret; 1056 } 1057 1058 ret = hidpp20_batterylevel_get_battery_capacity(hidpp, 1059 hidpp->battery.feature_index, 1060 &status, &capacity, 1061 &next_capacity, &level); 1062 if (ret) 1063 return ret; 1064 1065 ret = hidpp20_batterylevel_get_battery_info(hidpp, 1066 hidpp->battery.feature_index); 1067 if (ret) 1068 return ret; 1069 1070 hidpp->battery.status = status; 1071 hidpp->battery.capacity = capacity; 1072 hidpp->battery.level = level; 1073 /* the capacity is only available when discharging or full */ 1074 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1075 status == POWER_SUPPLY_STATUS_FULL; 1076 1077 return 0; 1078 } 1079 1080 static int hidpp20_battery_event(struct hidpp_device *hidpp, 1081 u8 *data, int size) 1082 { 1083 struct hidpp_report *report = (struct hidpp_report *)data; 1084 int status, capacity, next_capacity, level; 1085 bool changed; 1086 1087 if (report->fap.feature_index != hidpp->battery.feature_index || 1088 report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST) 1089 return 0; 1090 1091 status = hidpp20_batterylevel_map_status_capacity(report->fap.params, 1092 &capacity, 1093 &next_capacity, 1094 &level); 1095 1096 /* the capacity is only available when discharging or full */ 1097 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1098 status == POWER_SUPPLY_STATUS_FULL; 1099 1100 changed = capacity != hidpp->battery.capacity || 1101 level != hidpp->battery.level || 1102 status != hidpp->battery.status; 1103 1104 if (changed) { 1105 hidpp->battery.level = level; 1106 hidpp->battery.capacity = capacity; 1107 hidpp->battery.status = status; 1108 if (hidpp->battery.ps) 1109 power_supply_changed(hidpp->battery.ps); 1110 } 1111 1112 return 0; 1113 } 1114 1115 static enum power_supply_property hidpp_battery_props[] = { 1116 POWER_SUPPLY_PROP_ONLINE, 1117 POWER_SUPPLY_PROP_STATUS, 1118 POWER_SUPPLY_PROP_SCOPE, 1119 POWER_SUPPLY_PROP_MODEL_NAME, 1120 POWER_SUPPLY_PROP_MANUFACTURER, 1121 POWER_SUPPLY_PROP_SERIAL_NUMBER, 1122 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */ 1123 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */ 1124 }; 1125 1126 static int hidpp_battery_get_property(struct power_supply *psy, 1127 enum power_supply_property psp, 1128 union power_supply_propval *val) 1129 { 1130 struct hidpp_device *hidpp = power_supply_get_drvdata(psy); 1131 int ret = 0; 1132 1133 switch(psp) { 1134 case POWER_SUPPLY_PROP_STATUS: 1135 val->intval = hidpp->battery.status; 1136 break; 1137 case POWER_SUPPLY_PROP_CAPACITY: 1138 val->intval = hidpp->battery.capacity; 1139 break; 1140 case POWER_SUPPLY_PROP_CAPACITY_LEVEL: 1141 val->intval = hidpp->battery.level; 1142 break; 1143 case POWER_SUPPLY_PROP_SCOPE: 1144 val->intval = POWER_SUPPLY_SCOPE_DEVICE; 1145 break; 1146 case POWER_SUPPLY_PROP_ONLINE: 1147 val->intval = hidpp->battery.online; 1148 break; 1149 case POWER_SUPPLY_PROP_MODEL_NAME: 1150 if (!strncmp(hidpp->name, "Logitech ", 9)) 1151 val->strval = hidpp->name + 9; 1152 else 1153 val->strval = hidpp->name; 1154 break; 1155 case POWER_SUPPLY_PROP_MANUFACTURER: 1156 val->strval = "Logitech"; 1157 break; 1158 case POWER_SUPPLY_PROP_SERIAL_NUMBER: 1159 val->strval = hidpp->hid_dev->uniq; 1160 break; 1161 default: 1162 ret = -EINVAL; 1163 break; 1164 } 1165 1166 return ret; 1167 } 1168 1169 /* -------------------------------------------------------------------------- */ 1170 /* 0x2120: Hi-resolution scrolling */ 1171 /* -------------------------------------------------------------------------- */ 1172 1173 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING 0x2120 1174 1175 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE 0x10 1176 1177 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp, 1178 bool enabled, u8 *multiplier) 1179 { 1180 u8 feature_index; 1181 u8 feature_type; 1182 int ret; 1183 u8 params[1]; 1184 struct hidpp_report response; 1185 1186 ret = hidpp_root_get_feature(hidpp, 1187 HIDPP_PAGE_HI_RESOLUTION_SCROLLING, 1188 &feature_index, 1189 &feature_type); 1190 if (ret) 1191 return ret; 1192 1193 params[0] = enabled ? BIT(0) : 0; 1194 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1195 CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE, 1196 params, sizeof(params), &response); 1197 if (ret) 1198 return ret; 1199 *multiplier = response.fap.params[1]; 1200 return 0; 1201 } 1202 1203 /* -------------------------------------------------------------------------- */ 1204 /* 0x2121: HiRes Wheel */ 1205 /* -------------------------------------------------------------------------- */ 1206 1207 #define HIDPP_PAGE_HIRES_WHEEL 0x2121 1208 1209 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY 0x00 1210 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE 0x20 1211 1212 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp, 1213 u8 *multiplier) 1214 { 1215 u8 feature_index; 1216 u8 feature_type; 1217 int ret; 1218 struct hidpp_report response; 1219 1220 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1221 &feature_index, &feature_type); 1222 if (ret) 1223 goto return_default; 1224 1225 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1226 CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY, 1227 NULL, 0, &response); 1228 if (ret) 1229 goto return_default; 1230 1231 *multiplier = response.fap.params[0]; 1232 return 0; 1233 return_default: 1234 hid_warn(hidpp->hid_dev, 1235 "Couldn't get wheel multiplier (error %d), assuming %d.\n", 1236 ret, *multiplier); 1237 return ret; 1238 } 1239 1240 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert, 1241 bool high_resolution, bool use_hidpp) 1242 { 1243 u8 feature_index; 1244 u8 feature_type; 1245 int ret; 1246 u8 params[1]; 1247 struct hidpp_report response; 1248 1249 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1250 &feature_index, &feature_type); 1251 if (ret) 1252 return ret; 1253 1254 params[0] = (invert ? BIT(2) : 0) | 1255 (high_resolution ? BIT(1) : 0) | 1256 (use_hidpp ? BIT(0) : 0); 1257 1258 return hidpp_send_fap_command_sync(hidpp, feature_index, 1259 CMD_HIRES_WHEEL_SET_WHEEL_MODE, 1260 params, sizeof(params), &response); 1261 } 1262 1263 /* -------------------------------------------------------------------------- */ 1264 /* 0x4301: Solar Keyboard */ 1265 /* -------------------------------------------------------------------------- */ 1266 1267 #define HIDPP_PAGE_SOLAR_KEYBOARD 0x4301 1268 1269 #define CMD_SOLAR_SET_LIGHT_MEASURE 0x00 1270 1271 #define EVENT_SOLAR_BATTERY_BROADCAST 0x00 1272 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE 0x10 1273 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON 0x20 1274 1275 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp) 1276 { 1277 struct hidpp_report response; 1278 u8 params[2] = { 1, 1 }; 1279 u8 feature_type; 1280 int ret; 1281 1282 if (hidpp->battery.feature_index == 0xff) { 1283 ret = hidpp_root_get_feature(hidpp, 1284 HIDPP_PAGE_SOLAR_KEYBOARD, 1285 &hidpp->battery.solar_feature_index, 1286 &feature_type); 1287 if (ret) 1288 return ret; 1289 } 1290 1291 ret = hidpp_send_fap_command_sync(hidpp, 1292 hidpp->battery.solar_feature_index, 1293 CMD_SOLAR_SET_LIGHT_MEASURE, 1294 params, 2, &response); 1295 if (ret > 0) { 1296 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1297 __func__, ret); 1298 return -EPROTO; 1299 } 1300 if (ret) 1301 return ret; 1302 1303 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1304 1305 return 0; 1306 } 1307 1308 static int hidpp_solar_battery_event(struct hidpp_device *hidpp, 1309 u8 *data, int size) 1310 { 1311 struct hidpp_report *report = (struct hidpp_report *)data; 1312 int capacity, lux, status; 1313 u8 function; 1314 1315 function = report->fap.funcindex_clientid; 1316 1317 1318 if (report->fap.feature_index != hidpp->battery.solar_feature_index || 1319 !(function == EVENT_SOLAR_BATTERY_BROADCAST || 1320 function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE || 1321 function == EVENT_SOLAR_CHECK_LIGHT_BUTTON)) 1322 return 0; 1323 1324 capacity = report->fap.params[0]; 1325 1326 switch (function) { 1327 case EVENT_SOLAR_BATTERY_LIGHT_MEASURE: 1328 lux = (report->fap.params[1] << 8) | report->fap.params[2]; 1329 if (lux > 200) 1330 status = POWER_SUPPLY_STATUS_CHARGING; 1331 else 1332 status = POWER_SUPPLY_STATUS_DISCHARGING; 1333 break; 1334 case EVENT_SOLAR_CHECK_LIGHT_BUTTON: 1335 default: 1336 if (capacity < hidpp->battery.capacity) 1337 status = POWER_SUPPLY_STATUS_DISCHARGING; 1338 else 1339 status = POWER_SUPPLY_STATUS_CHARGING; 1340 1341 } 1342 1343 if (capacity == 100) 1344 status = POWER_SUPPLY_STATUS_FULL; 1345 1346 hidpp->battery.online = true; 1347 if (capacity != hidpp->battery.capacity || 1348 status != hidpp->battery.status) { 1349 hidpp->battery.capacity = capacity; 1350 hidpp->battery.status = status; 1351 if (hidpp->battery.ps) 1352 power_supply_changed(hidpp->battery.ps); 1353 } 1354 1355 return 0; 1356 } 1357 1358 /* -------------------------------------------------------------------------- */ 1359 /* 0x6010: Touchpad FW items */ 1360 /* -------------------------------------------------------------------------- */ 1361 1362 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS 0x6010 1363 1364 #define CMD_TOUCHPAD_FW_ITEMS_SET 0x10 1365 1366 struct hidpp_touchpad_fw_items { 1367 uint8_t presence; 1368 uint8_t desired_state; 1369 uint8_t state; 1370 uint8_t persistent; 1371 }; 1372 1373 /** 1374 * send a set state command to the device by reading the current items->state 1375 * field. items is then filled with the current state. 1376 */ 1377 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp, 1378 u8 feature_index, 1379 struct hidpp_touchpad_fw_items *items) 1380 { 1381 struct hidpp_report response; 1382 int ret; 1383 u8 *params = (u8 *)response.fap.params; 1384 1385 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1386 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response); 1387 1388 if (ret > 0) { 1389 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1390 __func__, ret); 1391 return -EPROTO; 1392 } 1393 if (ret) 1394 return ret; 1395 1396 items->presence = params[0]; 1397 items->desired_state = params[1]; 1398 items->state = params[2]; 1399 items->persistent = params[3]; 1400 1401 return 0; 1402 } 1403 1404 /* -------------------------------------------------------------------------- */ 1405 /* 0x6100: TouchPadRawXY */ 1406 /* -------------------------------------------------------------------------- */ 1407 1408 #define HIDPP_PAGE_TOUCHPAD_RAW_XY 0x6100 1409 1410 #define CMD_TOUCHPAD_GET_RAW_INFO 0x01 1411 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE 0x21 1412 1413 #define EVENT_TOUCHPAD_RAW_XY 0x00 1414 1415 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT 0x01 1416 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT 0x03 1417 1418 struct hidpp_touchpad_raw_info { 1419 u16 x_size; 1420 u16 y_size; 1421 u8 z_range; 1422 u8 area_range; 1423 u8 timestamp_unit; 1424 u8 maxcontacts; 1425 u8 origin; 1426 u16 res; 1427 }; 1428 1429 struct hidpp_touchpad_raw_xy_finger { 1430 u8 contact_type; 1431 u8 contact_status; 1432 u16 x; 1433 u16 y; 1434 u8 z; 1435 u8 area; 1436 u8 finger_id; 1437 }; 1438 1439 struct hidpp_touchpad_raw_xy { 1440 u16 timestamp; 1441 struct hidpp_touchpad_raw_xy_finger fingers[2]; 1442 u8 spurious_flag; 1443 u8 end_of_frame; 1444 u8 finger_count; 1445 u8 button; 1446 }; 1447 1448 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp, 1449 u8 feature_index, struct hidpp_touchpad_raw_info *raw_info) 1450 { 1451 struct hidpp_report response; 1452 int ret; 1453 u8 *params = (u8 *)response.fap.params; 1454 1455 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1456 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response); 1457 1458 if (ret > 0) { 1459 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1460 __func__, ret); 1461 return -EPROTO; 1462 } 1463 if (ret) 1464 return ret; 1465 1466 raw_info->x_size = get_unaligned_be16(¶ms[0]); 1467 raw_info->y_size = get_unaligned_be16(¶ms[2]); 1468 raw_info->z_range = params[4]; 1469 raw_info->area_range = params[5]; 1470 raw_info->maxcontacts = params[7]; 1471 raw_info->origin = params[8]; 1472 /* res is given in unit per inch */ 1473 raw_info->res = get_unaligned_be16(¶ms[13]) * 2 / 51; 1474 1475 return ret; 1476 } 1477 1478 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev, 1479 u8 feature_index, bool send_raw_reports, 1480 bool sensor_enhanced_settings) 1481 { 1482 struct hidpp_report response; 1483 1484 /* 1485 * Params: 1486 * bit 0 - enable raw 1487 * bit 1 - 16bit Z, no area 1488 * bit 2 - enhanced sensitivity 1489 * bit 3 - width, height (4 bits each) instead of area 1490 * bit 4 - send raw + gestures (degrades smoothness) 1491 * remaining bits - reserved 1492 */ 1493 u8 params = send_raw_reports | (sensor_enhanced_settings << 2); 1494 1495 return hidpp_send_fap_command_sync(hidpp_dev, feature_index, 1496 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, ¶ms, 1, &response); 1497 } 1498 1499 static void hidpp_touchpad_touch_event(u8 *data, 1500 struct hidpp_touchpad_raw_xy_finger *finger) 1501 { 1502 u8 x_m = data[0] << 2; 1503 u8 y_m = data[2] << 2; 1504 1505 finger->x = x_m << 6 | data[1]; 1506 finger->y = y_m << 6 | data[3]; 1507 1508 finger->contact_type = data[0] >> 6; 1509 finger->contact_status = data[2] >> 6; 1510 1511 finger->z = data[4]; 1512 finger->area = data[5]; 1513 finger->finger_id = data[6] >> 4; 1514 } 1515 1516 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev, 1517 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy) 1518 { 1519 memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy)); 1520 raw_xy->end_of_frame = data[8] & 0x01; 1521 raw_xy->spurious_flag = (data[8] >> 1) & 0x01; 1522 raw_xy->finger_count = data[15] & 0x0f; 1523 raw_xy->button = (data[8] >> 2) & 0x01; 1524 1525 if (raw_xy->finger_count) { 1526 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]); 1527 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]); 1528 } 1529 } 1530 1531 /* -------------------------------------------------------------------------- */ 1532 /* 0x8123: Force feedback support */ 1533 /* -------------------------------------------------------------------------- */ 1534 1535 #define HIDPP_FF_GET_INFO 0x01 1536 #define HIDPP_FF_RESET_ALL 0x11 1537 #define HIDPP_FF_DOWNLOAD_EFFECT 0x21 1538 #define HIDPP_FF_SET_EFFECT_STATE 0x31 1539 #define HIDPP_FF_DESTROY_EFFECT 0x41 1540 #define HIDPP_FF_GET_APERTURE 0x51 1541 #define HIDPP_FF_SET_APERTURE 0x61 1542 #define HIDPP_FF_GET_GLOBAL_GAINS 0x71 1543 #define HIDPP_FF_SET_GLOBAL_GAINS 0x81 1544 1545 #define HIDPP_FF_EFFECT_STATE_GET 0x00 1546 #define HIDPP_FF_EFFECT_STATE_STOP 0x01 1547 #define HIDPP_FF_EFFECT_STATE_PLAY 0x02 1548 #define HIDPP_FF_EFFECT_STATE_PAUSE 0x03 1549 1550 #define HIDPP_FF_EFFECT_CONSTANT 0x00 1551 #define HIDPP_FF_EFFECT_PERIODIC_SINE 0x01 1552 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE 0x02 1553 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE 0x03 1554 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP 0x04 1555 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN 0x05 1556 #define HIDPP_FF_EFFECT_SPRING 0x06 1557 #define HIDPP_FF_EFFECT_DAMPER 0x07 1558 #define HIDPP_FF_EFFECT_FRICTION 0x08 1559 #define HIDPP_FF_EFFECT_INERTIA 0x09 1560 #define HIDPP_FF_EFFECT_RAMP 0x0A 1561 1562 #define HIDPP_FF_EFFECT_AUTOSTART 0x80 1563 1564 #define HIDPP_FF_EFFECTID_NONE -1 1565 #define HIDPP_FF_EFFECTID_AUTOCENTER -2 1566 1567 #define HIDPP_FF_MAX_PARAMS 20 1568 #define HIDPP_FF_RESERVED_SLOTS 1 1569 1570 struct hidpp_ff_private_data { 1571 struct hidpp_device *hidpp; 1572 u8 feature_index; 1573 u8 version; 1574 u16 gain; 1575 s16 range; 1576 u8 slot_autocenter; 1577 u8 num_effects; 1578 int *effect_ids; 1579 struct workqueue_struct *wq; 1580 atomic_t workqueue_size; 1581 }; 1582 1583 struct hidpp_ff_work_data { 1584 struct work_struct work; 1585 struct hidpp_ff_private_data *data; 1586 int effect_id; 1587 u8 command; 1588 u8 params[HIDPP_FF_MAX_PARAMS]; 1589 u8 size; 1590 }; 1591 1592 static const signed short hiddpp_ff_effects[] = { 1593 FF_CONSTANT, 1594 FF_PERIODIC, 1595 FF_SINE, 1596 FF_SQUARE, 1597 FF_SAW_UP, 1598 FF_SAW_DOWN, 1599 FF_TRIANGLE, 1600 FF_SPRING, 1601 FF_DAMPER, 1602 FF_AUTOCENTER, 1603 FF_GAIN, 1604 -1 1605 }; 1606 1607 static const signed short hiddpp_ff_effects_v2[] = { 1608 FF_RAMP, 1609 FF_FRICTION, 1610 FF_INERTIA, 1611 -1 1612 }; 1613 1614 static const u8 HIDPP_FF_CONDITION_CMDS[] = { 1615 HIDPP_FF_EFFECT_SPRING, 1616 HIDPP_FF_EFFECT_FRICTION, 1617 HIDPP_FF_EFFECT_DAMPER, 1618 HIDPP_FF_EFFECT_INERTIA 1619 }; 1620 1621 static const char *HIDPP_FF_CONDITION_NAMES[] = { 1622 "spring", 1623 "friction", 1624 "damper", 1625 "inertia" 1626 }; 1627 1628 1629 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id) 1630 { 1631 int i; 1632 1633 for (i = 0; i < data->num_effects; i++) 1634 if (data->effect_ids[i] == effect_id) 1635 return i+1; 1636 1637 return 0; 1638 } 1639 1640 static void hidpp_ff_work_handler(struct work_struct *w) 1641 { 1642 struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work); 1643 struct hidpp_ff_private_data *data = wd->data; 1644 struct hidpp_report response; 1645 u8 slot; 1646 int ret; 1647 1648 /* add slot number if needed */ 1649 switch (wd->effect_id) { 1650 case HIDPP_FF_EFFECTID_AUTOCENTER: 1651 wd->params[0] = data->slot_autocenter; 1652 break; 1653 case HIDPP_FF_EFFECTID_NONE: 1654 /* leave slot as zero */ 1655 break; 1656 default: 1657 /* find current slot for effect */ 1658 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id); 1659 break; 1660 } 1661 1662 /* send command and wait for reply */ 1663 ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index, 1664 wd->command, wd->params, wd->size, &response); 1665 1666 if (ret) { 1667 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n"); 1668 goto out; 1669 } 1670 1671 /* parse return data */ 1672 switch (wd->command) { 1673 case HIDPP_FF_DOWNLOAD_EFFECT: 1674 slot = response.fap.params[0]; 1675 if (slot > 0 && slot <= data->num_effects) { 1676 if (wd->effect_id >= 0) 1677 /* regular effect uploaded */ 1678 data->effect_ids[slot-1] = wd->effect_id; 1679 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 1680 /* autocenter spring uploaded */ 1681 data->slot_autocenter = slot; 1682 } 1683 break; 1684 case HIDPP_FF_DESTROY_EFFECT: 1685 if (wd->effect_id >= 0) 1686 /* regular effect destroyed */ 1687 data->effect_ids[wd->params[0]-1] = -1; 1688 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 1689 /* autocenter spring destoyed */ 1690 data->slot_autocenter = 0; 1691 break; 1692 case HIDPP_FF_SET_GLOBAL_GAINS: 1693 data->gain = (wd->params[0] << 8) + wd->params[1]; 1694 break; 1695 case HIDPP_FF_SET_APERTURE: 1696 data->range = (wd->params[0] << 8) + wd->params[1]; 1697 break; 1698 default: 1699 /* no action needed */ 1700 break; 1701 } 1702 1703 out: 1704 atomic_dec(&data->workqueue_size); 1705 kfree(wd); 1706 } 1707 1708 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size) 1709 { 1710 struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL); 1711 int s; 1712 1713 if (!wd) 1714 return -ENOMEM; 1715 1716 INIT_WORK(&wd->work, hidpp_ff_work_handler); 1717 1718 wd->data = data; 1719 wd->effect_id = effect_id; 1720 wd->command = command; 1721 wd->size = size; 1722 memcpy(wd->params, params, size); 1723 1724 atomic_inc(&data->workqueue_size); 1725 queue_work(data->wq, &wd->work); 1726 1727 /* warn about excessive queue size */ 1728 s = atomic_read(&data->workqueue_size); 1729 if (s >= 20 && s % 20 == 0) 1730 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s); 1731 1732 return 0; 1733 } 1734 1735 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old) 1736 { 1737 struct hidpp_ff_private_data *data = dev->ff->private; 1738 u8 params[20]; 1739 u8 size; 1740 int force; 1741 1742 /* set common parameters */ 1743 params[2] = effect->replay.length >> 8; 1744 params[3] = effect->replay.length & 255; 1745 params[4] = effect->replay.delay >> 8; 1746 params[5] = effect->replay.delay & 255; 1747 1748 switch (effect->type) { 1749 case FF_CONSTANT: 1750 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1751 params[1] = HIDPP_FF_EFFECT_CONSTANT; 1752 params[6] = force >> 8; 1753 params[7] = force & 255; 1754 params[8] = effect->u.constant.envelope.attack_level >> 7; 1755 params[9] = effect->u.constant.envelope.attack_length >> 8; 1756 params[10] = effect->u.constant.envelope.attack_length & 255; 1757 params[11] = effect->u.constant.envelope.fade_level >> 7; 1758 params[12] = effect->u.constant.envelope.fade_length >> 8; 1759 params[13] = effect->u.constant.envelope.fade_length & 255; 1760 size = 14; 1761 dbg_hid("Uploading constant force level=%d in dir %d = %d\n", 1762 effect->u.constant.level, 1763 effect->direction, force); 1764 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 1765 effect->u.constant.envelope.attack_level, 1766 effect->u.constant.envelope.attack_length, 1767 effect->u.constant.envelope.fade_level, 1768 effect->u.constant.envelope.fade_length); 1769 break; 1770 case FF_PERIODIC: 1771 { 1772 switch (effect->u.periodic.waveform) { 1773 case FF_SINE: 1774 params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE; 1775 break; 1776 case FF_SQUARE: 1777 params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE; 1778 break; 1779 case FF_SAW_UP: 1780 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP; 1781 break; 1782 case FF_SAW_DOWN: 1783 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN; 1784 break; 1785 case FF_TRIANGLE: 1786 params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE; 1787 break; 1788 default: 1789 hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform); 1790 return -EINVAL; 1791 } 1792 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1793 params[6] = effect->u.periodic.magnitude >> 8; 1794 params[7] = effect->u.periodic.magnitude & 255; 1795 params[8] = effect->u.periodic.offset >> 8; 1796 params[9] = effect->u.periodic.offset & 255; 1797 params[10] = effect->u.periodic.period >> 8; 1798 params[11] = effect->u.periodic.period & 255; 1799 params[12] = effect->u.periodic.phase >> 8; 1800 params[13] = effect->u.periodic.phase & 255; 1801 params[14] = effect->u.periodic.envelope.attack_level >> 7; 1802 params[15] = effect->u.periodic.envelope.attack_length >> 8; 1803 params[16] = effect->u.periodic.envelope.attack_length & 255; 1804 params[17] = effect->u.periodic.envelope.fade_level >> 7; 1805 params[18] = effect->u.periodic.envelope.fade_length >> 8; 1806 params[19] = effect->u.periodic.envelope.fade_length & 255; 1807 size = 20; 1808 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n", 1809 effect->u.periodic.magnitude, effect->direction, 1810 effect->u.periodic.offset, 1811 effect->u.periodic.period, 1812 effect->u.periodic.phase); 1813 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 1814 effect->u.periodic.envelope.attack_level, 1815 effect->u.periodic.envelope.attack_length, 1816 effect->u.periodic.envelope.fade_level, 1817 effect->u.periodic.envelope.fade_length); 1818 break; 1819 } 1820 case FF_RAMP: 1821 params[1] = HIDPP_FF_EFFECT_RAMP; 1822 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1823 params[6] = force >> 8; 1824 params[7] = force & 255; 1825 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1826 params[8] = force >> 8; 1827 params[9] = force & 255; 1828 params[10] = effect->u.ramp.envelope.attack_level >> 7; 1829 params[11] = effect->u.ramp.envelope.attack_length >> 8; 1830 params[12] = effect->u.ramp.envelope.attack_length & 255; 1831 params[13] = effect->u.ramp.envelope.fade_level >> 7; 1832 params[14] = effect->u.ramp.envelope.fade_length >> 8; 1833 params[15] = effect->u.ramp.envelope.fade_length & 255; 1834 size = 16; 1835 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n", 1836 effect->u.ramp.start_level, 1837 effect->u.ramp.end_level, 1838 effect->direction, force); 1839 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 1840 effect->u.ramp.envelope.attack_level, 1841 effect->u.ramp.envelope.attack_length, 1842 effect->u.ramp.envelope.fade_level, 1843 effect->u.ramp.envelope.fade_length); 1844 break; 1845 case FF_FRICTION: 1846 case FF_INERTIA: 1847 case FF_SPRING: 1848 case FF_DAMPER: 1849 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING]; 1850 params[6] = effect->u.condition[0].left_saturation >> 9; 1851 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255; 1852 params[8] = effect->u.condition[0].left_coeff >> 8; 1853 params[9] = effect->u.condition[0].left_coeff & 255; 1854 params[10] = effect->u.condition[0].deadband >> 9; 1855 params[11] = (effect->u.condition[0].deadband >> 1) & 255; 1856 params[12] = effect->u.condition[0].center >> 8; 1857 params[13] = effect->u.condition[0].center & 255; 1858 params[14] = effect->u.condition[0].right_coeff >> 8; 1859 params[15] = effect->u.condition[0].right_coeff & 255; 1860 params[16] = effect->u.condition[0].right_saturation >> 9; 1861 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255; 1862 size = 18; 1863 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n", 1864 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING], 1865 effect->u.condition[0].left_coeff, 1866 effect->u.condition[0].left_saturation, 1867 effect->u.condition[0].right_coeff, 1868 effect->u.condition[0].right_saturation); 1869 dbg_hid(" deadband=%d, center=%d\n", 1870 effect->u.condition[0].deadband, 1871 effect->u.condition[0].center); 1872 break; 1873 default: 1874 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type); 1875 return -EINVAL; 1876 } 1877 1878 return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size); 1879 } 1880 1881 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value) 1882 { 1883 struct hidpp_ff_private_data *data = dev->ff->private; 1884 u8 params[2]; 1885 1886 params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP; 1887 1888 dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id); 1889 1890 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params)); 1891 } 1892 1893 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id) 1894 { 1895 struct hidpp_ff_private_data *data = dev->ff->private; 1896 u8 slot = 0; 1897 1898 dbg_hid("Erasing effect %d.\n", effect_id); 1899 1900 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1); 1901 } 1902 1903 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude) 1904 { 1905 struct hidpp_ff_private_data *data = dev->ff->private; 1906 u8 params[18]; 1907 1908 dbg_hid("Setting autocenter to %d.\n", magnitude); 1909 1910 /* start a standard spring effect */ 1911 params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART; 1912 /* zero delay and duration */ 1913 params[2] = params[3] = params[4] = params[5] = 0; 1914 /* set coeff to 25% of saturation */ 1915 params[8] = params[14] = magnitude >> 11; 1916 params[9] = params[15] = (magnitude >> 3) & 255; 1917 params[6] = params[16] = magnitude >> 9; 1918 params[7] = params[17] = (magnitude >> 1) & 255; 1919 /* zero deadband and center */ 1920 params[10] = params[11] = params[12] = params[13] = 0; 1921 1922 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params)); 1923 } 1924 1925 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain) 1926 { 1927 struct hidpp_ff_private_data *data = dev->ff->private; 1928 u8 params[4]; 1929 1930 dbg_hid("Setting gain to %d.\n", gain); 1931 1932 params[0] = gain >> 8; 1933 params[1] = gain & 255; 1934 params[2] = 0; /* no boost */ 1935 params[3] = 0; 1936 1937 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params)); 1938 } 1939 1940 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf) 1941 { 1942 struct hid_device *hid = to_hid_device(dev); 1943 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 1944 struct input_dev *idev = hidinput->input; 1945 struct hidpp_ff_private_data *data = idev->ff->private; 1946 1947 return scnprintf(buf, PAGE_SIZE, "%u\n", data->range); 1948 } 1949 1950 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) 1951 { 1952 struct hid_device *hid = to_hid_device(dev); 1953 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 1954 struct input_dev *idev = hidinput->input; 1955 struct hidpp_ff_private_data *data = idev->ff->private; 1956 u8 params[2]; 1957 int range = simple_strtoul(buf, NULL, 10); 1958 1959 range = clamp(range, 180, 900); 1960 1961 params[0] = range >> 8; 1962 params[1] = range & 0x00FF; 1963 1964 hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params)); 1965 1966 return count; 1967 } 1968 1969 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store); 1970 1971 static void hidpp_ff_destroy(struct ff_device *ff) 1972 { 1973 struct hidpp_ff_private_data *data = ff->private; 1974 1975 kfree(data->effect_ids); 1976 } 1977 1978 static int hidpp_ff_init(struct hidpp_device *hidpp, u8 feature_index) 1979 { 1980 struct hid_device *hid = hidpp->hid_dev; 1981 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 1982 struct input_dev *dev = hidinput->input; 1983 const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor); 1984 const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice); 1985 struct ff_device *ff; 1986 struct hidpp_report response; 1987 struct hidpp_ff_private_data *data; 1988 int error, j, num_slots; 1989 u8 version; 1990 1991 if (!dev) { 1992 hid_err(hid, "Struct input_dev not set!\n"); 1993 return -EINVAL; 1994 } 1995 1996 /* Get firmware release */ 1997 version = bcdDevice & 255; 1998 1999 /* Set supported force feedback capabilities */ 2000 for (j = 0; hiddpp_ff_effects[j] >= 0; j++) 2001 set_bit(hiddpp_ff_effects[j], dev->ffbit); 2002 if (version > 1) 2003 for (j = 0; hiddpp_ff_effects_v2[j] >= 0; j++) 2004 set_bit(hiddpp_ff_effects_v2[j], dev->ffbit); 2005 2006 /* Read number of slots available in device */ 2007 error = hidpp_send_fap_command_sync(hidpp, feature_index, 2008 HIDPP_FF_GET_INFO, NULL, 0, &response); 2009 if (error) { 2010 if (error < 0) 2011 return error; 2012 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 2013 __func__, error); 2014 return -EPROTO; 2015 } 2016 2017 num_slots = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS; 2018 2019 error = input_ff_create(dev, num_slots); 2020 2021 if (error) { 2022 hid_err(dev, "Failed to create FF device!\n"); 2023 return error; 2024 } 2025 2026 data = kzalloc(sizeof(*data), GFP_KERNEL); 2027 if (!data) 2028 return -ENOMEM; 2029 data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL); 2030 if (!data->effect_ids) { 2031 kfree(data); 2032 return -ENOMEM; 2033 } 2034 data->hidpp = hidpp; 2035 data->feature_index = feature_index; 2036 data->version = version; 2037 data->slot_autocenter = 0; 2038 data->num_effects = num_slots; 2039 for (j = 0; j < num_slots; j++) 2040 data->effect_ids[j] = -1; 2041 2042 ff = dev->ff; 2043 ff->private = data; 2044 2045 ff->upload = hidpp_ff_upload_effect; 2046 ff->erase = hidpp_ff_erase_effect; 2047 ff->playback = hidpp_ff_playback; 2048 ff->set_gain = hidpp_ff_set_gain; 2049 ff->set_autocenter = hidpp_ff_set_autocenter; 2050 ff->destroy = hidpp_ff_destroy; 2051 2052 2053 /* reset all forces */ 2054 error = hidpp_send_fap_command_sync(hidpp, feature_index, 2055 HIDPP_FF_RESET_ALL, NULL, 0, &response); 2056 2057 /* Read current Range */ 2058 error = hidpp_send_fap_command_sync(hidpp, feature_index, 2059 HIDPP_FF_GET_APERTURE, NULL, 0, &response); 2060 if (error) 2061 hid_warn(hidpp->hid_dev, "Failed to read range from device!\n"); 2062 data->range = error ? 900 : get_unaligned_be16(&response.fap.params[0]); 2063 2064 /* Create sysfs interface */ 2065 error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range); 2066 if (error) 2067 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error); 2068 2069 /* Read the current gain values */ 2070 error = hidpp_send_fap_command_sync(hidpp, feature_index, 2071 HIDPP_FF_GET_GLOBAL_GAINS, NULL, 0, &response); 2072 if (error) 2073 hid_warn(hidpp->hid_dev, "Failed to read gain values from device!\n"); 2074 data->gain = error ? 0xffff : get_unaligned_be16(&response.fap.params[0]); 2075 /* ignore boost value at response.fap.params[2] */ 2076 2077 /* init the hardware command queue */ 2078 data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue"); 2079 atomic_set(&data->workqueue_size, 0); 2080 2081 /* initialize with zero autocenter to get wheel in usable state */ 2082 hidpp_ff_set_autocenter(dev, 0); 2083 2084 hid_info(hid, "Force feedback support loaded (firmware release %d).\n", 2085 version); 2086 2087 return 0; 2088 } 2089 2090 static int hidpp_ff_deinit(struct hid_device *hid) 2091 { 2092 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2093 struct input_dev *dev = hidinput->input; 2094 struct hidpp_ff_private_data *data; 2095 2096 if (!dev) { 2097 hid_err(hid, "Struct input_dev not found!\n"); 2098 return -EINVAL; 2099 } 2100 2101 hid_info(hid, "Unloading HID++ force feedback.\n"); 2102 data = dev->ff->private; 2103 if (!data) { 2104 hid_err(hid, "Private data not found!\n"); 2105 return -EINVAL; 2106 } 2107 2108 destroy_workqueue(data->wq); 2109 device_remove_file(&hid->dev, &dev_attr_range); 2110 2111 return 0; 2112 } 2113 2114 2115 /* ************************************************************************** */ 2116 /* */ 2117 /* Device Support */ 2118 /* */ 2119 /* ************************************************************************** */ 2120 2121 /* -------------------------------------------------------------------------- */ 2122 /* Touchpad HID++ devices */ 2123 /* -------------------------------------------------------------------------- */ 2124 2125 #define WTP_MANUAL_RESOLUTION 39 2126 2127 struct wtp_data { 2128 struct input_dev *input; 2129 u16 x_size, y_size; 2130 u8 finger_count; 2131 u8 mt_feature_index; 2132 u8 button_feature_index; 2133 u8 maxcontacts; 2134 bool flip_y; 2135 unsigned int resolution; 2136 }; 2137 2138 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2139 struct hid_field *field, struct hid_usage *usage, 2140 unsigned long **bit, int *max) 2141 { 2142 return -1; 2143 } 2144 2145 static void wtp_populate_input(struct hidpp_device *hidpp, 2146 struct input_dev *input_dev, bool origin_is_hid_core) 2147 { 2148 struct wtp_data *wd = hidpp->private_data; 2149 2150 __set_bit(EV_ABS, input_dev->evbit); 2151 __set_bit(EV_KEY, input_dev->evbit); 2152 __clear_bit(EV_REL, input_dev->evbit); 2153 __clear_bit(EV_LED, input_dev->evbit); 2154 2155 input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0); 2156 input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution); 2157 input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0); 2158 input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution); 2159 2160 /* Max pressure is not given by the devices, pick one */ 2161 input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0); 2162 2163 input_set_capability(input_dev, EV_KEY, BTN_LEFT); 2164 2165 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) 2166 input_set_capability(input_dev, EV_KEY, BTN_RIGHT); 2167 else 2168 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit); 2169 2170 input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER | 2171 INPUT_MT_DROP_UNUSED); 2172 2173 wd->input = input_dev; 2174 } 2175 2176 static void wtp_touch_event(struct wtp_data *wd, 2177 struct hidpp_touchpad_raw_xy_finger *touch_report) 2178 { 2179 int slot; 2180 2181 if (!touch_report->finger_id || touch_report->contact_type) 2182 /* no actual data */ 2183 return; 2184 2185 slot = input_mt_get_slot_by_key(wd->input, touch_report->finger_id); 2186 2187 input_mt_slot(wd->input, slot); 2188 input_mt_report_slot_state(wd->input, MT_TOOL_FINGER, 2189 touch_report->contact_status); 2190 if (touch_report->contact_status) { 2191 input_event(wd->input, EV_ABS, ABS_MT_POSITION_X, 2192 touch_report->x); 2193 input_event(wd->input, EV_ABS, ABS_MT_POSITION_Y, 2194 wd->flip_y ? wd->y_size - touch_report->y : 2195 touch_report->y); 2196 input_event(wd->input, EV_ABS, ABS_MT_PRESSURE, 2197 touch_report->area); 2198 } 2199 } 2200 2201 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp, 2202 struct hidpp_touchpad_raw_xy *raw) 2203 { 2204 struct wtp_data *wd = hidpp->private_data; 2205 int i; 2206 2207 for (i = 0; i < 2; i++) 2208 wtp_touch_event(wd, &(raw->fingers[i])); 2209 2210 if (raw->end_of_frame && 2211 !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)) 2212 input_event(wd->input, EV_KEY, BTN_LEFT, raw->button); 2213 2214 if (raw->end_of_frame || raw->finger_count <= 2) { 2215 input_mt_sync_frame(wd->input); 2216 input_sync(wd->input); 2217 } 2218 } 2219 2220 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data) 2221 { 2222 struct wtp_data *wd = hidpp->private_data; 2223 u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) + 2224 (data[7] >> 4) * (data[7] >> 4)) / 2; 2225 u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) + 2226 (data[13] >> 4) * (data[13] >> 4)) / 2; 2227 struct hidpp_touchpad_raw_xy raw = { 2228 .timestamp = data[1], 2229 .fingers = { 2230 { 2231 .contact_type = 0, 2232 .contact_status = !!data[7], 2233 .x = get_unaligned_le16(&data[3]), 2234 .y = get_unaligned_le16(&data[5]), 2235 .z = c1_area, 2236 .area = c1_area, 2237 .finger_id = data[2], 2238 }, { 2239 .contact_type = 0, 2240 .contact_status = !!data[13], 2241 .x = get_unaligned_le16(&data[9]), 2242 .y = get_unaligned_le16(&data[11]), 2243 .z = c2_area, 2244 .area = c2_area, 2245 .finger_id = data[8], 2246 } 2247 }, 2248 .finger_count = wd->maxcontacts, 2249 .spurious_flag = 0, 2250 .end_of_frame = (data[0] >> 7) == 0, 2251 .button = data[0] & 0x01, 2252 }; 2253 2254 wtp_send_raw_xy_event(hidpp, &raw); 2255 2256 return 1; 2257 } 2258 2259 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size) 2260 { 2261 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2262 struct wtp_data *wd = hidpp->private_data; 2263 struct hidpp_report *report = (struct hidpp_report *)data; 2264 struct hidpp_touchpad_raw_xy raw; 2265 2266 if (!wd || !wd->input) 2267 return 1; 2268 2269 switch (data[0]) { 2270 case 0x02: 2271 if (size < 2) { 2272 hid_err(hdev, "Received HID report of bad size (%d)", 2273 size); 2274 return 1; 2275 } 2276 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) { 2277 input_event(wd->input, EV_KEY, BTN_LEFT, 2278 !!(data[1] & 0x01)); 2279 input_event(wd->input, EV_KEY, BTN_RIGHT, 2280 !!(data[1] & 0x02)); 2281 input_sync(wd->input); 2282 return 0; 2283 } else { 2284 if (size < 21) 2285 return 1; 2286 return wtp_mouse_raw_xy_event(hidpp, &data[7]); 2287 } 2288 case REPORT_ID_HIDPP_LONG: 2289 /* size is already checked in hidpp_raw_event. */ 2290 if ((report->fap.feature_index != wd->mt_feature_index) || 2291 (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY)) 2292 return 1; 2293 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw); 2294 2295 wtp_send_raw_xy_event(hidpp, &raw); 2296 return 0; 2297 } 2298 2299 return 0; 2300 } 2301 2302 static int wtp_get_config(struct hidpp_device *hidpp) 2303 { 2304 struct wtp_data *wd = hidpp->private_data; 2305 struct hidpp_touchpad_raw_info raw_info = {0}; 2306 u8 feature_type; 2307 int ret; 2308 2309 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY, 2310 &wd->mt_feature_index, &feature_type); 2311 if (ret) 2312 /* means that the device is not powered up */ 2313 return ret; 2314 2315 ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index, 2316 &raw_info); 2317 if (ret) 2318 return ret; 2319 2320 wd->x_size = raw_info.x_size; 2321 wd->y_size = raw_info.y_size; 2322 wd->maxcontacts = raw_info.maxcontacts; 2323 wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT; 2324 wd->resolution = raw_info.res; 2325 if (!wd->resolution) 2326 wd->resolution = WTP_MANUAL_RESOLUTION; 2327 2328 return 0; 2329 } 2330 2331 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id) 2332 { 2333 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2334 struct wtp_data *wd; 2335 2336 wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data), 2337 GFP_KERNEL); 2338 if (!wd) 2339 return -ENOMEM; 2340 2341 hidpp->private_data = wd; 2342 2343 return 0; 2344 }; 2345 2346 static int wtp_connect(struct hid_device *hdev, bool connected) 2347 { 2348 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2349 struct wtp_data *wd = hidpp->private_data; 2350 int ret; 2351 2352 if (!wd->x_size) { 2353 ret = wtp_get_config(hidpp); 2354 if (ret) { 2355 hid_err(hdev, "Can not get wtp config: %d\n", ret); 2356 return ret; 2357 } 2358 } 2359 2360 return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index, 2361 true, true); 2362 } 2363 2364 /* ------------------------------------------------------------------------- */ 2365 /* Logitech M560 devices */ 2366 /* ------------------------------------------------------------------------- */ 2367 2368 /* 2369 * Logitech M560 protocol overview 2370 * 2371 * The Logitech M560 mouse, is designed for windows 8. When the middle and/or 2372 * the sides buttons are pressed, it sends some keyboard keys events 2373 * instead of buttons ones. 2374 * To complicate things further, the middle button keys sequence 2375 * is different from the odd press and the even press. 2376 * 2377 * forward button -> Super_R 2378 * backward button -> Super_L+'d' (press only) 2379 * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only) 2380 * 2nd time: left-click (press only) 2381 * NB: press-only means that when the button is pressed, the 2382 * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated 2383 * together sequentially; instead when the button is released, no event is 2384 * generated ! 2385 * 2386 * With the command 2387 * 10<xx>0a 3500af03 (where <xx> is the mouse id), 2388 * the mouse reacts differently: 2389 * - it never sends a keyboard key event 2390 * - for the three mouse button it sends: 2391 * middle button press 11<xx>0a 3500af00... 2392 * side 1 button (forward) press 11<xx>0a 3500b000... 2393 * side 2 button (backward) press 11<xx>0a 3500ae00... 2394 * middle/side1/side2 button release 11<xx>0a 35000000... 2395 */ 2396 2397 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03}; 2398 2399 struct m560_private_data { 2400 struct input_dev *input; 2401 }; 2402 2403 /* how buttons are mapped in the report */ 2404 #define M560_MOUSE_BTN_LEFT 0x01 2405 #define M560_MOUSE_BTN_RIGHT 0x02 2406 #define M560_MOUSE_BTN_WHEEL_LEFT 0x08 2407 #define M560_MOUSE_BTN_WHEEL_RIGHT 0x10 2408 2409 #define M560_SUB_ID 0x0a 2410 #define M560_BUTTON_MODE_REGISTER 0x35 2411 2412 static int m560_send_config_command(struct hid_device *hdev, bool connected) 2413 { 2414 struct hidpp_report response; 2415 struct hidpp_device *hidpp_dev; 2416 2417 hidpp_dev = hid_get_drvdata(hdev); 2418 2419 return hidpp_send_rap_command_sync( 2420 hidpp_dev, 2421 REPORT_ID_HIDPP_SHORT, 2422 M560_SUB_ID, 2423 M560_BUTTON_MODE_REGISTER, 2424 (u8 *)m560_config_parameter, 2425 sizeof(m560_config_parameter), 2426 &response 2427 ); 2428 } 2429 2430 static int m560_allocate(struct hid_device *hdev) 2431 { 2432 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2433 struct m560_private_data *d; 2434 2435 d = devm_kzalloc(&hdev->dev, sizeof(struct m560_private_data), 2436 GFP_KERNEL); 2437 if (!d) 2438 return -ENOMEM; 2439 2440 hidpp->private_data = d; 2441 2442 return 0; 2443 }; 2444 2445 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size) 2446 { 2447 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2448 struct m560_private_data *mydata = hidpp->private_data; 2449 2450 /* sanity check */ 2451 if (!mydata || !mydata->input) { 2452 hid_err(hdev, "error in parameter\n"); 2453 return -EINVAL; 2454 } 2455 2456 if (size < 7) { 2457 hid_err(hdev, "error in report\n"); 2458 return 0; 2459 } 2460 2461 if (data[0] == REPORT_ID_HIDPP_LONG && 2462 data[2] == M560_SUB_ID && data[6] == 0x00) { 2463 /* 2464 * m560 mouse report for middle, forward and backward button 2465 * 2466 * data[0] = 0x11 2467 * data[1] = device-id 2468 * data[2] = 0x0a 2469 * data[5] = 0xaf -> middle 2470 * 0xb0 -> forward 2471 * 0xae -> backward 2472 * 0x00 -> release all 2473 * data[6] = 0x00 2474 */ 2475 2476 switch (data[5]) { 2477 case 0xaf: 2478 input_report_key(mydata->input, BTN_MIDDLE, 1); 2479 break; 2480 case 0xb0: 2481 input_report_key(mydata->input, BTN_FORWARD, 1); 2482 break; 2483 case 0xae: 2484 input_report_key(mydata->input, BTN_BACK, 1); 2485 break; 2486 case 0x00: 2487 input_report_key(mydata->input, BTN_BACK, 0); 2488 input_report_key(mydata->input, BTN_FORWARD, 0); 2489 input_report_key(mydata->input, BTN_MIDDLE, 0); 2490 break; 2491 default: 2492 hid_err(hdev, "error in report\n"); 2493 return 0; 2494 } 2495 input_sync(mydata->input); 2496 2497 } else if (data[0] == 0x02) { 2498 /* 2499 * Logitech M560 mouse report 2500 * 2501 * data[0] = type (0x02) 2502 * data[1..2] = buttons 2503 * data[3..5] = xy 2504 * data[6] = wheel 2505 */ 2506 2507 int v; 2508 2509 input_report_key(mydata->input, BTN_LEFT, 2510 !!(data[1] & M560_MOUSE_BTN_LEFT)); 2511 input_report_key(mydata->input, BTN_RIGHT, 2512 !!(data[1] & M560_MOUSE_BTN_RIGHT)); 2513 2514 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) 2515 input_report_rel(mydata->input, REL_HWHEEL, -1); 2516 else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) 2517 input_report_rel(mydata->input, REL_HWHEEL, 1); 2518 2519 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12); 2520 input_report_rel(mydata->input, REL_X, v); 2521 2522 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12); 2523 input_report_rel(mydata->input, REL_Y, v); 2524 2525 v = hid_snto32(data[6], 8); 2526 hid_scroll_counter_handle_scroll( 2527 &hidpp->vertical_wheel_counter, v); 2528 2529 input_sync(mydata->input); 2530 } 2531 2532 return 1; 2533 } 2534 2535 static void m560_populate_input(struct hidpp_device *hidpp, 2536 struct input_dev *input_dev, bool origin_is_hid_core) 2537 { 2538 struct m560_private_data *mydata = hidpp->private_data; 2539 2540 mydata->input = input_dev; 2541 2542 __set_bit(EV_KEY, mydata->input->evbit); 2543 __set_bit(BTN_MIDDLE, mydata->input->keybit); 2544 __set_bit(BTN_RIGHT, mydata->input->keybit); 2545 __set_bit(BTN_LEFT, mydata->input->keybit); 2546 __set_bit(BTN_BACK, mydata->input->keybit); 2547 __set_bit(BTN_FORWARD, mydata->input->keybit); 2548 2549 __set_bit(EV_REL, mydata->input->evbit); 2550 __set_bit(REL_X, mydata->input->relbit); 2551 __set_bit(REL_Y, mydata->input->relbit); 2552 __set_bit(REL_WHEEL, mydata->input->relbit); 2553 __set_bit(REL_HWHEEL, mydata->input->relbit); 2554 } 2555 2556 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2557 struct hid_field *field, struct hid_usage *usage, 2558 unsigned long **bit, int *max) 2559 { 2560 return -1; 2561 } 2562 2563 /* ------------------------------------------------------------------------- */ 2564 /* Logitech K400 devices */ 2565 /* ------------------------------------------------------------------------- */ 2566 2567 /* 2568 * The Logitech K400 keyboard has an embedded touchpad which is seen 2569 * as a mouse from the OS point of view. There is a hardware shortcut to disable 2570 * tap-to-click but the setting is not remembered accross reset, annoying some 2571 * users. 2572 * 2573 * We can toggle this feature from the host by using the feature 0x6010: 2574 * Touchpad FW items 2575 */ 2576 2577 struct k400_private_data { 2578 u8 feature_index; 2579 }; 2580 2581 static int k400_disable_tap_to_click(struct hidpp_device *hidpp) 2582 { 2583 struct k400_private_data *k400 = hidpp->private_data; 2584 struct hidpp_touchpad_fw_items items = {}; 2585 int ret; 2586 u8 feature_type; 2587 2588 if (!k400->feature_index) { 2589 ret = hidpp_root_get_feature(hidpp, 2590 HIDPP_PAGE_TOUCHPAD_FW_ITEMS, 2591 &k400->feature_index, &feature_type); 2592 if (ret) 2593 /* means that the device is not powered up */ 2594 return ret; 2595 } 2596 2597 ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items); 2598 if (ret) 2599 return ret; 2600 2601 return 0; 2602 } 2603 2604 static int k400_allocate(struct hid_device *hdev) 2605 { 2606 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2607 struct k400_private_data *k400; 2608 2609 k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data), 2610 GFP_KERNEL); 2611 if (!k400) 2612 return -ENOMEM; 2613 2614 hidpp->private_data = k400; 2615 2616 return 0; 2617 }; 2618 2619 static int k400_connect(struct hid_device *hdev, bool connected) 2620 { 2621 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2622 2623 if (!disable_tap_to_click) 2624 return 0; 2625 2626 return k400_disable_tap_to_click(hidpp); 2627 } 2628 2629 /* ------------------------------------------------------------------------- */ 2630 /* Logitech G920 Driving Force Racing Wheel for Xbox One */ 2631 /* ------------------------------------------------------------------------- */ 2632 2633 #define HIDPP_PAGE_G920_FORCE_FEEDBACK 0x8123 2634 2635 static int g920_get_config(struct hidpp_device *hidpp) 2636 { 2637 u8 feature_type; 2638 u8 feature_index; 2639 int ret; 2640 2641 /* Find feature and store for later use */ 2642 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK, 2643 &feature_index, &feature_type); 2644 if (ret) 2645 return ret; 2646 2647 ret = hidpp_ff_init(hidpp, feature_index); 2648 if (ret) 2649 hid_warn(hidpp->hid_dev, "Unable to initialize force feedback support, errno %d\n", 2650 ret); 2651 2652 return 0; 2653 } 2654 2655 /* -------------------------------------------------------------------------- */ 2656 /* High-resolution scroll wheels */ 2657 /* -------------------------------------------------------------------------- */ 2658 2659 /** 2660 * struct hi_res_scroll_info - Stores info on a device's high-res scroll wheel. 2661 * @product_id: the HID product ID of the device being described. 2662 * @microns_per_hi_res_unit: the distance moved by the user's finger for each 2663 * high-resolution unit reported by the device, in 2664 * 256ths of a millimetre. 2665 */ 2666 struct hi_res_scroll_info { 2667 __u32 product_id; 2668 int microns_per_hi_res_unit; 2669 }; 2670 2671 static struct hi_res_scroll_info hi_res_scroll_devices[] = { 2672 { /* Anywhere MX */ 2673 .product_id = 0x1017, .microns_per_hi_res_unit = 445 }, 2674 { /* Performance MX */ 2675 .product_id = 0x101a, .microns_per_hi_res_unit = 406 }, 2676 { /* M560 */ 2677 .product_id = 0x402d, .microns_per_hi_res_unit = 435 }, 2678 { /* MX Master 2S */ 2679 .product_id = 0x4069, .microns_per_hi_res_unit = 406 }, 2680 }; 2681 2682 static int hi_res_scroll_look_up_microns(__u32 product_id) 2683 { 2684 int i; 2685 int num_devices = sizeof(hi_res_scroll_devices) 2686 / sizeof(hi_res_scroll_devices[0]); 2687 for (i = 0; i < num_devices; i++) { 2688 if (hi_res_scroll_devices[i].product_id == product_id) 2689 return hi_res_scroll_devices[i].microns_per_hi_res_unit; 2690 } 2691 /* We don't have a value for this device, so use a sensible default. */ 2692 return 406; 2693 } 2694 2695 static int hi_res_scroll_enable(struct hidpp_device *hidpp) 2696 { 2697 int ret; 2698 u8 multiplier = 8; 2699 2700 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) { 2701 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false); 2702 hidpp_hrw_get_wheel_capability(hidpp, &multiplier); 2703 } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) { 2704 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true, 2705 &multiplier); 2706 } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ 2707 ret = hidpp10_enable_scrolling_acceleration(hidpp); 2708 2709 if (ret) 2710 return ret; 2711 2712 hidpp->vertical_wheel_counter.resolution_multiplier = multiplier; 2713 hidpp->vertical_wheel_counter.microns_per_hi_res_unit = 2714 hi_res_scroll_look_up_microns(hidpp->hid_dev->product); 2715 hid_info(hidpp->hid_dev, "multiplier = %d, microns = %d\n", 2716 multiplier, 2717 hidpp->vertical_wheel_counter.microns_per_hi_res_unit); 2718 return 0; 2719 } 2720 2721 /* -------------------------------------------------------------------------- */ 2722 /* Generic HID++ devices */ 2723 /* -------------------------------------------------------------------------- */ 2724 2725 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2726 struct hid_field *field, struct hid_usage *usage, 2727 unsigned long **bit, int *max) 2728 { 2729 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2730 2731 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 2732 return wtp_input_mapping(hdev, hi, field, usage, bit, max); 2733 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 && 2734 field->application != HID_GD_MOUSE) 2735 return m560_input_mapping(hdev, hi, field, usage, bit, max); 2736 2737 return 0; 2738 } 2739 2740 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi, 2741 struct hid_field *field, struct hid_usage *usage, 2742 unsigned long **bit, int *max) 2743 { 2744 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2745 2746 /* Ensure that Logitech G920 is not given a default fuzz/flat value */ 2747 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 2748 if (usage->type == EV_ABS && (usage->code == ABS_X || 2749 usage->code == ABS_Y || usage->code == ABS_Z || 2750 usage->code == ABS_RZ)) { 2751 field->application = HID_GD_MULTIAXIS; 2752 } 2753 } 2754 2755 return 0; 2756 } 2757 2758 2759 static void hidpp_populate_input(struct hidpp_device *hidpp, 2760 struct input_dev *input, bool origin_is_hid_core) 2761 { 2762 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 2763 wtp_populate_input(hidpp, input, origin_is_hid_core); 2764 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 2765 m560_populate_input(hidpp, input, origin_is_hid_core); 2766 2767 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) { 2768 input_set_capability(input, EV_REL, REL_WHEEL_HI_RES); 2769 hidpp->vertical_wheel_counter.dev = input; 2770 } 2771 } 2772 2773 static int hidpp_input_configured(struct hid_device *hdev, 2774 struct hid_input *hidinput) 2775 { 2776 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2777 struct input_dev *input = hidinput->input; 2778 2779 hidpp_populate_input(hidpp, input, true); 2780 2781 return 0; 2782 } 2783 2784 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data, 2785 int size) 2786 { 2787 struct hidpp_report *question = hidpp->send_receive_buf; 2788 struct hidpp_report *answer = hidpp->send_receive_buf; 2789 struct hidpp_report *report = (struct hidpp_report *)data; 2790 int ret; 2791 2792 /* 2793 * If the mutex is locked then we have a pending answer from a 2794 * previously sent command. 2795 */ 2796 if (unlikely(mutex_is_locked(&hidpp->send_mutex))) { 2797 /* 2798 * Check for a correct hidpp20 answer or the corresponding 2799 * error 2800 */ 2801 if (hidpp_match_answer(question, report) || 2802 hidpp_match_error(question, report)) { 2803 *answer = *report; 2804 hidpp->answer_available = true; 2805 wake_up(&hidpp->wait); 2806 /* 2807 * This was an answer to a command that this driver sent 2808 * We return 1 to hid-core to avoid forwarding the 2809 * command upstream as it has been treated by the driver 2810 */ 2811 2812 return 1; 2813 } 2814 } 2815 2816 if (unlikely(hidpp_report_is_connect_event(report))) { 2817 atomic_set(&hidpp->connected, 2818 !(report->rap.params[0] & (1 << 6))); 2819 if (schedule_work(&hidpp->work) == 0) 2820 dbg_hid("%s: connect event already queued\n", __func__); 2821 return 1; 2822 } 2823 2824 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 2825 ret = hidpp20_battery_event(hidpp, data, size); 2826 if (ret != 0) 2827 return ret; 2828 ret = hidpp_solar_battery_event(hidpp, data, size); 2829 if (ret != 0) 2830 return ret; 2831 } 2832 2833 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 2834 ret = hidpp10_battery_event(hidpp, data, size); 2835 if (ret != 0) 2836 return ret; 2837 } 2838 2839 return 0; 2840 } 2841 2842 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report, 2843 u8 *data, int size) 2844 { 2845 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2846 int ret = 0; 2847 2848 /* Generic HID++ processing. */ 2849 switch (data[0]) { 2850 case REPORT_ID_HIDPP_VERY_LONG: 2851 if (size != HIDPP_REPORT_VERY_LONG_LENGTH) { 2852 hid_err(hdev, "received hid++ report of bad size (%d)", 2853 size); 2854 return 1; 2855 } 2856 ret = hidpp_raw_hidpp_event(hidpp, data, size); 2857 break; 2858 case REPORT_ID_HIDPP_LONG: 2859 if (size != HIDPP_REPORT_LONG_LENGTH) { 2860 hid_err(hdev, "received hid++ report of bad size (%d)", 2861 size); 2862 return 1; 2863 } 2864 ret = hidpp_raw_hidpp_event(hidpp, data, size); 2865 break; 2866 case REPORT_ID_HIDPP_SHORT: 2867 if (size != HIDPP_REPORT_SHORT_LENGTH) { 2868 hid_err(hdev, "received hid++ report of bad size (%d)", 2869 size); 2870 return 1; 2871 } 2872 ret = hidpp_raw_hidpp_event(hidpp, data, size); 2873 break; 2874 } 2875 2876 /* If no report is available for further processing, skip calling 2877 * raw_event of subclasses. */ 2878 if (ret != 0) 2879 return ret; 2880 2881 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 2882 return wtp_raw_event(hdev, data, size); 2883 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 2884 return m560_raw_event(hdev, data, size); 2885 2886 return 0; 2887 } 2888 2889 static int hidpp_event(struct hid_device *hdev, struct hid_field *field, 2890 struct hid_usage *usage, __s32 value) 2891 { 2892 /* This function will only be called for scroll events, due to the 2893 * restriction imposed in hidpp_usages. 2894 */ 2895 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2896 struct hid_scroll_counter *counter = &hidpp->vertical_wheel_counter; 2897 /* A scroll event may occur before the multiplier has been retrieved or 2898 * the input device set, or high-res scroll enabling may fail. In such 2899 * cases we must return early (falling back to default behaviour) to 2900 * avoid a crash in hid_scroll_counter_handle_scroll. 2901 */ 2902 if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0 2903 || counter->dev == NULL || counter->resolution_multiplier == 0) 2904 return 0; 2905 2906 hid_scroll_counter_handle_scroll(counter, value); 2907 return 1; 2908 } 2909 2910 static int hidpp_initialize_battery(struct hidpp_device *hidpp) 2911 { 2912 static atomic_t battery_no = ATOMIC_INIT(0); 2913 struct power_supply_config cfg = { .drv_data = hidpp }; 2914 struct power_supply_desc *desc = &hidpp->battery.desc; 2915 enum power_supply_property *battery_props; 2916 struct hidpp_battery *battery; 2917 unsigned int num_battery_props; 2918 unsigned long n; 2919 int ret; 2920 2921 if (hidpp->battery.ps) 2922 return 0; 2923 2924 hidpp->battery.feature_index = 0xff; 2925 hidpp->battery.solar_feature_index = 0xff; 2926 2927 if (hidpp->protocol_major >= 2) { 2928 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750) 2929 ret = hidpp_solar_request_battery_event(hidpp); 2930 else 2931 ret = hidpp20_query_battery_info(hidpp); 2932 2933 if (ret) 2934 return ret; 2935 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY; 2936 } else { 2937 ret = hidpp10_query_battery_status(hidpp); 2938 if (ret) { 2939 ret = hidpp10_query_battery_mileage(hidpp); 2940 if (ret) 2941 return -ENOENT; 2942 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 2943 } else { 2944 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 2945 } 2946 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY; 2947 } 2948 2949 battery_props = devm_kmemdup(&hidpp->hid_dev->dev, 2950 hidpp_battery_props, 2951 sizeof(hidpp_battery_props), 2952 GFP_KERNEL); 2953 if (!battery_props) 2954 return -ENOMEM; 2955 2956 num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 2; 2957 2958 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 2959 battery_props[num_battery_props++] = 2960 POWER_SUPPLY_PROP_CAPACITY; 2961 2962 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS) 2963 battery_props[num_battery_props++] = 2964 POWER_SUPPLY_PROP_CAPACITY_LEVEL; 2965 2966 battery = &hidpp->battery; 2967 2968 n = atomic_inc_return(&battery_no) - 1; 2969 desc->properties = battery_props; 2970 desc->num_properties = num_battery_props; 2971 desc->get_property = hidpp_battery_get_property; 2972 sprintf(battery->name, "hidpp_battery_%ld", n); 2973 desc->name = battery->name; 2974 desc->type = POWER_SUPPLY_TYPE_BATTERY; 2975 desc->use_for_apm = 0; 2976 2977 battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev, 2978 &battery->desc, 2979 &cfg); 2980 if (IS_ERR(battery->ps)) 2981 return PTR_ERR(battery->ps); 2982 2983 power_supply_powers(battery->ps, &hidpp->hid_dev->dev); 2984 2985 return ret; 2986 } 2987 2988 static void hidpp_overwrite_name(struct hid_device *hdev) 2989 { 2990 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2991 char *name; 2992 2993 if (hidpp->protocol_major < 2) 2994 return; 2995 2996 name = hidpp_get_device_name(hidpp); 2997 2998 if (!name) { 2999 hid_err(hdev, "unable to retrieve the name of the device"); 3000 } else { 3001 dbg_hid("HID++: Got name: %s\n", name); 3002 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 3003 } 3004 3005 kfree(name); 3006 } 3007 3008 static int hidpp_input_open(struct input_dev *dev) 3009 { 3010 struct hid_device *hid = input_get_drvdata(dev); 3011 3012 return hid_hw_open(hid); 3013 } 3014 3015 static void hidpp_input_close(struct input_dev *dev) 3016 { 3017 struct hid_device *hid = input_get_drvdata(dev); 3018 3019 hid_hw_close(hid); 3020 } 3021 3022 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev) 3023 { 3024 struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev); 3025 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3026 3027 if (!input_dev) 3028 return NULL; 3029 3030 input_set_drvdata(input_dev, hdev); 3031 input_dev->open = hidpp_input_open; 3032 input_dev->close = hidpp_input_close; 3033 3034 input_dev->name = hidpp->name; 3035 input_dev->phys = hdev->phys; 3036 input_dev->uniq = hdev->uniq; 3037 input_dev->id.bustype = hdev->bus; 3038 input_dev->id.vendor = hdev->vendor; 3039 input_dev->id.product = hdev->product; 3040 input_dev->id.version = hdev->version; 3041 input_dev->dev.parent = &hdev->dev; 3042 3043 return input_dev; 3044 } 3045 3046 static void hidpp_connect_event(struct hidpp_device *hidpp) 3047 { 3048 struct hid_device *hdev = hidpp->hid_dev; 3049 int ret = 0; 3050 bool connected = atomic_read(&hidpp->connected); 3051 struct input_dev *input; 3052 char *name, *devm_name; 3053 3054 if (!connected) { 3055 if (hidpp->battery.ps) { 3056 hidpp->battery.online = false; 3057 hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN; 3058 hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 3059 power_supply_changed(hidpp->battery.ps); 3060 } 3061 return; 3062 } 3063 3064 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 3065 ret = wtp_connect(hdev, connected); 3066 if (ret) 3067 return; 3068 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) { 3069 ret = m560_send_config_command(hdev, connected); 3070 if (ret) 3071 return; 3072 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 3073 ret = k400_connect(hdev, connected); 3074 if (ret) 3075 return; 3076 } 3077 3078 /* the device is already connected, we can ask for its name and 3079 * protocol */ 3080 if (!hidpp->protocol_major) { 3081 ret = !hidpp_is_connected(hidpp); 3082 if (ret) { 3083 hid_err(hdev, "Can not get the protocol version.\n"); 3084 return; 3085 } 3086 hid_info(hdev, "HID++ %u.%u device connected.\n", 3087 hidpp->protocol_major, hidpp->protocol_minor); 3088 } 3089 3090 if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) { 3091 name = hidpp_get_device_name(hidpp); 3092 if (!name) { 3093 hid_err(hdev, 3094 "unable to retrieve the name of the device"); 3095 return; 3096 } 3097 3098 devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s", name); 3099 kfree(name); 3100 if (!devm_name) 3101 return; 3102 3103 hidpp->name = devm_name; 3104 } 3105 3106 hidpp_initialize_battery(hidpp); 3107 3108 /* forward current battery state */ 3109 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3110 hidpp10_enable_battery_reporting(hidpp); 3111 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 3112 hidpp10_query_battery_mileage(hidpp); 3113 else 3114 hidpp10_query_battery_status(hidpp); 3115 } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3116 hidpp20_query_battery_info(hidpp); 3117 } 3118 if (hidpp->battery.ps) 3119 power_supply_changed(hidpp->battery.ps); 3120 3121 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) 3122 hi_res_scroll_enable(hidpp); 3123 3124 if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input) 3125 /* if the input nodes are already created, we can stop now */ 3126 return; 3127 3128 input = hidpp_allocate_input(hdev); 3129 if (!input) { 3130 hid_err(hdev, "cannot allocate new input device: %d\n", ret); 3131 return; 3132 } 3133 3134 hidpp_populate_input(hidpp, input, false); 3135 3136 ret = input_register_device(input); 3137 if (ret) 3138 input_free_device(input); 3139 3140 hidpp->delayed_input = input; 3141 } 3142 3143 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL); 3144 3145 static struct attribute *sysfs_attrs[] = { 3146 &dev_attr_builtin_power_supply.attr, 3147 NULL 3148 }; 3149 3150 static const struct attribute_group ps_attribute_group = { 3151 .attrs = sysfs_attrs 3152 }; 3153 3154 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id) 3155 { 3156 struct hidpp_device *hidpp; 3157 int ret; 3158 bool connected; 3159 unsigned int connect_mask = HID_CONNECT_DEFAULT; 3160 3161 hidpp = devm_kzalloc(&hdev->dev, sizeof(struct hidpp_device), 3162 GFP_KERNEL); 3163 if (!hidpp) 3164 return -ENOMEM; 3165 3166 hidpp->hid_dev = hdev; 3167 hidpp->name = hdev->name; 3168 hid_set_drvdata(hdev, hidpp); 3169 3170 hidpp->quirks = id->driver_data; 3171 3172 if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE) 3173 hidpp->quirks |= HIDPP_QUIRK_UNIFYING; 3174 3175 if (disable_raw_mode) { 3176 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP; 3177 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT; 3178 } 3179 3180 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 3181 ret = wtp_allocate(hdev, id); 3182 if (ret) 3183 goto allocate_fail; 3184 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) { 3185 ret = m560_allocate(hdev); 3186 if (ret) 3187 goto allocate_fail; 3188 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 3189 ret = k400_allocate(hdev); 3190 if (ret) 3191 goto allocate_fail; 3192 } 3193 3194 INIT_WORK(&hidpp->work, delayed_work_cb); 3195 mutex_init(&hidpp->send_mutex); 3196 init_waitqueue_head(&hidpp->wait); 3197 3198 /* indicates we are handling the battery properties in the kernel */ 3199 ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group); 3200 if (ret) 3201 hid_warn(hdev, "Cannot allocate sysfs group for %s\n", 3202 hdev->name); 3203 3204 ret = hid_parse(hdev); 3205 if (ret) { 3206 hid_err(hdev, "%s:parse failed\n", __func__); 3207 goto hid_parse_fail; 3208 } 3209 3210 if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) 3211 connect_mask &= ~HID_CONNECT_HIDINPUT; 3212 3213 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3214 ret = hid_hw_start(hdev, connect_mask); 3215 if (ret) { 3216 hid_err(hdev, "hw start failed\n"); 3217 goto hid_hw_start_fail; 3218 } 3219 ret = hid_hw_open(hdev); 3220 if (ret < 0) { 3221 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n", 3222 __func__, ret); 3223 hid_hw_stop(hdev); 3224 goto hid_hw_start_fail; 3225 } 3226 } 3227 3228 3229 /* Allow incoming packets */ 3230 hid_device_io_start(hdev); 3231 3232 if (hidpp->quirks & HIDPP_QUIRK_UNIFYING) 3233 hidpp_unifying_init(hidpp); 3234 3235 connected = hidpp_is_connected(hidpp); 3236 atomic_set(&hidpp->connected, connected); 3237 if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) { 3238 if (!connected) { 3239 ret = -ENODEV; 3240 hid_err(hdev, "Device not connected"); 3241 goto hid_hw_open_failed; 3242 } 3243 3244 hid_info(hdev, "HID++ %u.%u device connected.\n", 3245 hidpp->protocol_major, hidpp->protocol_minor); 3246 3247 hidpp_overwrite_name(hdev); 3248 } 3249 3250 if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) { 3251 ret = wtp_get_config(hidpp); 3252 if (ret) 3253 goto hid_hw_open_failed; 3254 } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) { 3255 ret = g920_get_config(hidpp); 3256 if (ret) 3257 goto hid_hw_open_failed; 3258 } 3259 3260 /* Block incoming packets */ 3261 hid_device_io_stop(hdev); 3262 3263 if (!(hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) { 3264 ret = hid_hw_start(hdev, connect_mask); 3265 if (ret) { 3266 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__); 3267 goto hid_hw_start_fail; 3268 } 3269 } 3270 3271 /* Allow incoming packets */ 3272 hid_device_io_start(hdev); 3273 3274 hidpp_connect_event(hidpp); 3275 3276 return ret; 3277 3278 hid_hw_open_failed: 3279 hid_device_io_stop(hdev); 3280 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3281 hid_hw_close(hdev); 3282 hid_hw_stop(hdev); 3283 } 3284 hid_hw_start_fail: 3285 hid_parse_fail: 3286 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 3287 cancel_work_sync(&hidpp->work); 3288 mutex_destroy(&hidpp->send_mutex); 3289 allocate_fail: 3290 hid_set_drvdata(hdev, NULL); 3291 return ret; 3292 } 3293 3294 static void hidpp_remove(struct hid_device *hdev) 3295 { 3296 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3297 3298 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 3299 3300 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3301 hidpp_ff_deinit(hdev); 3302 hid_hw_close(hdev); 3303 } 3304 hid_hw_stop(hdev); 3305 cancel_work_sync(&hidpp->work); 3306 mutex_destroy(&hidpp->send_mutex); 3307 } 3308 3309 #define LDJ_DEVICE(product) \ 3310 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \ 3311 USB_VENDOR_ID_LOGITECH, (product)) 3312 3313 static const struct hid_device_id hidpp_devices[] = { 3314 { /* wireless touchpad */ 3315 LDJ_DEVICE(0x4011), 3316 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT | 3317 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS }, 3318 { /* wireless touchpad T650 */ 3319 LDJ_DEVICE(0x4101), 3320 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT }, 3321 { /* wireless touchpad T651 */ 3322 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 3323 USB_DEVICE_ID_LOGITECH_T651), 3324 .driver_data = HIDPP_QUIRK_CLASS_WTP }, 3325 { /* Mouse Logitech Anywhere MX */ 3326 LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3327 { /* Mouse Logitech Cube */ 3328 LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3329 { /* Mouse Logitech M335 */ 3330 LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3331 { /* Mouse Logitech M515 */ 3332 LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3333 { /* Mouse logitech M560 */ 3334 LDJ_DEVICE(0x402d), 3335 .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560 3336 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3337 { /* Mouse Logitech M705 (firmware RQM17) */ 3338 LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3339 { /* Mouse Logitech M705 (firmware RQM67) */ 3340 LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3341 { /* Mouse Logitech M720 */ 3342 LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3343 { /* Mouse Logitech MX Anywhere 2 */ 3344 LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3345 { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3346 { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3347 { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3348 { /* Mouse Logitech MX Anywhere 2S */ 3349 LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3350 { /* Mouse Logitech MX Master */ 3351 LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3352 { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3353 { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3354 { /* Mouse Logitech MX Master 2S */ 3355 LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3356 { /* Mouse Logitech Performance MX */ 3357 LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3358 { /* Keyboard logitech K400 */ 3359 LDJ_DEVICE(0x4024), 3360 .driver_data = HIDPP_QUIRK_CLASS_K400 }, 3361 { /* Solar Keyboard Logitech K750 */ 3362 LDJ_DEVICE(0x4002), 3363 .driver_data = HIDPP_QUIRK_CLASS_K750 }, 3364 3365 { LDJ_DEVICE(HID_ANY_ID) }, 3366 3367 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL), 3368 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS}, 3369 {} 3370 }; 3371 3372 MODULE_DEVICE_TABLE(hid, hidpp_devices); 3373 3374 static const struct hid_usage_id hidpp_usages[] = { 3375 { HID_GD_WHEEL, EV_REL, REL_WHEEL }, 3376 { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1} 3377 }; 3378 3379 static struct hid_driver hidpp_driver = { 3380 .name = "logitech-hidpp-device", 3381 .id_table = hidpp_devices, 3382 .probe = hidpp_probe, 3383 .remove = hidpp_remove, 3384 .raw_event = hidpp_raw_event, 3385 .usage_table = hidpp_usages, 3386 .event = hidpp_event, 3387 .input_configured = hidpp_input_configured, 3388 .input_mapping = hidpp_input_mapping, 3389 .input_mapped = hidpp_input_mapped, 3390 }; 3391 3392 module_hid_driver(hidpp_driver); 3393