1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * HIDPP protocol for Logitech receivers 4 * 5 * Copyright (c) 2011 Logitech (c) 6 * Copyright (c) 2012-2013 Google (c) 7 * Copyright (c) 2013-2014 Red Hat Inc. 8 */ 9 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/device.h> 14 #include <linux/input.h> 15 #include <linux/usb.h> 16 #include <linux/hid.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/sched/clock.h> 21 #include <linux/kfifo.h> 22 #include <linux/input/mt.h> 23 #include <linux/workqueue.h> 24 #include <linux/atomic.h> 25 #include <linux/fixp-arith.h> 26 #include <asm/unaligned.h> 27 #include "usbhid/usbhid.h" 28 #include "hid-ids.h" 29 30 MODULE_LICENSE("GPL"); 31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>"); 32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>"); 33 34 static bool disable_raw_mode; 35 module_param(disable_raw_mode, bool, 0644); 36 MODULE_PARM_DESC(disable_raw_mode, 37 "Disable Raw mode reporting for touchpads and keep firmware gestures."); 38 39 static bool disable_tap_to_click; 40 module_param(disable_tap_to_click, bool, 0644); 41 MODULE_PARM_DESC(disable_tap_to_click, 42 "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently)."); 43 44 #define REPORT_ID_HIDPP_SHORT 0x10 45 #define REPORT_ID_HIDPP_LONG 0x11 46 #define REPORT_ID_HIDPP_VERY_LONG 0x12 47 48 #define HIDPP_REPORT_SHORT_LENGTH 7 49 #define HIDPP_REPORT_LONG_LENGTH 20 50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH 64 51 52 #define HIDPP_REPORT_SHORT_SUPPORTED BIT(0) 53 #define HIDPP_REPORT_LONG_SUPPORTED BIT(1) 54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED BIT(2) 55 56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS 0x03 57 #define HIDPP_SUB_ID_ROLLER 0x05 58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS 0x06 59 60 #define HIDPP_QUIRK_CLASS_WTP BIT(0) 61 #define HIDPP_QUIRK_CLASS_M560 BIT(1) 62 #define HIDPP_QUIRK_CLASS_K400 BIT(2) 63 #define HIDPP_QUIRK_CLASS_G920 BIT(3) 64 #define HIDPP_QUIRK_CLASS_K750 BIT(4) 65 66 /* bits 2..20 are reserved for classes */ 67 /* #define HIDPP_QUIRK_CONNECT_EVENTS BIT(21) disabled */ 68 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS BIT(22) 69 #define HIDPP_QUIRK_NO_HIDINPUT BIT(23) 70 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS BIT(24) 71 #define HIDPP_QUIRK_UNIFYING BIT(25) 72 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0 BIT(26) 73 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120 BIT(27) 74 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121 BIT(28) 75 #define HIDPP_QUIRK_HIDPP_WHEELS BIT(29) 76 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS BIT(30) 77 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS BIT(31) 78 79 /* These are just aliases for now */ 80 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS 81 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL HIDPP_QUIRK_HIDPP_WHEELS 82 83 /* Convenience constant to check for any high-res support. */ 84 #define HIDPP_QUIRK_HI_RES_SCROLL (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \ 85 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \ 86 HIDPP_QUIRK_HI_RES_SCROLL_X2121) 87 88 #define HIDPP_QUIRK_DELAYED_INIT HIDPP_QUIRK_NO_HIDINPUT 89 90 #define HIDPP_CAPABILITY_HIDPP10_BATTERY BIT(0) 91 #define HIDPP_CAPABILITY_HIDPP20_BATTERY BIT(1) 92 #define HIDPP_CAPABILITY_BATTERY_MILEAGE BIT(2) 93 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS BIT(3) 94 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE BIT(4) 95 96 #define lg_map_key_clear(c) hid_map_usage_clear(hi, usage, bit, max, EV_KEY, (c)) 97 98 /* 99 * There are two hidpp protocols in use, the first version hidpp10 is known 100 * as register access protocol or RAP, the second version hidpp20 is known as 101 * feature access protocol or FAP 102 * 103 * Most older devices (including the Unifying usb receiver) use the RAP protocol 104 * where as most newer devices use the FAP protocol. Both protocols are 105 * compatible with the underlying transport, which could be usb, Unifiying, or 106 * bluetooth. The message lengths are defined by the hid vendor specific report 107 * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and 108 * the HIDPP_LONG report type (total message length 20 bytes) 109 * 110 * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG 111 * messages. The Unifying receiver itself responds to RAP messages (device index 112 * is 0xFF for the receiver), and all messages (short or long) with a device 113 * index between 1 and 6 are passed untouched to the corresponding paired 114 * Unifying device. 115 * 116 * The paired device can be RAP or FAP, it will receive the message untouched 117 * from the Unifiying receiver. 118 */ 119 120 struct fap { 121 u8 feature_index; 122 u8 funcindex_clientid; 123 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U]; 124 }; 125 126 struct rap { 127 u8 sub_id; 128 u8 reg_address; 129 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U]; 130 }; 131 132 struct hidpp_report { 133 u8 report_id; 134 u8 device_index; 135 union { 136 struct fap fap; 137 struct rap rap; 138 u8 rawbytes[sizeof(struct fap)]; 139 }; 140 } __packed; 141 142 struct hidpp_battery { 143 u8 feature_index; 144 u8 solar_feature_index; 145 u8 voltage_feature_index; 146 struct power_supply_desc desc; 147 struct power_supply *ps; 148 char name[64]; 149 int status; 150 int capacity; 151 int level; 152 int voltage; 153 int charge_type; 154 bool online; 155 }; 156 157 /** 158 * struct hidpp_scroll_counter - Utility class for processing high-resolution 159 * scroll events. 160 * @dev: the input device for which events should be reported. 161 * @wheel_multiplier: the scalar multiplier to be applied to each wheel event 162 * @remainder: counts the number of high-resolution units moved since the last 163 * low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should 164 * only be used by class methods. 165 * @direction: direction of last movement (1 or -1) 166 * @last_time: last event time, used to reset remainder after inactivity 167 */ 168 struct hidpp_scroll_counter { 169 int wheel_multiplier; 170 int remainder; 171 int direction; 172 unsigned long long last_time; 173 }; 174 175 struct hidpp_device { 176 struct hid_device *hid_dev; 177 struct input_dev *input; 178 struct mutex send_mutex; 179 void *send_receive_buf; 180 char *name; /* will never be NULL and should not be freed */ 181 wait_queue_head_t wait; 182 int very_long_report_length; 183 bool answer_available; 184 u8 protocol_major; 185 u8 protocol_minor; 186 187 void *private_data; 188 189 struct work_struct work; 190 struct kfifo delayed_work_fifo; 191 atomic_t connected; 192 struct input_dev *delayed_input; 193 194 unsigned long quirks; 195 unsigned long capabilities; 196 u8 supported_reports; 197 198 struct hidpp_battery battery; 199 struct hidpp_scroll_counter vertical_wheel_counter; 200 201 u8 wireless_feature_index; 202 }; 203 204 /* HID++ 1.0 error codes */ 205 #define HIDPP_ERROR 0x8f 206 #define HIDPP_ERROR_SUCCESS 0x00 207 #define HIDPP_ERROR_INVALID_SUBID 0x01 208 #define HIDPP_ERROR_INVALID_ADRESS 0x02 209 #define HIDPP_ERROR_INVALID_VALUE 0x03 210 #define HIDPP_ERROR_CONNECT_FAIL 0x04 211 #define HIDPP_ERROR_TOO_MANY_DEVICES 0x05 212 #define HIDPP_ERROR_ALREADY_EXISTS 0x06 213 #define HIDPP_ERROR_BUSY 0x07 214 #define HIDPP_ERROR_UNKNOWN_DEVICE 0x08 215 #define HIDPP_ERROR_RESOURCE_ERROR 0x09 216 #define HIDPP_ERROR_REQUEST_UNAVAILABLE 0x0a 217 #define HIDPP_ERROR_INVALID_PARAM_VALUE 0x0b 218 #define HIDPP_ERROR_WRONG_PIN_CODE 0x0c 219 /* HID++ 2.0 error codes */ 220 #define HIDPP20_ERROR 0xff 221 222 static void hidpp_connect_event(struct hidpp_device *hidpp_dev); 223 224 static int __hidpp_send_report(struct hid_device *hdev, 225 struct hidpp_report *hidpp_report) 226 { 227 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 228 int fields_count, ret; 229 230 switch (hidpp_report->report_id) { 231 case REPORT_ID_HIDPP_SHORT: 232 fields_count = HIDPP_REPORT_SHORT_LENGTH; 233 break; 234 case REPORT_ID_HIDPP_LONG: 235 fields_count = HIDPP_REPORT_LONG_LENGTH; 236 break; 237 case REPORT_ID_HIDPP_VERY_LONG: 238 fields_count = hidpp->very_long_report_length; 239 break; 240 default: 241 return -ENODEV; 242 } 243 244 /* 245 * set the device_index as the receiver, it will be overwritten by 246 * hid_hw_request if needed 247 */ 248 hidpp_report->device_index = 0xff; 249 250 if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) { 251 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count); 252 } else { 253 ret = hid_hw_raw_request(hdev, hidpp_report->report_id, 254 (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT, 255 HID_REQ_SET_REPORT); 256 } 257 258 return ret == fields_count ? 0 : -1; 259 } 260 261 /** 262 * hidpp_send_message_sync() returns 0 in case of success, and something else 263 * in case of a failure. 264 * - If ' something else' is positive, that means that an error has been raised 265 * by the protocol itself. 266 * - If ' something else' is negative, that means that we had a classic error 267 * (-ENOMEM, -EPIPE, etc...) 268 */ 269 static int hidpp_send_message_sync(struct hidpp_device *hidpp, 270 struct hidpp_report *message, 271 struct hidpp_report *response) 272 { 273 int ret; 274 275 mutex_lock(&hidpp->send_mutex); 276 277 hidpp->send_receive_buf = response; 278 hidpp->answer_available = false; 279 280 /* 281 * So that we can later validate the answer when it arrives 282 * in hidpp_raw_event 283 */ 284 *response = *message; 285 286 ret = __hidpp_send_report(hidpp->hid_dev, message); 287 288 if (ret) { 289 dbg_hid("__hidpp_send_report returned err: %d\n", ret); 290 memset(response, 0, sizeof(struct hidpp_report)); 291 goto exit; 292 } 293 294 if (!wait_event_timeout(hidpp->wait, hidpp->answer_available, 295 5*HZ)) { 296 dbg_hid("%s:timeout waiting for response\n", __func__); 297 memset(response, 0, sizeof(struct hidpp_report)); 298 ret = -ETIMEDOUT; 299 } 300 301 if (response->report_id == REPORT_ID_HIDPP_SHORT && 302 response->rap.sub_id == HIDPP_ERROR) { 303 ret = response->rap.params[1]; 304 dbg_hid("%s:got hidpp error %02X\n", __func__, ret); 305 goto exit; 306 } 307 308 if ((response->report_id == REPORT_ID_HIDPP_LONG || 309 response->report_id == REPORT_ID_HIDPP_VERY_LONG) && 310 response->fap.feature_index == HIDPP20_ERROR) { 311 ret = response->fap.params[1]; 312 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret); 313 goto exit; 314 } 315 316 exit: 317 mutex_unlock(&hidpp->send_mutex); 318 return ret; 319 320 } 321 322 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp, 323 u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count, 324 struct hidpp_report *response) 325 { 326 struct hidpp_report *message; 327 int ret; 328 329 if (param_count > sizeof(message->fap.params)) 330 return -EINVAL; 331 332 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 333 if (!message) 334 return -ENOMEM; 335 336 if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4)) 337 message->report_id = REPORT_ID_HIDPP_VERY_LONG; 338 else 339 message->report_id = REPORT_ID_HIDPP_LONG; 340 message->fap.feature_index = feat_index; 341 message->fap.funcindex_clientid = funcindex_clientid; 342 memcpy(&message->fap.params, params, param_count); 343 344 ret = hidpp_send_message_sync(hidpp, message, response); 345 kfree(message); 346 return ret; 347 } 348 349 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev, 350 u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count, 351 struct hidpp_report *response) 352 { 353 struct hidpp_report *message; 354 int ret, max_count; 355 356 /* Send as long report if short reports are not supported. */ 357 if (report_id == REPORT_ID_HIDPP_SHORT && 358 !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED)) 359 report_id = REPORT_ID_HIDPP_LONG; 360 361 switch (report_id) { 362 case REPORT_ID_HIDPP_SHORT: 363 max_count = HIDPP_REPORT_SHORT_LENGTH - 4; 364 break; 365 case REPORT_ID_HIDPP_LONG: 366 max_count = HIDPP_REPORT_LONG_LENGTH - 4; 367 break; 368 case REPORT_ID_HIDPP_VERY_LONG: 369 max_count = hidpp_dev->very_long_report_length - 4; 370 break; 371 default: 372 return -EINVAL; 373 } 374 375 if (param_count > max_count) 376 return -EINVAL; 377 378 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 379 if (!message) 380 return -ENOMEM; 381 message->report_id = report_id; 382 message->rap.sub_id = sub_id; 383 message->rap.reg_address = reg_address; 384 memcpy(&message->rap.params, params, param_count); 385 386 ret = hidpp_send_message_sync(hidpp_dev, message, response); 387 kfree(message); 388 return ret; 389 } 390 391 static void delayed_work_cb(struct work_struct *work) 392 { 393 struct hidpp_device *hidpp = container_of(work, struct hidpp_device, 394 work); 395 hidpp_connect_event(hidpp); 396 } 397 398 static inline bool hidpp_match_answer(struct hidpp_report *question, 399 struct hidpp_report *answer) 400 { 401 return (answer->fap.feature_index == question->fap.feature_index) && 402 (answer->fap.funcindex_clientid == question->fap.funcindex_clientid); 403 } 404 405 static inline bool hidpp_match_error(struct hidpp_report *question, 406 struct hidpp_report *answer) 407 { 408 return ((answer->rap.sub_id == HIDPP_ERROR) || 409 (answer->fap.feature_index == HIDPP20_ERROR)) && 410 (answer->fap.funcindex_clientid == question->fap.feature_index) && 411 (answer->fap.params[0] == question->fap.funcindex_clientid); 412 } 413 414 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp, 415 struct hidpp_report *report) 416 { 417 return (hidpp->wireless_feature_index && 418 (report->fap.feature_index == hidpp->wireless_feature_index)) || 419 ((report->report_id == REPORT_ID_HIDPP_SHORT) && 420 (report->rap.sub_id == 0x41)); 421 } 422 423 /** 424 * hidpp_prefix_name() prefixes the current given name with "Logitech ". 425 */ 426 static void hidpp_prefix_name(char **name, int name_length) 427 { 428 #define PREFIX_LENGTH 9 /* "Logitech " */ 429 430 int new_length; 431 char *new_name; 432 433 if (name_length > PREFIX_LENGTH && 434 strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0) 435 /* The prefix has is already in the name */ 436 return; 437 438 new_length = PREFIX_LENGTH + name_length; 439 new_name = kzalloc(new_length, GFP_KERNEL); 440 if (!new_name) 441 return; 442 443 snprintf(new_name, new_length, "Logitech %s", *name); 444 445 kfree(*name); 446 447 *name = new_name; 448 } 449 450 /** 451 * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll 452 * events given a high-resolution wheel 453 * movement. 454 * @counter: a hid_scroll_counter struct describing the wheel. 455 * @hi_res_value: the movement of the wheel, in the mouse's high-resolution 456 * units. 457 * 458 * Given a high-resolution movement, this function converts the movement into 459 * fractions of 120 and emits high-resolution scroll events for the input 460 * device. It also uses the multiplier from &struct hid_scroll_counter to 461 * emit low-resolution scroll events when appropriate for 462 * backwards-compatibility with userspace input libraries. 463 */ 464 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev, 465 struct hidpp_scroll_counter *counter, 466 int hi_res_value) 467 { 468 int low_res_value, remainder, direction; 469 unsigned long long now, previous; 470 471 hi_res_value = hi_res_value * 120/counter->wheel_multiplier; 472 input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value); 473 474 remainder = counter->remainder; 475 direction = hi_res_value > 0 ? 1 : -1; 476 477 now = sched_clock(); 478 previous = counter->last_time; 479 counter->last_time = now; 480 /* 481 * Reset the remainder after a period of inactivity or when the 482 * direction changes. This prevents the REL_WHEEL emulation point 483 * from sliding for devices that don't always provide the same 484 * number of movements per detent. 485 */ 486 if (now - previous > 1000000000 || direction != counter->direction) 487 remainder = 0; 488 489 counter->direction = direction; 490 remainder += hi_res_value; 491 492 /* Some wheels will rest 7/8ths of a detent from the previous detent 493 * after slow movement, so we want the threshold for low-res events to 494 * be in the middle between two detents (e.g. after 4/8ths) as 495 * opposed to on the detents themselves (8/8ths). 496 */ 497 if (abs(remainder) >= 60) { 498 /* Add (or subtract) 1 because we want to trigger when the wheel 499 * is half-way to the next detent (i.e. scroll 1 detent after a 500 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement, 501 * etc.). 502 */ 503 low_res_value = remainder / 120; 504 if (low_res_value == 0) 505 low_res_value = (hi_res_value > 0 ? 1 : -1); 506 input_report_rel(input_dev, REL_WHEEL, low_res_value); 507 remainder -= low_res_value * 120; 508 } 509 counter->remainder = remainder; 510 } 511 512 /* -------------------------------------------------------------------------- */ 513 /* HIDP++ 1.0 commands */ 514 /* -------------------------------------------------------------------------- */ 515 516 #define HIDPP_SET_REGISTER 0x80 517 #define HIDPP_GET_REGISTER 0x81 518 #define HIDPP_SET_LONG_REGISTER 0x82 519 #define HIDPP_GET_LONG_REGISTER 0x83 520 521 /** 522 * hidpp10_set_register - Modify a HID++ 1.0 register. 523 * @hidpp_dev: the device to set the register on. 524 * @register_address: the address of the register to modify. 525 * @byte: the byte of the register to modify. Should be less than 3. 526 * @mask: mask of the bits to modify 527 * @value: new values for the bits in mask 528 * Return: 0 if successful, otherwise a negative error code. 529 */ 530 static int hidpp10_set_register(struct hidpp_device *hidpp_dev, 531 u8 register_address, u8 byte, u8 mask, u8 value) 532 { 533 struct hidpp_report response; 534 int ret; 535 u8 params[3] = { 0 }; 536 537 ret = hidpp_send_rap_command_sync(hidpp_dev, 538 REPORT_ID_HIDPP_SHORT, 539 HIDPP_GET_REGISTER, 540 register_address, 541 NULL, 0, &response); 542 if (ret) 543 return ret; 544 545 memcpy(params, response.rap.params, 3); 546 547 params[byte] &= ~mask; 548 params[byte] |= value & mask; 549 550 return hidpp_send_rap_command_sync(hidpp_dev, 551 REPORT_ID_HIDPP_SHORT, 552 HIDPP_SET_REGISTER, 553 register_address, 554 params, 3, &response); 555 } 556 557 #define HIDPP_REG_ENABLE_REPORTS 0x00 558 #define HIDPP_ENABLE_CONSUMER_REPORT BIT(0) 559 #define HIDPP_ENABLE_WHEEL_REPORT BIT(2) 560 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT BIT(3) 561 #define HIDPP_ENABLE_BAT_REPORT BIT(4) 562 #define HIDPP_ENABLE_HWHEEL_REPORT BIT(5) 563 564 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev) 565 { 566 return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0, 567 HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT); 568 } 569 570 #define HIDPP_REG_FEATURES 0x01 571 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC BIT(1) 572 #define HIDPP_ENABLE_FAST_SCROLL BIT(6) 573 574 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */ 575 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev) 576 { 577 return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0, 578 HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL); 579 } 580 581 #define HIDPP_REG_BATTERY_STATUS 0x07 582 583 static int hidpp10_battery_status_map_level(u8 param) 584 { 585 int level; 586 587 switch (param) { 588 case 1 ... 2: 589 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 590 break; 591 case 3 ... 4: 592 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; 593 break; 594 case 5 ... 6: 595 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 596 break; 597 case 7: 598 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; 599 break; 600 default: 601 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 602 } 603 604 return level; 605 } 606 607 static int hidpp10_battery_status_map_status(u8 param) 608 { 609 int status; 610 611 switch (param) { 612 case 0x00: 613 /* discharging (in use) */ 614 status = POWER_SUPPLY_STATUS_DISCHARGING; 615 break; 616 case 0x21: /* (standard) charging */ 617 case 0x24: /* fast charging */ 618 case 0x25: /* slow charging */ 619 status = POWER_SUPPLY_STATUS_CHARGING; 620 break; 621 case 0x26: /* topping charge */ 622 case 0x22: /* charge complete */ 623 status = POWER_SUPPLY_STATUS_FULL; 624 break; 625 case 0x20: /* unknown */ 626 status = POWER_SUPPLY_STATUS_UNKNOWN; 627 break; 628 /* 629 * 0x01...0x1F = reserved (not charging) 630 * 0x23 = charging error 631 * 0x27..0xff = reserved 632 */ 633 default: 634 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 635 break; 636 } 637 638 return status; 639 } 640 641 static int hidpp10_query_battery_status(struct hidpp_device *hidpp) 642 { 643 struct hidpp_report response; 644 int ret, status; 645 646 ret = hidpp_send_rap_command_sync(hidpp, 647 REPORT_ID_HIDPP_SHORT, 648 HIDPP_GET_REGISTER, 649 HIDPP_REG_BATTERY_STATUS, 650 NULL, 0, &response); 651 if (ret) 652 return ret; 653 654 hidpp->battery.level = 655 hidpp10_battery_status_map_level(response.rap.params[0]); 656 status = hidpp10_battery_status_map_status(response.rap.params[1]); 657 hidpp->battery.status = status; 658 /* the capacity is only available when discharging or full */ 659 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 660 status == POWER_SUPPLY_STATUS_FULL; 661 662 return 0; 663 } 664 665 #define HIDPP_REG_BATTERY_MILEAGE 0x0D 666 667 static int hidpp10_battery_mileage_map_status(u8 param) 668 { 669 int status; 670 671 switch (param >> 6) { 672 case 0x00: 673 /* discharging (in use) */ 674 status = POWER_SUPPLY_STATUS_DISCHARGING; 675 break; 676 case 0x01: /* charging */ 677 status = POWER_SUPPLY_STATUS_CHARGING; 678 break; 679 case 0x02: /* charge complete */ 680 status = POWER_SUPPLY_STATUS_FULL; 681 break; 682 /* 683 * 0x03 = charging error 684 */ 685 default: 686 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 687 break; 688 } 689 690 return status; 691 } 692 693 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp) 694 { 695 struct hidpp_report response; 696 int ret, status; 697 698 ret = hidpp_send_rap_command_sync(hidpp, 699 REPORT_ID_HIDPP_SHORT, 700 HIDPP_GET_REGISTER, 701 HIDPP_REG_BATTERY_MILEAGE, 702 NULL, 0, &response); 703 if (ret) 704 return ret; 705 706 hidpp->battery.capacity = response.rap.params[0]; 707 status = hidpp10_battery_mileage_map_status(response.rap.params[2]); 708 hidpp->battery.status = status; 709 /* the capacity is only available when discharging or full */ 710 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 711 status == POWER_SUPPLY_STATUS_FULL; 712 713 return 0; 714 } 715 716 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size) 717 { 718 struct hidpp_report *report = (struct hidpp_report *)data; 719 int status, capacity, level; 720 bool changed; 721 722 if (report->report_id != REPORT_ID_HIDPP_SHORT) 723 return 0; 724 725 switch (report->rap.sub_id) { 726 case HIDPP_REG_BATTERY_STATUS: 727 capacity = hidpp->battery.capacity; 728 level = hidpp10_battery_status_map_level(report->rawbytes[1]); 729 status = hidpp10_battery_status_map_status(report->rawbytes[2]); 730 break; 731 case HIDPP_REG_BATTERY_MILEAGE: 732 capacity = report->rap.params[0]; 733 level = hidpp->battery.level; 734 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]); 735 break; 736 default: 737 return 0; 738 } 739 740 changed = capacity != hidpp->battery.capacity || 741 level != hidpp->battery.level || 742 status != hidpp->battery.status; 743 744 /* the capacity is only available when discharging or full */ 745 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 746 status == POWER_SUPPLY_STATUS_FULL; 747 748 if (changed) { 749 hidpp->battery.level = level; 750 hidpp->battery.status = status; 751 if (hidpp->battery.ps) 752 power_supply_changed(hidpp->battery.ps); 753 } 754 755 return 0; 756 } 757 758 #define HIDPP_REG_PAIRING_INFORMATION 0xB5 759 #define HIDPP_EXTENDED_PAIRING 0x30 760 #define HIDPP_DEVICE_NAME 0x40 761 762 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev) 763 { 764 struct hidpp_report response; 765 int ret; 766 u8 params[1] = { HIDPP_DEVICE_NAME }; 767 char *name; 768 int len; 769 770 ret = hidpp_send_rap_command_sync(hidpp_dev, 771 REPORT_ID_HIDPP_SHORT, 772 HIDPP_GET_LONG_REGISTER, 773 HIDPP_REG_PAIRING_INFORMATION, 774 params, 1, &response); 775 if (ret) 776 return NULL; 777 778 len = response.rap.params[1]; 779 780 if (2 + len > sizeof(response.rap.params)) 781 return NULL; 782 783 if (len < 4) /* logitech devices are usually at least Xddd */ 784 return NULL; 785 786 name = kzalloc(len + 1, GFP_KERNEL); 787 if (!name) 788 return NULL; 789 790 memcpy(name, &response.rap.params[2], len); 791 792 /* include the terminating '\0' */ 793 hidpp_prefix_name(&name, len + 1); 794 795 return name; 796 } 797 798 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial) 799 { 800 struct hidpp_report response; 801 int ret; 802 u8 params[1] = { HIDPP_EXTENDED_PAIRING }; 803 804 ret = hidpp_send_rap_command_sync(hidpp, 805 REPORT_ID_HIDPP_SHORT, 806 HIDPP_GET_LONG_REGISTER, 807 HIDPP_REG_PAIRING_INFORMATION, 808 params, 1, &response); 809 if (ret) 810 return ret; 811 812 /* 813 * We don't care about LE or BE, we will output it as a string 814 * with %4phD, so we need to keep the order. 815 */ 816 *serial = *((u32 *)&response.rap.params[1]); 817 return 0; 818 } 819 820 static int hidpp_unifying_init(struct hidpp_device *hidpp) 821 { 822 struct hid_device *hdev = hidpp->hid_dev; 823 const char *name; 824 u32 serial; 825 int ret; 826 827 ret = hidpp_unifying_get_serial(hidpp, &serial); 828 if (ret) 829 return ret; 830 831 snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD", 832 hdev->product, &serial); 833 dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq); 834 835 name = hidpp_unifying_get_name(hidpp); 836 if (!name) 837 return -EIO; 838 839 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 840 dbg_hid("HID++ Unifying: Got name: %s\n", name); 841 842 kfree(name); 843 return 0; 844 } 845 846 /* -------------------------------------------------------------------------- */ 847 /* 0x0000: Root */ 848 /* -------------------------------------------------------------------------- */ 849 850 #define HIDPP_PAGE_ROOT 0x0000 851 #define HIDPP_PAGE_ROOT_IDX 0x00 852 853 #define CMD_ROOT_GET_FEATURE 0x01 854 #define CMD_ROOT_GET_PROTOCOL_VERSION 0x11 855 856 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature, 857 u8 *feature_index, u8 *feature_type) 858 { 859 struct hidpp_report response; 860 int ret; 861 u8 params[2] = { feature >> 8, feature & 0x00FF }; 862 863 ret = hidpp_send_fap_command_sync(hidpp, 864 HIDPP_PAGE_ROOT_IDX, 865 CMD_ROOT_GET_FEATURE, 866 params, 2, &response); 867 if (ret) 868 return ret; 869 870 if (response.fap.params[0] == 0) 871 return -ENOENT; 872 873 *feature_index = response.fap.params[0]; 874 *feature_type = response.fap.params[1]; 875 876 return ret; 877 } 878 879 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp) 880 { 881 const u8 ping_byte = 0x5a; 882 u8 ping_data[3] = { 0, 0, ping_byte }; 883 struct hidpp_report response; 884 int ret; 885 886 ret = hidpp_send_rap_command_sync(hidpp, 887 REPORT_ID_HIDPP_SHORT, 888 HIDPP_PAGE_ROOT_IDX, 889 CMD_ROOT_GET_PROTOCOL_VERSION, 890 ping_data, sizeof(ping_data), &response); 891 892 if (ret == HIDPP_ERROR_INVALID_SUBID) { 893 hidpp->protocol_major = 1; 894 hidpp->protocol_minor = 0; 895 goto print_version; 896 } 897 898 /* the device might not be connected */ 899 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 900 return -EIO; 901 902 if (ret > 0) { 903 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 904 __func__, ret); 905 return -EPROTO; 906 } 907 if (ret) 908 return ret; 909 910 if (response.rap.params[2] != ping_byte) { 911 hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n", 912 __func__, response.rap.params[2], ping_byte); 913 return -EPROTO; 914 } 915 916 hidpp->protocol_major = response.rap.params[0]; 917 hidpp->protocol_minor = response.rap.params[1]; 918 919 print_version: 920 hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n", 921 hidpp->protocol_major, hidpp->protocol_minor); 922 return 0; 923 } 924 925 /* -------------------------------------------------------------------------- */ 926 /* 0x0005: GetDeviceNameType */ 927 /* -------------------------------------------------------------------------- */ 928 929 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE 0x0005 930 931 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT 0x01 932 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME 0x11 933 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE 0x21 934 935 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp, 936 u8 feature_index, u8 *nameLength) 937 { 938 struct hidpp_report response; 939 int ret; 940 941 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 942 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response); 943 944 if (ret > 0) { 945 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 946 __func__, ret); 947 return -EPROTO; 948 } 949 if (ret) 950 return ret; 951 952 *nameLength = response.fap.params[0]; 953 954 return ret; 955 } 956 957 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp, 958 u8 feature_index, u8 char_index, char *device_name, int len_buf) 959 { 960 struct hidpp_report response; 961 int ret, i; 962 int count; 963 964 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 965 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1, 966 &response); 967 968 if (ret > 0) { 969 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 970 __func__, ret); 971 return -EPROTO; 972 } 973 if (ret) 974 return ret; 975 976 switch (response.report_id) { 977 case REPORT_ID_HIDPP_VERY_LONG: 978 count = hidpp->very_long_report_length - 4; 979 break; 980 case REPORT_ID_HIDPP_LONG: 981 count = HIDPP_REPORT_LONG_LENGTH - 4; 982 break; 983 case REPORT_ID_HIDPP_SHORT: 984 count = HIDPP_REPORT_SHORT_LENGTH - 4; 985 break; 986 default: 987 return -EPROTO; 988 } 989 990 if (len_buf < count) 991 count = len_buf; 992 993 for (i = 0; i < count; i++) 994 device_name[i] = response.fap.params[i]; 995 996 return count; 997 } 998 999 static char *hidpp_get_device_name(struct hidpp_device *hidpp) 1000 { 1001 u8 feature_type; 1002 u8 feature_index; 1003 u8 __name_length; 1004 char *name; 1005 unsigned index = 0; 1006 int ret; 1007 1008 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE, 1009 &feature_index, &feature_type); 1010 if (ret) 1011 return NULL; 1012 1013 ret = hidpp_devicenametype_get_count(hidpp, feature_index, 1014 &__name_length); 1015 if (ret) 1016 return NULL; 1017 1018 name = kzalloc(__name_length + 1, GFP_KERNEL); 1019 if (!name) 1020 return NULL; 1021 1022 while (index < __name_length) { 1023 ret = hidpp_devicenametype_get_device_name(hidpp, 1024 feature_index, index, name + index, 1025 __name_length - index); 1026 if (ret <= 0) { 1027 kfree(name); 1028 return NULL; 1029 } 1030 index += ret; 1031 } 1032 1033 /* include the terminating '\0' */ 1034 hidpp_prefix_name(&name, __name_length + 1); 1035 1036 return name; 1037 } 1038 1039 /* -------------------------------------------------------------------------- */ 1040 /* 0x1000: Battery level status */ 1041 /* -------------------------------------------------------------------------- */ 1042 1043 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS 0x1000 1044 1045 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS 0x00 1046 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY 0x10 1047 1048 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST 0x00 1049 1050 #define FLAG_BATTERY_LEVEL_DISABLE_OSD BIT(0) 1051 #define FLAG_BATTERY_LEVEL_MILEAGE BIT(1) 1052 #define FLAG_BATTERY_LEVEL_RECHARGEABLE BIT(2) 1053 1054 static int hidpp_map_battery_level(int capacity) 1055 { 1056 if (capacity < 11) 1057 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1058 /* 1059 * The spec says this should be < 31 but some devices report 30 1060 * with brand new batteries and Windows reports 30 as "Good". 1061 */ 1062 else if (capacity < 30) 1063 return POWER_SUPPLY_CAPACITY_LEVEL_LOW; 1064 else if (capacity < 81) 1065 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 1066 return POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1067 } 1068 1069 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity, 1070 int *next_capacity, 1071 int *level) 1072 { 1073 int status; 1074 1075 *capacity = data[0]; 1076 *next_capacity = data[1]; 1077 *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 1078 1079 /* When discharging, we can rely on the device reported capacity. 1080 * For all other states the device reports 0 (unknown). 1081 */ 1082 switch (data[2]) { 1083 case 0: /* discharging (in use) */ 1084 status = POWER_SUPPLY_STATUS_DISCHARGING; 1085 *level = hidpp_map_battery_level(*capacity); 1086 break; 1087 case 1: /* recharging */ 1088 status = POWER_SUPPLY_STATUS_CHARGING; 1089 break; 1090 case 2: /* charge in final stage */ 1091 status = POWER_SUPPLY_STATUS_CHARGING; 1092 break; 1093 case 3: /* charge complete */ 1094 status = POWER_SUPPLY_STATUS_FULL; 1095 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1096 *capacity = 100; 1097 break; 1098 case 4: /* recharging below optimal speed */ 1099 status = POWER_SUPPLY_STATUS_CHARGING; 1100 break; 1101 /* 5 = invalid battery type 1102 6 = thermal error 1103 7 = other charging error */ 1104 default: 1105 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1106 break; 1107 } 1108 1109 return status; 1110 } 1111 1112 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp, 1113 u8 feature_index, 1114 int *status, 1115 int *capacity, 1116 int *next_capacity, 1117 int *level) 1118 { 1119 struct hidpp_report response; 1120 int ret; 1121 u8 *params = (u8 *)response.fap.params; 1122 1123 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1124 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS, 1125 NULL, 0, &response); 1126 /* Ignore these intermittent errors */ 1127 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 1128 return -EIO; 1129 if (ret > 0) { 1130 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1131 __func__, ret); 1132 return -EPROTO; 1133 } 1134 if (ret) 1135 return ret; 1136 1137 *status = hidpp20_batterylevel_map_status_capacity(params, capacity, 1138 next_capacity, 1139 level); 1140 1141 return 0; 1142 } 1143 1144 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp, 1145 u8 feature_index) 1146 { 1147 struct hidpp_report response; 1148 int ret; 1149 u8 *params = (u8 *)response.fap.params; 1150 unsigned int level_count, flags; 1151 1152 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1153 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY, 1154 NULL, 0, &response); 1155 if (ret > 0) { 1156 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1157 __func__, ret); 1158 return -EPROTO; 1159 } 1160 if (ret) 1161 return ret; 1162 1163 level_count = params[0]; 1164 flags = params[1]; 1165 1166 if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE)) 1167 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 1168 else 1169 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1170 1171 return 0; 1172 } 1173 1174 static int hidpp20_query_battery_info(struct hidpp_device *hidpp) 1175 { 1176 u8 feature_type; 1177 int ret; 1178 int status, capacity, next_capacity, level; 1179 1180 if (hidpp->battery.feature_index == 0xff) { 1181 ret = hidpp_root_get_feature(hidpp, 1182 HIDPP_PAGE_BATTERY_LEVEL_STATUS, 1183 &hidpp->battery.feature_index, 1184 &feature_type); 1185 if (ret) 1186 return ret; 1187 } 1188 1189 ret = hidpp20_batterylevel_get_battery_capacity(hidpp, 1190 hidpp->battery.feature_index, 1191 &status, &capacity, 1192 &next_capacity, &level); 1193 if (ret) 1194 return ret; 1195 1196 ret = hidpp20_batterylevel_get_battery_info(hidpp, 1197 hidpp->battery.feature_index); 1198 if (ret) 1199 return ret; 1200 1201 hidpp->battery.status = status; 1202 hidpp->battery.capacity = capacity; 1203 hidpp->battery.level = level; 1204 /* the capacity is only available when discharging or full */ 1205 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1206 status == POWER_SUPPLY_STATUS_FULL; 1207 1208 return 0; 1209 } 1210 1211 static int hidpp20_battery_event(struct hidpp_device *hidpp, 1212 u8 *data, int size) 1213 { 1214 struct hidpp_report *report = (struct hidpp_report *)data; 1215 int status, capacity, next_capacity, level; 1216 bool changed; 1217 1218 if (report->fap.feature_index != hidpp->battery.feature_index || 1219 report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST) 1220 return 0; 1221 1222 status = hidpp20_batterylevel_map_status_capacity(report->fap.params, 1223 &capacity, 1224 &next_capacity, 1225 &level); 1226 1227 /* the capacity is only available when discharging or full */ 1228 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1229 status == POWER_SUPPLY_STATUS_FULL; 1230 1231 changed = capacity != hidpp->battery.capacity || 1232 level != hidpp->battery.level || 1233 status != hidpp->battery.status; 1234 1235 if (changed) { 1236 hidpp->battery.level = level; 1237 hidpp->battery.capacity = capacity; 1238 hidpp->battery.status = status; 1239 if (hidpp->battery.ps) 1240 power_supply_changed(hidpp->battery.ps); 1241 } 1242 1243 return 0; 1244 } 1245 1246 /* -------------------------------------------------------------------------- */ 1247 /* 0x1001: Battery voltage */ 1248 /* -------------------------------------------------------------------------- */ 1249 1250 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001 1251 1252 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00 1253 1254 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00 1255 1256 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage, 1257 int *level, int *charge_type) 1258 { 1259 int status; 1260 1261 long flags = (long) data[2]; 1262 1263 if (flags & 0x80) 1264 switch (flags & 0x07) { 1265 case 0: 1266 status = POWER_SUPPLY_STATUS_CHARGING; 1267 break; 1268 case 1: 1269 status = POWER_SUPPLY_STATUS_FULL; 1270 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1271 break; 1272 case 2: 1273 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1274 break; 1275 default: 1276 status = POWER_SUPPLY_STATUS_UNKNOWN; 1277 break; 1278 } 1279 else 1280 status = POWER_SUPPLY_STATUS_DISCHARGING; 1281 1282 *charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD; 1283 if (test_bit(3, &flags)) { 1284 *charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST; 1285 } 1286 if (test_bit(4, &flags)) { 1287 *charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; 1288 } 1289 if (test_bit(5, &flags)) { 1290 *level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1291 } 1292 1293 *voltage = get_unaligned_be16(data); 1294 1295 return status; 1296 } 1297 1298 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp, 1299 u8 feature_index, 1300 int *status, int *voltage, 1301 int *level, int *charge_type) 1302 { 1303 struct hidpp_report response; 1304 int ret; 1305 u8 *params = (u8 *)response.fap.params; 1306 1307 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1308 CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE, 1309 NULL, 0, &response); 1310 1311 if (ret > 0) { 1312 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1313 __func__, ret); 1314 return -EPROTO; 1315 } 1316 if (ret) 1317 return ret; 1318 1319 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE; 1320 1321 *status = hidpp20_battery_map_status_voltage(params, voltage, 1322 level, charge_type); 1323 1324 return 0; 1325 } 1326 1327 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp) 1328 { 1329 u8 feature_type; 1330 int ret; 1331 int status, voltage, level, charge_type; 1332 1333 if (hidpp->battery.voltage_feature_index == 0xff) { 1334 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE, 1335 &hidpp->battery.voltage_feature_index, 1336 &feature_type); 1337 if (ret) 1338 return ret; 1339 } 1340 1341 ret = hidpp20_battery_get_battery_voltage(hidpp, 1342 hidpp->battery.voltage_feature_index, 1343 &status, &voltage, &level, &charge_type); 1344 1345 if (ret) 1346 return ret; 1347 1348 hidpp->battery.status = status; 1349 hidpp->battery.voltage = voltage; 1350 hidpp->battery.level = level; 1351 hidpp->battery.charge_type = charge_type; 1352 hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING; 1353 1354 return 0; 1355 } 1356 1357 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp, 1358 u8 *data, int size) 1359 { 1360 struct hidpp_report *report = (struct hidpp_report *)data; 1361 int status, voltage, level, charge_type; 1362 1363 if (report->fap.feature_index != hidpp->battery.voltage_feature_index || 1364 report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST) 1365 return 0; 1366 1367 status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage, 1368 &level, &charge_type); 1369 1370 hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING; 1371 1372 if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) { 1373 hidpp->battery.voltage = voltage; 1374 hidpp->battery.status = status; 1375 hidpp->battery.level = level; 1376 hidpp->battery.charge_type = charge_type; 1377 if (hidpp->battery.ps) 1378 power_supply_changed(hidpp->battery.ps); 1379 } 1380 return 0; 1381 } 1382 1383 static enum power_supply_property hidpp_battery_props[] = { 1384 POWER_SUPPLY_PROP_ONLINE, 1385 POWER_SUPPLY_PROP_STATUS, 1386 POWER_SUPPLY_PROP_SCOPE, 1387 POWER_SUPPLY_PROP_MODEL_NAME, 1388 POWER_SUPPLY_PROP_MANUFACTURER, 1389 POWER_SUPPLY_PROP_SERIAL_NUMBER, 1390 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */ 1391 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */ 1392 0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */ 1393 }; 1394 1395 static int hidpp_battery_get_property(struct power_supply *psy, 1396 enum power_supply_property psp, 1397 union power_supply_propval *val) 1398 { 1399 struct hidpp_device *hidpp = power_supply_get_drvdata(psy); 1400 int ret = 0; 1401 1402 switch(psp) { 1403 case POWER_SUPPLY_PROP_STATUS: 1404 val->intval = hidpp->battery.status; 1405 break; 1406 case POWER_SUPPLY_PROP_CAPACITY: 1407 val->intval = hidpp->battery.capacity; 1408 break; 1409 case POWER_SUPPLY_PROP_CAPACITY_LEVEL: 1410 val->intval = hidpp->battery.level; 1411 break; 1412 case POWER_SUPPLY_PROP_SCOPE: 1413 val->intval = POWER_SUPPLY_SCOPE_DEVICE; 1414 break; 1415 case POWER_SUPPLY_PROP_ONLINE: 1416 val->intval = hidpp->battery.online; 1417 break; 1418 case POWER_SUPPLY_PROP_MODEL_NAME: 1419 if (!strncmp(hidpp->name, "Logitech ", 9)) 1420 val->strval = hidpp->name + 9; 1421 else 1422 val->strval = hidpp->name; 1423 break; 1424 case POWER_SUPPLY_PROP_MANUFACTURER: 1425 val->strval = "Logitech"; 1426 break; 1427 case POWER_SUPPLY_PROP_SERIAL_NUMBER: 1428 val->strval = hidpp->hid_dev->uniq; 1429 break; 1430 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 1431 /* hardware reports voltage in in mV. sysfs expects uV */ 1432 val->intval = hidpp->battery.voltage * 1000; 1433 break; 1434 case POWER_SUPPLY_PROP_CHARGE_TYPE: 1435 val->intval = hidpp->battery.charge_type; 1436 break; 1437 default: 1438 ret = -EINVAL; 1439 break; 1440 } 1441 1442 return ret; 1443 } 1444 1445 /* -------------------------------------------------------------------------- */ 1446 /* 0x1d4b: Wireless device status */ 1447 /* -------------------------------------------------------------------------- */ 1448 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS 0x1d4b 1449 1450 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp) 1451 { 1452 u8 feature_type; 1453 int ret; 1454 1455 ret = hidpp_root_get_feature(hidpp, 1456 HIDPP_PAGE_WIRELESS_DEVICE_STATUS, 1457 &hidpp->wireless_feature_index, 1458 &feature_type); 1459 1460 return ret; 1461 } 1462 1463 /* -------------------------------------------------------------------------- */ 1464 /* 0x2120: Hi-resolution scrolling */ 1465 /* -------------------------------------------------------------------------- */ 1466 1467 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING 0x2120 1468 1469 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE 0x10 1470 1471 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp, 1472 bool enabled, u8 *multiplier) 1473 { 1474 u8 feature_index; 1475 u8 feature_type; 1476 int ret; 1477 u8 params[1]; 1478 struct hidpp_report response; 1479 1480 ret = hidpp_root_get_feature(hidpp, 1481 HIDPP_PAGE_HI_RESOLUTION_SCROLLING, 1482 &feature_index, 1483 &feature_type); 1484 if (ret) 1485 return ret; 1486 1487 params[0] = enabled ? BIT(0) : 0; 1488 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1489 CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE, 1490 params, sizeof(params), &response); 1491 if (ret) 1492 return ret; 1493 *multiplier = response.fap.params[1]; 1494 return 0; 1495 } 1496 1497 /* -------------------------------------------------------------------------- */ 1498 /* 0x2121: HiRes Wheel */ 1499 /* -------------------------------------------------------------------------- */ 1500 1501 #define HIDPP_PAGE_HIRES_WHEEL 0x2121 1502 1503 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY 0x00 1504 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE 0x20 1505 1506 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp, 1507 u8 *multiplier) 1508 { 1509 u8 feature_index; 1510 u8 feature_type; 1511 int ret; 1512 struct hidpp_report response; 1513 1514 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1515 &feature_index, &feature_type); 1516 if (ret) 1517 goto return_default; 1518 1519 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1520 CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY, 1521 NULL, 0, &response); 1522 if (ret) 1523 goto return_default; 1524 1525 *multiplier = response.fap.params[0]; 1526 return 0; 1527 return_default: 1528 hid_warn(hidpp->hid_dev, 1529 "Couldn't get wheel multiplier (error %d)\n", ret); 1530 return ret; 1531 } 1532 1533 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert, 1534 bool high_resolution, bool use_hidpp) 1535 { 1536 u8 feature_index; 1537 u8 feature_type; 1538 int ret; 1539 u8 params[1]; 1540 struct hidpp_report response; 1541 1542 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1543 &feature_index, &feature_type); 1544 if (ret) 1545 return ret; 1546 1547 params[0] = (invert ? BIT(2) : 0) | 1548 (high_resolution ? BIT(1) : 0) | 1549 (use_hidpp ? BIT(0) : 0); 1550 1551 return hidpp_send_fap_command_sync(hidpp, feature_index, 1552 CMD_HIRES_WHEEL_SET_WHEEL_MODE, 1553 params, sizeof(params), &response); 1554 } 1555 1556 /* -------------------------------------------------------------------------- */ 1557 /* 0x4301: Solar Keyboard */ 1558 /* -------------------------------------------------------------------------- */ 1559 1560 #define HIDPP_PAGE_SOLAR_KEYBOARD 0x4301 1561 1562 #define CMD_SOLAR_SET_LIGHT_MEASURE 0x00 1563 1564 #define EVENT_SOLAR_BATTERY_BROADCAST 0x00 1565 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE 0x10 1566 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON 0x20 1567 1568 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp) 1569 { 1570 struct hidpp_report response; 1571 u8 params[2] = { 1, 1 }; 1572 u8 feature_type; 1573 int ret; 1574 1575 if (hidpp->battery.feature_index == 0xff) { 1576 ret = hidpp_root_get_feature(hidpp, 1577 HIDPP_PAGE_SOLAR_KEYBOARD, 1578 &hidpp->battery.solar_feature_index, 1579 &feature_type); 1580 if (ret) 1581 return ret; 1582 } 1583 1584 ret = hidpp_send_fap_command_sync(hidpp, 1585 hidpp->battery.solar_feature_index, 1586 CMD_SOLAR_SET_LIGHT_MEASURE, 1587 params, 2, &response); 1588 if (ret > 0) { 1589 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1590 __func__, ret); 1591 return -EPROTO; 1592 } 1593 if (ret) 1594 return ret; 1595 1596 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1597 1598 return 0; 1599 } 1600 1601 static int hidpp_solar_battery_event(struct hidpp_device *hidpp, 1602 u8 *data, int size) 1603 { 1604 struct hidpp_report *report = (struct hidpp_report *)data; 1605 int capacity, lux, status; 1606 u8 function; 1607 1608 function = report->fap.funcindex_clientid; 1609 1610 1611 if (report->fap.feature_index != hidpp->battery.solar_feature_index || 1612 !(function == EVENT_SOLAR_BATTERY_BROADCAST || 1613 function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE || 1614 function == EVENT_SOLAR_CHECK_LIGHT_BUTTON)) 1615 return 0; 1616 1617 capacity = report->fap.params[0]; 1618 1619 switch (function) { 1620 case EVENT_SOLAR_BATTERY_LIGHT_MEASURE: 1621 lux = (report->fap.params[1] << 8) | report->fap.params[2]; 1622 if (lux > 200) 1623 status = POWER_SUPPLY_STATUS_CHARGING; 1624 else 1625 status = POWER_SUPPLY_STATUS_DISCHARGING; 1626 break; 1627 case EVENT_SOLAR_CHECK_LIGHT_BUTTON: 1628 default: 1629 if (capacity < hidpp->battery.capacity) 1630 status = POWER_SUPPLY_STATUS_DISCHARGING; 1631 else 1632 status = POWER_SUPPLY_STATUS_CHARGING; 1633 1634 } 1635 1636 if (capacity == 100) 1637 status = POWER_SUPPLY_STATUS_FULL; 1638 1639 hidpp->battery.online = true; 1640 if (capacity != hidpp->battery.capacity || 1641 status != hidpp->battery.status) { 1642 hidpp->battery.capacity = capacity; 1643 hidpp->battery.status = status; 1644 if (hidpp->battery.ps) 1645 power_supply_changed(hidpp->battery.ps); 1646 } 1647 1648 return 0; 1649 } 1650 1651 /* -------------------------------------------------------------------------- */ 1652 /* 0x6010: Touchpad FW items */ 1653 /* -------------------------------------------------------------------------- */ 1654 1655 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS 0x6010 1656 1657 #define CMD_TOUCHPAD_FW_ITEMS_SET 0x10 1658 1659 struct hidpp_touchpad_fw_items { 1660 uint8_t presence; 1661 uint8_t desired_state; 1662 uint8_t state; 1663 uint8_t persistent; 1664 }; 1665 1666 /** 1667 * send a set state command to the device by reading the current items->state 1668 * field. items is then filled with the current state. 1669 */ 1670 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp, 1671 u8 feature_index, 1672 struct hidpp_touchpad_fw_items *items) 1673 { 1674 struct hidpp_report response; 1675 int ret; 1676 u8 *params = (u8 *)response.fap.params; 1677 1678 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1679 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response); 1680 1681 if (ret > 0) { 1682 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1683 __func__, ret); 1684 return -EPROTO; 1685 } 1686 if (ret) 1687 return ret; 1688 1689 items->presence = params[0]; 1690 items->desired_state = params[1]; 1691 items->state = params[2]; 1692 items->persistent = params[3]; 1693 1694 return 0; 1695 } 1696 1697 /* -------------------------------------------------------------------------- */ 1698 /* 0x6100: TouchPadRawXY */ 1699 /* -------------------------------------------------------------------------- */ 1700 1701 #define HIDPP_PAGE_TOUCHPAD_RAW_XY 0x6100 1702 1703 #define CMD_TOUCHPAD_GET_RAW_INFO 0x01 1704 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE 0x21 1705 1706 #define EVENT_TOUCHPAD_RAW_XY 0x00 1707 1708 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT 0x01 1709 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT 0x03 1710 1711 struct hidpp_touchpad_raw_info { 1712 u16 x_size; 1713 u16 y_size; 1714 u8 z_range; 1715 u8 area_range; 1716 u8 timestamp_unit; 1717 u8 maxcontacts; 1718 u8 origin; 1719 u16 res; 1720 }; 1721 1722 struct hidpp_touchpad_raw_xy_finger { 1723 u8 contact_type; 1724 u8 contact_status; 1725 u16 x; 1726 u16 y; 1727 u8 z; 1728 u8 area; 1729 u8 finger_id; 1730 }; 1731 1732 struct hidpp_touchpad_raw_xy { 1733 u16 timestamp; 1734 struct hidpp_touchpad_raw_xy_finger fingers[2]; 1735 u8 spurious_flag; 1736 u8 end_of_frame; 1737 u8 finger_count; 1738 u8 button; 1739 }; 1740 1741 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp, 1742 u8 feature_index, struct hidpp_touchpad_raw_info *raw_info) 1743 { 1744 struct hidpp_report response; 1745 int ret; 1746 u8 *params = (u8 *)response.fap.params; 1747 1748 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1749 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response); 1750 1751 if (ret > 0) { 1752 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1753 __func__, ret); 1754 return -EPROTO; 1755 } 1756 if (ret) 1757 return ret; 1758 1759 raw_info->x_size = get_unaligned_be16(¶ms[0]); 1760 raw_info->y_size = get_unaligned_be16(¶ms[2]); 1761 raw_info->z_range = params[4]; 1762 raw_info->area_range = params[5]; 1763 raw_info->maxcontacts = params[7]; 1764 raw_info->origin = params[8]; 1765 /* res is given in unit per inch */ 1766 raw_info->res = get_unaligned_be16(¶ms[13]) * 2 / 51; 1767 1768 return ret; 1769 } 1770 1771 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev, 1772 u8 feature_index, bool send_raw_reports, 1773 bool sensor_enhanced_settings) 1774 { 1775 struct hidpp_report response; 1776 1777 /* 1778 * Params: 1779 * bit 0 - enable raw 1780 * bit 1 - 16bit Z, no area 1781 * bit 2 - enhanced sensitivity 1782 * bit 3 - width, height (4 bits each) instead of area 1783 * bit 4 - send raw + gestures (degrades smoothness) 1784 * remaining bits - reserved 1785 */ 1786 u8 params = send_raw_reports | (sensor_enhanced_settings << 2); 1787 1788 return hidpp_send_fap_command_sync(hidpp_dev, feature_index, 1789 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, ¶ms, 1, &response); 1790 } 1791 1792 static void hidpp_touchpad_touch_event(u8 *data, 1793 struct hidpp_touchpad_raw_xy_finger *finger) 1794 { 1795 u8 x_m = data[0] << 2; 1796 u8 y_m = data[2] << 2; 1797 1798 finger->x = x_m << 6 | data[1]; 1799 finger->y = y_m << 6 | data[3]; 1800 1801 finger->contact_type = data[0] >> 6; 1802 finger->contact_status = data[2] >> 6; 1803 1804 finger->z = data[4]; 1805 finger->area = data[5]; 1806 finger->finger_id = data[6] >> 4; 1807 } 1808 1809 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev, 1810 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy) 1811 { 1812 memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy)); 1813 raw_xy->end_of_frame = data[8] & 0x01; 1814 raw_xy->spurious_flag = (data[8] >> 1) & 0x01; 1815 raw_xy->finger_count = data[15] & 0x0f; 1816 raw_xy->button = (data[8] >> 2) & 0x01; 1817 1818 if (raw_xy->finger_count) { 1819 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]); 1820 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]); 1821 } 1822 } 1823 1824 /* -------------------------------------------------------------------------- */ 1825 /* 0x8123: Force feedback support */ 1826 /* -------------------------------------------------------------------------- */ 1827 1828 #define HIDPP_FF_GET_INFO 0x01 1829 #define HIDPP_FF_RESET_ALL 0x11 1830 #define HIDPP_FF_DOWNLOAD_EFFECT 0x21 1831 #define HIDPP_FF_SET_EFFECT_STATE 0x31 1832 #define HIDPP_FF_DESTROY_EFFECT 0x41 1833 #define HIDPP_FF_GET_APERTURE 0x51 1834 #define HIDPP_FF_SET_APERTURE 0x61 1835 #define HIDPP_FF_GET_GLOBAL_GAINS 0x71 1836 #define HIDPP_FF_SET_GLOBAL_GAINS 0x81 1837 1838 #define HIDPP_FF_EFFECT_STATE_GET 0x00 1839 #define HIDPP_FF_EFFECT_STATE_STOP 0x01 1840 #define HIDPP_FF_EFFECT_STATE_PLAY 0x02 1841 #define HIDPP_FF_EFFECT_STATE_PAUSE 0x03 1842 1843 #define HIDPP_FF_EFFECT_CONSTANT 0x00 1844 #define HIDPP_FF_EFFECT_PERIODIC_SINE 0x01 1845 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE 0x02 1846 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE 0x03 1847 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP 0x04 1848 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN 0x05 1849 #define HIDPP_FF_EFFECT_SPRING 0x06 1850 #define HIDPP_FF_EFFECT_DAMPER 0x07 1851 #define HIDPP_FF_EFFECT_FRICTION 0x08 1852 #define HIDPP_FF_EFFECT_INERTIA 0x09 1853 #define HIDPP_FF_EFFECT_RAMP 0x0A 1854 1855 #define HIDPP_FF_EFFECT_AUTOSTART 0x80 1856 1857 #define HIDPP_FF_EFFECTID_NONE -1 1858 #define HIDPP_FF_EFFECTID_AUTOCENTER -2 1859 #define HIDPP_AUTOCENTER_PARAMS_LENGTH 18 1860 1861 #define HIDPP_FF_MAX_PARAMS 20 1862 #define HIDPP_FF_RESERVED_SLOTS 1 1863 1864 struct hidpp_ff_private_data { 1865 struct hidpp_device *hidpp; 1866 u8 feature_index; 1867 u8 version; 1868 u16 gain; 1869 s16 range; 1870 u8 slot_autocenter; 1871 u8 num_effects; 1872 int *effect_ids; 1873 struct workqueue_struct *wq; 1874 atomic_t workqueue_size; 1875 }; 1876 1877 struct hidpp_ff_work_data { 1878 struct work_struct work; 1879 struct hidpp_ff_private_data *data; 1880 int effect_id; 1881 u8 command; 1882 u8 params[HIDPP_FF_MAX_PARAMS]; 1883 u8 size; 1884 }; 1885 1886 static const signed short hidpp_ff_effects[] = { 1887 FF_CONSTANT, 1888 FF_PERIODIC, 1889 FF_SINE, 1890 FF_SQUARE, 1891 FF_SAW_UP, 1892 FF_SAW_DOWN, 1893 FF_TRIANGLE, 1894 FF_SPRING, 1895 FF_DAMPER, 1896 FF_AUTOCENTER, 1897 FF_GAIN, 1898 -1 1899 }; 1900 1901 static const signed short hidpp_ff_effects_v2[] = { 1902 FF_RAMP, 1903 FF_FRICTION, 1904 FF_INERTIA, 1905 -1 1906 }; 1907 1908 static const u8 HIDPP_FF_CONDITION_CMDS[] = { 1909 HIDPP_FF_EFFECT_SPRING, 1910 HIDPP_FF_EFFECT_FRICTION, 1911 HIDPP_FF_EFFECT_DAMPER, 1912 HIDPP_FF_EFFECT_INERTIA 1913 }; 1914 1915 static const char *HIDPP_FF_CONDITION_NAMES[] = { 1916 "spring", 1917 "friction", 1918 "damper", 1919 "inertia" 1920 }; 1921 1922 1923 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id) 1924 { 1925 int i; 1926 1927 for (i = 0; i < data->num_effects; i++) 1928 if (data->effect_ids[i] == effect_id) 1929 return i+1; 1930 1931 return 0; 1932 } 1933 1934 static void hidpp_ff_work_handler(struct work_struct *w) 1935 { 1936 struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work); 1937 struct hidpp_ff_private_data *data = wd->data; 1938 struct hidpp_report response; 1939 u8 slot; 1940 int ret; 1941 1942 /* add slot number if needed */ 1943 switch (wd->effect_id) { 1944 case HIDPP_FF_EFFECTID_AUTOCENTER: 1945 wd->params[0] = data->slot_autocenter; 1946 break; 1947 case HIDPP_FF_EFFECTID_NONE: 1948 /* leave slot as zero */ 1949 break; 1950 default: 1951 /* find current slot for effect */ 1952 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id); 1953 break; 1954 } 1955 1956 /* send command and wait for reply */ 1957 ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index, 1958 wd->command, wd->params, wd->size, &response); 1959 1960 if (ret) { 1961 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n"); 1962 goto out; 1963 } 1964 1965 /* parse return data */ 1966 switch (wd->command) { 1967 case HIDPP_FF_DOWNLOAD_EFFECT: 1968 slot = response.fap.params[0]; 1969 if (slot > 0 && slot <= data->num_effects) { 1970 if (wd->effect_id >= 0) 1971 /* regular effect uploaded */ 1972 data->effect_ids[slot-1] = wd->effect_id; 1973 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 1974 /* autocenter spring uploaded */ 1975 data->slot_autocenter = slot; 1976 } 1977 break; 1978 case HIDPP_FF_DESTROY_EFFECT: 1979 if (wd->effect_id >= 0) 1980 /* regular effect destroyed */ 1981 data->effect_ids[wd->params[0]-1] = -1; 1982 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 1983 /* autocenter spring destoyed */ 1984 data->slot_autocenter = 0; 1985 break; 1986 case HIDPP_FF_SET_GLOBAL_GAINS: 1987 data->gain = (wd->params[0] << 8) + wd->params[1]; 1988 break; 1989 case HIDPP_FF_SET_APERTURE: 1990 data->range = (wd->params[0] << 8) + wd->params[1]; 1991 break; 1992 default: 1993 /* no action needed */ 1994 break; 1995 } 1996 1997 out: 1998 atomic_dec(&data->workqueue_size); 1999 kfree(wd); 2000 } 2001 2002 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size) 2003 { 2004 struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL); 2005 int s; 2006 2007 if (!wd) 2008 return -ENOMEM; 2009 2010 INIT_WORK(&wd->work, hidpp_ff_work_handler); 2011 2012 wd->data = data; 2013 wd->effect_id = effect_id; 2014 wd->command = command; 2015 wd->size = size; 2016 memcpy(wd->params, params, size); 2017 2018 atomic_inc(&data->workqueue_size); 2019 queue_work(data->wq, &wd->work); 2020 2021 /* warn about excessive queue size */ 2022 s = atomic_read(&data->workqueue_size); 2023 if (s >= 20 && s % 20 == 0) 2024 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s); 2025 2026 return 0; 2027 } 2028 2029 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old) 2030 { 2031 struct hidpp_ff_private_data *data = dev->ff->private; 2032 u8 params[20]; 2033 u8 size; 2034 int force; 2035 2036 /* set common parameters */ 2037 params[2] = effect->replay.length >> 8; 2038 params[3] = effect->replay.length & 255; 2039 params[4] = effect->replay.delay >> 8; 2040 params[5] = effect->replay.delay & 255; 2041 2042 switch (effect->type) { 2043 case FF_CONSTANT: 2044 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2045 params[1] = HIDPP_FF_EFFECT_CONSTANT; 2046 params[6] = force >> 8; 2047 params[7] = force & 255; 2048 params[8] = effect->u.constant.envelope.attack_level >> 7; 2049 params[9] = effect->u.constant.envelope.attack_length >> 8; 2050 params[10] = effect->u.constant.envelope.attack_length & 255; 2051 params[11] = effect->u.constant.envelope.fade_level >> 7; 2052 params[12] = effect->u.constant.envelope.fade_length >> 8; 2053 params[13] = effect->u.constant.envelope.fade_length & 255; 2054 size = 14; 2055 dbg_hid("Uploading constant force level=%d in dir %d = %d\n", 2056 effect->u.constant.level, 2057 effect->direction, force); 2058 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2059 effect->u.constant.envelope.attack_level, 2060 effect->u.constant.envelope.attack_length, 2061 effect->u.constant.envelope.fade_level, 2062 effect->u.constant.envelope.fade_length); 2063 break; 2064 case FF_PERIODIC: 2065 { 2066 switch (effect->u.periodic.waveform) { 2067 case FF_SINE: 2068 params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE; 2069 break; 2070 case FF_SQUARE: 2071 params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE; 2072 break; 2073 case FF_SAW_UP: 2074 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP; 2075 break; 2076 case FF_SAW_DOWN: 2077 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN; 2078 break; 2079 case FF_TRIANGLE: 2080 params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE; 2081 break; 2082 default: 2083 hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform); 2084 return -EINVAL; 2085 } 2086 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2087 params[6] = effect->u.periodic.magnitude >> 8; 2088 params[7] = effect->u.periodic.magnitude & 255; 2089 params[8] = effect->u.periodic.offset >> 8; 2090 params[9] = effect->u.periodic.offset & 255; 2091 params[10] = effect->u.periodic.period >> 8; 2092 params[11] = effect->u.periodic.period & 255; 2093 params[12] = effect->u.periodic.phase >> 8; 2094 params[13] = effect->u.periodic.phase & 255; 2095 params[14] = effect->u.periodic.envelope.attack_level >> 7; 2096 params[15] = effect->u.periodic.envelope.attack_length >> 8; 2097 params[16] = effect->u.periodic.envelope.attack_length & 255; 2098 params[17] = effect->u.periodic.envelope.fade_level >> 7; 2099 params[18] = effect->u.periodic.envelope.fade_length >> 8; 2100 params[19] = effect->u.periodic.envelope.fade_length & 255; 2101 size = 20; 2102 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n", 2103 effect->u.periodic.magnitude, effect->direction, 2104 effect->u.periodic.offset, 2105 effect->u.periodic.period, 2106 effect->u.periodic.phase); 2107 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2108 effect->u.periodic.envelope.attack_level, 2109 effect->u.periodic.envelope.attack_length, 2110 effect->u.periodic.envelope.fade_level, 2111 effect->u.periodic.envelope.fade_length); 2112 break; 2113 } 2114 case FF_RAMP: 2115 params[1] = HIDPP_FF_EFFECT_RAMP; 2116 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2117 params[6] = force >> 8; 2118 params[7] = force & 255; 2119 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2120 params[8] = force >> 8; 2121 params[9] = force & 255; 2122 params[10] = effect->u.ramp.envelope.attack_level >> 7; 2123 params[11] = effect->u.ramp.envelope.attack_length >> 8; 2124 params[12] = effect->u.ramp.envelope.attack_length & 255; 2125 params[13] = effect->u.ramp.envelope.fade_level >> 7; 2126 params[14] = effect->u.ramp.envelope.fade_length >> 8; 2127 params[15] = effect->u.ramp.envelope.fade_length & 255; 2128 size = 16; 2129 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n", 2130 effect->u.ramp.start_level, 2131 effect->u.ramp.end_level, 2132 effect->direction, force); 2133 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2134 effect->u.ramp.envelope.attack_level, 2135 effect->u.ramp.envelope.attack_length, 2136 effect->u.ramp.envelope.fade_level, 2137 effect->u.ramp.envelope.fade_length); 2138 break; 2139 case FF_FRICTION: 2140 case FF_INERTIA: 2141 case FF_SPRING: 2142 case FF_DAMPER: 2143 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING]; 2144 params[6] = effect->u.condition[0].left_saturation >> 9; 2145 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255; 2146 params[8] = effect->u.condition[0].left_coeff >> 8; 2147 params[9] = effect->u.condition[0].left_coeff & 255; 2148 params[10] = effect->u.condition[0].deadband >> 9; 2149 params[11] = (effect->u.condition[0].deadband >> 1) & 255; 2150 params[12] = effect->u.condition[0].center >> 8; 2151 params[13] = effect->u.condition[0].center & 255; 2152 params[14] = effect->u.condition[0].right_coeff >> 8; 2153 params[15] = effect->u.condition[0].right_coeff & 255; 2154 params[16] = effect->u.condition[0].right_saturation >> 9; 2155 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255; 2156 size = 18; 2157 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n", 2158 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING], 2159 effect->u.condition[0].left_coeff, 2160 effect->u.condition[0].left_saturation, 2161 effect->u.condition[0].right_coeff, 2162 effect->u.condition[0].right_saturation); 2163 dbg_hid(" deadband=%d, center=%d\n", 2164 effect->u.condition[0].deadband, 2165 effect->u.condition[0].center); 2166 break; 2167 default: 2168 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type); 2169 return -EINVAL; 2170 } 2171 2172 return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size); 2173 } 2174 2175 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value) 2176 { 2177 struct hidpp_ff_private_data *data = dev->ff->private; 2178 u8 params[2]; 2179 2180 params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP; 2181 2182 dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id); 2183 2184 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params)); 2185 } 2186 2187 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id) 2188 { 2189 struct hidpp_ff_private_data *data = dev->ff->private; 2190 u8 slot = 0; 2191 2192 dbg_hid("Erasing effect %d.\n", effect_id); 2193 2194 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1); 2195 } 2196 2197 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude) 2198 { 2199 struct hidpp_ff_private_data *data = dev->ff->private; 2200 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH]; 2201 2202 dbg_hid("Setting autocenter to %d.\n", magnitude); 2203 2204 /* start a standard spring effect */ 2205 params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART; 2206 /* zero delay and duration */ 2207 params[2] = params[3] = params[4] = params[5] = 0; 2208 /* set coeff to 25% of saturation */ 2209 params[8] = params[14] = magnitude >> 11; 2210 params[9] = params[15] = (magnitude >> 3) & 255; 2211 params[6] = params[16] = magnitude >> 9; 2212 params[7] = params[17] = (magnitude >> 1) & 255; 2213 /* zero deadband and center */ 2214 params[10] = params[11] = params[12] = params[13] = 0; 2215 2216 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params)); 2217 } 2218 2219 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain) 2220 { 2221 struct hidpp_ff_private_data *data = dev->ff->private; 2222 u8 params[4]; 2223 2224 dbg_hid("Setting gain to %d.\n", gain); 2225 2226 params[0] = gain >> 8; 2227 params[1] = gain & 255; 2228 params[2] = 0; /* no boost */ 2229 params[3] = 0; 2230 2231 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params)); 2232 } 2233 2234 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf) 2235 { 2236 struct hid_device *hid = to_hid_device(dev); 2237 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2238 struct input_dev *idev = hidinput->input; 2239 struct hidpp_ff_private_data *data = idev->ff->private; 2240 2241 return scnprintf(buf, PAGE_SIZE, "%u\n", data->range); 2242 } 2243 2244 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) 2245 { 2246 struct hid_device *hid = to_hid_device(dev); 2247 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2248 struct input_dev *idev = hidinput->input; 2249 struct hidpp_ff_private_data *data = idev->ff->private; 2250 u8 params[2]; 2251 int range = simple_strtoul(buf, NULL, 10); 2252 2253 range = clamp(range, 180, 900); 2254 2255 params[0] = range >> 8; 2256 params[1] = range & 0x00FF; 2257 2258 hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params)); 2259 2260 return count; 2261 } 2262 2263 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store); 2264 2265 static void hidpp_ff_destroy(struct ff_device *ff) 2266 { 2267 struct hidpp_ff_private_data *data = ff->private; 2268 struct hid_device *hid = data->hidpp->hid_dev; 2269 2270 hid_info(hid, "Unloading HID++ force feedback.\n"); 2271 2272 device_remove_file(&hid->dev, &dev_attr_range); 2273 destroy_workqueue(data->wq); 2274 kfree(data->effect_ids); 2275 } 2276 2277 static int hidpp_ff_init(struct hidpp_device *hidpp, 2278 struct hidpp_ff_private_data *data) 2279 { 2280 struct hid_device *hid = hidpp->hid_dev; 2281 struct hid_input *hidinput; 2282 struct input_dev *dev; 2283 const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor); 2284 const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice); 2285 struct ff_device *ff; 2286 int error, j, num_slots = data->num_effects; 2287 u8 version; 2288 2289 if (list_empty(&hid->inputs)) { 2290 hid_err(hid, "no inputs found\n"); 2291 return -ENODEV; 2292 } 2293 hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2294 dev = hidinput->input; 2295 2296 if (!dev) { 2297 hid_err(hid, "Struct input_dev not set!\n"); 2298 return -EINVAL; 2299 } 2300 2301 /* Get firmware release */ 2302 version = bcdDevice & 255; 2303 2304 /* Set supported force feedback capabilities */ 2305 for (j = 0; hidpp_ff_effects[j] >= 0; j++) 2306 set_bit(hidpp_ff_effects[j], dev->ffbit); 2307 if (version > 1) 2308 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++) 2309 set_bit(hidpp_ff_effects_v2[j], dev->ffbit); 2310 2311 error = input_ff_create(dev, num_slots); 2312 2313 if (error) { 2314 hid_err(dev, "Failed to create FF device!\n"); 2315 return error; 2316 } 2317 /* 2318 * Create a copy of passed data, so we can transfer memory 2319 * ownership to FF core 2320 */ 2321 data = kmemdup(data, sizeof(*data), GFP_KERNEL); 2322 if (!data) 2323 return -ENOMEM; 2324 data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL); 2325 if (!data->effect_ids) { 2326 kfree(data); 2327 return -ENOMEM; 2328 } 2329 data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue"); 2330 if (!data->wq) { 2331 kfree(data->effect_ids); 2332 kfree(data); 2333 return -ENOMEM; 2334 } 2335 2336 data->hidpp = hidpp; 2337 data->version = version; 2338 for (j = 0; j < num_slots; j++) 2339 data->effect_ids[j] = -1; 2340 2341 ff = dev->ff; 2342 ff->private = data; 2343 2344 ff->upload = hidpp_ff_upload_effect; 2345 ff->erase = hidpp_ff_erase_effect; 2346 ff->playback = hidpp_ff_playback; 2347 ff->set_gain = hidpp_ff_set_gain; 2348 ff->set_autocenter = hidpp_ff_set_autocenter; 2349 ff->destroy = hidpp_ff_destroy; 2350 2351 /* Create sysfs interface */ 2352 error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range); 2353 if (error) 2354 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error); 2355 2356 /* init the hardware command queue */ 2357 atomic_set(&data->workqueue_size, 0); 2358 2359 hid_info(hid, "Force feedback support loaded (firmware release %d).\n", 2360 version); 2361 2362 return 0; 2363 } 2364 2365 /* ************************************************************************** */ 2366 /* */ 2367 /* Device Support */ 2368 /* */ 2369 /* ************************************************************************** */ 2370 2371 /* -------------------------------------------------------------------------- */ 2372 /* Touchpad HID++ devices */ 2373 /* -------------------------------------------------------------------------- */ 2374 2375 #define WTP_MANUAL_RESOLUTION 39 2376 2377 struct wtp_data { 2378 u16 x_size, y_size; 2379 u8 finger_count; 2380 u8 mt_feature_index; 2381 u8 button_feature_index; 2382 u8 maxcontacts; 2383 bool flip_y; 2384 unsigned int resolution; 2385 }; 2386 2387 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2388 struct hid_field *field, struct hid_usage *usage, 2389 unsigned long **bit, int *max) 2390 { 2391 return -1; 2392 } 2393 2394 static void wtp_populate_input(struct hidpp_device *hidpp, 2395 struct input_dev *input_dev) 2396 { 2397 struct wtp_data *wd = hidpp->private_data; 2398 2399 __set_bit(EV_ABS, input_dev->evbit); 2400 __set_bit(EV_KEY, input_dev->evbit); 2401 __clear_bit(EV_REL, input_dev->evbit); 2402 __clear_bit(EV_LED, input_dev->evbit); 2403 2404 input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0); 2405 input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution); 2406 input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0); 2407 input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution); 2408 2409 /* Max pressure is not given by the devices, pick one */ 2410 input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0); 2411 2412 input_set_capability(input_dev, EV_KEY, BTN_LEFT); 2413 2414 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) 2415 input_set_capability(input_dev, EV_KEY, BTN_RIGHT); 2416 else 2417 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit); 2418 2419 input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER | 2420 INPUT_MT_DROP_UNUSED); 2421 } 2422 2423 static void wtp_touch_event(struct hidpp_device *hidpp, 2424 struct hidpp_touchpad_raw_xy_finger *touch_report) 2425 { 2426 struct wtp_data *wd = hidpp->private_data; 2427 int slot; 2428 2429 if (!touch_report->finger_id || touch_report->contact_type) 2430 /* no actual data */ 2431 return; 2432 2433 slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id); 2434 2435 input_mt_slot(hidpp->input, slot); 2436 input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER, 2437 touch_report->contact_status); 2438 if (touch_report->contact_status) { 2439 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X, 2440 touch_report->x); 2441 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y, 2442 wd->flip_y ? wd->y_size - touch_report->y : 2443 touch_report->y); 2444 input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE, 2445 touch_report->area); 2446 } 2447 } 2448 2449 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp, 2450 struct hidpp_touchpad_raw_xy *raw) 2451 { 2452 int i; 2453 2454 for (i = 0; i < 2; i++) 2455 wtp_touch_event(hidpp, &(raw->fingers[i])); 2456 2457 if (raw->end_of_frame && 2458 !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)) 2459 input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button); 2460 2461 if (raw->end_of_frame || raw->finger_count <= 2) { 2462 input_mt_sync_frame(hidpp->input); 2463 input_sync(hidpp->input); 2464 } 2465 } 2466 2467 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data) 2468 { 2469 struct wtp_data *wd = hidpp->private_data; 2470 u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) + 2471 (data[7] >> 4) * (data[7] >> 4)) / 2; 2472 u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) + 2473 (data[13] >> 4) * (data[13] >> 4)) / 2; 2474 struct hidpp_touchpad_raw_xy raw = { 2475 .timestamp = data[1], 2476 .fingers = { 2477 { 2478 .contact_type = 0, 2479 .contact_status = !!data[7], 2480 .x = get_unaligned_le16(&data[3]), 2481 .y = get_unaligned_le16(&data[5]), 2482 .z = c1_area, 2483 .area = c1_area, 2484 .finger_id = data[2], 2485 }, { 2486 .contact_type = 0, 2487 .contact_status = !!data[13], 2488 .x = get_unaligned_le16(&data[9]), 2489 .y = get_unaligned_le16(&data[11]), 2490 .z = c2_area, 2491 .area = c2_area, 2492 .finger_id = data[8], 2493 } 2494 }, 2495 .finger_count = wd->maxcontacts, 2496 .spurious_flag = 0, 2497 .end_of_frame = (data[0] >> 7) == 0, 2498 .button = data[0] & 0x01, 2499 }; 2500 2501 wtp_send_raw_xy_event(hidpp, &raw); 2502 2503 return 1; 2504 } 2505 2506 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size) 2507 { 2508 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2509 struct wtp_data *wd = hidpp->private_data; 2510 struct hidpp_report *report = (struct hidpp_report *)data; 2511 struct hidpp_touchpad_raw_xy raw; 2512 2513 if (!wd || !hidpp->input) 2514 return 1; 2515 2516 switch (data[0]) { 2517 case 0x02: 2518 if (size < 2) { 2519 hid_err(hdev, "Received HID report of bad size (%d)", 2520 size); 2521 return 1; 2522 } 2523 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) { 2524 input_event(hidpp->input, EV_KEY, BTN_LEFT, 2525 !!(data[1] & 0x01)); 2526 input_event(hidpp->input, EV_KEY, BTN_RIGHT, 2527 !!(data[1] & 0x02)); 2528 input_sync(hidpp->input); 2529 return 0; 2530 } else { 2531 if (size < 21) 2532 return 1; 2533 return wtp_mouse_raw_xy_event(hidpp, &data[7]); 2534 } 2535 case REPORT_ID_HIDPP_LONG: 2536 /* size is already checked in hidpp_raw_event. */ 2537 if ((report->fap.feature_index != wd->mt_feature_index) || 2538 (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY)) 2539 return 1; 2540 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw); 2541 2542 wtp_send_raw_xy_event(hidpp, &raw); 2543 return 0; 2544 } 2545 2546 return 0; 2547 } 2548 2549 static int wtp_get_config(struct hidpp_device *hidpp) 2550 { 2551 struct wtp_data *wd = hidpp->private_data; 2552 struct hidpp_touchpad_raw_info raw_info = {0}; 2553 u8 feature_type; 2554 int ret; 2555 2556 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY, 2557 &wd->mt_feature_index, &feature_type); 2558 if (ret) 2559 /* means that the device is not powered up */ 2560 return ret; 2561 2562 ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index, 2563 &raw_info); 2564 if (ret) 2565 return ret; 2566 2567 wd->x_size = raw_info.x_size; 2568 wd->y_size = raw_info.y_size; 2569 wd->maxcontacts = raw_info.maxcontacts; 2570 wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT; 2571 wd->resolution = raw_info.res; 2572 if (!wd->resolution) 2573 wd->resolution = WTP_MANUAL_RESOLUTION; 2574 2575 return 0; 2576 } 2577 2578 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id) 2579 { 2580 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2581 struct wtp_data *wd; 2582 2583 wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data), 2584 GFP_KERNEL); 2585 if (!wd) 2586 return -ENOMEM; 2587 2588 hidpp->private_data = wd; 2589 2590 return 0; 2591 }; 2592 2593 static int wtp_connect(struct hid_device *hdev, bool connected) 2594 { 2595 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2596 struct wtp_data *wd = hidpp->private_data; 2597 int ret; 2598 2599 if (!wd->x_size) { 2600 ret = wtp_get_config(hidpp); 2601 if (ret) { 2602 hid_err(hdev, "Can not get wtp config: %d\n", ret); 2603 return ret; 2604 } 2605 } 2606 2607 return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index, 2608 true, true); 2609 } 2610 2611 /* ------------------------------------------------------------------------- */ 2612 /* Logitech M560 devices */ 2613 /* ------------------------------------------------------------------------- */ 2614 2615 /* 2616 * Logitech M560 protocol overview 2617 * 2618 * The Logitech M560 mouse, is designed for windows 8. When the middle and/or 2619 * the sides buttons are pressed, it sends some keyboard keys events 2620 * instead of buttons ones. 2621 * To complicate things further, the middle button keys sequence 2622 * is different from the odd press and the even press. 2623 * 2624 * forward button -> Super_R 2625 * backward button -> Super_L+'d' (press only) 2626 * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only) 2627 * 2nd time: left-click (press only) 2628 * NB: press-only means that when the button is pressed, the 2629 * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated 2630 * together sequentially; instead when the button is released, no event is 2631 * generated ! 2632 * 2633 * With the command 2634 * 10<xx>0a 3500af03 (where <xx> is the mouse id), 2635 * the mouse reacts differently: 2636 * - it never sends a keyboard key event 2637 * - for the three mouse button it sends: 2638 * middle button press 11<xx>0a 3500af00... 2639 * side 1 button (forward) press 11<xx>0a 3500b000... 2640 * side 2 button (backward) press 11<xx>0a 3500ae00... 2641 * middle/side1/side2 button release 11<xx>0a 35000000... 2642 */ 2643 2644 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03}; 2645 2646 /* how buttons are mapped in the report */ 2647 #define M560_MOUSE_BTN_LEFT 0x01 2648 #define M560_MOUSE_BTN_RIGHT 0x02 2649 #define M560_MOUSE_BTN_WHEEL_LEFT 0x08 2650 #define M560_MOUSE_BTN_WHEEL_RIGHT 0x10 2651 2652 #define M560_SUB_ID 0x0a 2653 #define M560_BUTTON_MODE_REGISTER 0x35 2654 2655 static int m560_send_config_command(struct hid_device *hdev, bool connected) 2656 { 2657 struct hidpp_report response; 2658 struct hidpp_device *hidpp_dev; 2659 2660 hidpp_dev = hid_get_drvdata(hdev); 2661 2662 return hidpp_send_rap_command_sync( 2663 hidpp_dev, 2664 REPORT_ID_HIDPP_SHORT, 2665 M560_SUB_ID, 2666 M560_BUTTON_MODE_REGISTER, 2667 (u8 *)m560_config_parameter, 2668 sizeof(m560_config_parameter), 2669 &response 2670 ); 2671 } 2672 2673 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size) 2674 { 2675 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2676 2677 /* sanity check */ 2678 if (!hidpp->input) { 2679 hid_err(hdev, "error in parameter\n"); 2680 return -EINVAL; 2681 } 2682 2683 if (size < 7) { 2684 hid_err(hdev, "error in report\n"); 2685 return 0; 2686 } 2687 2688 if (data[0] == REPORT_ID_HIDPP_LONG && 2689 data[2] == M560_SUB_ID && data[6] == 0x00) { 2690 /* 2691 * m560 mouse report for middle, forward and backward button 2692 * 2693 * data[0] = 0x11 2694 * data[1] = device-id 2695 * data[2] = 0x0a 2696 * data[5] = 0xaf -> middle 2697 * 0xb0 -> forward 2698 * 0xae -> backward 2699 * 0x00 -> release all 2700 * data[6] = 0x00 2701 */ 2702 2703 switch (data[5]) { 2704 case 0xaf: 2705 input_report_key(hidpp->input, BTN_MIDDLE, 1); 2706 break; 2707 case 0xb0: 2708 input_report_key(hidpp->input, BTN_FORWARD, 1); 2709 break; 2710 case 0xae: 2711 input_report_key(hidpp->input, BTN_BACK, 1); 2712 break; 2713 case 0x00: 2714 input_report_key(hidpp->input, BTN_BACK, 0); 2715 input_report_key(hidpp->input, BTN_FORWARD, 0); 2716 input_report_key(hidpp->input, BTN_MIDDLE, 0); 2717 break; 2718 default: 2719 hid_err(hdev, "error in report\n"); 2720 return 0; 2721 } 2722 input_sync(hidpp->input); 2723 2724 } else if (data[0] == 0x02) { 2725 /* 2726 * Logitech M560 mouse report 2727 * 2728 * data[0] = type (0x02) 2729 * data[1..2] = buttons 2730 * data[3..5] = xy 2731 * data[6] = wheel 2732 */ 2733 2734 int v; 2735 2736 input_report_key(hidpp->input, BTN_LEFT, 2737 !!(data[1] & M560_MOUSE_BTN_LEFT)); 2738 input_report_key(hidpp->input, BTN_RIGHT, 2739 !!(data[1] & M560_MOUSE_BTN_RIGHT)); 2740 2741 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) { 2742 input_report_rel(hidpp->input, REL_HWHEEL, -1); 2743 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, 2744 -120); 2745 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) { 2746 input_report_rel(hidpp->input, REL_HWHEEL, 1); 2747 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, 2748 120); 2749 } 2750 2751 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12); 2752 input_report_rel(hidpp->input, REL_X, v); 2753 2754 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12); 2755 input_report_rel(hidpp->input, REL_Y, v); 2756 2757 v = hid_snto32(data[6], 8); 2758 if (v != 0) 2759 hidpp_scroll_counter_handle_scroll(hidpp->input, 2760 &hidpp->vertical_wheel_counter, v); 2761 2762 input_sync(hidpp->input); 2763 } 2764 2765 return 1; 2766 } 2767 2768 static void m560_populate_input(struct hidpp_device *hidpp, 2769 struct input_dev *input_dev) 2770 { 2771 __set_bit(EV_KEY, input_dev->evbit); 2772 __set_bit(BTN_MIDDLE, input_dev->keybit); 2773 __set_bit(BTN_RIGHT, input_dev->keybit); 2774 __set_bit(BTN_LEFT, input_dev->keybit); 2775 __set_bit(BTN_BACK, input_dev->keybit); 2776 __set_bit(BTN_FORWARD, input_dev->keybit); 2777 2778 __set_bit(EV_REL, input_dev->evbit); 2779 __set_bit(REL_X, input_dev->relbit); 2780 __set_bit(REL_Y, input_dev->relbit); 2781 __set_bit(REL_WHEEL, input_dev->relbit); 2782 __set_bit(REL_HWHEEL, input_dev->relbit); 2783 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit); 2784 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit); 2785 } 2786 2787 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2788 struct hid_field *field, struct hid_usage *usage, 2789 unsigned long **bit, int *max) 2790 { 2791 return -1; 2792 } 2793 2794 /* ------------------------------------------------------------------------- */ 2795 /* Logitech K400 devices */ 2796 /* ------------------------------------------------------------------------- */ 2797 2798 /* 2799 * The Logitech K400 keyboard has an embedded touchpad which is seen 2800 * as a mouse from the OS point of view. There is a hardware shortcut to disable 2801 * tap-to-click but the setting is not remembered accross reset, annoying some 2802 * users. 2803 * 2804 * We can toggle this feature from the host by using the feature 0x6010: 2805 * Touchpad FW items 2806 */ 2807 2808 struct k400_private_data { 2809 u8 feature_index; 2810 }; 2811 2812 static int k400_disable_tap_to_click(struct hidpp_device *hidpp) 2813 { 2814 struct k400_private_data *k400 = hidpp->private_data; 2815 struct hidpp_touchpad_fw_items items = {}; 2816 int ret; 2817 u8 feature_type; 2818 2819 if (!k400->feature_index) { 2820 ret = hidpp_root_get_feature(hidpp, 2821 HIDPP_PAGE_TOUCHPAD_FW_ITEMS, 2822 &k400->feature_index, &feature_type); 2823 if (ret) 2824 /* means that the device is not powered up */ 2825 return ret; 2826 } 2827 2828 ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items); 2829 if (ret) 2830 return ret; 2831 2832 return 0; 2833 } 2834 2835 static int k400_allocate(struct hid_device *hdev) 2836 { 2837 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2838 struct k400_private_data *k400; 2839 2840 k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data), 2841 GFP_KERNEL); 2842 if (!k400) 2843 return -ENOMEM; 2844 2845 hidpp->private_data = k400; 2846 2847 return 0; 2848 }; 2849 2850 static int k400_connect(struct hid_device *hdev, bool connected) 2851 { 2852 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2853 2854 if (!disable_tap_to_click) 2855 return 0; 2856 2857 return k400_disable_tap_to_click(hidpp); 2858 } 2859 2860 /* ------------------------------------------------------------------------- */ 2861 /* Logitech G920 Driving Force Racing Wheel for Xbox One */ 2862 /* ------------------------------------------------------------------------- */ 2863 2864 #define HIDPP_PAGE_G920_FORCE_FEEDBACK 0x8123 2865 2866 static int g920_ff_set_autocenter(struct hidpp_device *hidpp, 2867 struct hidpp_ff_private_data *data) 2868 { 2869 struct hidpp_report response; 2870 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = { 2871 [1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART, 2872 }; 2873 int ret; 2874 2875 /* initialize with zero autocenter to get wheel in usable state */ 2876 2877 dbg_hid("Setting autocenter to 0.\n"); 2878 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2879 HIDPP_FF_DOWNLOAD_EFFECT, 2880 params, ARRAY_SIZE(params), 2881 &response); 2882 if (ret) 2883 hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n"); 2884 else 2885 data->slot_autocenter = response.fap.params[0]; 2886 2887 return ret; 2888 } 2889 2890 static int g920_get_config(struct hidpp_device *hidpp, 2891 struct hidpp_ff_private_data *data) 2892 { 2893 struct hidpp_report response; 2894 u8 feature_type; 2895 int ret; 2896 2897 memset(data, 0, sizeof(*data)); 2898 2899 /* Find feature and store for later use */ 2900 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK, 2901 &data->feature_index, &feature_type); 2902 if (ret) 2903 return ret; 2904 2905 /* Read number of slots available in device */ 2906 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2907 HIDPP_FF_GET_INFO, 2908 NULL, 0, 2909 &response); 2910 if (ret) { 2911 if (ret < 0) 2912 return ret; 2913 hid_err(hidpp->hid_dev, 2914 "%s: received protocol error 0x%02x\n", __func__, ret); 2915 return -EPROTO; 2916 } 2917 2918 data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS; 2919 2920 /* reset all forces */ 2921 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2922 HIDPP_FF_RESET_ALL, 2923 NULL, 0, 2924 &response); 2925 if (ret) 2926 hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n"); 2927 2928 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2929 HIDPP_FF_GET_APERTURE, 2930 NULL, 0, 2931 &response); 2932 if (ret) { 2933 hid_warn(hidpp->hid_dev, 2934 "Failed to read range from device!\n"); 2935 } 2936 data->range = ret ? 2937 900 : get_unaligned_be16(&response.fap.params[0]); 2938 2939 /* Read the current gain values */ 2940 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2941 HIDPP_FF_GET_GLOBAL_GAINS, 2942 NULL, 0, 2943 &response); 2944 if (ret) 2945 hid_warn(hidpp->hid_dev, 2946 "Failed to read gain values from device!\n"); 2947 data->gain = ret ? 2948 0xffff : get_unaligned_be16(&response.fap.params[0]); 2949 2950 /* ignore boost value at response.fap.params[2] */ 2951 2952 return g920_ff_set_autocenter(hidpp, data); 2953 } 2954 2955 /* -------------------------------------------------------------------------- */ 2956 /* Logitech Dinovo Mini keyboard with builtin touchpad */ 2957 /* -------------------------------------------------------------------------- */ 2958 #define DINOVO_MINI_PRODUCT_ID 0xb30c 2959 2960 static int lg_dinovo_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2961 struct hid_field *field, struct hid_usage *usage, 2962 unsigned long **bit, int *max) 2963 { 2964 if ((usage->hid & HID_USAGE_PAGE) != HID_UP_LOGIVENDOR) 2965 return 0; 2966 2967 switch (usage->hid & HID_USAGE) { 2968 case 0x00d: lg_map_key_clear(KEY_MEDIA); break; 2969 default: 2970 return 0; 2971 } 2972 return 1; 2973 } 2974 2975 /* -------------------------------------------------------------------------- */ 2976 /* HID++1.0 devices which use HID++ reports for their wheels */ 2977 /* -------------------------------------------------------------------------- */ 2978 static int hidpp10_wheel_connect(struct hidpp_device *hidpp) 2979 { 2980 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 2981 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT, 2982 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT); 2983 } 2984 2985 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp, 2986 u8 *data, int size) 2987 { 2988 s8 value, hvalue; 2989 2990 if (!hidpp->input) 2991 return -EINVAL; 2992 2993 if (size < 7) 2994 return 0; 2995 2996 if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER) 2997 return 0; 2998 2999 value = data[3]; 3000 hvalue = data[4]; 3001 3002 input_report_rel(hidpp->input, REL_WHEEL, value); 3003 input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120); 3004 input_report_rel(hidpp->input, REL_HWHEEL, hvalue); 3005 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120); 3006 input_sync(hidpp->input); 3007 3008 return 1; 3009 } 3010 3011 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp, 3012 struct input_dev *input_dev) 3013 { 3014 __set_bit(EV_REL, input_dev->evbit); 3015 __set_bit(REL_WHEEL, input_dev->relbit); 3016 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit); 3017 __set_bit(REL_HWHEEL, input_dev->relbit); 3018 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit); 3019 } 3020 3021 /* -------------------------------------------------------------------------- */ 3022 /* HID++1.0 mice which use HID++ reports for extra mouse buttons */ 3023 /* -------------------------------------------------------------------------- */ 3024 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp) 3025 { 3026 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 3027 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT, 3028 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT); 3029 } 3030 3031 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp, 3032 u8 *data, int size) 3033 { 3034 int i; 3035 3036 if (!hidpp->input) 3037 return -EINVAL; 3038 3039 if (size < 7) 3040 return 0; 3041 3042 if (data[0] != REPORT_ID_HIDPP_SHORT || 3043 data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS) 3044 return 0; 3045 3046 /* 3047 * Buttons are either delivered through the regular mouse report *or* 3048 * through the extra buttons report. At least for button 6 how it is 3049 * delivered differs per receiver firmware version. Even receivers with 3050 * the same usb-id show different behavior, so we handle both cases. 3051 */ 3052 for (i = 0; i < 8; i++) 3053 input_report_key(hidpp->input, BTN_MOUSE + i, 3054 (data[3] & (1 << i))); 3055 3056 /* Some mice report events on button 9+, use BTN_MISC */ 3057 for (i = 0; i < 8; i++) 3058 input_report_key(hidpp->input, BTN_MISC + i, 3059 (data[4] & (1 << i))); 3060 3061 input_sync(hidpp->input); 3062 return 1; 3063 } 3064 3065 static void hidpp10_extra_mouse_buttons_populate_input( 3066 struct hidpp_device *hidpp, struct input_dev *input_dev) 3067 { 3068 /* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */ 3069 __set_bit(BTN_0, input_dev->keybit); 3070 __set_bit(BTN_1, input_dev->keybit); 3071 __set_bit(BTN_2, input_dev->keybit); 3072 __set_bit(BTN_3, input_dev->keybit); 3073 __set_bit(BTN_4, input_dev->keybit); 3074 __set_bit(BTN_5, input_dev->keybit); 3075 __set_bit(BTN_6, input_dev->keybit); 3076 __set_bit(BTN_7, input_dev->keybit); 3077 } 3078 3079 /* -------------------------------------------------------------------------- */ 3080 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */ 3081 /* -------------------------------------------------------------------------- */ 3082 3083 /* Find the consumer-page input report desc and change Maximums to 0x107f */ 3084 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp, 3085 u8 *_rdesc, unsigned int *rsize) 3086 { 3087 /* Note 0 terminated so we can use strnstr to search for this. */ 3088 static const char consumer_rdesc_start[] = { 3089 0x05, 0x0C, /* USAGE_PAGE (Consumer Devices) */ 3090 0x09, 0x01, /* USAGE (Consumer Control) */ 3091 0xA1, 0x01, /* COLLECTION (Application) */ 3092 0x85, 0x03, /* REPORT_ID = 3 */ 3093 0x75, 0x10, /* REPORT_SIZE (16) */ 3094 0x95, 0x02, /* REPORT_COUNT (2) */ 3095 0x15, 0x01, /* LOGICAL_MIN (1) */ 3096 0x26, 0x00 /* LOGICAL_MAX (... */ 3097 }; 3098 char *consumer_rdesc, *rdesc = (char *)_rdesc; 3099 unsigned int size; 3100 3101 consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize); 3102 size = *rsize - (consumer_rdesc - rdesc); 3103 if (consumer_rdesc && size >= 25) { 3104 consumer_rdesc[15] = 0x7f; 3105 consumer_rdesc[16] = 0x10; 3106 consumer_rdesc[20] = 0x7f; 3107 consumer_rdesc[21] = 0x10; 3108 } 3109 return _rdesc; 3110 } 3111 3112 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp) 3113 { 3114 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 3115 HIDPP_ENABLE_CONSUMER_REPORT, 3116 HIDPP_ENABLE_CONSUMER_REPORT); 3117 } 3118 3119 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp, 3120 u8 *data, int size) 3121 { 3122 u8 consumer_report[5]; 3123 3124 if (size < 7) 3125 return 0; 3126 3127 if (data[0] != REPORT_ID_HIDPP_SHORT || 3128 data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS) 3129 return 0; 3130 3131 /* 3132 * Build a normal consumer report (3) out of the data, this detour 3133 * is necessary to get some keyboards to report their 0x10xx usages. 3134 */ 3135 consumer_report[0] = 0x03; 3136 memcpy(&consumer_report[1], &data[3], 4); 3137 /* We are called from atomic context */ 3138 hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT, 3139 consumer_report, 5, 1); 3140 3141 return 1; 3142 } 3143 3144 /* -------------------------------------------------------------------------- */ 3145 /* High-resolution scroll wheels */ 3146 /* -------------------------------------------------------------------------- */ 3147 3148 static int hi_res_scroll_enable(struct hidpp_device *hidpp) 3149 { 3150 int ret; 3151 u8 multiplier = 1; 3152 3153 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) { 3154 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false); 3155 if (ret == 0) 3156 ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier); 3157 } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) { 3158 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true, 3159 &multiplier); 3160 } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ { 3161 ret = hidpp10_enable_scrolling_acceleration(hidpp); 3162 multiplier = 8; 3163 } 3164 if (ret) 3165 return ret; 3166 3167 if (multiplier == 0) 3168 multiplier = 1; 3169 3170 hidpp->vertical_wheel_counter.wheel_multiplier = multiplier; 3171 hid_dbg(hidpp->hid_dev, "wheel multiplier = %d\n", multiplier); 3172 return 0; 3173 } 3174 3175 /* -------------------------------------------------------------------------- */ 3176 /* Generic HID++ devices */ 3177 /* -------------------------------------------------------------------------- */ 3178 3179 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc, 3180 unsigned int *rsize) 3181 { 3182 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3183 3184 if (!hidpp) 3185 return rdesc; 3186 3187 /* For 27 MHz keyboards the quirk gets set after hid_parse. */ 3188 if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE || 3189 (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS)) 3190 rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize); 3191 3192 return rdesc; 3193 } 3194 3195 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 3196 struct hid_field *field, struct hid_usage *usage, 3197 unsigned long **bit, int *max) 3198 { 3199 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3200 3201 if (!hidpp) 3202 return 0; 3203 3204 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3205 return wtp_input_mapping(hdev, hi, field, usage, bit, max); 3206 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 && 3207 field->application != HID_GD_MOUSE) 3208 return m560_input_mapping(hdev, hi, field, usage, bit, max); 3209 3210 if (hdev->product == DINOVO_MINI_PRODUCT_ID) 3211 return lg_dinovo_input_mapping(hdev, hi, field, usage, bit, max); 3212 3213 return 0; 3214 } 3215 3216 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi, 3217 struct hid_field *field, struct hid_usage *usage, 3218 unsigned long **bit, int *max) 3219 { 3220 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3221 3222 if (!hidpp) 3223 return 0; 3224 3225 /* Ensure that Logitech G920 is not given a default fuzz/flat value */ 3226 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3227 if (usage->type == EV_ABS && (usage->code == ABS_X || 3228 usage->code == ABS_Y || usage->code == ABS_Z || 3229 usage->code == ABS_RZ)) { 3230 field->application = HID_GD_MULTIAXIS; 3231 } 3232 } 3233 3234 return 0; 3235 } 3236 3237 3238 static void hidpp_populate_input(struct hidpp_device *hidpp, 3239 struct input_dev *input) 3240 { 3241 hidpp->input = input; 3242 3243 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3244 wtp_populate_input(hidpp, input); 3245 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 3246 m560_populate_input(hidpp, input); 3247 3248 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) 3249 hidpp10_wheel_populate_input(hidpp, input); 3250 3251 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) 3252 hidpp10_extra_mouse_buttons_populate_input(hidpp, input); 3253 } 3254 3255 static int hidpp_input_configured(struct hid_device *hdev, 3256 struct hid_input *hidinput) 3257 { 3258 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3259 struct input_dev *input = hidinput->input; 3260 3261 if (!hidpp) 3262 return 0; 3263 3264 hidpp_populate_input(hidpp, input); 3265 3266 return 0; 3267 } 3268 3269 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data, 3270 int size) 3271 { 3272 struct hidpp_report *question = hidpp->send_receive_buf; 3273 struct hidpp_report *answer = hidpp->send_receive_buf; 3274 struct hidpp_report *report = (struct hidpp_report *)data; 3275 int ret; 3276 3277 /* 3278 * If the mutex is locked then we have a pending answer from a 3279 * previously sent command. 3280 */ 3281 if (unlikely(mutex_is_locked(&hidpp->send_mutex))) { 3282 /* 3283 * Check for a correct hidpp20 answer or the corresponding 3284 * error 3285 */ 3286 if (hidpp_match_answer(question, report) || 3287 hidpp_match_error(question, report)) { 3288 *answer = *report; 3289 hidpp->answer_available = true; 3290 wake_up(&hidpp->wait); 3291 /* 3292 * This was an answer to a command that this driver sent 3293 * We return 1 to hid-core to avoid forwarding the 3294 * command upstream as it has been treated by the driver 3295 */ 3296 3297 return 1; 3298 } 3299 } 3300 3301 if (unlikely(hidpp_report_is_connect_event(hidpp, report))) { 3302 atomic_set(&hidpp->connected, 3303 !(report->rap.params[0] & (1 << 6))); 3304 if (schedule_work(&hidpp->work) == 0) 3305 dbg_hid("%s: connect event already queued\n", __func__); 3306 return 1; 3307 } 3308 3309 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3310 ret = hidpp20_battery_event(hidpp, data, size); 3311 if (ret != 0) 3312 return ret; 3313 ret = hidpp_solar_battery_event(hidpp, data, size); 3314 if (ret != 0) 3315 return ret; 3316 ret = hidpp20_battery_voltage_event(hidpp, data, size); 3317 if (ret != 0) 3318 return ret; 3319 } 3320 3321 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3322 ret = hidpp10_battery_event(hidpp, data, size); 3323 if (ret != 0) 3324 return ret; 3325 } 3326 3327 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) { 3328 ret = hidpp10_wheel_raw_event(hidpp, data, size); 3329 if (ret != 0) 3330 return ret; 3331 } 3332 3333 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) { 3334 ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size); 3335 if (ret != 0) 3336 return ret; 3337 } 3338 3339 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) { 3340 ret = hidpp10_consumer_keys_raw_event(hidpp, data, size); 3341 if (ret != 0) 3342 return ret; 3343 } 3344 3345 return 0; 3346 } 3347 3348 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report, 3349 u8 *data, int size) 3350 { 3351 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3352 int ret = 0; 3353 3354 if (!hidpp) 3355 return 0; 3356 3357 /* Generic HID++ processing. */ 3358 switch (data[0]) { 3359 case REPORT_ID_HIDPP_VERY_LONG: 3360 if (size != hidpp->very_long_report_length) { 3361 hid_err(hdev, "received hid++ report of bad size (%d)", 3362 size); 3363 return 1; 3364 } 3365 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3366 break; 3367 case REPORT_ID_HIDPP_LONG: 3368 if (size != HIDPP_REPORT_LONG_LENGTH) { 3369 hid_err(hdev, "received hid++ report of bad size (%d)", 3370 size); 3371 return 1; 3372 } 3373 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3374 break; 3375 case REPORT_ID_HIDPP_SHORT: 3376 if (size != HIDPP_REPORT_SHORT_LENGTH) { 3377 hid_err(hdev, "received hid++ report of bad size (%d)", 3378 size); 3379 return 1; 3380 } 3381 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3382 break; 3383 } 3384 3385 /* If no report is available for further processing, skip calling 3386 * raw_event of subclasses. */ 3387 if (ret != 0) 3388 return ret; 3389 3390 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3391 return wtp_raw_event(hdev, data, size); 3392 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 3393 return m560_raw_event(hdev, data, size); 3394 3395 return 0; 3396 } 3397 3398 static int hidpp_event(struct hid_device *hdev, struct hid_field *field, 3399 struct hid_usage *usage, __s32 value) 3400 { 3401 /* This function will only be called for scroll events, due to the 3402 * restriction imposed in hidpp_usages. 3403 */ 3404 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3405 struct hidpp_scroll_counter *counter; 3406 3407 if (!hidpp) 3408 return 0; 3409 3410 counter = &hidpp->vertical_wheel_counter; 3411 /* A scroll event may occur before the multiplier has been retrieved or 3412 * the input device set, or high-res scroll enabling may fail. In such 3413 * cases we must return early (falling back to default behaviour) to 3414 * avoid a crash in hidpp_scroll_counter_handle_scroll. 3415 */ 3416 if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0 3417 || hidpp->input == NULL || counter->wheel_multiplier == 0) 3418 return 0; 3419 3420 hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value); 3421 return 1; 3422 } 3423 3424 static int hidpp_initialize_battery(struct hidpp_device *hidpp) 3425 { 3426 static atomic_t battery_no = ATOMIC_INIT(0); 3427 struct power_supply_config cfg = { .drv_data = hidpp }; 3428 struct power_supply_desc *desc = &hidpp->battery.desc; 3429 enum power_supply_property *battery_props; 3430 struct hidpp_battery *battery; 3431 unsigned int num_battery_props; 3432 unsigned long n; 3433 int ret; 3434 3435 if (hidpp->battery.ps) 3436 return 0; 3437 3438 hidpp->battery.feature_index = 0xff; 3439 hidpp->battery.solar_feature_index = 0xff; 3440 hidpp->battery.voltage_feature_index = 0xff; 3441 3442 if (hidpp->protocol_major >= 2) { 3443 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750) 3444 ret = hidpp_solar_request_battery_event(hidpp); 3445 else { 3446 ret = hidpp20_query_battery_voltage_info(hidpp); 3447 if (ret) 3448 ret = hidpp20_query_battery_info(hidpp); 3449 } 3450 3451 if (ret) 3452 return ret; 3453 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY; 3454 } else { 3455 ret = hidpp10_query_battery_status(hidpp); 3456 if (ret) { 3457 ret = hidpp10_query_battery_mileage(hidpp); 3458 if (ret) 3459 return -ENOENT; 3460 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 3461 } else { 3462 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 3463 } 3464 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY; 3465 } 3466 3467 battery_props = devm_kmemdup(&hidpp->hid_dev->dev, 3468 hidpp_battery_props, 3469 sizeof(hidpp_battery_props), 3470 GFP_KERNEL); 3471 if (!battery_props) 3472 return -ENOMEM; 3473 3474 num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3; 3475 3476 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 3477 battery_props[num_battery_props++] = 3478 POWER_SUPPLY_PROP_CAPACITY; 3479 3480 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS) 3481 battery_props[num_battery_props++] = 3482 POWER_SUPPLY_PROP_CAPACITY_LEVEL; 3483 3484 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE) 3485 battery_props[num_battery_props++] = 3486 POWER_SUPPLY_PROP_VOLTAGE_NOW; 3487 3488 battery = &hidpp->battery; 3489 3490 n = atomic_inc_return(&battery_no) - 1; 3491 desc->properties = battery_props; 3492 desc->num_properties = num_battery_props; 3493 desc->get_property = hidpp_battery_get_property; 3494 sprintf(battery->name, "hidpp_battery_%ld", n); 3495 desc->name = battery->name; 3496 desc->type = POWER_SUPPLY_TYPE_BATTERY; 3497 desc->use_for_apm = 0; 3498 3499 battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev, 3500 &battery->desc, 3501 &cfg); 3502 if (IS_ERR(battery->ps)) 3503 return PTR_ERR(battery->ps); 3504 3505 power_supply_powers(battery->ps, &hidpp->hid_dev->dev); 3506 3507 return ret; 3508 } 3509 3510 static void hidpp_overwrite_name(struct hid_device *hdev) 3511 { 3512 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3513 char *name; 3514 3515 if (hidpp->protocol_major < 2) 3516 return; 3517 3518 name = hidpp_get_device_name(hidpp); 3519 3520 if (!name) { 3521 hid_err(hdev, "unable to retrieve the name of the device"); 3522 } else { 3523 dbg_hid("HID++: Got name: %s\n", name); 3524 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 3525 } 3526 3527 kfree(name); 3528 } 3529 3530 static int hidpp_input_open(struct input_dev *dev) 3531 { 3532 struct hid_device *hid = input_get_drvdata(dev); 3533 3534 return hid_hw_open(hid); 3535 } 3536 3537 static void hidpp_input_close(struct input_dev *dev) 3538 { 3539 struct hid_device *hid = input_get_drvdata(dev); 3540 3541 hid_hw_close(hid); 3542 } 3543 3544 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev) 3545 { 3546 struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev); 3547 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3548 3549 if (!input_dev) 3550 return NULL; 3551 3552 input_set_drvdata(input_dev, hdev); 3553 input_dev->open = hidpp_input_open; 3554 input_dev->close = hidpp_input_close; 3555 3556 input_dev->name = hidpp->name; 3557 input_dev->phys = hdev->phys; 3558 input_dev->uniq = hdev->uniq; 3559 input_dev->id.bustype = hdev->bus; 3560 input_dev->id.vendor = hdev->vendor; 3561 input_dev->id.product = hdev->product; 3562 input_dev->id.version = hdev->version; 3563 input_dev->dev.parent = &hdev->dev; 3564 3565 return input_dev; 3566 } 3567 3568 static void hidpp_connect_event(struct hidpp_device *hidpp) 3569 { 3570 struct hid_device *hdev = hidpp->hid_dev; 3571 int ret = 0; 3572 bool connected = atomic_read(&hidpp->connected); 3573 struct input_dev *input; 3574 char *name, *devm_name; 3575 3576 if (!connected) { 3577 if (hidpp->battery.ps) { 3578 hidpp->battery.online = false; 3579 hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN; 3580 hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 3581 power_supply_changed(hidpp->battery.ps); 3582 } 3583 return; 3584 } 3585 3586 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 3587 ret = wtp_connect(hdev, connected); 3588 if (ret) 3589 return; 3590 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) { 3591 ret = m560_send_config_command(hdev, connected); 3592 if (ret) 3593 return; 3594 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 3595 ret = k400_connect(hdev, connected); 3596 if (ret) 3597 return; 3598 } 3599 3600 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) { 3601 ret = hidpp10_wheel_connect(hidpp); 3602 if (ret) 3603 return; 3604 } 3605 3606 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) { 3607 ret = hidpp10_extra_mouse_buttons_connect(hidpp); 3608 if (ret) 3609 return; 3610 } 3611 3612 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) { 3613 ret = hidpp10_consumer_keys_connect(hidpp); 3614 if (ret) 3615 return; 3616 } 3617 3618 /* the device is already connected, we can ask for its name and 3619 * protocol */ 3620 if (!hidpp->protocol_major) { 3621 ret = hidpp_root_get_protocol_version(hidpp); 3622 if (ret) { 3623 hid_err(hdev, "Can not get the protocol version.\n"); 3624 return; 3625 } 3626 } 3627 3628 if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) { 3629 name = hidpp_get_device_name(hidpp); 3630 if (name) { 3631 devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL, 3632 "%s", name); 3633 kfree(name); 3634 if (!devm_name) 3635 return; 3636 3637 hidpp->name = devm_name; 3638 } 3639 } 3640 3641 hidpp_initialize_battery(hidpp); 3642 3643 /* forward current battery state */ 3644 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3645 hidpp10_enable_battery_reporting(hidpp); 3646 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 3647 hidpp10_query_battery_mileage(hidpp); 3648 else 3649 hidpp10_query_battery_status(hidpp); 3650 } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3651 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE) 3652 hidpp20_query_battery_voltage_info(hidpp); 3653 else 3654 hidpp20_query_battery_info(hidpp); 3655 } 3656 if (hidpp->battery.ps) 3657 power_supply_changed(hidpp->battery.ps); 3658 3659 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) 3660 hi_res_scroll_enable(hidpp); 3661 3662 if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input) 3663 /* if the input nodes are already created, we can stop now */ 3664 return; 3665 3666 input = hidpp_allocate_input(hdev); 3667 if (!input) { 3668 hid_err(hdev, "cannot allocate new input device: %d\n", ret); 3669 return; 3670 } 3671 3672 hidpp_populate_input(hidpp, input); 3673 3674 ret = input_register_device(input); 3675 if (ret) 3676 input_free_device(input); 3677 3678 hidpp->delayed_input = input; 3679 } 3680 3681 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL); 3682 3683 static struct attribute *sysfs_attrs[] = { 3684 &dev_attr_builtin_power_supply.attr, 3685 NULL 3686 }; 3687 3688 static const struct attribute_group ps_attribute_group = { 3689 .attrs = sysfs_attrs 3690 }; 3691 3692 static int hidpp_get_report_length(struct hid_device *hdev, int id) 3693 { 3694 struct hid_report_enum *re; 3695 struct hid_report *report; 3696 3697 re = &(hdev->report_enum[HID_OUTPUT_REPORT]); 3698 report = re->report_id_hash[id]; 3699 if (!report) 3700 return 0; 3701 3702 return report->field[0]->report_count + 1; 3703 } 3704 3705 static u8 hidpp_validate_device(struct hid_device *hdev) 3706 { 3707 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3708 int id, report_length; 3709 u8 supported_reports = 0; 3710 3711 id = REPORT_ID_HIDPP_SHORT; 3712 report_length = hidpp_get_report_length(hdev, id); 3713 if (report_length) { 3714 if (report_length < HIDPP_REPORT_SHORT_LENGTH) 3715 goto bad_device; 3716 3717 supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED; 3718 } 3719 3720 id = REPORT_ID_HIDPP_LONG; 3721 report_length = hidpp_get_report_length(hdev, id); 3722 if (report_length) { 3723 if (report_length < HIDPP_REPORT_LONG_LENGTH) 3724 goto bad_device; 3725 3726 supported_reports |= HIDPP_REPORT_LONG_SUPPORTED; 3727 } 3728 3729 id = REPORT_ID_HIDPP_VERY_LONG; 3730 report_length = hidpp_get_report_length(hdev, id); 3731 if (report_length) { 3732 if (report_length < HIDPP_REPORT_LONG_LENGTH || 3733 report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH) 3734 goto bad_device; 3735 3736 supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED; 3737 hidpp->very_long_report_length = report_length; 3738 } 3739 3740 return supported_reports; 3741 3742 bad_device: 3743 hid_warn(hdev, "not enough values in hidpp report %d\n", id); 3744 return false; 3745 } 3746 3747 static bool hidpp_application_equals(struct hid_device *hdev, 3748 unsigned int application) 3749 { 3750 struct list_head *report_list; 3751 struct hid_report *report; 3752 3753 report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list; 3754 report = list_first_entry_or_null(report_list, struct hid_report, list); 3755 return report && report->application == application; 3756 } 3757 3758 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id) 3759 { 3760 struct hidpp_device *hidpp; 3761 int ret; 3762 bool connected; 3763 unsigned int connect_mask = HID_CONNECT_DEFAULT; 3764 struct hidpp_ff_private_data data; 3765 3766 /* report_fixup needs drvdata to be set before we call hid_parse */ 3767 hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL); 3768 if (!hidpp) 3769 return -ENOMEM; 3770 3771 hidpp->hid_dev = hdev; 3772 hidpp->name = hdev->name; 3773 hidpp->quirks = id->driver_data; 3774 hid_set_drvdata(hdev, hidpp); 3775 3776 ret = hid_parse(hdev); 3777 if (ret) { 3778 hid_err(hdev, "%s:parse failed\n", __func__); 3779 return ret; 3780 } 3781 3782 /* 3783 * Make sure the device is HID++ capable, otherwise treat as generic HID 3784 */ 3785 hidpp->supported_reports = hidpp_validate_device(hdev); 3786 3787 if (!hidpp->supported_reports) { 3788 hid_set_drvdata(hdev, NULL); 3789 devm_kfree(&hdev->dev, hidpp); 3790 return hid_hw_start(hdev, HID_CONNECT_DEFAULT); 3791 } 3792 3793 if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE) 3794 hidpp->quirks |= HIDPP_QUIRK_UNIFYING; 3795 3796 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 3797 hidpp_application_equals(hdev, HID_GD_MOUSE)) 3798 hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS | 3799 HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS; 3800 3801 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 3802 hidpp_application_equals(hdev, HID_GD_KEYBOARD)) 3803 hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS; 3804 3805 if (disable_raw_mode) { 3806 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP; 3807 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT; 3808 } 3809 3810 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 3811 ret = wtp_allocate(hdev, id); 3812 if (ret) 3813 return ret; 3814 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 3815 ret = k400_allocate(hdev); 3816 if (ret) 3817 return ret; 3818 } 3819 3820 INIT_WORK(&hidpp->work, delayed_work_cb); 3821 mutex_init(&hidpp->send_mutex); 3822 init_waitqueue_head(&hidpp->wait); 3823 3824 /* indicates we are handling the battery properties in the kernel */ 3825 ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group); 3826 if (ret) 3827 hid_warn(hdev, "Cannot allocate sysfs group for %s\n", 3828 hdev->name); 3829 3830 /* 3831 * Plain USB connections need to actually call start and open 3832 * on the transport driver to allow incoming data. 3833 */ 3834 ret = hid_hw_start(hdev, 0); 3835 if (ret) { 3836 hid_err(hdev, "hw start failed\n"); 3837 goto hid_hw_start_fail; 3838 } 3839 3840 ret = hid_hw_open(hdev); 3841 if (ret < 0) { 3842 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n", 3843 __func__, ret); 3844 goto hid_hw_open_fail; 3845 } 3846 3847 /* Allow incoming packets */ 3848 hid_device_io_start(hdev); 3849 3850 if (hidpp->quirks & HIDPP_QUIRK_UNIFYING) 3851 hidpp_unifying_init(hidpp); 3852 3853 connected = hidpp_root_get_protocol_version(hidpp) == 0; 3854 atomic_set(&hidpp->connected, connected); 3855 if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) { 3856 if (!connected) { 3857 ret = -ENODEV; 3858 hid_err(hdev, "Device not connected"); 3859 goto hid_hw_init_fail; 3860 } 3861 3862 hidpp_overwrite_name(hdev); 3863 } 3864 3865 if (connected && hidpp->protocol_major >= 2) { 3866 ret = hidpp_set_wireless_feature_index(hidpp); 3867 if (ret == -ENOENT) 3868 hidpp->wireless_feature_index = 0; 3869 else if (ret) 3870 goto hid_hw_init_fail; 3871 } 3872 3873 if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) { 3874 ret = wtp_get_config(hidpp); 3875 if (ret) 3876 goto hid_hw_init_fail; 3877 } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) { 3878 ret = g920_get_config(hidpp, &data); 3879 if (ret) 3880 goto hid_hw_init_fail; 3881 } 3882 3883 hidpp_connect_event(hidpp); 3884 3885 /* Reset the HID node state */ 3886 hid_device_io_stop(hdev); 3887 hid_hw_close(hdev); 3888 hid_hw_stop(hdev); 3889 3890 if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) 3891 connect_mask &= ~HID_CONNECT_HIDINPUT; 3892 3893 /* Now export the actual inputs and hidraw nodes to the world */ 3894 ret = hid_hw_start(hdev, connect_mask); 3895 if (ret) { 3896 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__); 3897 goto hid_hw_start_fail; 3898 } 3899 3900 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3901 ret = hidpp_ff_init(hidpp, &data); 3902 if (ret) 3903 hid_warn(hidpp->hid_dev, 3904 "Unable to initialize force feedback support, errno %d\n", 3905 ret); 3906 } 3907 3908 return ret; 3909 3910 hid_hw_init_fail: 3911 hid_hw_close(hdev); 3912 hid_hw_open_fail: 3913 hid_hw_stop(hdev); 3914 hid_hw_start_fail: 3915 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 3916 cancel_work_sync(&hidpp->work); 3917 mutex_destroy(&hidpp->send_mutex); 3918 return ret; 3919 } 3920 3921 static void hidpp_remove(struct hid_device *hdev) 3922 { 3923 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3924 3925 if (!hidpp) 3926 return hid_hw_stop(hdev); 3927 3928 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 3929 3930 hid_hw_stop(hdev); 3931 cancel_work_sync(&hidpp->work); 3932 mutex_destroy(&hidpp->send_mutex); 3933 } 3934 3935 #define LDJ_DEVICE(product) \ 3936 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \ 3937 USB_VENDOR_ID_LOGITECH, (product)) 3938 3939 #define L27MHZ_DEVICE(product) \ 3940 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \ 3941 USB_VENDOR_ID_LOGITECH, (product)) 3942 3943 static const struct hid_device_id hidpp_devices[] = { 3944 { /* wireless touchpad */ 3945 LDJ_DEVICE(0x4011), 3946 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT | 3947 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS }, 3948 { /* wireless touchpad T650 */ 3949 LDJ_DEVICE(0x4101), 3950 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT }, 3951 { /* wireless touchpad T651 */ 3952 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 3953 USB_DEVICE_ID_LOGITECH_T651), 3954 .driver_data = HIDPP_QUIRK_CLASS_WTP }, 3955 { /* Mouse Logitech Anywhere MX */ 3956 LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3957 { /* Mouse Logitech Cube */ 3958 LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3959 { /* Mouse Logitech M335 */ 3960 LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3961 { /* Mouse Logitech M515 */ 3962 LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3963 { /* Mouse logitech M560 */ 3964 LDJ_DEVICE(0x402d), 3965 .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560 3966 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3967 { /* Mouse Logitech M705 (firmware RQM17) */ 3968 LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3969 { /* Mouse Logitech M705 (firmware RQM67) */ 3970 LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3971 { /* Mouse Logitech M720 */ 3972 LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3973 { /* Mouse Logitech MX Anywhere 2 */ 3974 LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3975 { LDJ_DEVICE(0x4072), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3976 { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3977 { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3978 { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3979 { /* Mouse Logitech MX Anywhere 2S */ 3980 LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3981 { /* Mouse Logitech MX Master */ 3982 LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3983 { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3984 { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3985 { /* Mouse Logitech MX Master 2S */ 3986 LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3987 { /* Mouse Logitech MX Master 3 */ 3988 LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3989 { /* Mouse Logitech Performance MX */ 3990 LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3991 { /* Keyboard logitech K400 */ 3992 LDJ_DEVICE(0x4024), 3993 .driver_data = HIDPP_QUIRK_CLASS_K400 }, 3994 { /* Solar Keyboard Logitech K750 */ 3995 LDJ_DEVICE(0x4002), 3996 .driver_data = HIDPP_QUIRK_CLASS_K750 }, 3997 { /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */ 3998 LDJ_DEVICE(0xb305), 3999 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4000 { /* Dinovo Edge (Bluetooth-receiver in HID proxy mode) */ 4001 LDJ_DEVICE(0xb309), 4002 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4003 { /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */ 4004 LDJ_DEVICE(0xb30b), 4005 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4006 4007 { LDJ_DEVICE(HID_ANY_ID) }, 4008 4009 { /* Keyboard LX501 (Y-RR53) */ 4010 L27MHZ_DEVICE(0x0049), 4011 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL }, 4012 { /* Keyboard MX3000 (Y-RAM74) */ 4013 L27MHZ_DEVICE(0x0057), 4014 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL }, 4015 { /* Keyboard MX3200 (Y-RAV80) */ 4016 L27MHZ_DEVICE(0x005c), 4017 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL }, 4018 { /* S510 Media Remote */ 4019 L27MHZ_DEVICE(0x00fe), 4020 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL }, 4021 4022 { L27MHZ_DEVICE(HID_ANY_ID) }, 4023 4024 { /* Logitech G403 Wireless Gaming Mouse over USB */ 4025 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) }, 4026 { /* Logitech G703 Gaming Mouse over USB */ 4027 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) }, 4028 { /* Logitech G703 Hero Gaming Mouse over USB */ 4029 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) }, 4030 { /* Logitech G900 Gaming Mouse over USB */ 4031 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) }, 4032 { /* Logitech G903 Gaming Mouse over USB */ 4033 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) }, 4034 { /* Logitech G903 Hero Gaming Mouse over USB */ 4035 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) }, 4036 { /* Logitech G920 Wheel over USB */ 4037 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL), 4038 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS}, 4039 { /* Logitech G Pro Gaming Mouse over USB */ 4040 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) }, 4041 4042 { /* MX5000 keyboard over Bluetooth */ 4043 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305), 4044 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4045 { /* Dinovo Edge keyboard over Bluetooth */ 4046 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb309), 4047 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4048 { /* MX5500 keyboard over Bluetooth */ 4049 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b), 4050 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4051 { /* M-RCQ142 V470 Cordless Laser Mouse over Bluetooth */ 4052 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb008) }, 4053 { /* MX Master mouse over Bluetooth */ 4054 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012), 4055 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4056 { /* MX Ergo trackball over Bluetooth */ 4057 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01d) }, 4058 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e), 4059 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4060 { /* MX Master 3 mouse over Bluetooth */ 4061 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023), 4062 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4063 {} 4064 }; 4065 4066 MODULE_DEVICE_TABLE(hid, hidpp_devices); 4067 4068 static const struct hid_usage_id hidpp_usages[] = { 4069 { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES }, 4070 { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1} 4071 }; 4072 4073 static struct hid_driver hidpp_driver = { 4074 .name = "logitech-hidpp-device", 4075 .id_table = hidpp_devices, 4076 .report_fixup = hidpp_report_fixup, 4077 .probe = hidpp_probe, 4078 .remove = hidpp_remove, 4079 .raw_event = hidpp_raw_event, 4080 .usage_table = hidpp_usages, 4081 .event = hidpp_event, 4082 .input_configured = hidpp_input_configured, 4083 .input_mapping = hidpp_input_mapping, 4084 .input_mapped = hidpp_input_mapped, 4085 }; 4086 4087 module_hid_driver(hidpp_driver); 4088