1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  HIDPP protocol for Logitech receivers
4  *
5  *  Copyright (c) 2011 Logitech (c)
6  *  Copyright (c) 2012-2013 Google (c)
7  *  Copyright (c) 2013-2014 Red Hat Inc.
8  */
9 
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/device.h>
14 #include <linux/input.h>
15 #include <linux/usb.h>
16 #include <linux/hid.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/clock.h>
21 #include <linux/kfifo.h>
22 #include <linux/input/mt.h>
23 #include <linux/workqueue.h>
24 #include <linux/atomic.h>
25 #include <linux/fixp-arith.h>
26 #include <asm/unaligned.h>
27 #include "usbhid/usbhid.h"
28 #include "hid-ids.h"
29 
30 MODULE_LICENSE("GPL");
31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
33 
34 static bool disable_raw_mode;
35 module_param(disable_raw_mode, bool, 0644);
36 MODULE_PARM_DESC(disable_raw_mode,
37 	"Disable Raw mode reporting for touchpads and keep firmware gestures.");
38 
39 static bool disable_tap_to_click;
40 module_param(disable_tap_to_click, bool, 0644);
41 MODULE_PARM_DESC(disable_tap_to_click,
42 	"Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
43 
44 #define REPORT_ID_HIDPP_SHORT			0x10
45 #define REPORT_ID_HIDPP_LONG			0x11
46 #define REPORT_ID_HIDPP_VERY_LONG		0x12
47 
48 #define HIDPP_REPORT_SHORT_LENGTH		7
49 #define HIDPP_REPORT_LONG_LENGTH		20
50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH	64
51 
52 #define HIDPP_REPORT_SHORT_SUPPORTED		BIT(0)
53 #define HIDPP_REPORT_LONG_SUPPORTED		BIT(1)
54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED	BIT(2)
55 
56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS	0x03
57 #define HIDPP_SUB_ID_ROLLER			0x05
58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS		0x06
59 #define HIDPP_SUB_ID_USER_IFACE_EVENT		0x08
60 #define HIDPP_USER_IFACE_EVENT_ENCRYPTION_KEY_LOST	BIT(5)
61 
62 #define HIDPP_QUIRK_CLASS_WTP			BIT(0)
63 #define HIDPP_QUIRK_CLASS_M560			BIT(1)
64 #define HIDPP_QUIRK_CLASS_K400			BIT(2)
65 #define HIDPP_QUIRK_CLASS_G920			BIT(3)
66 #define HIDPP_QUIRK_CLASS_K750			BIT(4)
67 
68 /* bits 2..20 are reserved for classes */
69 /* #define HIDPP_QUIRK_CONNECT_EVENTS		BIT(21) disabled */
70 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS	BIT(22)
71 #define HIDPP_QUIRK_NO_HIDINPUT			BIT(23)
72 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS	BIT(24)
73 #define HIDPP_QUIRK_UNIFYING			BIT(25)
74 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0		BIT(26)
75 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120		BIT(27)
76 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121		BIT(28)
77 #define HIDPP_QUIRK_HIDPP_WHEELS		BIT(29)
78 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS	BIT(30)
79 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS	BIT(31)
80 
81 /* These are just aliases for now */
82 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS
83 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL   HIDPP_QUIRK_HIDPP_WHEELS
84 
85 /* Convenience constant to check for any high-res support. */
86 #define HIDPP_QUIRK_HI_RES_SCROLL	(HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
87 					 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
88 					 HIDPP_QUIRK_HI_RES_SCROLL_X2121)
89 
90 #define HIDPP_QUIRK_DELAYED_INIT		HIDPP_QUIRK_NO_HIDINPUT
91 
92 #define HIDPP_CAPABILITY_HIDPP10_BATTERY	BIT(0)
93 #define HIDPP_CAPABILITY_HIDPP20_BATTERY	BIT(1)
94 #define HIDPP_CAPABILITY_BATTERY_MILEAGE	BIT(2)
95 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS	BIT(3)
96 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE	BIT(4)
97 #define HIDPP_CAPABILITY_BATTERY_PERCENTAGE	BIT(5)
98 #define HIDPP_CAPABILITY_UNIFIED_BATTERY	BIT(6)
99 
100 #define lg_map_key_clear(c)  hid_map_usage_clear(hi, usage, bit, max, EV_KEY, (c))
101 
102 /*
103  * There are two hidpp protocols in use, the first version hidpp10 is known
104  * as register access protocol or RAP, the second version hidpp20 is known as
105  * feature access protocol or FAP
106  *
107  * Most older devices (including the Unifying usb receiver) use the RAP protocol
108  * where as most newer devices use the FAP protocol. Both protocols are
109  * compatible with the underlying transport, which could be usb, Unifiying, or
110  * bluetooth. The message lengths are defined by the hid vendor specific report
111  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
112  * the HIDPP_LONG report type (total message length 20 bytes)
113  *
114  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
115  * messages. The Unifying receiver itself responds to RAP messages (device index
116  * is 0xFF for the receiver), and all messages (short or long) with a device
117  * index between 1 and 6 are passed untouched to the corresponding paired
118  * Unifying device.
119  *
120  * The paired device can be RAP or FAP, it will receive the message untouched
121  * from the Unifiying receiver.
122  */
123 
124 struct fap {
125 	u8 feature_index;
126 	u8 funcindex_clientid;
127 	u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
128 };
129 
130 struct rap {
131 	u8 sub_id;
132 	u8 reg_address;
133 	u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
134 };
135 
136 struct hidpp_report {
137 	u8 report_id;
138 	u8 device_index;
139 	union {
140 		struct fap fap;
141 		struct rap rap;
142 		u8 rawbytes[sizeof(struct fap)];
143 	};
144 } __packed;
145 
146 struct hidpp_battery {
147 	u8 feature_index;
148 	u8 solar_feature_index;
149 	u8 voltage_feature_index;
150 	struct power_supply_desc desc;
151 	struct power_supply *ps;
152 	char name[64];
153 	int status;
154 	int capacity;
155 	int level;
156 	int voltage;
157 	int charge_type;
158 	bool online;
159 	u8 supported_levels_1004;
160 };
161 
162 /**
163  * struct hidpp_scroll_counter - Utility class for processing high-resolution
164  *                             scroll events.
165  * @dev: the input device for which events should be reported.
166  * @wheel_multiplier: the scalar multiplier to be applied to each wheel event
167  * @remainder: counts the number of high-resolution units moved since the last
168  *             low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should
169  *             only be used by class methods.
170  * @direction: direction of last movement (1 or -1)
171  * @last_time: last event time, used to reset remainder after inactivity
172  */
173 struct hidpp_scroll_counter {
174 	int wheel_multiplier;
175 	int remainder;
176 	int direction;
177 	unsigned long long last_time;
178 };
179 
180 struct hidpp_device {
181 	struct hid_device *hid_dev;
182 	struct input_dev *input;
183 	struct mutex send_mutex;
184 	void *send_receive_buf;
185 	char *name;		/* will never be NULL and should not be freed */
186 	wait_queue_head_t wait;
187 	int very_long_report_length;
188 	bool answer_available;
189 	u8 protocol_major;
190 	u8 protocol_minor;
191 
192 	void *private_data;
193 
194 	struct work_struct work;
195 	struct kfifo delayed_work_fifo;
196 	atomic_t connected;
197 	struct input_dev *delayed_input;
198 
199 	unsigned long quirks;
200 	unsigned long capabilities;
201 	u8 supported_reports;
202 
203 	struct hidpp_battery battery;
204 	struct hidpp_scroll_counter vertical_wheel_counter;
205 
206 	u8 wireless_feature_index;
207 };
208 
209 /* HID++ 1.0 error codes */
210 #define HIDPP_ERROR				0x8f
211 #define HIDPP_ERROR_SUCCESS			0x00
212 #define HIDPP_ERROR_INVALID_SUBID		0x01
213 #define HIDPP_ERROR_INVALID_ADRESS		0x02
214 #define HIDPP_ERROR_INVALID_VALUE		0x03
215 #define HIDPP_ERROR_CONNECT_FAIL		0x04
216 #define HIDPP_ERROR_TOO_MANY_DEVICES		0x05
217 #define HIDPP_ERROR_ALREADY_EXISTS		0x06
218 #define HIDPP_ERROR_BUSY			0x07
219 #define HIDPP_ERROR_UNKNOWN_DEVICE		0x08
220 #define HIDPP_ERROR_RESOURCE_ERROR		0x09
221 #define HIDPP_ERROR_REQUEST_UNAVAILABLE		0x0a
222 #define HIDPP_ERROR_INVALID_PARAM_VALUE		0x0b
223 #define HIDPP_ERROR_WRONG_PIN_CODE		0x0c
224 /* HID++ 2.0 error codes */
225 #define HIDPP20_ERROR				0xff
226 
227 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
228 
229 static int __hidpp_send_report(struct hid_device *hdev,
230 				struct hidpp_report *hidpp_report)
231 {
232 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
233 	int fields_count, ret;
234 
235 	switch (hidpp_report->report_id) {
236 	case REPORT_ID_HIDPP_SHORT:
237 		fields_count = HIDPP_REPORT_SHORT_LENGTH;
238 		break;
239 	case REPORT_ID_HIDPP_LONG:
240 		fields_count = HIDPP_REPORT_LONG_LENGTH;
241 		break;
242 	case REPORT_ID_HIDPP_VERY_LONG:
243 		fields_count = hidpp->very_long_report_length;
244 		break;
245 	default:
246 		return -ENODEV;
247 	}
248 
249 	/*
250 	 * set the device_index as the receiver, it will be overwritten by
251 	 * hid_hw_request if needed
252 	 */
253 	hidpp_report->device_index = 0xff;
254 
255 	if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
256 		ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
257 	} else {
258 		ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
259 			(u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
260 			HID_REQ_SET_REPORT);
261 	}
262 
263 	return ret == fields_count ? 0 : -1;
264 }
265 
266 /*
267  * hidpp_send_message_sync() returns 0 in case of success, and something else
268  * in case of a failure.
269  * - If ' something else' is positive, that means that an error has been raised
270  *   by the protocol itself.
271  * - If ' something else' is negative, that means that we had a classic error
272  *   (-ENOMEM, -EPIPE, etc...)
273  */
274 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
275 	struct hidpp_report *message,
276 	struct hidpp_report *response)
277 {
278 	int ret;
279 
280 	mutex_lock(&hidpp->send_mutex);
281 
282 	hidpp->send_receive_buf = response;
283 	hidpp->answer_available = false;
284 
285 	/*
286 	 * So that we can later validate the answer when it arrives
287 	 * in hidpp_raw_event
288 	 */
289 	*response = *message;
290 
291 	ret = __hidpp_send_report(hidpp->hid_dev, message);
292 
293 	if (ret) {
294 		dbg_hid("__hidpp_send_report returned err: %d\n", ret);
295 		memset(response, 0, sizeof(struct hidpp_report));
296 		goto exit;
297 	}
298 
299 	if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
300 				5*HZ)) {
301 		dbg_hid("%s:timeout waiting for response\n", __func__);
302 		memset(response, 0, sizeof(struct hidpp_report));
303 		ret = -ETIMEDOUT;
304 	}
305 
306 	if (response->report_id == REPORT_ID_HIDPP_SHORT &&
307 	    response->rap.sub_id == HIDPP_ERROR) {
308 		ret = response->rap.params[1];
309 		dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
310 		goto exit;
311 	}
312 
313 	if ((response->report_id == REPORT_ID_HIDPP_LONG ||
314 			response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
315 			response->fap.feature_index == HIDPP20_ERROR) {
316 		ret = response->fap.params[1];
317 		dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
318 		goto exit;
319 	}
320 
321 exit:
322 	mutex_unlock(&hidpp->send_mutex);
323 	return ret;
324 
325 }
326 
327 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
328 	u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
329 	struct hidpp_report *response)
330 {
331 	struct hidpp_report *message;
332 	int ret;
333 
334 	if (param_count > sizeof(message->fap.params))
335 		return -EINVAL;
336 
337 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
338 	if (!message)
339 		return -ENOMEM;
340 
341 	if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
342 		message->report_id = REPORT_ID_HIDPP_VERY_LONG;
343 	else
344 		message->report_id = REPORT_ID_HIDPP_LONG;
345 	message->fap.feature_index = feat_index;
346 	message->fap.funcindex_clientid = funcindex_clientid;
347 	memcpy(&message->fap.params, params, param_count);
348 
349 	ret = hidpp_send_message_sync(hidpp, message, response);
350 	kfree(message);
351 	return ret;
352 }
353 
354 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
355 	u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
356 	struct hidpp_report *response)
357 {
358 	struct hidpp_report *message;
359 	int ret, max_count;
360 
361 	/* Send as long report if short reports are not supported. */
362 	if (report_id == REPORT_ID_HIDPP_SHORT &&
363 	    !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED))
364 		report_id = REPORT_ID_HIDPP_LONG;
365 
366 	switch (report_id) {
367 	case REPORT_ID_HIDPP_SHORT:
368 		max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
369 		break;
370 	case REPORT_ID_HIDPP_LONG:
371 		max_count = HIDPP_REPORT_LONG_LENGTH - 4;
372 		break;
373 	case REPORT_ID_HIDPP_VERY_LONG:
374 		max_count = hidpp_dev->very_long_report_length - 4;
375 		break;
376 	default:
377 		return -EINVAL;
378 	}
379 
380 	if (param_count > max_count)
381 		return -EINVAL;
382 
383 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
384 	if (!message)
385 		return -ENOMEM;
386 	message->report_id = report_id;
387 	message->rap.sub_id = sub_id;
388 	message->rap.reg_address = reg_address;
389 	memcpy(&message->rap.params, params, param_count);
390 
391 	ret = hidpp_send_message_sync(hidpp_dev, message, response);
392 	kfree(message);
393 	return ret;
394 }
395 
396 static void delayed_work_cb(struct work_struct *work)
397 {
398 	struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
399 							work);
400 	hidpp_connect_event(hidpp);
401 }
402 
403 static inline bool hidpp_match_answer(struct hidpp_report *question,
404 		struct hidpp_report *answer)
405 {
406 	return (answer->fap.feature_index == question->fap.feature_index) &&
407 	   (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
408 }
409 
410 static inline bool hidpp_match_error(struct hidpp_report *question,
411 		struct hidpp_report *answer)
412 {
413 	return ((answer->rap.sub_id == HIDPP_ERROR) ||
414 	    (answer->fap.feature_index == HIDPP20_ERROR)) &&
415 	    (answer->fap.funcindex_clientid == question->fap.feature_index) &&
416 	    (answer->fap.params[0] == question->fap.funcindex_clientid);
417 }
418 
419 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp,
420 		struct hidpp_report *report)
421 {
422 	return (hidpp->wireless_feature_index &&
423 		(report->fap.feature_index == hidpp->wireless_feature_index)) ||
424 		((report->report_id == REPORT_ID_HIDPP_SHORT) &&
425 		(report->rap.sub_id == 0x41));
426 }
427 
428 /*
429  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
430  */
431 static void hidpp_prefix_name(char **name, int name_length)
432 {
433 #define PREFIX_LENGTH 9 /* "Logitech " */
434 
435 	int new_length;
436 	char *new_name;
437 
438 	if (name_length > PREFIX_LENGTH &&
439 	    strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
440 		/* The prefix has is already in the name */
441 		return;
442 
443 	new_length = PREFIX_LENGTH + name_length;
444 	new_name = kzalloc(new_length, GFP_KERNEL);
445 	if (!new_name)
446 		return;
447 
448 	snprintf(new_name, new_length, "Logitech %s", *name);
449 
450 	kfree(*name);
451 
452 	*name = new_name;
453 }
454 
455 /**
456  * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll
457  *                                        events given a high-resolution wheel
458  *                                        movement.
459  * @input_dev: Pointer to the input device
460  * @counter: a hid_scroll_counter struct describing the wheel.
461  * @hi_res_value: the movement of the wheel, in the mouse's high-resolution
462  *                units.
463  *
464  * Given a high-resolution movement, this function converts the movement into
465  * fractions of 120 and emits high-resolution scroll events for the input
466  * device. It also uses the multiplier from &struct hid_scroll_counter to
467  * emit low-resolution scroll events when appropriate for
468  * backwards-compatibility with userspace input libraries.
469  */
470 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev,
471 					       struct hidpp_scroll_counter *counter,
472 					       int hi_res_value)
473 {
474 	int low_res_value, remainder, direction;
475 	unsigned long long now, previous;
476 
477 	hi_res_value = hi_res_value * 120/counter->wheel_multiplier;
478 	input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value);
479 
480 	remainder = counter->remainder;
481 	direction = hi_res_value > 0 ? 1 : -1;
482 
483 	now = sched_clock();
484 	previous = counter->last_time;
485 	counter->last_time = now;
486 	/*
487 	 * Reset the remainder after a period of inactivity or when the
488 	 * direction changes. This prevents the REL_WHEEL emulation point
489 	 * from sliding for devices that don't always provide the same
490 	 * number of movements per detent.
491 	 */
492 	if (now - previous > 1000000000 || direction != counter->direction)
493 		remainder = 0;
494 
495 	counter->direction = direction;
496 	remainder += hi_res_value;
497 
498 	/* Some wheels will rest 7/8ths of a detent from the previous detent
499 	 * after slow movement, so we want the threshold for low-res events to
500 	 * be in the middle between two detents (e.g. after 4/8ths) as
501 	 * opposed to on the detents themselves (8/8ths).
502 	 */
503 	if (abs(remainder) >= 60) {
504 		/* Add (or subtract) 1 because we want to trigger when the wheel
505 		 * is half-way to the next detent (i.e. scroll 1 detent after a
506 		 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement,
507 		 * etc.).
508 		 */
509 		low_res_value = remainder / 120;
510 		if (low_res_value == 0)
511 			low_res_value = (hi_res_value > 0 ? 1 : -1);
512 		input_report_rel(input_dev, REL_WHEEL, low_res_value);
513 		remainder -= low_res_value * 120;
514 	}
515 	counter->remainder = remainder;
516 }
517 
518 /* -------------------------------------------------------------------------- */
519 /* HIDP++ 1.0 commands                                                        */
520 /* -------------------------------------------------------------------------- */
521 
522 #define HIDPP_SET_REGISTER				0x80
523 #define HIDPP_GET_REGISTER				0x81
524 #define HIDPP_SET_LONG_REGISTER				0x82
525 #define HIDPP_GET_LONG_REGISTER				0x83
526 
527 /**
528  * hidpp10_set_register - Modify a HID++ 1.0 register.
529  * @hidpp_dev: the device to set the register on.
530  * @register_address: the address of the register to modify.
531  * @byte: the byte of the register to modify. Should be less than 3.
532  * @mask: mask of the bits to modify
533  * @value: new values for the bits in mask
534  * Return: 0 if successful, otherwise a negative error code.
535  */
536 static int hidpp10_set_register(struct hidpp_device *hidpp_dev,
537 	u8 register_address, u8 byte, u8 mask, u8 value)
538 {
539 	struct hidpp_report response;
540 	int ret;
541 	u8 params[3] = { 0 };
542 
543 	ret = hidpp_send_rap_command_sync(hidpp_dev,
544 					  REPORT_ID_HIDPP_SHORT,
545 					  HIDPP_GET_REGISTER,
546 					  register_address,
547 					  NULL, 0, &response);
548 	if (ret)
549 		return ret;
550 
551 	memcpy(params, response.rap.params, 3);
552 
553 	params[byte] &= ~mask;
554 	params[byte] |= value & mask;
555 
556 	return hidpp_send_rap_command_sync(hidpp_dev,
557 					   REPORT_ID_HIDPP_SHORT,
558 					   HIDPP_SET_REGISTER,
559 					   register_address,
560 					   params, 3, &response);
561 }
562 
563 #define HIDPP_REG_ENABLE_REPORTS			0x00
564 #define HIDPP_ENABLE_CONSUMER_REPORT			BIT(0)
565 #define HIDPP_ENABLE_WHEEL_REPORT			BIT(2)
566 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT		BIT(3)
567 #define HIDPP_ENABLE_BAT_REPORT				BIT(4)
568 #define HIDPP_ENABLE_HWHEEL_REPORT			BIT(5)
569 
570 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
571 {
572 	return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0,
573 			  HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT);
574 }
575 
576 #define HIDPP_REG_FEATURES				0x01
577 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC		BIT(1)
578 #define HIDPP_ENABLE_FAST_SCROLL			BIT(6)
579 
580 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
581 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
582 {
583 	return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0,
584 			  HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL);
585 }
586 
587 #define HIDPP_REG_BATTERY_STATUS			0x07
588 
589 static int hidpp10_battery_status_map_level(u8 param)
590 {
591 	int level;
592 
593 	switch (param) {
594 	case 1 ... 2:
595 		level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
596 		break;
597 	case 3 ... 4:
598 		level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
599 		break;
600 	case 5 ... 6:
601 		level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
602 		break;
603 	case 7:
604 		level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
605 		break;
606 	default:
607 		level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
608 	}
609 
610 	return level;
611 }
612 
613 static int hidpp10_battery_status_map_status(u8 param)
614 {
615 	int status;
616 
617 	switch (param) {
618 	case 0x00:
619 		/* discharging (in use) */
620 		status = POWER_SUPPLY_STATUS_DISCHARGING;
621 		break;
622 	case 0x21: /* (standard) charging */
623 	case 0x24: /* fast charging */
624 	case 0x25: /* slow charging */
625 		status = POWER_SUPPLY_STATUS_CHARGING;
626 		break;
627 	case 0x26: /* topping charge */
628 	case 0x22: /* charge complete */
629 		status = POWER_SUPPLY_STATUS_FULL;
630 		break;
631 	case 0x20: /* unknown */
632 		status = POWER_SUPPLY_STATUS_UNKNOWN;
633 		break;
634 	/*
635 	 * 0x01...0x1F = reserved (not charging)
636 	 * 0x23 = charging error
637 	 * 0x27..0xff = reserved
638 	 */
639 	default:
640 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
641 		break;
642 	}
643 
644 	return status;
645 }
646 
647 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
648 {
649 	struct hidpp_report response;
650 	int ret, status;
651 
652 	ret = hidpp_send_rap_command_sync(hidpp,
653 					REPORT_ID_HIDPP_SHORT,
654 					HIDPP_GET_REGISTER,
655 					HIDPP_REG_BATTERY_STATUS,
656 					NULL, 0, &response);
657 	if (ret)
658 		return ret;
659 
660 	hidpp->battery.level =
661 		hidpp10_battery_status_map_level(response.rap.params[0]);
662 	status = hidpp10_battery_status_map_status(response.rap.params[1]);
663 	hidpp->battery.status = status;
664 	/* the capacity is only available when discharging or full */
665 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
666 				status == POWER_SUPPLY_STATUS_FULL;
667 
668 	return 0;
669 }
670 
671 #define HIDPP_REG_BATTERY_MILEAGE			0x0D
672 
673 static int hidpp10_battery_mileage_map_status(u8 param)
674 {
675 	int status;
676 
677 	switch (param >> 6) {
678 	case 0x00:
679 		/* discharging (in use) */
680 		status = POWER_SUPPLY_STATUS_DISCHARGING;
681 		break;
682 	case 0x01: /* charging */
683 		status = POWER_SUPPLY_STATUS_CHARGING;
684 		break;
685 	case 0x02: /* charge complete */
686 		status = POWER_SUPPLY_STATUS_FULL;
687 		break;
688 	/*
689 	 * 0x03 = charging error
690 	 */
691 	default:
692 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
693 		break;
694 	}
695 
696 	return status;
697 }
698 
699 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
700 {
701 	struct hidpp_report response;
702 	int ret, status;
703 
704 	ret = hidpp_send_rap_command_sync(hidpp,
705 					REPORT_ID_HIDPP_SHORT,
706 					HIDPP_GET_REGISTER,
707 					HIDPP_REG_BATTERY_MILEAGE,
708 					NULL, 0, &response);
709 	if (ret)
710 		return ret;
711 
712 	hidpp->battery.capacity = response.rap.params[0];
713 	status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
714 	hidpp->battery.status = status;
715 	/* the capacity is only available when discharging or full */
716 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
717 				status == POWER_SUPPLY_STATUS_FULL;
718 
719 	return 0;
720 }
721 
722 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
723 {
724 	struct hidpp_report *report = (struct hidpp_report *)data;
725 	int status, capacity, level;
726 	bool changed;
727 
728 	if (report->report_id != REPORT_ID_HIDPP_SHORT)
729 		return 0;
730 
731 	switch (report->rap.sub_id) {
732 	case HIDPP_REG_BATTERY_STATUS:
733 		capacity = hidpp->battery.capacity;
734 		level = hidpp10_battery_status_map_level(report->rawbytes[1]);
735 		status = hidpp10_battery_status_map_status(report->rawbytes[2]);
736 		break;
737 	case HIDPP_REG_BATTERY_MILEAGE:
738 		capacity = report->rap.params[0];
739 		level = hidpp->battery.level;
740 		status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
741 		break;
742 	default:
743 		return 0;
744 	}
745 
746 	changed = capacity != hidpp->battery.capacity ||
747 		  level != hidpp->battery.level ||
748 		  status != hidpp->battery.status;
749 
750 	/* the capacity is only available when discharging or full */
751 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
752 				status == POWER_SUPPLY_STATUS_FULL;
753 
754 	if (changed) {
755 		hidpp->battery.level = level;
756 		hidpp->battery.status = status;
757 		if (hidpp->battery.ps)
758 			power_supply_changed(hidpp->battery.ps);
759 	}
760 
761 	return 0;
762 }
763 
764 #define HIDPP_REG_PAIRING_INFORMATION			0xB5
765 #define HIDPP_EXTENDED_PAIRING				0x30
766 #define HIDPP_DEVICE_NAME				0x40
767 
768 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
769 {
770 	struct hidpp_report response;
771 	int ret;
772 	u8 params[1] = { HIDPP_DEVICE_NAME };
773 	char *name;
774 	int len;
775 
776 	ret = hidpp_send_rap_command_sync(hidpp_dev,
777 					REPORT_ID_HIDPP_SHORT,
778 					HIDPP_GET_LONG_REGISTER,
779 					HIDPP_REG_PAIRING_INFORMATION,
780 					params, 1, &response);
781 	if (ret)
782 		return NULL;
783 
784 	len = response.rap.params[1];
785 
786 	if (2 + len > sizeof(response.rap.params))
787 		return NULL;
788 
789 	if (len < 4) /* logitech devices are usually at least Xddd */
790 		return NULL;
791 
792 	name = kzalloc(len + 1, GFP_KERNEL);
793 	if (!name)
794 		return NULL;
795 
796 	memcpy(name, &response.rap.params[2], len);
797 
798 	/* include the terminating '\0' */
799 	hidpp_prefix_name(&name, len + 1);
800 
801 	return name;
802 }
803 
804 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
805 {
806 	struct hidpp_report response;
807 	int ret;
808 	u8 params[1] = { HIDPP_EXTENDED_PAIRING };
809 
810 	ret = hidpp_send_rap_command_sync(hidpp,
811 					REPORT_ID_HIDPP_SHORT,
812 					HIDPP_GET_LONG_REGISTER,
813 					HIDPP_REG_PAIRING_INFORMATION,
814 					params, 1, &response);
815 	if (ret)
816 		return ret;
817 
818 	/*
819 	 * We don't care about LE or BE, we will output it as a string
820 	 * with %4phD, so we need to keep the order.
821 	 */
822 	*serial = *((u32 *)&response.rap.params[1]);
823 	return 0;
824 }
825 
826 static int hidpp_unifying_init(struct hidpp_device *hidpp)
827 {
828 	struct hid_device *hdev = hidpp->hid_dev;
829 	const char *name;
830 	u32 serial;
831 	int ret;
832 
833 	ret = hidpp_unifying_get_serial(hidpp, &serial);
834 	if (ret)
835 		return ret;
836 
837 	snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
838 		 hdev->product, &serial);
839 	dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
840 
841 	name = hidpp_unifying_get_name(hidpp);
842 	if (!name)
843 		return -EIO;
844 
845 	snprintf(hdev->name, sizeof(hdev->name), "%s", name);
846 	dbg_hid("HID++ Unifying: Got name: %s\n", name);
847 
848 	kfree(name);
849 	return 0;
850 }
851 
852 /* -------------------------------------------------------------------------- */
853 /* 0x0000: Root                                                               */
854 /* -------------------------------------------------------------------------- */
855 
856 #define HIDPP_PAGE_ROOT					0x0000
857 #define HIDPP_PAGE_ROOT_IDX				0x00
858 
859 #define CMD_ROOT_GET_FEATURE				0x01
860 #define CMD_ROOT_GET_PROTOCOL_VERSION			0x11
861 
862 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
863 	u8 *feature_index, u8 *feature_type)
864 {
865 	struct hidpp_report response;
866 	int ret;
867 	u8 params[2] = { feature >> 8, feature & 0x00FF };
868 
869 	ret = hidpp_send_fap_command_sync(hidpp,
870 			HIDPP_PAGE_ROOT_IDX,
871 			CMD_ROOT_GET_FEATURE,
872 			params, 2, &response);
873 	if (ret)
874 		return ret;
875 
876 	if (response.fap.params[0] == 0)
877 		return -ENOENT;
878 
879 	*feature_index = response.fap.params[0];
880 	*feature_type = response.fap.params[1];
881 
882 	return ret;
883 }
884 
885 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
886 {
887 	const u8 ping_byte = 0x5a;
888 	u8 ping_data[3] = { 0, 0, ping_byte };
889 	struct hidpp_report response;
890 	int ret;
891 
892 	ret = hidpp_send_rap_command_sync(hidpp,
893 			REPORT_ID_HIDPP_SHORT,
894 			HIDPP_PAGE_ROOT_IDX,
895 			CMD_ROOT_GET_PROTOCOL_VERSION,
896 			ping_data, sizeof(ping_data), &response);
897 
898 	if (ret == HIDPP_ERROR_INVALID_SUBID) {
899 		hidpp->protocol_major = 1;
900 		hidpp->protocol_minor = 0;
901 		goto print_version;
902 	}
903 
904 	/* the device might not be connected */
905 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
906 		return -EIO;
907 
908 	if (ret > 0) {
909 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
910 			__func__, ret);
911 		return -EPROTO;
912 	}
913 	if (ret)
914 		return ret;
915 
916 	if (response.rap.params[2] != ping_byte) {
917 		hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n",
918 			__func__, response.rap.params[2], ping_byte);
919 		return -EPROTO;
920 	}
921 
922 	hidpp->protocol_major = response.rap.params[0];
923 	hidpp->protocol_minor = response.rap.params[1];
924 
925 print_version:
926 	hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
927 		 hidpp->protocol_major, hidpp->protocol_minor);
928 	return 0;
929 }
930 
931 /* -------------------------------------------------------------------------- */
932 /* 0x0005: GetDeviceNameType                                                  */
933 /* -------------------------------------------------------------------------- */
934 
935 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE			0x0005
936 
937 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT		0x01
938 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME	0x11
939 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE		0x21
940 
941 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
942 	u8 feature_index, u8 *nameLength)
943 {
944 	struct hidpp_report response;
945 	int ret;
946 
947 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
948 		CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
949 
950 	if (ret > 0) {
951 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
952 			__func__, ret);
953 		return -EPROTO;
954 	}
955 	if (ret)
956 		return ret;
957 
958 	*nameLength = response.fap.params[0];
959 
960 	return ret;
961 }
962 
963 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
964 	u8 feature_index, u8 char_index, char *device_name, int len_buf)
965 {
966 	struct hidpp_report response;
967 	int ret, i;
968 	int count;
969 
970 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
971 		CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
972 		&response);
973 
974 	if (ret > 0) {
975 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
976 			__func__, ret);
977 		return -EPROTO;
978 	}
979 	if (ret)
980 		return ret;
981 
982 	switch (response.report_id) {
983 	case REPORT_ID_HIDPP_VERY_LONG:
984 		count = hidpp->very_long_report_length - 4;
985 		break;
986 	case REPORT_ID_HIDPP_LONG:
987 		count = HIDPP_REPORT_LONG_LENGTH - 4;
988 		break;
989 	case REPORT_ID_HIDPP_SHORT:
990 		count = HIDPP_REPORT_SHORT_LENGTH - 4;
991 		break;
992 	default:
993 		return -EPROTO;
994 	}
995 
996 	if (len_buf < count)
997 		count = len_buf;
998 
999 	for (i = 0; i < count; i++)
1000 		device_name[i] = response.fap.params[i];
1001 
1002 	return count;
1003 }
1004 
1005 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
1006 {
1007 	u8 feature_type;
1008 	u8 feature_index;
1009 	u8 __name_length;
1010 	char *name;
1011 	unsigned index = 0;
1012 	int ret;
1013 
1014 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
1015 		&feature_index, &feature_type);
1016 	if (ret)
1017 		return NULL;
1018 
1019 	ret = hidpp_devicenametype_get_count(hidpp, feature_index,
1020 		&__name_length);
1021 	if (ret)
1022 		return NULL;
1023 
1024 	name = kzalloc(__name_length + 1, GFP_KERNEL);
1025 	if (!name)
1026 		return NULL;
1027 
1028 	while (index < __name_length) {
1029 		ret = hidpp_devicenametype_get_device_name(hidpp,
1030 			feature_index, index, name + index,
1031 			__name_length - index);
1032 		if (ret <= 0) {
1033 			kfree(name);
1034 			return NULL;
1035 		}
1036 		index += ret;
1037 	}
1038 
1039 	/* include the terminating '\0' */
1040 	hidpp_prefix_name(&name, __name_length + 1);
1041 
1042 	return name;
1043 }
1044 
1045 /* -------------------------------------------------------------------------- */
1046 /* 0x1000: Battery level status                                               */
1047 /* -------------------------------------------------------------------------- */
1048 
1049 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS				0x1000
1050 
1051 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS	0x00
1052 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY		0x10
1053 
1054 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST			0x00
1055 
1056 #define FLAG_BATTERY_LEVEL_DISABLE_OSD				BIT(0)
1057 #define FLAG_BATTERY_LEVEL_MILEAGE				BIT(1)
1058 #define FLAG_BATTERY_LEVEL_RECHARGEABLE				BIT(2)
1059 
1060 static int hidpp_map_battery_level(int capacity)
1061 {
1062 	if (capacity < 11)
1063 		return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1064 	/*
1065 	 * The spec says this should be < 31 but some devices report 30
1066 	 * with brand new batteries and Windows reports 30 as "Good".
1067 	 */
1068 	else if (capacity < 30)
1069 		return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1070 	else if (capacity < 81)
1071 		return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1072 	return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1073 }
1074 
1075 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
1076 						    int *next_capacity,
1077 						    int *level)
1078 {
1079 	int status;
1080 
1081 	*capacity = data[0];
1082 	*next_capacity = data[1];
1083 	*level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1084 
1085 	/* When discharging, we can rely on the device reported capacity.
1086 	 * For all other states the device reports 0 (unknown).
1087 	 */
1088 	switch (data[2]) {
1089 		case 0: /* discharging (in use) */
1090 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1091 			*level = hidpp_map_battery_level(*capacity);
1092 			break;
1093 		case 1: /* recharging */
1094 			status = POWER_SUPPLY_STATUS_CHARGING;
1095 			break;
1096 		case 2: /* charge in final stage */
1097 			status = POWER_SUPPLY_STATUS_CHARGING;
1098 			break;
1099 		case 3: /* charge complete */
1100 			status = POWER_SUPPLY_STATUS_FULL;
1101 			*level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1102 			*capacity = 100;
1103 			break;
1104 		case 4: /* recharging below optimal speed */
1105 			status = POWER_SUPPLY_STATUS_CHARGING;
1106 			break;
1107 		/* 5 = invalid battery type
1108 		   6 = thermal error
1109 		   7 = other charging error */
1110 		default:
1111 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1112 			break;
1113 	}
1114 
1115 	return status;
1116 }
1117 
1118 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
1119 						     u8 feature_index,
1120 						     int *status,
1121 						     int *capacity,
1122 						     int *next_capacity,
1123 						     int *level)
1124 {
1125 	struct hidpp_report response;
1126 	int ret;
1127 	u8 *params = (u8 *)response.fap.params;
1128 
1129 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1130 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
1131 					  NULL, 0, &response);
1132 	/* Ignore these intermittent errors */
1133 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1134 		return -EIO;
1135 	if (ret > 0) {
1136 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1137 			__func__, ret);
1138 		return -EPROTO;
1139 	}
1140 	if (ret)
1141 		return ret;
1142 
1143 	*status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1144 							   next_capacity,
1145 							   level);
1146 
1147 	return 0;
1148 }
1149 
1150 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1151 						  u8 feature_index)
1152 {
1153 	struct hidpp_report response;
1154 	int ret;
1155 	u8 *params = (u8 *)response.fap.params;
1156 	unsigned int level_count, flags;
1157 
1158 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1159 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1160 					  NULL, 0, &response);
1161 	if (ret > 0) {
1162 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1163 			__func__, ret);
1164 		return -EPROTO;
1165 	}
1166 	if (ret)
1167 		return ret;
1168 
1169 	level_count = params[0];
1170 	flags = params[1];
1171 
1172 	if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1173 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1174 	else
1175 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1176 
1177 	return 0;
1178 }
1179 
1180 static int hidpp20_query_battery_info_1000(struct hidpp_device *hidpp)
1181 {
1182 	u8 feature_type;
1183 	int ret;
1184 	int status, capacity, next_capacity, level;
1185 
1186 	if (hidpp->battery.feature_index == 0xff) {
1187 		ret = hidpp_root_get_feature(hidpp,
1188 					     HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1189 					     &hidpp->battery.feature_index,
1190 					     &feature_type);
1191 		if (ret)
1192 			return ret;
1193 	}
1194 
1195 	ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1196 						hidpp->battery.feature_index,
1197 						&status, &capacity,
1198 						&next_capacity, &level);
1199 	if (ret)
1200 		return ret;
1201 
1202 	ret = hidpp20_batterylevel_get_battery_info(hidpp,
1203 						hidpp->battery.feature_index);
1204 	if (ret)
1205 		return ret;
1206 
1207 	hidpp->battery.status = status;
1208 	hidpp->battery.capacity = capacity;
1209 	hidpp->battery.level = level;
1210 	/* the capacity is only available when discharging or full */
1211 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1212 				status == POWER_SUPPLY_STATUS_FULL;
1213 
1214 	return 0;
1215 }
1216 
1217 static int hidpp20_battery_event_1000(struct hidpp_device *hidpp,
1218 				 u8 *data, int size)
1219 {
1220 	struct hidpp_report *report = (struct hidpp_report *)data;
1221 	int status, capacity, next_capacity, level;
1222 	bool changed;
1223 
1224 	if (report->fap.feature_index != hidpp->battery.feature_index ||
1225 	    report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1226 		return 0;
1227 
1228 	status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1229 							  &capacity,
1230 							  &next_capacity,
1231 							  &level);
1232 
1233 	/* the capacity is only available when discharging or full */
1234 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1235 				status == POWER_SUPPLY_STATUS_FULL;
1236 
1237 	changed = capacity != hidpp->battery.capacity ||
1238 		  level != hidpp->battery.level ||
1239 		  status != hidpp->battery.status;
1240 
1241 	if (changed) {
1242 		hidpp->battery.level = level;
1243 		hidpp->battery.capacity = capacity;
1244 		hidpp->battery.status = status;
1245 		if (hidpp->battery.ps)
1246 			power_supply_changed(hidpp->battery.ps);
1247 	}
1248 
1249 	return 0;
1250 }
1251 
1252 /* -------------------------------------------------------------------------- */
1253 /* 0x1001: Battery voltage                                                    */
1254 /* -------------------------------------------------------------------------- */
1255 
1256 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001
1257 
1258 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00
1259 
1260 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00
1261 
1262 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage,
1263 						int *level, int *charge_type)
1264 {
1265 	int status;
1266 
1267 	long flags = (long) data[2];
1268 	*level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1269 
1270 	if (flags & 0x80)
1271 		switch (flags & 0x07) {
1272 		case 0:
1273 			status = POWER_SUPPLY_STATUS_CHARGING;
1274 			break;
1275 		case 1:
1276 			status = POWER_SUPPLY_STATUS_FULL;
1277 			*level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1278 			break;
1279 		case 2:
1280 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1281 			break;
1282 		default:
1283 			status = POWER_SUPPLY_STATUS_UNKNOWN;
1284 			break;
1285 		}
1286 	else
1287 		status = POWER_SUPPLY_STATUS_DISCHARGING;
1288 
1289 	*charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD;
1290 	if (test_bit(3, &flags)) {
1291 		*charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST;
1292 	}
1293 	if (test_bit(4, &flags)) {
1294 		*charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
1295 	}
1296 	if (test_bit(5, &flags)) {
1297 		*level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1298 	}
1299 
1300 	*voltage = get_unaligned_be16(data);
1301 
1302 	return status;
1303 }
1304 
1305 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp,
1306 						 u8 feature_index,
1307 						 int *status, int *voltage,
1308 						 int *level, int *charge_type)
1309 {
1310 	struct hidpp_report response;
1311 	int ret;
1312 	u8 *params = (u8 *)response.fap.params;
1313 
1314 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1315 					  CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE,
1316 					  NULL, 0, &response);
1317 
1318 	if (ret > 0) {
1319 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1320 			__func__, ret);
1321 		return -EPROTO;
1322 	}
1323 	if (ret)
1324 		return ret;
1325 
1326 	hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE;
1327 
1328 	*status = hidpp20_battery_map_status_voltage(params, voltage,
1329 						     level, charge_type);
1330 
1331 	return 0;
1332 }
1333 
1334 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp)
1335 {
1336 	u8 feature_type;
1337 	int ret;
1338 	int status, voltage, level, charge_type;
1339 
1340 	if (hidpp->battery.voltage_feature_index == 0xff) {
1341 		ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE,
1342 					     &hidpp->battery.voltage_feature_index,
1343 					     &feature_type);
1344 		if (ret)
1345 			return ret;
1346 	}
1347 
1348 	ret = hidpp20_battery_get_battery_voltage(hidpp,
1349 						  hidpp->battery.voltage_feature_index,
1350 						  &status, &voltage, &level, &charge_type);
1351 
1352 	if (ret)
1353 		return ret;
1354 
1355 	hidpp->battery.status = status;
1356 	hidpp->battery.voltage = voltage;
1357 	hidpp->battery.level = level;
1358 	hidpp->battery.charge_type = charge_type;
1359 	hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1360 
1361 	return 0;
1362 }
1363 
1364 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp,
1365 					    u8 *data, int size)
1366 {
1367 	struct hidpp_report *report = (struct hidpp_report *)data;
1368 	int status, voltage, level, charge_type;
1369 
1370 	if (report->fap.feature_index != hidpp->battery.voltage_feature_index ||
1371 		report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST)
1372 		return 0;
1373 
1374 	status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage,
1375 						    &level, &charge_type);
1376 
1377 	hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1378 
1379 	if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) {
1380 		hidpp->battery.voltage = voltage;
1381 		hidpp->battery.status = status;
1382 		hidpp->battery.level = level;
1383 		hidpp->battery.charge_type = charge_type;
1384 		if (hidpp->battery.ps)
1385 			power_supply_changed(hidpp->battery.ps);
1386 	}
1387 	return 0;
1388 }
1389 
1390 /* -------------------------------------------------------------------------- */
1391 /* 0x1004: Unified battery                                                    */
1392 /* -------------------------------------------------------------------------- */
1393 
1394 #define HIDPP_PAGE_UNIFIED_BATTERY				0x1004
1395 
1396 #define CMD_UNIFIED_BATTERY_GET_CAPABILITIES			0x00
1397 #define CMD_UNIFIED_BATTERY_GET_STATUS				0x10
1398 
1399 #define EVENT_UNIFIED_BATTERY_STATUS_EVENT			0x00
1400 
1401 #define FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL			BIT(0)
1402 #define FLAG_UNIFIED_BATTERY_LEVEL_LOW				BIT(1)
1403 #define FLAG_UNIFIED_BATTERY_LEVEL_GOOD				BIT(2)
1404 #define FLAG_UNIFIED_BATTERY_LEVEL_FULL				BIT(3)
1405 
1406 #define FLAG_UNIFIED_BATTERY_FLAGS_RECHARGEABLE			BIT(0)
1407 #define FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE		BIT(1)
1408 
1409 static int hidpp20_unifiedbattery_get_capabilities(struct hidpp_device *hidpp,
1410 						   u8 feature_index)
1411 {
1412 	struct hidpp_report response;
1413 	int ret;
1414 	u8 *params = (u8 *)response.fap.params;
1415 
1416 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS ||
1417 	    hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) {
1418 		/* we have already set the device capabilities, so let's skip */
1419 		return 0;
1420 	}
1421 
1422 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1423 					  CMD_UNIFIED_BATTERY_GET_CAPABILITIES,
1424 					  NULL, 0, &response);
1425 	/* Ignore these intermittent errors */
1426 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1427 		return -EIO;
1428 	if (ret > 0) {
1429 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1430 			__func__, ret);
1431 		return -EPROTO;
1432 	}
1433 	if (ret)
1434 		return ret;
1435 
1436 	/*
1437 	 * If the device supports state of charge (battery percentage) we won't
1438 	 * export the battery level information. there are 4 possible battery
1439 	 * levels and they all are optional, this means that the device might
1440 	 * not support any of them, we are just better off with the battery
1441 	 * percentage.
1442 	 */
1443 	if (params[1] & FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE) {
1444 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_PERCENTAGE;
1445 		hidpp->battery.supported_levels_1004 = 0;
1446 	} else {
1447 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1448 		hidpp->battery.supported_levels_1004 = params[0];
1449 	}
1450 
1451 	return 0;
1452 }
1453 
1454 static int hidpp20_unifiedbattery_map_status(struct hidpp_device *hidpp,
1455 					     u8 charging_status,
1456 					     u8 external_power_status)
1457 {
1458 	int status;
1459 
1460 	switch (charging_status) {
1461 		case 0: /* discharging */
1462 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1463 			break;
1464 		case 1: /* charging */
1465 		case 2: /* charging slow */
1466 			status = POWER_SUPPLY_STATUS_CHARGING;
1467 			break;
1468 		case 3: /* complete */
1469 			status = POWER_SUPPLY_STATUS_FULL;
1470 			break;
1471 		case 4: /* error */
1472 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1473 			hid_info(hidpp->hid_dev, "%s: charging error",
1474 				 hidpp->name);
1475 			break;
1476 		default:
1477 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1478 			break;
1479 	}
1480 
1481 	return status;
1482 }
1483 
1484 static int hidpp20_unifiedbattery_map_level(struct hidpp_device *hidpp,
1485 					    u8 battery_level)
1486 {
1487 	/* cler unsupported level bits */
1488 	battery_level &= hidpp->battery.supported_levels_1004;
1489 
1490 	if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_FULL)
1491 		return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1492 	else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_GOOD)
1493 		return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1494 	else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_LOW)
1495 		return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1496 	else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL)
1497 		return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1498 
1499 	return POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1500 }
1501 
1502 static int hidpp20_unifiedbattery_get_status(struct hidpp_device *hidpp,
1503 					     u8 feature_index,
1504 					     u8 *state_of_charge,
1505 					     int *status,
1506 					     int *level)
1507 {
1508 	struct hidpp_report response;
1509 	int ret;
1510 	u8 *params = (u8 *)response.fap.params;
1511 
1512 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1513 					  CMD_UNIFIED_BATTERY_GET_STATUS,
1514 					  NULL, 0, &response);
1515 	/* Ignore these intermittent errors */
1516 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1517 		return -EIO;
1518 	if (ret > 0) {
1519 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1520 			__func__, ret);
1521 		return -EPROTO;
1522 	}
1523 	if (ret)
1524 		return ret;
1525 
1526 	*state_of_charge = params[0];
1527 	*status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]);
1528 	*level = hidpp20_unifiedbattery_map_level(hidpp, params[1]);
1529 
1530 	return 0;
1531 }
1532 
1533 static int hidpp20_query_battery_info_1004(struct hidpp_device *hidpp)
1534 {
1535 	u8 feature_type;
1536 	int ret;
1537 	u8 state_of_charge;
1538 	int status, level;
1539 
1540 	if (hidpp->battery.feature_index == 0xff) {
1541 		ret = hidpp_root_get_feature(hidpp,
1542 					     HIDPP_PAGE_UNIFIED_BATTERY,
1543 					     &hidpp->battery.feature_index,
1544 					     &feature_type);
1545 		if (ret)
1546 			return ret;
1547 	}
1548 
1549 	ret = hidpp20_unifiedbattery_get_capabilities(hidpp,
1550 					hidpp->battery.feature_index);
1551 	if (ret)
1552 		return ret;
1553 
1554 	ret = hidpp20_unifiedbattery_get_status(hidpp,
1555 						hidpp->battery.feature_index,
1556 						&state_of_charge,
1557 						&status,
1558 						&level);
1559 	if (ret)
1560 		return ret;
1561 
1562 	hidpp->capabilities |= HIDPP_CAPABILITY_UNIFIED_BATTERY;
1563 	hidpp->battery.capacity = state_of_charge;
1564 	hidpp->battery.status = status;
1565 	hidpp->battery.level = level;
1566 	hidpp->battery.online = true;
1567 
1568 	return 0;
1569 }
1570 
1571 static int hidpp20_battery_event_1004(struct hidpp_device *hidpp,
1572 				 u8 *data, int size)
1573 {
1574 	struct hidpp_report *report = (struct hidpp_report *)data;
1575 	u8 *params = (u8 *)report->fap.params;
1576 	int state_of_charge, status, level;
1577 	bool changed;
1578 
1579 	if (report->fap.feature_index != hidpp->battery.feature_index ||
1580 	    report->fap.funcindex_clientid != EVENT_UNIFIED_BATTERY_STATUS_EVENT)
1581 		return 0;
1582 
1583 	state_of_charge = params[0];
1584 	status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]);
1585 	level = hidpp20_unifiedbattery_map_level(hidpp, params[1]);
1586 
1587 	changed = status != hidpp->battery.status ||
1588 		  (state_of_charge != hidpp->battery.capacity &&
1589 		   hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) ||
1590 		  (level != hidpp->battery.level &&
1591 		   hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS);
1592 
1593 	if (changed) {
1594 		hidpp->battery.capacity = state_of_charge;
1595 		hidpp->battery.status = status;
1596 		hidpp->battery.level = level;
1597 		if (hidpp->battery.ps)
1598 			power_supply_changed(hidpp->battery.ps);
1599 	}
1600 
1601 	return 0;
1602 }
1603 
1604 /* -------------------------------------------------------------------------- */
1605 /* Battery feature helpers                                                    */
1606 /* -------------------------------------------------------------------------- */
1607 
1608 static enum power_supply_property hidpp_battery_props[] = {
1609 	POWER_SUPPLY_PROP_ONLINE,
1610 	POWER_SUPPLY_PROP_STATUS,
1611 	POWER_SUPPLY_PROP_SCOPE,
1612 	POWER_SUPPLY_PROP_MODEL_NAME,
1613 	POWER_SUPPLY_PROP_MANUFACTURER,
1614 	POWER_SUPPLY_PROP_SERIAL_NUMBER,
1615 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1616 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1617 	0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */
1618 };
1619 
1620 static int hidpp_battery_get_property(struct power_supply *psy,
1621 				      enum power_supply_property psp,
1622 				      union power_supply_propval *val)
1623 {
1624 	struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1625 	int ret = 0;
1626 
1627 	switch(psp) {
1628 		case POWER_SUPPLY_PROP_STATUS:
1629 			val->intval = hidpp->battery.status;
1630 			break;
1631 		case POWER_SUPPLY_PROP_CAPACITY:
1632 			val->intval = hidpp->battery.capacity;
1633 			break;
1634 		case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1635 			val->intval = hidpp->battery.level;
1636 			break;
1637 		case POWER_SUPPLY_PROP_SCOPE:
1638 			val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1639 			break;
1640 		case POWER_SUPPLY_PROP_ONLINE:
1641 			val->intval = hidpp->battery.online;
1642 			break;
1643 		case POWER_SUPPLY_PROP_MODEL_NAME:
1644 			if (!strncmp(hidpp->name, "Logitech ", 9))
1645 				val->strval = hidpp->name + 9;
1646 			else
1647 				val->strval = hidpp->name;
1648 			break;
1649 		case POWER_SUPPLY_PROP_MANUFACTURER:
1650 			val->strval = "Logitech";
1651 			break;
1652 		case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1653 			val->strval = hidpp->hid_dev->uniq;
1654 			break;
1655 		case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1656 			/* hardware reports voltage in in mV. sysfs expects uV */
1657 			val->intval = hidpp->battery.voltage * 1000;
1658 			break;
1659 		case POWER_SUPPLY_PROP_CHARGE_TYPE:
1660 			val->intval = hidpp->battery.charge_type;
1661 			break;
1662 		default:
1663 			ret = -EINVAL;
1664 			break;
1665 	}
1666 
1667 	return ret;
1668 }
1669 
1670 /* -------------------------------------------------------------------------- */
1671 /* 0x1d4b: Wireless device status                                             */
1672 /* -------------------------------------------------------------------------- */
1673 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS			0x1d4b
1674 
1675 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp)
1676 {
1677 	u8 feature_type;
1678 	int ret;
1679 
1680 	ret = hidpp_root_get_feature(hidpp,
1681 				     HIDPP_PAGE_WIRELESS_DEVICE_STATUS,
1682 				     &hidpp->wireless_feature_index,
1683 				     &feature_type);
1684 
1685 	return ret;
1686 }
1687 
1688 /* -------------------------------------------------------------------------- */
1689 /* 0x2120: Hi-resolution scrolling                                            */
1690 /* -------------------------------------------------------------------------- */
1691 
1692 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING			0x2120
1693 
1694 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE	0x10
1695 
1696 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1697 	bool enabled, u8 *multiplier)
1698 {
1699 	u8 feature_index;
1700 	u8 feature_type;
1701 	int ret;
1702 	u8 params[1];
1703 	struct hidpp_report response;
1704 
1705 	ret = hidpp_root_get_feature(hidpp,
1706 				     HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1707 				     &feature_index,
1708 				     &feature_type);
1709 	if (ret)
1710 		return ret;
1711 
1712 	params[0] = enabled ? BIT(0) : 0;
1713 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1714 					  CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1715 					  params, sizeof(params), &response);
1716 	if (ret)
1717 		return ret;
1718 	*multiplier = response.fap.params[1];
1719 	return 0;
1720 }
1721 
1722 /* -------------------------------------------------------------------------- */
1723 /* 0x2121: HiRes Wheel                                                        */
1724 /* -------------------------------------------------------------------------- */
1725 
1726 #define HIDPP_PAGE_HIRES_WHEEL		0x2121
1727 
1728 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY	0x00
1729 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE		0x20
1730 
1731 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1732 	u8 *multiplier)
1733 {
1734 	u8 feature_index;
1735 	u8 feature_type;
1736 	int ret;
1737 	struct hidpp_report response;
1738 
1739 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1740 				     &feature_index, &feature_type);
1741 	if (ret)
1742 		goto return_default;
1743 
1744 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1745 					  CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1746 					  NULL, 0, &response);
1747 	if (ret)
1748 		goto return_default;
1749 
1750 	*multiplier = response.fap.params[0];
1751 	return 0;
1752 return_default:
1753 	hid_warn(hidpp->hid_dev,
1754 		 "Couldn't get wheel multiplier (error %d)\n", ret);
1755 	return ret;
1756 }
1757 
1758 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1759 	bool high_resolution, bool use_hidpp)
1760 {
1761 	u8 feature_index;
1762 	u8 feature_type;
1763 	int ret;
1764 	u8 params[1];
1765 	struct hidpp_report response;
1766 
1767 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1768 				     &feature_index, &feature_type);
1769 	if (ret)
1770 		return ret;
1771 
1772 	params[0] = (invert          ? BIT(2) : 0) |
1773 		    (high_resolution ? BIT(1) : 0) |
1774 		    (use_hidpp       ? BIT(0) : 0);
1775 
1776 	return hidpp_send_fap_command_sync(hidpp, feature_index,
1777 					   CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1778 					   params, sizeof(params), &response);
1779 }
1780 
1781 /* -------------------------------------------------------------------------- */
1782 /* 0x4301: Solar Keyboard                                                     */
1783 /* -------------------------------------------------------------------------- */
1784 
1785 #define HIDPP_PAGE_SOLAR_KEYBOARD			0x4301
1786 
1787 #define CMD_SOLAR_SET_LIGHT_MEASURE			0x00
1788 
1789 #define EVENT_SOLAR_BATTERY_BROADCAST			0x00
1790 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE		0x10
1791 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON			0x20
1792 
1793 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1794 {
1795 	struct hidpp_report response;
1796 	u8 params[2] = { 1, 1 };
1797 	u8 feature_type;
1798 	int ret;
1799 
1800 	if (hidpp->battery.feature_index == 0xff) {
1801 		ret = hidpp_root_get_feature(hidpp,
1802 					     HIDPP_PAGE_SOLAR_KEYBOARD,
1803 					     &hidpp->battery.solar_feature_index,
1804 					     &feature_type);
1805 		if (ret)
1806 			return ret;
1807 	}
1808 
1809 	ret = hidpp_send_fap_command_sync(hidpp,
1810 					  hidpp->battery.solar_feature_index,
1811 					  CMD_SOLAR_SET_LIGHT_MEASURE,
1812 					  params, 2, &response);
1813 	if (ret > 0) {
1814 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1815 			__func__, ret);
1816 		return -EPROTO;
1817 	}
1818 	if (ret)
1819 		return ret;
1820 
1821 	hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1822 
1823 	return 0;
1824 }
1825 
1826 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1827 				     u8 *data, int size)
1828 {
1829 	struct hidpp_report *report = (struct hidpp_report *)data;
1830 	int capacity, lux, status;
1831 	u8 function;
1832 
1833 	function = report->fap.funcindex_clientid;
1834 
1835 
1836 	if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1837 	    !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1838 	      function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1839 	      function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1840 		return 0;
1841 
1842 	capacity = report->fap.params[0];
1843 
1844 	switch (function) {
1845 	case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1846 		lux = (report->fap.params[1] << 8) | report->fap.params[2];
1847 		if (lux > 200)
1848 			status = POWER_SUPPLY_STATUS_CHARGING;
1849 		else
1850 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1851 		break;
1852 	case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1853 	default:
1854 		if (capacity < hidpp->battery.capacity)
1855 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1856 		else
1857 			status = POWER_SUPPLY_STATUS_CHARGING;
1858 
1859 	}
1860 
1861 	if (capacity == 100)
1862 		status = POWER_SUPPLY_STATUS_FULL;
1863 
1864 	hidpp->battery.online = true;
1865 	if (capacity != hidpp->battery.capacity ||
1866 	    status != hidpp->battery.status) {
1867 		hidpp->battery.capacity = capacity;
1868 		hidpp->battery.status = status;
1869 		if (hidpp->battery.ps)
1870 			power_supply_changed(hidpp->battery.ps);
1871 	}
1872 
1873 	return 0;
1874 }
1875 
1876 /* -------------------------------------------------------------------------- */
1877 /* 0x6010: Touchpad FW items                                                  */
1878 /* -------------------------------------------------------------------------- */
1879 
1880 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS			0x6010
1881 
1882 #define CMD_TOUCHPAD_FW_ITEMS_SET			0x10
1883 
1884 struct hidpp_touchpad_fw_items {
1885 	uint8_t presence;
1886 	uint8_t desired_state;
1887 	uint8_t state;
1888 	uint8_t persistent;
1889 };
1890 
1891 /*
1892  * send a set state command to the device by reading the current items->state
1893  * field. items is then filled with the current state.
1894  */
1895 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1896 				       u8 feature_index,
1897 				       struct hidpp_touchpad_fw_items *items)
1898 {
1899 	struct hidpp_report response;
1900 	int ret;
1901 	u8 *params = (u8 *)response.fap.params;
1902 
1903 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1904 		CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1905 
1906 	if (ret > 0) {
1907 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1908 			__func__, ret);
1909 		return -EPROTO;
1910 	}
1911 	if (ret)
1912 		return ret;
1913 
1914 	items->presence = params[0];
1915 	items->desired_state = params[1];
1916 	items->state = params[2];
1917 	items->persistent = params[3];
1918 
1919 	return 0;
1920 }
1921 
1922 /* -------------------------------------------------------------------------- */
1923 /* 0x6100: TouchPadRawXY                                                      */
1924 /* -------------------------------------------------------------------------- */
1925 
1926 #define HIDPP_PAGE_TOUCHPAD_RAW_XY			0x6100
1927 
1928 #define CMD_TOUCHPAD_GET_RAW_INFO			0x01
1929 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE		0x21
1930 
1931 #define EVENT_TOUCHPAD_RAW_XY				0x00
1932 
1933 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT		0x01
1934 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT		0x03
1935 
1936 struct hidpp_touchpad_raw_info {
1937 	u16 x_size;
1938 	u16 y_size;
1939 	u8 z_range;
1940 	u8 area_range;
1941 	u8 timestamp_unit;
1942 	u8 maxcontacts;
1943 	u8 origin;
1944 	u16 res;
1945 };
1946 
1947 struct hidpp_touchpad_raw_xy_finger {
1948 	u8 contact_type;
1949 	u8 contact_status;
1950 	u16 x;
1951 	u16 y;
1952 	u8 z;
1953 	u8 area;
1954 	u8 finger_id;
1955 };
1956 
1957 struct hidpp_touchpad_raw_xy {
1958 	u16 timestamp;
1959 	struct hidpp_touchpad_raw_xy_finger fingers[2];
1960 	u8 spurious_flag;
1961 	u8 end_of_frame;
1962 	u8 finger_count;
1963 	u8 button;
1964 };
1965 
1966 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1967 	u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1968 {
1969 	struct hidpp_report response;
1970 	int ret;
1971 	u8 *params = (u8 *)response.fap.params;
1972 
1973 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1974 		CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1975 
1976 	if (ret > 0) {
1977 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1978 			__func__, ret);
1979 		return -EPROTO;
1980 	}
1981 	if (ret)
1982 		return ret;
1983 
1984 	raw_info->x_size = get_unaligned_be16(&params[0]);
1985 	raw_info->y_size = get_unaligned_be16(&params[2]);
1986 	raw_info->z_range = params[4];
1987 	raw_info->area_range = params[5];
1988 	raw_info->maxcontacts = params[7];
1989 	raw_info->origin = params[8];
1990 	/* res is given in unit per inch */
1991 	raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1992 
1993 	return ret;
1994 }
1995 
1996 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1997 		u8 feature_index, bool send_raw_reports,
1998 		bool sensor_enhanced_settings)
1999 {
2000 	struct hidpp_report response;
2001 
2002 	/*
2003 	 * Params:
2004 	 *   bit 0 - enable raw
2005 	 *   bit 1 - 16bit Z, no area
2006 	 *   bit 2 - enhanced sensitivity
2007 	 *   bit 3 - width, height (4 bits each) instead of area
2008 	 *   bit 4 - send raw + gestures (degrades smoothness)
2009 	 *   remaining bits - reserved
2010 	 */
2011 	u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
2012 
2013 	return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
2014 		CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
2015 }
2016 
2017 static void hidpp_touchpad_touch_event(u8 *data,
2018 	struct hidpp_touchpad_raw_xy_finger *finger)
2019 {
2020 	u8 x_m = data[0] << 2;
2021 	u8 y_m = data[2] << 2;
2022 
2023 	finger->x = x_m << 6 | data[1];
2024 	finger->y = y_m << 6 | data[3];
2025 
2026 	finger->contact_type = data[0] >> 6;
2027 	finger->contact_status = data[2] >> 6;
2028 
2029 	finger->z = data[4];
2030 	finger->area = data[5];
2031 	finger->finger_id = data[6] >> 4;
2032 }
2033 
2034 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
2035 		u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
2036 {
2037 	memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
2038 	raw_xy->end_of_frame = data[8] & 0x01;
2039 	raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
2040 	raw_xy->finger_count = data[15] & 0x0f;
2041 	raw_xy->button = (data[8] >> 2) & 0x01;
2042 
2043 	if (raw_xy->finger_count) {
2044 		hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
2045 		hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
2046 	}
2047 }
2048 
2049 /* -------------------------------------------------------------------------- */
2050 /* 0x8123: Force feedback support                                             */
2051 /* -------------------------------------------------------------------------- */
2052 
2053 #define HIDPP_FF_GET_INFO		0x01
2054 #define HIDPP_FF_RESET_ALL		0x11
2055 #define HIDPP_FF_DOWNLOAD_EFFECT	0x21
2056 #define HIDPP_FF_SET_EFFECT_STATE	0x31
2057 #define HIDPP_FF_DESTROY_EFFECT		0x41
2058 #define HIDPP_FF_GET_APERTURE		0x51
2059 #define HIDPP_FF_SET_APERTURE		0x61
2060 #define HIDPP_FF_GET_GLOBAL_GAINS	0x71
2061 #define HIDPP_FF_SET_GLOBAL_GAINS	0x81
2062 
2063 #define HIDPP_FF_EFFECT_STATE_GET	0x00
2064 #define HIDPP_FF_EFFECT_STATE_STOP	0x01
2065 #define HIDPP_FF_EFFECT_STATE_PLAY	0x02
2066 #define HIDPP_FF_EFFECT_STATE_PAUSE	0x03
2067 
2068 #define HIDPP_FF_EFFECT_CONSTANT	0x00
2069 #define HIDPP_FF_EFFECT_PERIODIC_SINE		0x01
2070 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE		0x02
2071 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE	0x03
2072 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP	0x04
2073 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN	0x05
2074 #define HIDPP_FF_EFFECT_SPRING		0x06
2075 #define HIDPP_FF_EFFECT_DAMPER		0x07
2076 #define HIDPP_FF_EFFECT_FRICTION	0x08
2077 #define HIDPP_FF_EFFECT_INERTIA		0x09
2078 #define HIDPP_FF_EFFECT_RAMP		0x0A
2079 
2080 #define HIDPP_FF_EFFECT_AUTOSTART	0x80
2081 
2082 #define HIDPP_FF_EFFECTID_NONE		-1
2083 #define HIDPP_FF_EFFECTID_AUTOCENTER	-2
2084 #define HIDPP_AUTOCENTER_PARAMS_LENGTH	18
2085 
2086 #define HIDPP_FF_MAX_PARAMS	20
2087 #define HIDPP_FF_RESERVED_SLOTS	1
2088 
2089 struct hidpp_ff_private_data {
2090 	struct hidpp_device *hidpp;
2091 	u8 feature_index;
2092 	u8 version;
2093 	u16 gain;
2094 	s16 range;
2095 	u8 slot_autocenter;
2096 	u8 num_effects;
2097 	int *effect_ids;
2098 	struct workqueue_struct *wq;
2099 	atomic_t workqueue_size;
2100 };
2101 
2102 struct hidpp_ff_work_data {
2103 	struct work_struct work;
2104 	struct hidpp_ff_private_data *data;
2105 	int effect_id;
2106 	u8 command;
2107 	u8 params[HIDPP_FF_MAX_PARAMS];
2108 	u8 size;
2109 };
2110 
2111 static const signed short hidpp_ff_effects[] = {
2112 	FF_CONSTANT,
2113 	FF_PERIODIC,
2114 	FF_SINE,
2115 	FF_SQUARE,
2116 	FF_SAW_UP,
2117 	FF_SAW_DOWN,
2118 	FF_TRIANGLE,
2119 	FF_SPRING,
2120 	FF_DAMPER,
2121 	FF_AUTOCENTER,
2122 	FF_GAIN,
2123 	-1
2124 };
2125 
2126 static const signed short hidpp_ff_effects_v2[] = {
2127 	FF_RAMP,
2128 	FF_FRICTION,
2129 	FF_INERTIA,
2130 	-1
2131 };
2132 
2133 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
2134 	HIDPP_FF_EFFECT_SPRING,
2135 	HIDPP_FF_EFFECT_FRICTION,
2136 	HIDPP_FF_EFFECT_DAMPER,
2137 	HIDPP_FF_EFFECT_INERTIA
2138 };
2139 
2140 static const char *HIDPP_FF_CONDITION_NAMES[] = {
2141 	"spring",
2142 	"friction",
2143 	"damper",
2144 	"inertia"
2145 };
2146 
2147 
2148 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
2149 {
2150 	int i;
2151 
2152 	for (i = 0; i < data->num_effects; i++)
2153 		if (data->effect_ids[i] == effect_id)
2154 			return i+1;
2155 
2156 	return 0;
2157 }
2158 
2159 static void hidpp_ff_work_handler(struct work_struct *w)
2160 {
2161 	struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
2162 	struct hidpp_ff_private_data *data = wd->data;
2163 	struct hidpp_report response;
2164 	u8 slot;
2165 	int ret;
2166 
2167 	/* add slot number if needed */
2168 	switch (wd->effect_id) {
2169 	case HIDPP_FF_EFFECTID_AUTOCENTER:
2170 		wd->params[0] = data->slot_autocenter;
2171 		break;
2172 	case HIDPP_FF_EFFECTID_NONE:
2173 		/* leave slot as zero */
2174 		break;
2175 	default:
2176 		/* find current slot for effect */
2177 		wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
2178 		break;
2179 	}
2180 
2181 	/* send command and wait for reply */
2182 	ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
2183 		wd->command, wd->params, wd->size, &response);
2184 
2185 	if (ret) {
2186 		hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
2187 		goto out;
2188 	}
2189 
2190 	/* parse return data */
2191 	switch (wd->command) {
2192 	case HIDPP_FF_DOWNLOAD_EFFECT:
2193 		slot = response.fap.params[0];
2194 		if (slot > 0 && slot <= data->num_effects) {
2195 			if (wd->effect_id >= 0)
2196 				/* regular effect uploaded */
2197 				data->effect_ids[slot-1] = wd->effect_id;
2198 			else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
2199 				/* autocenter spring uploaded */
2200 				data->slot_autocenter = slot;
2201 		}
2202 		break;
2203 	case HIDPP_FF_DESTROY_EFFECT:
2204 		if (wd->effect_id >= 0)
2205 			/* regular effect destroyed */
2206 			data->effect_ids[wd->params[0]-1] = -1;
2207 		else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
2208 			/* autocenter spring destoyed */
2209 			data->slot_autocenter = 0;
2210 		break;
2211 	case HIDPP_FF_SET_GLOBAL_GAINS:
2212 		data->gain = (wd->params[0] << 8) + wd->params[1];
2213 		break;
2214 	case HIDPP_FF_SET_APERTURE:
2215 		data->range = (wd->params[0] << 8) + wd->params[1];
2216 		break;
2217 	default:
2218 		/* no action needed */
2219 		break;
2220 	}
2221 
2222 out:
2223 	atomic_dec(&data->workqueue_size);
2224 	kfree(wd);
2225 }
2226 
2227 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
2228 {
2229 	struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
2230 	int s;
2231 
2232 	if (!wd)
2233 		return -ENOMEM;
2234 
2235 	INIT_WORK(&wd->work, hidpp_ff_work_handler);
2236 
2237 	wd->data = data;
2238 	wd->effect_id = effect_id;
2239 	wd->command = command;
2240 	wd->size = size;
2241 	memcpy(wd->params, params, size);
2242 
2243 	atomic_inc(&data->workqueue_size);
2244 	queue_work(data->wq, &wd->work);
2245 
2246 	/* warn about excessive queue size */
2247 	s = atomic_read(&data->workqueue_size);
2248 	if (s >= 20 && s % 20 == 0)
2249 		hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
2250 
2251 	return 0;
2252 }
2253 
2254 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
2255 {
2256 	struct hidpp_ff_private_data *data = dev->ff->private;
2257 	u8 params[20];
2258 	u8 size;
2259 	int force;
2260 
2261 	/* set common parameters */
2262 	params[2] = effect->replay.length >> 8;
2263 	params[3] = effect->replay.length & 255;
2264 	params[4] = effect->replay.delay >> 8;
2265 	params[5] = effect->replay.delay & 255;
2266 
2267 	switch (effect->type) {
2268 	case FF_CONSTANT:
2269 		force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2270 		params[1] = HIDPP_FF_EFFECT_CONSTANT;
2271 		params[6] = force >> 8;
2272 		params[7] = force & 255;
2273 		params[8] = effect->u.constant.envelope.attack_level >> 7;
2274 		params[9] = effect->u.constant.envelope.attack_length >> 8;
2275 		params[10] = effect->u.constant.envelope.attack_length & 255;
2276 		params[11] = effect->u.constant.envelope.fade_level >> 7;
2277 		params[12] = effect->u.constant.envelope.fade_length >> 8;
2278 		params[13] = effect->u.constant.envelope.fade_length & 255;
2279 		size = 14;
2280 		dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
2281 				effect->u.constant.level,
2282 				effect->direction, force);
2283 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2284 				effect->u.constant.envelope.attack_level,
2285 				effect->u.constant.envelope.attack_length,
2286 				effect->u.constant.envelope.fade_level,
2287 				effect->u.constant.envelope.fade_length);
2288 		break;
2289 	case FF_PERIODIC:
2290 	{
2291 		switch (effect->u.periodic.waveform) {
2292 		case FF_SINE:
2293 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
2294 			break;
2295 		case FF_SQUARE:
2296 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
2297 			break;
2298 		case FF_SAW_UP:
2299 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
2300 			break;
2301 		case FF_SAW_DOWN:
2302 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
2303 			break;
2304 		case FF_TRIANGLE:
2305 			params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
2306 			break;
2307 		default:
2308 			hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
2309 			return -EINVAL;
2310 		}
2311 		force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2312 		params[6] = effect->u.periodic.magnitude >> 8;
2313 		params[7] = effect->u.periodic.magnitude & 255;
2314 		params[8] = effect->u.periodic.offset >> 8;
2315 		params[9] = effect->u.periodic.offset & 255;
2316 		params[10] = effect->u.periodic.period >> 8;
2317 		params[11] = effect->u.periodic.period & 255;
2318 		params[12] = effect->u.periodic.phase >> 8;
2319 		params[13] = effect->u.periodic.phase & 255;
2320 		params[14] = effect->u.periodic.envelope.attack_level >> 7;
2321 		params[15] = effect->u.periodic.envelope.attack_length >> 8;
2322 		params[16] = effect->u.periodic.envelope.attack_length & 255;
2323 		params[17] = effect->u.periodic.envelope.fade_level >> 7;
2324 		params[18] = effect->u.periodic.envelope.fade_length >> 8;
2325 		params[19] = effect->u.periodic.envelope.fade_length & 255;
2326 		size = 20;
2327 		dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
2328 				effect->u.periodic.magnitude, effect->direction,
2329 				effect->u.periodic.offset,
2330 				effect->u.periodic.period,
2331 				effect->u.periodic.phase);
2332 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2333 				effect->u.periodic.envelope.attack_level,
2334 				effect->u.periodic.envelope.attack_length,
2335 				effect->u.periodic.envelope.fade_level,
2336 				effect->u.periodic.envelope.fade_length);
2337 		break;
2338 	}
2339 	case FF_RAMP:
2340 		params[1] = HIDPP_FF_EFFECT_RAMP;
2341 		force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2342 		params[6] = force >> 8;
2343 		params[7] = force & 255;
2344 		force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2345 		params[8] = force >> 8;
2346 		params[9] = force & 255;
2347 		params[10] = effect->u.ramp.envelope.attack_level >> 7;
2348 		params[11] = effect->u.ramp.envelope.attack_length >> 8;
2349 		params[12] = effect->u.ramp.envelope.attack_length & 255;
2350 		params[13] = effect->u.ramp.envelope.fade_level >> 7;
2351 		params[14] = effect->u.ramp.envelope.fade_length >> 8;
2352 		params[15] = effect->u.ramp.envelope.fade_length & 255;
2353 		size = 16;
2354 		dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
2355 				effect->u.ramp.start_level,
2356 				effect->u.ramp.end_level,
2357 				effect->direction, force);
2358 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2359 				effect->u.ramp.envelope.attack_level,
2360 				effect->u.ramp.envelope.attack_length,
2361 				effect->u.ramp.envelope.fade_level,
2362 				effect->u.ramp.envelope.fade_length);
2363 		break;
2364 	case FF_FRICTION:
2365 	case FF_INERTIA:
2366 	case FF_SPRING:
2367 	case FF_DAMPER:
2368 		params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
2369 		params[6] = effect->u.condition[0].left_saturation >> 9;
2370 		params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
2371 		params[8] = effect->u.condition[0].left_coeff >> 8;
2372 		params[9] = effect->u.condition[0].left_coeff & 255;
2373 		params[10] = effect->u.condition[0].deadband >> 9;
2374 		params[11] = (effect->u.condition[0].deadband >> 1) & 255;
2375 		params[12] = effect->u.condition[0].center >> 8;
2376 		params[13] = effect->u.condition[0].center & 255;
2377 		params[14] = effect->u.condition[0].right_coeff >> 8;
2378 		params[15] = effect->u.condition[0].right_coeff & 255;
2379 		params[16] = effect->u.condition[0].right_saturation >> 9;
2380 		params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
2381 		size = 18;
2382 		dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
2383 				HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
2384 				effect->u.condition[0].left_coeff,
2385 				effect->u.condition[0].left_saturation,
2386 				effect->u.condition[0].right_coeff,
2387 				effect->u.condition[0].right_saturation);
2388 		dbg_hid("          deadband=%d, center=%d\n",
2389 				effect->u.condition[0].deadband,
2390 				effect->u.condition[0].center);
2391 		break;
2392 	default:
2393 		hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
2394 		return -EINVAL;
2395 	}
2396 
2397 	return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
2398 }
2399 
2400 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
2401 {
2402 	struct hidpp_ff_private_data *data = dev->ff->private;
2403 	u8 params[2];
2404 
2405 	params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
2406 
2407 	dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
2408 
2409 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
2410 }
2411 
2412 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
2413 {
2414 	struct hidpp_ff_private_data *data = dev->ff->private;
2415 	u8 slot = 0;
2416 
2417 	dbg_hid("Erasing effect %d.\n", effect_id);
2418 
2419 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
2420 }
2421 
2422 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
2423 {
2424 	struct hidpp_ff_private_data *data = dev->ff->private;
2425 	u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH];
2426 
2427 	dbg_hid("Setting autocenter to %d.\n", magnitude);
2428 
2429 	/* start a standard spring effect */
2430 	params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
2431 	/* zero delay and duration */
2432 	params[2] = params[3] = params[4] = params[5] = 0;
2433 	/* set coeff to 25% of saturation */
2434 	params[8] = params[14] = magnitude >> 11;
2435 	params[9] = params[15] = (magnitude >> 3) & 255;
2436 	params[6] = params[16] = magnitude >> 9;
2437 	params[7] = params[17] = (magnitude >> 1) & 255;
2438 	/* zero deadband and center */
2439 	params[10] = params[11] = params[12] = params[13] = 0;
2440 
2441 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
2442 }
2443 
2444 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
2445 {
2446 	struct hidpp_ff_private_data *data = dev->ff->private;
2447 	u8 params[4];
2448 
2449 	dbg_hid("Setting gain to %d.\n", gain);
2450 
2451 	params[0] = gain >> 8;
2452 	params[1] = gain & 255;
2453 	params[2] = 0; /* no boost */
2454 	params[3] = 0;
2455 
2456 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
2457 }
2458 
2459 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
2460 {
2461 	struct hid_device *hid = to_hid_device(dev);
2462 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2463 	struct input_dev *idev = hidinput->input;
2464 	struct hidpp_ff_private_data *data = idev->ff->private;
2465 
2466 	return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
2467 }
2468 
2469 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2470 {
2471 	struct hid_device *hid = to_hid_device(dev);
2472 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2473 	struct input_dev *idev = hidinput->input;
2474 	struct hidpp_ff_private_data *data = idev->ff->private;
2475 	u8 params[2];
2476 	int range = simple_strtoul(buf, NULL, 10);
2477 
2478 	range = clamp(range, 180, 900);
2479 
2480 	params[0] = range >> 8;
2481 	params[1] = range & 0x00FF;
2482 
2483 	hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
2484 
2485 	return count;
2486 }
2487 
2488 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
2489 
2490 static void hidpp_ff_destroy(struct ff_device *ff)
2491 {
2492 	struct hidpp_ff_private_data *data = ff->private;
2493 	struct hid_device *hid = data->hidpp->hid_dev;
2494 
2495 	hid_info(hid, "Unloading HID++ force feedback.\n");
2496 
2497 	device_remove_file(&hid->dev, &dev_attr_range);
2498 	destroy_workqueue(data->wq);
2499 	kfree(data->effect_ids);
2500 }
2501 
2502 static int hidpp_ff_init(struct hidpp_device *hidpp,
2503 			 struct hidpp_ff_private_data *data)
2504 {
2505 	struct hid_device *hid = hidpp->hid_dev;
2506 	struct hid_input *hidinput;
2507 	struct input_dev *dev;
2508 	const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
2509 	const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
2510 	struct ff_device *ff;
2511 	int error, j, num_slots = data->num_effects;
2512 	u8 version;
2513 
2514 	if (list_empty(&hid->inputs)) {
2515 		hid_err(hid, "no inputs found\n");
2516 		return -ENODEV;
2517 	}
2518 	hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2519 	dev = hidinput->input;
2520 
2521 	if (!dev) {
2522 		hid_err(hid, "Struct input_dev not set!\n");
2523 		return -EINVAL;
2524 	}
2525 
2526 	/* Get firmware release */
2527 	version = bcdDevice & 255;
2528 
2529 	/* Set supported force feedback capabilities */
2530 	for (j = 0; hidpp_ff_effects[j] >= 0; j++)
2531 		set_bit(hidpp_ff_effects[j], dev->ffbit);
2532 	if (version > 1)
2533 		for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++)
2534 			set_bit(hidpp_ff_effects_v2[j], dev->ffbit);
2535 
2536 	error = input_ff_create(dev, num_slots);
2537 
2538 	if (error) {
2539 		hid_err(dev, "Failed to create FF device!\n");
2540 		return error;
2541 	}
2542 	/*
2543 	 * Create a copy of passed data, so we can transfer memory
2544 	 * ownership to FF core
2545 	 */
2546 	data = kmemdup(data, sizeof(*data), GFP_KERNEL);
2547 	if (!data)
2548 		return -ENOMEM;
2549 	data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2550 	if (!data->effect_ids) {
2551 		kfree(data);
2552 		return -ENOMEM;
2553 	}
2554 	data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2555 	if (!data->wq) {
2556 		kfree(data->effect_ids);
2557 		kfree(data);
2558 		return -ENOMEM;
2559 	}
2560 
2561 	data->hidpp = hidpp;
2562 	data->version = version;
2563 	for (j = 0; j < num_slots; j++)
2564 		data->effect_ids[j] = -1;
2565 
2566 	ff = dev->ff;
2567 	ff->private = data;
2568 
2569 	ff->upload = hidpp_ff_upload_effect;
2570 	ff->erase = hidpp_ff_erase_effect;
2571 	ff->playback = hidpp_ff_playback;
2572 	ff->set_gain = hidpp_ff_set_gain;
2573 	ff->set_autocenter = hidpp_ff_set_autocenter;
2574 	ff->destroy = hidpp_ff_destroy;
2575 
2576 	/* Create sysfs interface */
2577 	error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2578 	if (error)
2579 		hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2580 
2581 	/* init the hardware command queue */
2582 	atomic_set(&data->workqueue_size, 0);
2583 
2584 	hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2585 		 version);
2586 
2587 	return 0;
2588 }
2589 
2590 /* ************************************************************************** */
2591 /*                                                                            */
2592 /* Device Support                                                             */
2593 /*                                                                            */
2594 /* ************************************************************************** */
2595 
2596 /* -------------------------------------------------------------------------- */
2597 /* Touchpad HID++ devices                                                     */
2598 /* -------------------------------------------------------------------------- */
2599 
2600 #define WTP_MANUAL_RESOLUTION				39
2601 
2602 struct wtp_data {
2603 	u16 x_size, y_size;
2604 	u8 finger_count;
2605 	u8 mt_feature_index;
2606 	u8 button_feature_index;
2607 	u8 maxcontacts;
2608 	bool flip_y;
2609 	unsigned int resolution;
2610 };
2611 
2612 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2613 		struct hid_field *field, struct hid_usage *usage,
2614 		unsigned long **bit, int *max)
2615 {
2616 	return -1;
2617 }
2618 
2619 static void wtp_populate_input(struct hidpp_device *hidpp,
2620 			       struct input_dev *input_dev)
2621 {
2622 	struct wtp_data *wd = hidpp->private_data;
2623 
2624 	__set_bit(EV_ABS, input_dev->evbit);
2625 	__set_bit(EV_KEY, input_dev->evbit);
2626 	__clear_bit(EV_REL, input_dev->evbit);
2627 	__clear_bit(EV_LED, input_dev->evbit);
2628 
2629 	input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2630 	input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2631 	input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2632 	input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2633 
2634 	/* Max pressure is not given by the devices, pick one */
2635 	input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2636 
2637 	input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2638 
2639 	if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2640 		input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2641 	else
2642 		__set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2643 
2644 	input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2645 		INPUT_MT_DROP_UNUSED);
2646 }
2647 
2648 static void wtp_touch_event(struct hidpp_device *hidpp,
2649 	struct hidpp_touchpad_raw_xy_finger *touch_report)
2650 {
2651 	struct wtp_data *wd = hidpp->private_data;
2652 	int slot;
2653 
2654 	if (!touch_report->finger_id || touch_report->contact_type)
2655 		/* no actual data */
2656 		return;
2657 
2658 	slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id);
2659 
2660 	input_mt_slot(hidpp->input, slot);
2661 	input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER,
2662 					touch_report->contact_status);
2663 	if (touch_report->contact_status) {
2664 		input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X,
2665 				touch_report->x);
2666 		input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y,
2667 				wd->flip_y ? wd->y_size - touch_report->y :
2668 					     touch_report->y);
2669 		input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE,
2670 				touch_report->area);
2671 	}
2672 }
2673 
2674 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2675 		struct hidpp_touchpad_raw_xy *raw)
2676 {
2677 	int i;
2678 
2679 	for (i = 0; i < 2; i++)
2680 		wtp_touch_event(hidpp, &(raw->fingers[i]));
2681 
2682 	if (raw->end_of_frame &&
2683 	    !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2684 		input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button);
2685 
2686 	if (raw->end_of_frame || raw->finger_count <= 2) {
2687 		input_mt_sync_frame(hidpp->input);
2688 		input_sync(hidpp->input);
2689 	}
2690 }
2691 
2692 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2693 {
2694 	struct wtp_data *wd = hidpp->private_data;
2695 	u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2696 		      (data[7] >> 4) * (data[7] >> 4)) / 2;
2697 	u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2698 		      (data[13] >> 4) * (data[13] >> 4)) / 2;
2699 	struct hidpp_touchpad_raw_xy raw = {
2700 		.timestamp = data[1],
2701 		.fingers = {
2702 			{
2703 				.contact_type = 0,
2704 				.contact_status = !!data[7],
2705 				.x = get_unaligned_le16(&data[3]),
2706 				.y = get_unaligned_le16(&data[5]),
2707 				.z = c1_area,
2708 				.area = c1_area,
2709 				.finger_id = data[2],
2710 			}, {
2711 				.contact_type = 0,
2712 				.contact_status = !!data[13],
2713 				.x = get_unaligned_le16(&data[9]),
2714 				.y = get_unaligned_le16(&data[11]),
2715 				.z = c2_area,
2716 				.area = c2_area,
2717 				.finger_id = data[8],
2718 			}
2719 		},
2720 		.finger_count = wd->maxcontacts,
2721 		.spurious_flag = 0,
2722 		.end_of_frame = (data[0] >> 7) == 0,
2723 		.button = data[0] & 0x01,
2724 	};
2725 
2726 	wtp_send_raw_xy_event(hidpp, &raw);
2727 
2728 	return 1;
2729 }
2730 
2731 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2732 {
2733 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2734 	struct wtp_data *wd = hidpp->private_data;
2735 	struct hidpp_report *report = (struct hidpp_report *)data;
2736 	struct hidpp_touchpad_raw_xy raw;
2737 
2738 	if (!wd || !hidpp->input)
2739 		return 1;
2740 
2741 	switch (data[0]) {
2742 	case 0x02:
2743 		if (size < 2) {
2744 			hid_err(hdev, "Received HID report of bad size (%d)",
2745 				size);
2746 			return 1;
2747 		}
2748 		if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2749 			input_event(hidpp->input, EV_KEY, BTN_LEFT,
2750 					!!(data[1] & 0x01));
2751 			input_event(hidpp->input, EV_KEY, BTN_RIGHT,
2752 					!!(data[1] & 0x02));
2753 			input_sync(hidpp->input);
2754 			return 0;
2755 		} else {
2756 			if (size < 21)
2757 				return 1;
2758 			return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2759 		}
2760 	case REPORT_ID_HIDPP_LONG:
2761 		/* size is already checked in hidpp_raw_event. */
2762 		if ((report->fap.feature_index != wd->mt_feature_index) ||
2763 		    (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2764 			return 1;
2765 		hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2766 
2767 		wtp_send_raw_xy_event(hidpp, &raw);
2768 		return 0;
2769 	}
2770 
2771 	return 0;
2772 }
2773 
2774 static int wtp_get_config(struct hidpp_device *hidpp)
2775 {
2776 	struct wtp_data *wd = hidpp->private_data;
2777 	struct hidpp_touchpad_raw_info raw_info = {0};
2778 	u8 feature_type;
2779 	int ret;
2780 
2781 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2782 		&wd->mt_feature_index, &feature_type);
2783 	if (ret)
2784 		/* means that the device is not powered up */
2785 		return ret;
2786 
2787 	ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2788 		&raw_info);
2789 	if (ret)
2790 		return ret;
2791 
2792 	wd->x_size = raw_info.x_size;
2793 	wd->y_size = raw_info.y_size;
2794 	wd->maxcontacts = raw_info.maxcontacts;
2795 	wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2796 	wd->resolution = raw_info.res;
2797 	if (!wd->resolution)
2798 		wd->resolution = WTP_MANUAL_RESOLUTION;
2799 
2800 	return 0;
2801 }
2802 
2803 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2804 {
2805 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2806 	struct wtp_data *wd;
2807 
2808 	wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2809 			GFP_KERNEL);
2810 	if (!wd)
2811 		return -ENOMEM;
2812 
2813 	hidpp->private_data = wd;
2814 
2815 	return 0;
2816 };
2817 
2818 static int wtp_connect(struct hid_device *hdev, bool connected)
2819 {
2820 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2821 	struct wtp_data *wd = hidpp->private_data;
2822 	int ret;
2823 
2824 	if (!wd->x_size) {
2825 		ret = wtp_get_config(hidpp);
2826 		if (ret) {
2827 			hid_err(hdev, "Can not get wtp config: %d\n", ret);
2828 			return ret;
2829 		}
2830 	}
2831 
2832 	return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2833 			true, true);
2834 }
2835 
2836 /* ------------------------------------------------------------------------- */
2837 /* Logitech M560 devices                                                     */
2838 /* ------------------------------------------------------------------------- */
2839 
2840 /*
2841  * Logitech M560 protocol overview
2842  *
2843  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2844  * the sides buttons are pressed, it sends some keyboard keys events
2845  * instead of buttons ones.
2846  * To complicate things further, the middle button keys sequence
2847  * is different from the odd press and the even press.
2848  *
2849  * forward button -> Super_R
2850  * backward button -> Super_L+'d' (press only)
2851  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2852  *                  2nd time: left-click (press only)
2853  * NB: press-only means that when the button is pressed, the
2854  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2855  * together sequentially; instead when the button is released, no event is
2856  * generated !
2857  *
2858  * With the command
2859  *	10<xx>0a 3500af03 (where <xx> is the mouse id),
2860  * the mouse reacts differently:
2861  * - it never sends a keyboard key event
2862  * - for the three mouse button it sends:
2863  *	middle button               press   11<xx>0a 3500af00...
2864  *	side 1 button (forward)     press   11<xx>0a 3500b000...
2865  *	side 2 button (backward)    press   11<xx>0a 3500ae00...
2866  *	middle/side1/side2 button   release 11<xx>0a 35000000...
2867  */
2868 
2869 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2870 
2871 /* how buttons are mapped in the report */
2872 #define M560_MOUSE_BTN_LEFT		0x01
2873 #define M560_MOUSE_BTN_RIGHT		0x02
2874 #define M560_MOUSE_BTN_WHEEL_LEFT	0x08
2875 #define M560_MOUSE_BTN_WHEEL_RIGHT	0x10
2876 
2877 #define M560_SUB_ID			0x0a
2878 #define M560_BUTTON_MODE_REGISTER	0x35
2879 
2880 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2881 {
2882 	struct hidpp_report response;
2883 	struct hidpp_device *hidpp_dev;
2884 
2885 	hidpp_dev = hid_get_drvdata(hdev);
2886 
2887 	return hidpp_send_rap_command_sync(
2888 		hidpp_dev,
2889 		REPORT_ID_HIDPP_SHORT,
2890 		M560_SUB_ID,
2891 		M560_BUTTON_MODE_REGISTER,
2892 		(u8 *)m560_config_parameter,
2893 		sizeof(m560_config_parameter),
2894 		&response
2895 	);
2896 }
2897 
2898 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2899 {
2900 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2901 
2902 	/* sanity check */
2903 	if (!hidpp->input) {
2904 		hid_err(hdev, "error in parameter\n");
2905 		return -EINVAL;
2906 	}
2907 
2908 	if (size < 7) {
2909 		hid_err(hdev, "error in report\n");
2910 		return 0;
2911 	}
2912 
2913 	if (data[0] == REPORT_ID_HIDPP_LONG &&
2914 	    data[2] == M560_SUB_ID && data[6] == 0x00) {
2915 		/*
2916 		 * m560 mouse report for middle, forward and backward button
2917 		 *
2918 		 * data[0] = 0x11
2919 		 * data[1] = device-id
2920 		 * data[2] = 0x0a
2921 		 * data[5] = 0xaf -> middle
2922 		 *	     0xb0 -> forward
2923 		 *	     0xae -> backward
2924 		 *	     0x00 -> release all
2925 		 * data[6] = 0x00
2926 		 */
2927 
2928 		switch (data[5]) {
2929 		case 0xaf:
2930 			input_report_key(hidpp->input, BTN_MIDDLE, 1);
2931 			break;
2932 		case 0xb0:
2933 			input_report_key(hidpp->input, BTN_FORWARD, 1);
2934 			break;
2935 		case 0xae:
2936 			input_report_key(hidpp->input, BTN_BACK, 1);
2937 			break;
2938 		case 0x00:
2939 			input_report_key(hidpp->input, BTN_BACK, 0);
2940 			input_report_key(hidpp->input, BTN_FORWARD, 0);
2941 			input_report_key(hidpp->input, BTN_MIDDLE, 0);
2942 			break;
2943 		default:
2944 			hid_err(hdev, "error in report\n");
2945 			return 0;
2946 		}
2947 		input_sync(hidpp->input);
2948 
2949 	} else if (data[0] == 0x02) {
2950 		/*
2951 		 * Logitech M560 mouse report
2952 		 *
2953 		 * data[0] = type (0x02)
2954 		 * data[1..2] = buttons
2955 		 * data[3..5] = xy
2956 		 * data[6] = wheel
2957 		 */
2958 
2959 		int v;
2960 
2961 		input_report_key(hidpp->input, BTN_LEFT,
2962 			!!(data[1] & M560_MOUSE_BTN_LEFT));
2963 		input_report_key(hidpp->input, BTN_RIGHT,
2964 			!!(data[1] & M560_MOUSE_BTN_RIGHT));
2965 
2966 		if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) {
2967 			input_report_rel(hidpp->input, REL_HWHEEL, -1);
2968 			input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2969 					 -120);
2970 		} else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) {
2971 			input_report_rel(hidpp->input, REL_HWHEEL, 1);
2972 			input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2973 					 120);
2974 		}
2975 
2976 		v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2977 		input_report_rel(hidpp->input, REL_X, v);
2978 
2979 		v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2980 		input_report_rel(hidpp->input, REL_Y, v);
2981 
2982 		v = hid_snto32(data[6], 8);
2983 		if (v != 0)
2984 			hidpp_scroll_counter_handle_scroll(hidpp->input,
2985 					&hidpp->vertical_wheel_counter, v);
2986 
2987 		input_sync(hidpp->input);
2988 	}
2989 
2990 	return 1;
2991 }
2992 
2993 static void m560_populate_input(struct hidpp_device *hidpp,
2994 				struct input_dev *input_dev)
2995 {
2996 	__set_bit(EV_KEY, input_dev->evbit);
2997 	__set_bit(BTN_MIDDLE, input_dev->keybit);
2998 	__set_bit(BTN_RIGHT, input_dev->keybit);
2999 	__set_bit(BTN_LEFT, input_dev->keybit);
3000 	__set_bit(BTN_BACK, input_dev->keybit);
3001 	__set_bit(BTN_FORWARD, input_dev->keybit);
3002 
3003 	__set_bit(EV_REL, input_dev->evbit);
3004 	__set_bit(REL_X, input_dev->relbit);
3005 	__set_bit(REL_Y, input_dev->relbit);
3006 	__set_bit(REL_WHEEL, input_dev->relbit);
3007 	__set_bit(REL_HWHEEL, input_dev->relbit);
3008 	__set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
3009 	__set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
3010 }
3011 
3012 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3013 		struct hid_field *field, struct hid_usage *usage,
3014 		unsigned long **bit, int *max)
3015 {
3016 	return -1;
3017 }
3018 
3019 /* ------------------------------------------------------------------------- */
3020 /* Logitech K400 devices                                                     */
3021 /* ------------------------------------------------------------------------- */
3022 
3023 /*
3024  * The Logitech K400 keyboard has an embedded touchpad which is seen
3025  * as a mouse from the OS point of view. There is a hardware shortcut to disable
3026  * tap-to-click but the setting is not remembered accross reset, annoying some
3027  * users.
3028  *
3029  * We can toggle this feature from the host by using the feature 0x6010:
3030  * Touchpad FW items
3031  */
3032 
3033 struct k400_private_data {
3034 	u8 feature_index;
3035 };
3036 
3037 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
3038 {
3039 	struct k400_private_data *k400 = hidpp->private_data;
3040 	struct hidpp_touchpad_fw_items items = {};
3041 	int ret;
3042 	u8 feature_type;
3043 
3044 	if (!k400->feature_index) {
3045 		ret = hidpp_root_get_feature(hidpp,
3046 			HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
3047 			&k400->feature_index, &feature_type);
3048 		if (ret)
3049 			/* means that the device is not powered up */
3050 			return ret;
3051 	}
3052 
3053 	ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
3054 	if (ret)
3055 		return ret;
3056 
3057 	return 0;
3058 }
3059 
3060 static int k400_allocate(struct hid_device *hdev)
3061 {
3062 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3063 	struct k400_private_data *k400;
3064 
3065 	k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
3066 			    GFP_KERNEL);
3067 	if (!k400)
3068 		return -ENOMEM;
3069 
3070 	hidpp->private_data = k400;
3071 
3072 	return 0;
3073 };
3074 
3075 static int k400_connect(struct hid_device *hdev, bool connected)
3076 {
3077 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3078 
3079 	if (!disable_tap_to_click)
3080 		return 0;
3081 
3082 	return k400_disable_tap_to_click(hidpp);
3083 }
3084 
3085 /* ------------------------------------------------------------------------- */
3086 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
3087 /* ------------------------------------------------------------------------- */
3088 
3089 #define HIDPP_PAGE_G920_FORCE_FEEDBACK			0x8123
3090 
3091 static int g920_ff_set_autocenter(struct hidpp_device *hidpp,
3092 				  struct hidpp_ff_private_data *data)
3093 {
3094 	struct hidpp_report response;
3095 	u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = {
3096 		[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART,
3097 	};
3098 	int ret;
3099 
3100 	/* initialize with zero autocenter to get wheel in usable state */
3101 
3102 	dbg_hid("Setting autocenter to 0.\n");
3103 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3104 					  HIDPP_FF_DOWNLOAD_EFFECT,
3105 					  params, ARRAY_SIZE(params),
3106 					  &response);
3107 	if (ret)
3108 		hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n");
3109 	else
3110 		data->slot_autocenter = response.fap.params[0];
3111 
3112 	return ret;
3113 }
3114 
3115 static int g920_get_config(struct hidpp_device *hidpp,
3116 			   struct hidpp_ff_private_data *data)
3117 {
3118 	struct hidpp_report response;
3119 	u8 feature_type;
3120 	int ret;
3121 
3122 	memset(data, 0, sizeof(*data));
3123 
3124 	/* Find feature and store for later use */
3125 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
3126 				     &data->feature_index, &feature_type);
3127 	if (ret)
3128 		return ret;
3129 
3130 	/* Read number of slots available in device */
3131 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3132 					  HIDPP_FF_GET_INFO,
3133 					  NULL, 0,
3134 					  &response);
3135 	if (ret) {
3136 		if (ret < 0)
3137 			return ret;
3138 		hid_err(hidpp->hid_dev,
3139 			"%s: received protocol error 0x%02x\n", __func__, ret);
3140 		return -EPROTO;
3141 	}
3142 
3143 	data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
3144 
3145 	/* reset all forces */
3146 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3147 					  HIDPP_FF_RESET_ALL,
3148 					  NULL, 0,
3149 					  &response);
3150 	if (ret)
3151 		hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n");
3152 
3153 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3154 					  HIDPP_FF_GET_APERTURE,
3155 					  NULL, 0,
3156 					  &response);
3157 	if (ret) {
3158 		hid_warn(hidpp->hid_dev,
3159 			 "Failed to read range from device!\n");
3160 	}
3161 	data->range = ret ?
3162 		900 : get_unaligned_be16(&response.fap.params[0]);
3163 
3164 	/* Read the current gain values */
3165 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3166 					  HIDPP_FF_GET_GLOBAL_GAINS,
3167 					  NULL, 0,
3168 					  &response);
3169 	if (ret)
3170 		hid_warn(hidpp->hid_dev,
3171 			 "Failed to read gain values from device!\n");
3172 	data->gain = ret ?
3173 		0xffff : get_unaligned_be16(&response.fap.params[0]);
3174 
3175 	/* ignore boost value at response.fap.params[2] */
3176 
3177 	return g920_ff_set_autocenter(hidpp, data);
3178 }
3179 
3180 /* -------------------------------------------------------------------------- */
3181 /* Logitech Dinovo Mini keyboard with builtin touchpad                        */
3182 /* -------------------------------------------------------------------------- */
3183 #define DINOVO_MINI_PRODUCT_ID		0xb30c
3184 
3185 static int lg_dinovo_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3186 		struct hid_field *field, struct hid_usage *usage,
3187 		unsigned long **bit, int *max)
3188 {
3189 	if ((usage->hid & HID_USAGE_PAGE) != HID_UP_LOGIVENDOR)
3190 		return 0;
3191 
3192 	switch (usage->hid & HID_USAGE) {
3193 	case 0x00d: lg_map_key_clear(KEY_MEDIA);	break;
3194 	default:
3195 		return 0;
3196 	}
3197 	return 1;
3198 }
3199 
3200 /* -------------------------------------------------------------------------- */
3201 /* HID++1.0 devices which use HID++ reports for their wheels                  */
3202 /* -------------------------------------------------------------------------- */
3203 static int hidpp10_wheel_connect(struct hidpp_device *hidpp)
3204 {
3205 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3206 			HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT,
3207 			HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT);
3208 }
3209 
3210 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp,
3211 				   u8 *data, int size)
3212 {
3213 	s8 value, hvalue;
3214 
3215 	if (!hidpp->input)
3216 		return -EINVAL;
3217 
3218 	if (size < 7)
3219 		return 0;
3220 
3221 	if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER)
3222 		return 0;
3223 
3224 	value = data[3];
3225 	hvalue = data[4];
3226 
3227 	input_report_rel(hidpp->input, REL_WHEEL, value);
3228 	input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120);
3229 	input_report_rel(hidpp->input, REL_HWHEEL, hvalue);
3230 	input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120);
3231 	input_sync(hidpp->input);
3232 
3233 	return 1;
3234 }
3235 
3236 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp,
3237 					 struct input_dev *input_dev)
3238 {
3239 	__set_bit(EV_REL, input_dev->evbit);
3240 	__set_bit(REL_WHEEL, input_dev->relbit);
3241 	__set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
3242 	__set_bit(REL_HWHEEL, input_dev->relbit);
3243 	__set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
3244 }
3245 
3246 /* -------------------------------------------------------------------------- */
3247 /* HID++1.0 mice which use HID++ reports for extra mouse buttons              */
3248 /* -------------------------------------------------------------------------- */
3249 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp)
3250 {
3251 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3252 				    HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT,
3253 				    HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT);
3254 }
3255 
3256 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp,
3257 				    u8 *data, int size)
3258 {
3259 	int i;
3260 
3261 	if (!hidpp->input)
3262 		return -EINVAL;
3263 
3264 	if (size < 7)
3265 		return 0;
3266 
3267 	if (data[0] != REPORT_ID_HIDPP_SHORT ||
3268 	    data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS)
3269 		return 0;
3270 
3271 	/*
3272 	 * Buttons are either delivered through the regular mouse report *or*
3273 	 * through the extra buttons report. At least for button 6 how it is
3274 	 * delivered differs per receiver firmware version. Even receivers with
3275 	 * the same usb-id show different behavior, so we handle both cases.
3276 	 */
3277 	for (i = 0; i < 8; i++)
3278 		input_report_key(hidpp->input, BTN_MOUSE + i,
3279 				 (data[3] & (1 << i)));
3280 
3281 	/* Some mice report events on button 9+, use BTN_MISC */
3282 	for (i = 0; i < 8; i++)
3283 		input_report_key(hidpp->input, BTN_MISC + i,
3284 				 (data[4] & (1 << i)));
3285 
3286 	input_sync(hidpp->input);
3287 	return 1;
3288 }
3289 
3290 static void hidpp10_extra_mouse_buttons_populate_input(
3291 			struct hidpp_device *hidpp, struct input_dev *input_dev)
3292 {
3293 	/* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */
3294 	__set_bit(BTN_0, input_dev->keybit);
3295 	__set_bit(BTN_1, input_dev->keybit);
3296 	__set_bit(BTN_2, input_dev->keybit);
3297 	__set_bit(BTN_3, input_dev->keybit);
3298 	__set_bit(BTN_4, input_dev->keybit);
3299 	__set_bit(BTN_5, input_dev->keybit);
3300 	__set_bit(BTN_6, input_dev->keybit);
3301 	__set_bit(BTN_7, input_dev->keybit);
3302 }
3303 
3304 /* -------------------------------------------------------------------------- */
3305 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */
3306 /* -------------------------------------------------------------------------- */
3307 
3308 /* Find the consumer-page input report desc and change Maximums to 0x107f */
3309 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp,
3310 					      u8 *_rdesc, unsigned int *rsize)
3311 {
3312 	/* Note 0 terminated so we can use strnstr to search for this. */
3313 	static const char consumer_rdesc_start[] = {
3314 		0x05, 0x0C,	/* USAGE_PAGE (Consumer Devices)       */
3315 		0x09, 0x01,	/* USAGE (Consumer Control)            */
3316 		0xA1, 0x01,	/* COLLECTION (Application)            */
3317 		0x85, 0x03,	/* REPORT_ID = 3                       */
3318 		0x75, 0x10,	/* REPORT_SIZE (16)                    */
3319 		0x95, 0x02,	/* REPORT_COUNT (2)                    */
3320 		0x15, 0x01,	/* LOGICAL_MIN (1)                     */
3321 		0x26, 0x00	/* LOGICAL_MAX (...                    */
3322 	};
3323 	char *consumer_rdesc, *rdesc = (char *)_rdesc;
3324 	unsigned int size;
3325 
3326 	consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize);
3327 	size = *rsize - (consumer_rdesc - rdesc);
3328 	if (consumer_rdesc && size >= 25) {
3329 		consumer_rdesc[15] = 0x7f;
3330 		consumer_rdesc[16] = 0x10;
3331 		consumer_rdesc[20] = 0x7f;
3332 		consumer_rdesc[21] = 0x10;
3333 	}
3334 	return _rdesc;
3335 }
3336 
3337 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp)
3338 {
3339 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3340 				    HIDPP_ENABLE_CONSUMER_REPORT,
3341 				    HIDPP_ENABLE_CONSUMER_REPORT);
3342 }
3343 
3344 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp,
3345 					   u8 *data, int size)
3346 {
3347 	u8 consumer_report[5];
3348 
3349 	if (size < 7)
3350 		return 0;
3351 
3352 	if (data[0] != REPORT_ID_HIDPP_SHORT ||
3353 	    data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS)
3354 		return 0;
3355 
3356 	/*
3357 	 * Build a normal consumer report (3) out of the data, this detour
3358 	 * is necessary to get some keyboards to report their 0x10xx usages.
3359 	 */
3360 	consumer_report[0] = 0x03;
3361 	memcpy(&consumer_report[1], &data[3], 4);
3362 	/* We are called from atomic context */
3363 	hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT,
3364 			     consumer_report, 5, 1);
3365 
3366 	return 1;
3367 }
3368 
3369 /* -------------------------------------------------------------------------- */
3370 /* High-resolution scroll wheels                                              */
3371 /* -------------------------------------------------------------------------- */
3372 
3373 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
3374 {
3375 	int ret;
3376 	u8 multiplier = 1;
3377 
3378 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
3379 		ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
3380 		if (ret == 0)
3381 			ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
3382 	} else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
3383 		ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
3384 							   &multiplier);
3385 	} else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ {
3386 		ret = hidpp10_enable_scrolling_acceleration(hidpp);
3387 		multiplier = 8;
3388 	}
3389 	if (ret)
3390 		return ret;
3391 
3392 	if (multiplier == 0)
3393 		multiplier = 1;
3394 
3395 	hidpp->vertical_wheel_counter.wheel_multiplier = multiplier;
3396 	hid_dbg(hidpp->hid_dev, "wheel multiplier = %d\n", multiplier);
3397 	return 0;
3398 }
3399 
3400 /* -------------------------------------------------------------------------- */
3401 /* Generic HID++ devices                                                      */
3402 /* -------------------------------------------------------------------------- */
3403 
3404 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc,
3405 			      unsigned int *rsize)
3406 {
3407 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3408 
3409 	if (!hidpp)
3410 		return rdesc;
3411 
3412 	/* For 27 MHz keyboards the quirk gets set after hid_parse. */
3413 	if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE ||
3414 	    (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS))
3415 		rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize);
3416 
3417 	return rdesc;
3418 }
3419 
3420 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3421 		struct hid_field *field, struct hid_usage *usage,
3422 		unsigned long **bit, int *max)
3423 {
3424 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3425 
3426 	if (!hidpp)
3427 		return 0;
3428 
3429 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3430 		return wtp_input_mapping(hdev, hi, field, usage, bit, max);
3431 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
3432 			field->application != HID_GD_MOUSE)
3433 		return m560_input_mapping(hdev, hi, field, usage, bit, max);
3434 
3435 	if (hdev->product == DINOVO_MINI_PRODUCT_ID)
3436 		return lg_dinovo_input_mapping(hdev, hi, field, usage, bit, max);
3437 
3438 	return 0;
3439 }
3440 
3441 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
3442 		struct hid_field *field, struct hid_usage *usage,
3443 		unsigned long **bit, int *max)
3444 {
3445 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3446 
3447 	if (!hidpp)
3448 		return 0;
3449 
3450 	/* Ensure that Logitech G920 is not given a default fuzz/flat value */
3451 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3452 		if (usage->type == EV_ABS && (usage->code == ABS_X ||
3453 				usage->code == ABS_Y || usage->code == ABS_Z ||
3454 				usage->code == ABS_RZ)) {
3455 			field->application = HID_GD_MULTIAXIS;
3456 		}
3457 	}
3458 
3459 	return 0;
3460 }
3461 
3462 
3463 static void hidpp_populate_input(struct hidpp_device *hidpp,
3464 				 struct input_dev *input)
3465 {
3466 	hidpp->input = input;
3467 
3468 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3469 		wtp_populate_input(hidpp, input);
3470 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3471 		m560_populate_input(hidpp, input);
3472 
3473 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS)
3474 		hidpp10_wheel_populate_input(hidpp, input);
3475 
3476 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS)
3477 		hidpp10_extra_mouse_buttons_populate_input(hidpp, input);
3478 }
3479 
3480 static int hidpp_input_configured(struct hid_device *hdev,
3481 				struct hid_input *hidinput)
3482 {
3483 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3484 	struct input_dev *input = hidinput->input;
3485 
3486 	if (!hidpp)
3487 		return 0;
3488 
3489 	hidpp_populate_input(hidpp, input);
3490 
3491 	return 0;
3492 }
3493 
3494 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
3495 		int size)
3496 {
3497 	struct hidpp_report *question = hidpp->send_receive_buf;
3498 	struct hidpp_report *answer = hidpp->send_receive_buf;
3499 	struct hidpp_report *report = (struct hidpp_report *)data;
3500 	int ret;
3501 
3502 	/*
3503 	 * If the mutex is locked then we have a pending answer from a
3504 	 * previously sent command.
3505 	 */
3506 	if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
3507 		/*
3508 		 * Check for a correct hidpp20 answer or the corresponding
3509 		 * error
3510 		 */
3511 		if (hidpp_match_answer(question, report) ||
3512 				hidpp_match_error(question, report)) {
3513 			*answer = *report;
3514 			hidpp->answer_available = true;
3515 			wake_up(&hidpp->wait);
3516 			/*
3517 			 * This was an answer to a command that this driver sent
3518 			 * We return 1 to hid-core to avoid forwarding the
3519 			 * command upstream as it has been treated by the driver
3520 			 */
3521 
3522 			return 1;
3523 		}
3524 	}
3525 
3526 	if (unlikely(hidpp_report_is_connect_event(hidpp, report))) {
3527 		atomic_set(&hidpp->connected,
3528 				!(report->rap.params[0] & (1 << 6)));
3529 		if (schedule_work(&hidpp->work) == 0)
3530 			dbg_hid("%s: connect event already queued\n", __func__);
3531 		return 1;
3532 	}
3533 
3534 	if (hidpp->hid_dev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3535 	    data[0] == REPORT_ID_HIDPP_SHORT &&
3536 	    data[2] == HIDPP_SUB_ID_USER_IFACE_EVENT &&
3537 	    (data[3] & HIDPP_USER_IFACE_EVENT_ENCRYPTION_KEY_LOST)) {
3538 		dev_err_ratelimited(&hidpp->hid_dev->dev,
3539 			"Error the keyboard's wireless encryption key has been lost, your keyboard will not work unless you re-configure encryption.\n");
3540 		dev_err_ratelimited(&hidpp->hid_dev->dev,
3541 			"See: https://gitlab.freedesktop.org/jwrdegoede/logitech-27mhz-keyboard-encryption-setup/\n");
3542 	}
3543 
3544 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3545 		ret = hidpp20_battery_event_1000(hidpp, data, size);
3546 		if (ret != 0)
3547 			return ret;
3548 		ret = hidpp20_battery_event_1004(hidpp, data, size);
3549 		if (ret != 0)
3550 			return ret;
3551 		ret = hidpp_solar_battery_event(hidpp, data, size);
3552 		if (ret != 0)
3553 			return ret;
3554 		ret = hidpp20_battery_voltage_event(hidpp, data, size);
3555 		if (ret != 0)
3556 			return ret;
3557 	}
3558 
3559 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3560 		ret = hidpp10_battery_event(hidpp, data, size);
3561 		if (ret != 0)
3562 			return ret;
3563 	}
3564 
3565 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3566 		ret = hidpp10_wheel_raw_event(hidpp, data, size);
3567 		if (ret != 0)
3568 			return ret;
3569 	}
3570 
3571 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3572 		ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size);
3573 		if (ret != 0)
3574 			return ret;
3575 	}
3576 
3577 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3578 		ret = hidpp10_consumer_keys_raw_event(hidpp, data, size);
3579 		if (ret != 0)
3580 			return ret;
3581 	}
3582 
3583 	return 0;
3584 }
3585 
3586 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
3587 		u8 *data, int size)
3588 {
3589 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3590 	int ret = 0;
3591 
3592 	if (!hidpp)
3593 		return 0;
3594 
3595 	/* Generic HID++ processing. */
3596 	switch (data[0]) {
3597 	case REPORT_ID_HIDPP_VERY_LONG:
3598 		if (size != hidpp->very_long_report_length) {
3599 			hid_err(hdev, "received hid++ report of bad size (%d)",
3600 				size);
3601 			return 1;
3602 		}
3603 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3604 		break;
3605 	case REPORT_ID_HIDPP_LONG:
3606 		if (size != HIDPP_REPORT_LONG_LENGTH) {
3607 			hid_err(hdev, "received hid++ report of bad size (%d)",
3608 				size);
3609 			return 1;
3610 		}
3611 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3612 		break;
3613 	case REPORT_ID_HIDPP_SHORT:
3614 		if (size != HIDPP_REPORT_SHORT_LENGTH) {
3615 			hid_err(hdev, "received hid++ report of bad size (%d)",
3616 				size);
3617 			return 1;
3618 		}
3619 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3620 		break;
3621 	}
3622 
3623 	/* If no report is available for further processing, skip calling
3624 	 * raw_event of subclasses. */
3625 	if (ret != 0)
3626 		return ret;
3627 
3628 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3629 		return wtp_raw_event(hdev, data, size);
3630 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3631 		return m560_raw_event(hdev, data, size);
3632 
3633 	return 0;
3634 }
3635 
3636 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
3637 	struct hid_usage *usage, __s32 value)
3638 {
3639 	/* This function will only be called for scroll events, due to the
3640 	 * restriction imposed in hidpp_usages.
3641 	 */
3642 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3643 	struct hidpp_scroll_counter *counter;
3644 
3645 	if (!hidpp)
3646 		return 0;
3647 
3648 	counter = &hidpp->vertical_wheel_counter;
3649 	/* A scroll event may occur before the multiplier has been retrieved or
3650 	 * the input device set, or high-res scroll enabling may fail. In such
3651 	 * cases we must return early (falling back to default behaviour) to
3652 	 * avoid a crash in hidpp_scroll_counter_handle_scroll.
3653 	 */
3654 	if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
3655 	    || hidpp->input == NULL || counter->wheel_multiplier == 0)
3656 		return 0;
3657 
3658 	hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value);
3659 	return 1;
3660 }
3661 
3662 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
3663 {
3664 	static atomic_t battery_no = ATOMIC_INIT(0);
3665 	struct power_supply_config cfg = { .drv_data = hidpp };
3666 	struct power_supply_desc *desc = &hidpp->battery.desc;
3667 	enum power_supply_property *battery_props;
3668 	struct hidpp_battery *battery;
3669 	unsigned int num_battery_props;
3670 	unsigned long n;
3671 	int ret;
3672 
3673 	if (hidpp->battery.ps)
3674 		return 0;
3675 
3676 	hidpp->battery.feature_index = 0xff;
3677 	hidpp->battery.solar_feature_index = 0xff;
3678 	hidpp->battery.voltage_feature_index = 0xff;
3679 
3680 	if (hidpp->protocol_major >= 2) {
3681 		if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
3682 			ret = hidpp_solar_request_battery_event(hidpp);
3683 		else {
3684 			/* we only support one battery feature right now, so let's
3685 			   first check the ones that support battery level first
3686 			   and leave voltage for last */
3687 			ret = hidpp20_query_battery_info_1000(hidpp);
3688 			if (ret)
3689 				ret = hidpp20_query_battery_info_1004(hidpp);
3690 			if (ret)
3691 				ret = hidpp20_query_battery_voltage_info(hidpp);
3692 		}
3693 
3694 		if (ret)
3695 			return ret;
3696 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
3697 	} else {
3698 		ret = hidpp10_query_battery_status(hidpp);
3699 		if (ret) {
3700 			ret = hidpp10_query_battery_mileage(hidpp);
3701 			if (ret)
3702 				return -ENOENT;
3703 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
3704 		} else {
3705 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
3706 		}
3707 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
3708 	}
3709 
3710 	battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
3711 				     hidpp_battery_props,
3712 				     sizeof(hidpp_battery_props),
3713 				     GFP_KERNEL);
3714 	if (!battery_props)
3715 		return -ENOMEM;
3716 
3717 	num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3;
3718 
3719 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE ||
3720 	    hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE)
3721 		battery_props[num_battery_props++] =
3722 				POWER_SUPPLY_PROP_CAPACITY;
3723 
3724 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
3725 		battery_props[num_battery_props++] =
3726 				POWER_SUPPLY_PROP_CAPACITY_LEVEL;
3727 
3728 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3729 		battery_props[num_battery_props++] =
3730 			POWER_SUPPLY_PROP_VOLTAGE_NOW;
3731 
3732 	battery = &hidpp->battery;
3733 
3734 	n = atomic_inc_return(&battery_no) - 1;
3735 	desc->properties = battery_props;
3736 	desc->num_properties = num_battery_props;
3737 	desc->get_property = hidpp_battery_get_property;
3738 	sprintf(battery->name, "hidpp_battery_%ld", n);
3739 	desc->name = battery->name;
3740 	desc->type = POWER_SUPPLY_TYPE_BATTERY;
3741 	desc->use_for_apm = 0;
3742 
3743 	battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
3744 						 &battery->desc,
3745 						 &cfg);
3746 	if (IS_ERR(battery->ps))
3747 		return PTR_ERR(battery->ps);
3748 
3749 	power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
3750 
3751 	return ret;
3752 }
3753 
3754 static void hidpp_overwrite_name(struct hid_device *hdev)
3755 {
3756 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3757 	char *name;
3758 
3759 	if (hidpp->protocol_major < 2)
3760 		return;
3761 
3762 	name = hidpp_get_device_name(hidpp);
3763 
3764 	if (!name) {
3765 		hid_err(hdev, "unable to retrieve the name of the device");
3766 	} else {
3767 		dbg_hid("HID++: Got name: %s\n", name);
3768 		snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3769 	}
3770 
3771 	kfree(name);
3772 }
3773 
3774 static int hidpp_input_open(struct input_dev *dev)
3775 {
3776 	struct hid_device *hid = input_get_drvdata(dev);
3777 
3778 	return hid_hw_open(hid);
3779 }
3780 
3781 static void hidpp_input_close(struct input_dev *dev)
3782 {
3783 	struct hid_device *hid = input_get_drvdata(dev);
3784 
3785 	hid_hw_close(hid);
3786 }
3787 
3788 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3789 {
3790 	struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3791 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3792 
3793 	if (!input_dev)
3794 		return NULL;
3795 
3796 	input_set_drvdata(input_dev, hdev);
3797 	input_dev->open = hidpp_input_open;
3798 	input_dev->close = hidpp_input_close;
3799 
3800 	input_dev->name = hidpp->name;
3801 	input_dev->phys = hdev->phys;
3802 	input_dev->uniq = hdev->uniq;
3803 	input_dev->id.bustype = hdev->bus;
3804 	input_dev->id.vendor  = hdev->vendor;
3805 	input_dev->id.product = hdev->product;
3806 	input_dev->id.version = hdev->version;
3807 	input_dev->dev.parent = &hdev->dev;
3808 
3809 	return input_dev;
3810 }
3811 
3812 static void hidpp_connect_event(struct hidpp_device *hidpp)
3813 {
3814 	struct hid_device *hdev = hidpp->hid_dev;
3815 	int ret = 0;
3816 	bool connected = atomic_read(&hidpp->connected);
3817 	struct input_dev *input;
3818 	char *name, *devm_name;
3819 
3820 	if (!connected) {
3821 		if (hidpp->battery.ps) {
3822 			hidpp->battery.online = false;
3823 			hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3824 			hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3825 			power_supply_changed(hidpp->battery.ps);
3826 		}
3827 		return;
3828 	}
3829 
3830 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3831 		ret = wtp_connect(hdev, connected);
3832 		if (ret)
3833 			return;
3834 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3835 		ret = m560_send_config_command(hdev, connected);
3836 		if (ret)
3837 			return;
3838 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3839 		ret = k400_connect(hdev, connected);
3840 		if (ret)
3841 			return;
3842 	}
3843 
3844 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3845 		ret = hidpp10_wheel_connect(hidpp);
3846 		if (ret)
3847 			return;
3848 	}
3849 
3850 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3851 		ret = hidpp10_extra_mouse_buttons_connect(hidpp);
3852 		if (ret)
3853 			return;
3854 	}
3855 
3856 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3857 		ret = hidpp10_consumer_keys_connect(hidpp);
3858 		if (ret)
3859 			return;
3860 	}
3861 
3862 	/* the device is already connected, we can ask for its name and
3863 	 * protocol */
3864 	if (!hidpp->protocol_major) {
3865 		ret = hidpp_root_get_protocol_version(hidpp);
3866 		if (ret) {
3867 			hid_err(hdev, "Can not get the protocol version.\n");
3868 			return;
3869 		}
3870 	}
3871 
3872 	if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3873 		name = hidpp_get_device_name(hidpp);
3874 		if (name) {
3875 			devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL,
3876 						   "%s", name);
3877 			kfree(name);
3878 			if (!devm_name)
3879 				return;
3880 
3881 			hidpp->name = devm_name;
3882 		}
3883 	}
3884 
3885 	hidpp_initialize_battery(hidpp);
3886 
3887 	/* forward current battery state */
3888 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3889 		hidpp10_enable_battery_reporting(hidpp);
3890 		if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3891 			hidpp10_query_battery_mileage(hidpp);
3892 		else
3893 			hidpp10_query_battery_status(hidpp);
3894 	} else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3895 		if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3896 			hidpp20_query_battery_voltage_info(hidpp);
3897 		else if (hidpp->capabilities & HIDPP_CAPABILITY_UNIFIED_BATTERY)
3898 			hidpp20_query_battery_info_1004(hidpp);
3899 		else
3900 			hidpp20_query_battery_info_1000(hidpp);
3901 	}
3902 	if (hidpp->battery.ps)
3903 		power_supply_changed(hidpp->battery.ps);
3904 
3905 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3906 		hi_res_scroll_enable(hidpp);
3907 
3908 	if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3909 		/* if the input nodes are already created, we can stop now */
3910 		return;
3911 
3912 	input = hidpp_allocate_input(hdev);
3913 	if (!input) {
3914 		hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3915 		return;
3916 	}
3917 
3918 	hidpp_populate_input(hidpp, input);
3919 
3920 	ret = input_register_device(input);
3921 	if (ret)
3922 		input_free_device(input);
3923 
3924 	hidpp->delayed_input = input;
3925 }
3926 
3927 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3928 
3929 static struct attribute *sysfs_attrs[] = {
3930 	&dev_attr_builtin_power_supply.attr,
3931 	NULL
3932 };
3933 
3934 static const struct attribute_group ps_attribute_group = {
3935 	.attrs = sysfs_attrs
3936 };
3937 
3938 static int hidpp_get_report_length(struct hid_device *hdev, int id)
3939 {
3940 	struct hid_report_enum *re;
3941 	struct hid_report *report;
3942 
3943 	re = &(hdev->report_enum[HID_OUTPUT_REPORT]);
3944 	report = re->report_id_hash[id];
3945 	if (!report)
3946 		return 0;
3947 
3948 	return report->field[0]->report_count + 1;
3949 }
3950 
3951 static u8 hidpp_validate_device(struct hid_device *hdev)
3952 {
3953 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3954 	int id, report_length;
3955 	u8 supported_reports = 0;
3956 
3957 	id = REPORT_ID_HIDPP_SHORT;
3958 	report_length = hidpp_get_report_length(hdev, id);
3959 	if (report_length) {
3960 		if (report_length < HIDPP_REPORT_SHORT_LENGTH)
3961 			goto bad_device;
3962 
3963 		supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED;
3964 	}
3965 
3966 	id = REPORT_ID_HIDPP_LONG;
3967 	report_length = hidpp_get_report_length(hdev, id);
3968 	if (report_length) {
3969 		if (report_length < HIDPP_REPORT_LONG_LENGTH)
3970 			goto bad_device;
3971 
3972 		supported_reports |= HIDPP_REPORT_LONG_SUPPORTED;
3973 	}
3974 
3975 	id = REPORT_ID_HIDPP_VERY_LONG;
3976 	report_length = hidpp_get_report_length(hdev, id);
3977 	if (report_length) {
3978 		if (report_length < HIDPP_REPORT_LONG_LENGTH ||
3979 		    report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH)
3980 			goto bad_device;
3981 
3982 		supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED;
3983 		hidpp->very_long_report_length = report_length;
3984 	}
3985 
3986 	return supported_reports;
3987 
3988 bad_device:
3989 	hid_warn(hdev, "not enough values in hidpp report %d\n", id);
3990 	return false;
3991 }
3992 
3993 static bool hidpp_application_equals(struct hid_device *hdev,
3994 				     unsigned int application)
3995 {
3996 	struct list_head *report_list;
3997 	struct hid_report *report;
3998 
3999 	report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list;
4000 	report = list_first_entry_or_null(report_list, struct hid_report, list);
4001 	return report && report->application == application;
4002 }
4003 
4004 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
4005 {
4006 	struct hidpp_device *hidpp;
4007 	int ret;
4008 	bool connected;
4009 	unsigned int connect_mask = HID_CONNECT_DEFAULT;
4010 	struct hidpp_ff_private_data data;
4011 
4012 	/* report_fixup needs drvdata to be set before we call hid_parse */
4013 	hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL);
4014 	if (!hidpp)
4015 		return -ENOMEM;
4016 
4017 	hidpp->hid_dev = hdev;
4018 	hidpp->name = hdev->name;
4019 	hidpp->quirks = id->driver_data;
4020 	hid_set_drvdata(hdev, hidpp);
4021 
4022 	ret = hid_parse(hdev);
4023 	if (ret) {
4024 		hid_err(hdev, "%s:parse failed\n", __func__);
4025 		return ret;
4026 	}
4027 
4028 	/*
4029 	 * Make sure the device is HID++ capable, otherwise treat as generic HID
4030 	 */
4031 	hidpp->supported_reports = hidpp_validate_device(hdev);
4032 
4033 	if (!hidpp->supported_reports) {
4034 		hid_set_drvdata(hdev, NULL);
4035 		devm_kfree(&hdev->dev, hidpp);
4036 		return hid_hw_start(hdev, HID_CONNECT_DEFAULT);
4037 	}
4038 
4039 	if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
4040 		hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
4041 
4042 	if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
4043 	    hidpp_application_equals(hdev, HID_GD_MOUSE))
4044 		hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS |
4045 				 HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS;
4046 
4047 	if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
4048 	    hidpp_application_equals(hdev, HID_GD_KEYBOARD))
4049 		hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS;
4050 
4051 	if (disable_raw_mode) {
4052 		hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
4053 		hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
4054 	}
4055 
4056 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
4057 		ret = wtp_allocate(hdev, id);
4058 		if (ret)
4059 			return ret;
4060 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
4061 		ret = k400_allocate(hdev);
4062 		if (ret)
4063 			return ret;
4064 	}
4065 
4066 	INIT_WORK(&hidpp->work, delayed_work_cb);
4067 	mutex_init(&hidpp->send_mutex);
4068 	init_waitqueue_head(&hidpp->wait);
4069 
4070 	/* indicates we are handling the battery properties in the kernel */
4071 	ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
4072 	if (ret)
4073 		hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
4074 			 hdev->name);
4075 
4076 	/*
4077 	 * Plain USB connections need to actually call start and open
4078 	 * on the transport driver to allow incoming data.
4079 	 */
4080 	ret = hid_hw_start(hdev, 0);
4081 	if (ret) {
4082 		hid_err(hdev, "hw start failed\n");
4083 		goto hid_hw_start_fail;
4084 	}
4085 
4086 	ret = hid_hw_open(hdev);
4087 	if (ret < 0) {
4088 		dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
4089 			__func__, ret);
4090 		goto hid_hw_open_fail;
4091 	}
4092 
4093 	/* Allow incoming packets */
4094 	hid_device_io_start(hdev);
4095 
4096 	if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
4097 		hidpp_unifying_init(hidpp);
4098 
4099 	connected = hidpp_root_get_protocol_version(hidpp) == 0;
4100 	atomic_set(&hidpp->connected, connected);
4101 	if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
4102 		if (!connected) {
4103 			ret = -ENODEV;
4104 			hid_err(hdev, "Device not connected");
4105 			goto hid_hw_init_fail;
4106 		}
4107 
4108 		hidpp_overwrite_name(hdev);
4109 	}
4110 
4111 	if (connected && hidpp->protocol_major >= 2) {
4112 		ret = hidpp_set_wireless_feature_index(hidpp);
4113 		if (ret == -ENOENT)
4114 			hidpp->wireless_feature_index = 0;
4115 		else if (ret)
4116 			goto hid_hw_init_fail;
4117 	}
4118 
4119 	if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
4120 		ret = wtp_get_config(hidpp);
4121 		if (ret)
4122 			goto hid_hw_init_fail;
4123 	} else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
4124 		ret = g920_get_config(hidpp, &data);
4125 		if (ret)
4126 			goto hid_hw_init_fail;
4127 	}
4128 
4129 	hidpp_connect_event(hidpp);
4130 
4131 	/* Reset the HID node state */
4132 	hid_device_io_stop(hdev);
4133 	hid_hw_close(hdev);
4134 	hid_hw_stop(hdev);
4135 
4136 	if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
4137 		connect_mask &= ~HID_CONNECT_HIDINPUT;
4138 
4139 	/* Now export the actual inputs and hidraw nodes to the world */
4140 	ret = hid_hw_start(hdev, connect_mask);
4141 	if (ret) {
4142 		hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
4143 		goto hid_hw_start_fail;
4144 	}
4145 
4146 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
4147 		ret = hidpp_ff_init(hidpp, &data);
4148 		if (ret)
4149 			hid_warn(hidpp->hid_dev,
4150 		     "Unable to initialize force feedback support, errno %d\n",
4151 				 ret);
4152 	}
4153 
4154 	return ret;
4155 
4156 hid_hw_init_fail:
4157 	hid_hw_close(hdev);
4158 hid_hw_open_fail:
4159 	hid_hw_stop(hdev);
4160 hid_hw_start_fail:
4161 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
4162 	cancel_work_sync(&hidpp->work);
4163 	mutex_destroy(&hidpp->send_mutex);
4164 	return ret;
4165 }
4166 
4167 static void hidpp_remove(struct hid_device *hdev)
4168 {
4169 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
4170 
4171 	if (!hidpp)
4172 		return hid_hw_stop(hdev);
4173 
4174 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
4175 
4176 	hid_hw_stop(hdev);
4177 	cancel_work_sync(&hidpp->work);
4178 	mutex_destroy(&hidpp->send_mutex);
4179 }
4180 
4181 #define LDJ_DEVICE(product) \
4182 	HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
4183 		   USB_VENDOR_ID_LOGITECH, (product))
4184 
4185 #define L27MHZ_DEVICE(product) \
4186 	HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \
4187 		   USB_VENDOR_ID_LOGITECH, (product))
4188 
4189 static const struct hid_device_id hidpp_devices[] = {
4190 	{ /* wireless touchpad */
4191 	  LDJ_DEVICE(0x4011),
4192 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
4193 			 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
4194 	{ /* wireless touchpad T650 */
4195 	  LDJ_DEVICE(0x4101),
4196 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
4197 	{ /* wireless touchpad T651 */
4198 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
4199 		USB_DEVICE_ID_LOGITECH_T651),
4200 	  .driver_data = HIDPP_QUIRK_CLASS_WTP },
4201 	{ /* Mouse Logitech Anywhere MX */
4202 	  LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4203 	{ /* Mouse Logitech Cube */
4204 	  LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4205 	{ /* Mouse Logitech M335 */
4206 	  LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4207 	{ /* Mouse Logitech M515 */
4208 	  LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4209 	{ /* Mouse logitech M560 */
4210 	  LDJ_DEVICE(0x402d),
4211 	  .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
4212 		| HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4213 	{ /* Mouse Logitech M705 (firmware RQM17) */
4214 	  LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4215 	{ /* Mouse Logitech M705 (firmware RQM67) */
4216 	  LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4217 	{ /* Mouse Logitech M720 */
4218 	  LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4219 	{ /* Mouse Logitech MX Anywhere 2 */
4220 	  LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4221 	{ LDJ_DEVICE(0x4072), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4222 	{ LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4223 	{ LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4224 	{ LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4225 	{ /* Mouse Logitech MX Anywhere 2S */
4226 	  LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4227 	{ /* Mouse Logitech MX Master */
4228 	  LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4229 	{ LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4230 	{ LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4231 	{ /* Mouse Logitech MX Master 2S */
4232 	  LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4233 	{ /* Mouse Logitech MX Master 3 */
4234 	  LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4235 	{ /* Mouse Logitech Performance MX */
4236 	  LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4237 	{ /* Keyboard logitech K400 */
4238 	  LDJ_DEVICE(0x4024),
4239 	  .driver_data = HIDPP_QUIRK_CLASS_K400 },
4240 	{ /* Solar Keyboard Logitech K750 */
4241 	  LDJ_DEVICE(0x4002),
4242 	  .driver_data = HIDPP_QUIRK_CLASS_K750 },
4243 	{ /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */
4244 	  LDJ_DEVICE(0xb305),
4245 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4246 	{ /* Dinovo Edge (Bluetooth-receiver in HID proxy mode) */
4247 	  LDJ_DEVICE(0xb309),
4248 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4249 	{ /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */
4250 	  LDJ_DEVICE(0xb30b),
4251 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4252 
4253 	{ LDJ_DEVICE(HID_ANY_ID) },
4254 
4255 	{ /* Keyboard LX501 (Y-RR53) */
4256 	  L27MHZ_DEVICE(0x0049),
4257 	  .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
4258 	{ /* Keyboard MX3000 (Y-RAM74) */
4259 	  L27MHZ_DEVICE(0x0057),
4260 	  .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
4261 	{ /* Keyboard MX3200 (Y-RAV80) */
4262 	  L27MHZ_DEVICE(0x005c),
4263 	  .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
4264 	{ /* S510 Media Remote */
4265 	  L27MHZ_DEVICE(0x00fe),
4266 	  .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
4267 
4268 	{ L27MHZ_DEVICE(HID_ANY_ID) },
4269 
4270 	{ /* Logitech G403 Wireless Gaming Mouse over USB */
4271 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) },
4272 	{ /* Logitech G703 Gaming Mouse over USB */
4273 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) },
4274 	{ /* Logitech G703 Hero Gaming Mouse over USB */
4275 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) },
4276 	{ /* Logitech G900 Gaming Mouse over USB */
4277 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) },
4278 	{ /* Logitech G903 Gaming Mouse over USB */
4279 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) },
4280 	{ /* Logitech G903 Hero Gaming Mouse over USB */
4281 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) },
4282 	{ /* Logitech G920 Wheel over USB */
4283 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
4284 		.driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
4285 	{ /* Logitech G Pro Gaming Mouse over USB */
4286 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) },
4287 
4288 	{ /* MX5000 keyboard over Bluetooth */
4289 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305),
4290 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4291 	{ /* Dinovo Edge keyboard over Bluetooth */
4292 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb309),
4293 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4294 	{ /* MX5500 keyboard over Bluetooth */
4295 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b),
4296 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4297 	{ /* M-RCQ142 V470 Cordless Laser Mouse over Bluetooth */
4298 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb008) },
4299 	{ /* MX Master mouse over Bluetooth */
4300 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012),
4301 	  .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4302 	{ /* MX Ergo trackball over Bluetooth */
4303 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01d) },
4304 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e),
4305 	  .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4306 	{ /* MX Master 3 mouse over Bluetooth */
4307 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023),
4308 	  .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4309 	{}
4310 };
4311 
4312 MODULE_DEVICE_TABLE(hid, hidpp_devices);
4313 
4314 static const struct hid_usage_id hidpp_usages[] = {
4315 	{ HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES },
4316 	{ HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
4317 };
4318 
4319 static struct hid_driver hidpp_driver = {
4320 	.name = "logitech-hidpp-device",
4321 	.id_table = hidpp_devices,
4322 	.report_fixup = hidpp_report_fixup,
4323 	.probe = hidpp_probe,
4324 	.remove = hidpp_remove,
4325 	.raw_event = hidpp_raw_event,
4326 	.usage_table = hidpp_usages,
4327 	.event = hidpp_event,
4328 	.input_configured = hidpp_input_configured,
4329 	.input_mapping = hidpp_input_mapping,
4330 	.input_mapped = hidpp_input_mapped,
4331 };
4332 
4333 module_hid_driver(hidpp_driver);
4334