1 /* 2 * HIDPP protocol for Logitech Unifying receivers 3 * 4 * Copyright (c) 2011 Logitech (c) 5 * Copyright (c) 2012-2013 Google (c) 6 * Copyright (c) 2013-2014 Red Hat Inc. 7 */ 8 9 /* 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the Free 12 * Software Foundation; version 2 of the License. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/device.h> 18 #include <linux/input.h> 19 #include <linux/usb.h> 20 #include <linux/hid.h> 21 #include <linux/module.h> 22 #include <linux/slab.h> 23 #include <linux/sched.h> 24 #include <linux/kfifo.h> 25 #include <linux/input/mt.h> 26 #include <linux/workqueue.h> 27 #include <linux/atomic.h> 28 #include <linux/fixp-arith.h> 29 #include <asm/unaligned.h> 30 #include "usbhid/usbhid.h" 31 #include "hid-ids.h" 32 33 MODULE_LICENSE("GPL"); 34 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>"); 35 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>"); 36 37 static bool disable_raw_mode; 38 module_param(disable_raw_mode, bool, 0644); 39 MODULE_PARM_DESC(disable_raw_mode, 40 "Disable Raw mode reporting for touchpads and keep firmware gestures."); 41 42 static bool disable_tap_to_click; 43 module_param(disable_tap_to_click, bool, 0644); 44 MODULE_PARM_DESC(disable_tap_to_click, 45 "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently)."); 46 47 #define REPORT_ID_HIDPP_SHORT 0x10 48 #define REPORT_ID_HIDPP_LONG 0x11 49 #define REPORT_ID_HIDPP_VERY_LONG 0x12 50 51 #define HIDPP_REPORT_SHORT_LENGTH 7 52 #define HIDPP_REPORT_LONG_LENGTH 20 53 #define HIDPP_REPORT_VERY_LONG_LENGTH 64 54 55 #define HIDPP_QUIRK_CLASS_WTP BIT(0) 56 #define HIDPP_QUIRK_CLASS_M560 BIT(1) 57 #define HIDPP_QUIRK_CLASS_K400 BIT(2) 58 #define HIDPP_QUIRK_CLASS_G920 BIT(3) 59 #define HIDPP_QUIRK_CLASS_K750 BIT(4) 60 61 /* bits 2..20 are reserved for classes */ 62 /* #define HIDPP_QUIRK_CONNECT_EVENTS BIT(21) disabled */ 63 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS BIT(22) 64 #define HIDPP_QUIRK_NO_HIDINPUT BIT(23) 65 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS BIT(24) 66 #define HIDPP_QUIRK_UNIFYING BIT(25) 67 68 #define HIDPP_QUIRK_DELAYED_INIT HIDPP_QUIRK_NO_HIDINPUT 69 70 #define HIDPP_CAPABILITY_HIDPP10_BATTERY BIT(0) 71 #define HIDPP_CAPABILITY_HIDPP20_BATTERY BIT(1) 72 #define HIDPP_CAPABILITY_BATTERY_MILEAGE BIT(2) 73 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS BIT(3) 74 75 /* 76 * There are two hidpp protocols in use, the first version hidpp10 is known 77 * as register access protocol or RAP, the second version hidpp20 is known as 78 * feature access protocol or FAP 79 * 80 * Most older devices (including the Unifying usb receiver) use the RAP protocol 81 * where as most newer devices use the FAP protocol. Both protocols are 82 * compatible with the underlying transport, which could be usb, Unifiying, or 83 * bluetooth. The message lengths are defined by the hid vendor specific report 84 * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and 85 * the HIDPP_LONG report type (total message length 20 bytes) 86 * 87 * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG 88 * messages. The Unifying receiver itself responds to RAP messages (device index 89 * is 0xFF for the receiver), and all messages (short or long) with a device 90 * index between 1 and 6 are passed untouched to the corresponding paired 91 * Unifying device. 92 * 93 * The paired device can be RAP or FAP, it will receive the message untouched 94 * from the Unifiying receiver. 95 */ 96 97 struct fap { 98 u8 feature_index; 99 u8 funcindex_clientid; 100 u8 params[HIDPP_REPORT_VERY_LONG_LENGTH - 4U]; 101 }; 102 103 struct rap { 104 u8 sub_id; 105 u8 reg_address; 106 u8 params[HIDPP_REPORT_VERY_LONG_LENGTH - 4U]; 107 }; 108 109 struct hidpp_report { 110 u8 report_id; 111 u8 device_index; 112 union { 113 struct fap fap; 114 struct rap rap; 115 u8 rawbytes[sizeof(struct fap)]; 116 }; 117 } __packed; 118 119 struct hidpp_battery { 120 u8 feature_index; 121 u8 solar_feature_index; 122 struct power_supply_desc desc; 123 struct power_supply *ps; 124 char name[64]; 125 int status; 126 int capacity; 127 int level; 128 bool online; 129 }; 130 131 struct hidpp_device { 132 struct hid_device *hid_dev; 133 struct mutex send_mutex; 134 void *send_receive_buf; 135 char *name; /* will never be NULL and should not be freed */ 136 wait_queue_head_t wait; 137 bool answer_available; 138 u8 protocol_major; 139 u8 protocol_minor; 140 141 void *private_data; 142 143 struct work_struct work; 144 struct kfifo delayed_work_fifo; 145 atomic_t connected; 146 struct input_dev *delayed_input; 147 148 unsigned long quirks; 149 unsigned long capabilities; 150 151 struct hidpp_battery battery; 152 }; 153 154 /* HID++ 1.0 error codes */ 155 #define HIDPP_ERROR 0x8f 156 #define HIDPP_ERROR_SUCCESS 0x00 157 #define HIDPP_ERROR_INVALID_SUBID 0x01 158 #define HIDPP_ERROR_INVALID_ADRESS 0x02 159 #define HIDPP_ERROR_INVALID_VALUE 0x03 160 #define HIDPP_ERROR_CONNECT_FAIL 0x04 161 #define HIDPP_ERROR_TOO_MANY_DEVICES 0x05 162 #define HIDPP_ERROR_ALREADY_EXISTS 0x06 163 #define HIDPP_ERROR_BUSY 0x07 164 #define HIDPP_ERROR_UNKNOWN_DEVICE 0x08 165 #define HIDPP_ERROR_RESOURCE_ERROR 0x09 166 #define HIDPP_ERROR_REQUEST_UNAVAILABLE 0x0a 167 #define HIDPP_ERROR_INVALID_PARAM_VALUE 0x0b 168 #define HIDPP_ERROR_WRONG_PIN_CODE 0x0c 169 /* HID++ 2.0 error codes */ 170 #define HIDPP20_ERROR 0xff 171 172 static void hidpp_connect_event(struct hidpp_device *hidpp_dev); 173 174 static int __hidpp_send_report(struct hid_device *hdev, 175 struct hidpp_report *hidpp_report) 176 { 177 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 178 int fields_count, ret; 179 180 hidpp = hid_get_drvdata(hdev); 181 182 switch (hidpp_report->report_id) { 183 case REPORT_ID_HIDPP_SHORT: 184 fields_count = HIDPP_REPORT_SHORT_LENGTH; 185 break; 186 case REPORT_ID_HIDPP_LONG: 187 fields_count = HIDPP_REPORT_LONG_LENGTH; 188 break; 189 case REPORT_ID_HIDPP_VERY_LONG: 190 fields_count = HIDPP_REPORT_VERY_LONG_LENGTH; 191 break; 192 default: 193 return -ENODEV; 194 } 195 196 /* 197 * set the device_index as the receiver, it will be overwritten by 198 * hid_hw_request if needed 199 */ 200 hidpp_report->device_index = 0xff; 201 202 if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) { 203 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count); 204 } else { 205 ret = hid_hw_raw_request(hdev, hidpp_report->report_id, 206 (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT, 207 HID_REQ_SET_REPORT); 208 } 209 210 return ret == fields_count ? 0 : -1; 211 } 212 213 /** 214 * hidpp_send_message_sync() returns 0 in case of success, and something else 215 * in case of a failure. 216 * - If ' something else' is positive, that means that an error has been raised 217 * by the protocol itself. 218 * - If ' something else' is negative, that means that we had a classic error 219 * (-ENOMEM, -EPIPE, etc...) 220 */ 221 static int hidpp_send_message_sync(struct hidpp_device *hidpp, 222 struct hidpp_report *message, 223 struct hidpp_report *response) 224 { 225 int ret; 226 227 mutex_lock(&hidpp->send_mutex); 228 229 hidpp->send_receive_buf = response; 230 hidpp->answer_available = false; 231 232 /* 233 * So that we can later validate the answer when it arrives 234 * in hidpp_raw_event 235 */ 236 *response = *message; 237 238 ret = __hidpp_send_report(hidpp->hid_dev, message); 239 240 if (ret) { 241 dbg_hid("__hidpp_send_report returned err: %d\n", ret); 242 memset(response, 0, sizeof(struct hidpp_report)); 243 goto exit; 244 } 245 246 if (!wait_event_timeout(hidpp->wait, hidpp->answer_available, 247 5*HZ)) { 248 dbg_hid("%s:timeout waiting for response\n", __func__); 249 memset(response, 0, sizeof(struct hidpp_report)); 250 ret = -ETIMEDOUT; 251 } 252 253 if (response->report_id == REPORT_ID_HIDPP_SHORT && 254 response->rap.sub_id == HIDPP_ERROR) { 255 ret = response->rap.params[1]; 256 dbg_hid("%s:got hidpp error %02X\n", __func__, ret); 257 goto exit; 258 } 259 260 if ((response->report_id == REPORT_ID_HIDPP_LONG || 261 response->report_id == REPORT_ID_HIDPP_VERY_LONG) && 262 response->fap.feature_index == HIDPP20_ERROR) { 263 ret = response->fap.params[1]; 264 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret); 265 goto exit; 266 } 267 268 exit: 269 mutex_unlock(&hidpp->send_mutex); 270 return ret; 271 272 } 273 274 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp, 275 u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count, 276 struct hidpp_report *response) 277 { 278 struct hidpp_report *message; 279 int ret; 280 281 if (param_count > sizeof(message->fap.params)) 282 return -EINVAL; 283 284 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 285 if (!message) 286 return -ENOMEM; 287 288 if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4)) 289 message->report_id = REPORT_ID_HIDPP_VERY_LONG; 290 else 291 message->report_id = REPORT_ID_HIDPP_LONG; 292 message->fap.feature_index = feat_index; 293 message->fap.funcindex_clientid = funcindex_clientid; 294 memcpy(&message->fap.params, params, param_count); 295 296 ret = hidpp_send_message_sync(hidpp, message, response); 297 kfree(message); 298 return ret; 299 } 300 301 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev, 302 u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count, 303 struct hidpp_report *response) 304 { 305 struct hidpp_report *message; 306 int ret, max_count; 307 308 switch (report_id) { 309 case REPORT_ID_HIDPP_SHORT: 310 max_count = HIDPP_REPORT_SHORT_LENGTH - 4; 311 break; 312 case REPORT_ID_HIDPP_LONG: 313 max_count = HIDPP_REPORT_LONG_LENGTH - 4; 314 break; 315 case REPORT_ID_HIDPP_VERY_LONG: 316 max_count = HIDPP_REPORT_VERY_LONG_LENGTH - 4; 317 break; 318 default: 319 return -EINVAL; 320 } 321 322 if (param_count > max_count) 323 return -EINVAL; 324 325 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 326 if (!message) 327 return -ENOMEM; 328 message->report_id = report_id; 329 message->rap.sub_id = sub_id; 330 message->rap.reg_address = reg_address; 331 memcpy(&message->rap.params, params, param_count); 332 333 ret = hidpp_send_message_sync(hidpp_dev, message, response); 334 kfree(message); 335 return ret; 336 } 337 338 static void delayed_work_cb(struct work_struct *work) 339 { 340 struct hidpp_device *hidpp = container_of(work, struct hidpp_device, 341 work); 342 hidpp_connect_event(hidpp); 343 } 344 345 static inline bool hidpp_match_answer(struct hidpp_report *question, 346 struct hidpp_report *answer) 347 { 348 return (answer->fap.feature_index == question->fap.feature_index) && 349 (answer->fap.funcindex_clientid == question->fap.funcindex_clientid); 350 } 351 352 static inline bool hidpp_match_error(struct hidpp_report *question, 353 struct hidpp_report *answer) 354 { 355 return ((answer->rap.sub_id == HIDPP_ERROR) || 356 (answer->fap.feature_index == HIDPP20_ERROR)) && 357 (answer->fap.funcindex_clientid == question->fap.feature_index) && 358 (answer->fap.params[0] == question->fap.funcindex_clientid); 359 } 360 361 static inline bool hidpp_report_is_connect_event(struct hidpp_report *report) 362 { 363 return (report->report_id == REPORT_ID_HIDPP_SHORT) && 364 (report->rap.sub_id == 0x41); 365 } 366 367 /** 368 * hidpp_prefix_name() prefixes the current given name with "Logitech ". 369 */ 370 static void hidpp_prefix_name(char **name, int name_length) 371 { 372 #define PREFIX_LENGTH 9 /* "Logitech " */ 373 374 int new_length; 375 char *new_name; 376 377 if (name_length > PREFIX_LENGTH && 378 strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0) 379 /* The prefix has is already in the name */ 380 return; 381 382 new_length = PREFIX_LENGTH + name_length; 383 new_name = kzalloc(new_length, GFP_KERNEL); 384 if (!new_name) 385 return; 386 387 snprintf(new_name, new_length, "Logitech %s", *name); 388 389 kfree(*name); 390 391 *name = new_name; 392 } 393 394 /* -------------------------------------------------------------------------- */ 395 /* HIDP++ 1.0 commands */ 396 /* -------------------------------------------------------------------------- */ 397 398 #define HIDPP_SET_REGISTER 0x80 399 #define HIDPP_GET_REGISTER 0x81 400 #define HIDPP_SET_LONG_REGISTER 0x82 401 #define HIDPP_GET_LONG_REGISTER 0x83 402 403 #define HIDPP_REG_GENERAL 0x00 404 405 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev) 406 { 407 struct hidpp_report response; 408 int ret; 409 u8 params[3] = { 0 }; 410 411 ret = hidpp_send_rap_command_sync(hidpp_dev, 412 REPORT_ID_HIDPP_SHORT, 413 HIDPP_GET_REGISTER, 414 HIDPP_REG_GENERAL, 415 NULL, 0, &response); 416 if (ret) 417 return ret; 418 419 memcpy(params, response.rap.params, 3); 420 421 /* Set the battery bit */ 422 params[0] |= BIT(4); 423 424 return hidpp_send_rap_command_sync(hidpp_dev, 425 REPORT_ID_HIDPP_SHORT, 426 HIDPP_SET_REGISTER, 427 HIDPP_REG_GENERAL, 428 params, 3, &response); 429 } 430 431 #define HIDPP_REG_BATTERY_STATUS 0x07 432 433 static int hidpp10_battery_status_map_level(u8 param) 434 { 435 int level; 436 437 switch (param) { 438 case 1 ... 2: 439 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 440 break; 441 case 3 ... 4: 442 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; 443 break; 444 case 5 ... 6: 445 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 446 break; 447 case 7: 448 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; 449 break; 450 default: 451 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 452 } 453 454 return level; 455 } 456 457 static int hidpp10_battery_status_map_status(u8 param) 458 { 459 int status; 460 461 switch (param) { 462 case 0x00: 463 /* discharging (in use) */ 464 status = POWER_SUPPLY_STATUS_DISCHARGING; 465 break; 466 case 0x21: /* (standard) charging */ 467 case 0x24: /* fast charging */ 468 case 0x25: /* slow charging */ 469 status = POWER_SUPPLY_STATUS_CHARGING; 470 break; 471 case 0x26: /* topping charge */ 472 case 0x22: /* charge complete */ 473 status = POWER_SUPPLY_STATUS_FULL; 474 break; 475 case 0x20: /* unknown */ 476 status = POWER_SUPPLY_STATUS_UNKNOWN; 477 break; 478 /* 479 * 0x01...0x1F = reserved (not charging) 480 * 0x23 = charging error 481 * 0x27..0xff = reserved 482 */ 483 default: 484 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 485 break; 486 } 487 488 return status; 489 } 490 491 static int hidpp10_query_battery_status(struct hidpp_device *hidpp) 492 { 493 struct hidpp_report response; 494 int ret, status; 495 496 ret = hidpp_send_rap_command_sync(hidpp, 497 REPORT_ID_HIDPP_SHORT, 498 HIDPP_GET_REGISTER, 499 HIDPP_REG_BATTERY_STATUS, 500 NULL, 0, &response); 501 if (ret) 502 return ret; 503 504 hidpp->battery.level = 505 hidpp10_battery_status_map_level(response.rap.params[0]); 506 status = hidpp10_battery_status_map_status(response.rap.params[1]); 507 hidpp->battery.status = status; 508 /* the capacity is only available when discharging or full */ 509 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 510 status == POWER_SUPPLY_STATUS_FULL; 511 512 return 0; 513 } 514 515 #define HIDPP_REG_BATTERY_MILEAGE 0x0D 516 517 static int hidpp10_battery_mileage_map_status(u8 param) 518 { 519 int status; 520 521 switch (param >> 6) { 522 case 0x00: 523 /* discharging (in use) */ 524 status = POWER_SUPPLY_STATUS_DISCHARGING; 525 break; 526 case 0x01: /* charging */ 527 status = POWER_SUPPLY_STATUS_CHARGING; 528 break; 529 case 0x02: /* charge complete */ 530 status = POWER_SUPPLY_STATUS_FULL; 531 break; 532 /* 533 * 0x03 = charging error 534 */ 535 default: 536 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 537 break; 538 } 539 540 return status; 541 } 542 543 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp) 544 { 545 struct hidpp_report response; 546 int ret, status; 547 548 ret = hidpp_send_rap_command_sync(hidpp, 549 REPORT_ID_HIDPP_SHORT, 550 HIDPP_GET_REGISTER, 551 HIDPP_REG_BATTERY_MILEAGE, 552 NULL, 0, &response); 553 if (ret) 554 return ret; 555 556 hidpp->battery.capacity = response.rap.params[0]; 557 status = hidpp10_battery_mileage_map_status(response.rap.params[2]); 558 hidpp->battery.status = status; 559 /* the capacity is only available when discharging or full */ 560 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 561 status == POWER_SUPPLY_STATUS_FULL; 562 563 return 0; 564 } 565 566 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size) 567 { 568 struct hidpp_report *report = (struct hidpp_report *)data; 569 int status, capacity, level; 570 bool changed; 571 572 if (report->report_id != REPORT_ID_HIDPP_SHORT) 573 return 0; 574 575 switch (report->rap.sub_id) { 576 case HIDPP_REG_BATTERY_STATUS: 577 capacity = hidpp->battery.capacity; 578 level = hidpp10_battery_status_map_level(report->rawbytes[1]); 579 status = hidpp10_battery_status_map_status(report->rawbytes[2]); 580 break; 581 case HIDPP_REG_BATTERY_MILEAGE: 582 capacity = report->rap.params[0]; 583 level = hidpp->battery.level; 584 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]); 585 break; 586 default: 587 return 0; 588 } 589 590 changed = capacity != hidpp->battery.capacity || 591 level != hidpp->battery.level || 592 status != hidpp->battery.status; 593 594 /* the capacity is only available when discharging or full */ 595 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 596 status == POWER_SUPPLY_STATUS_FULL; 597 598 if (changed) { 599 hidpp->battery.level = level; 600 hidpp->battery.status = status; 601 if (hidpp->battery.ps) 602 power_supply_changed(hidpp->battery.ps); 603 } 604 605 return 0; 606 } 607 608 #define HIDPP_REG_PAIRING_INFORMATION 0xB5 609 #define HIDPP_EXTENDED_PAIRING 0x30 610 #define HIDPP_DEVICE_NAME 0x40 611 612 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev) 613 { 614 struct hidpp_report response; 615 int ret; 616 u8 params[1] = { HIDPP_DEVICE_NAME }; 617 char *name; 618 int len; 619 620 ret = hidpp_send_rap_command_sync(hidpp_dev, 621 REPORT_ID_HIDPP_SHORT, 622 HIDPP_GET_LONG_REGISTER, 623 HIDPP_REG_PAIRING_INFORMATION, 624 params, 1, &response); 625 if (ret) 626 return NULL; 627 628 len = response.rap.params[1]; 629 630 if (2 + len > sizeof(response.rap.params)) 631 return NULL; 632 633 name = kzalloc(len + 1, GFP_KERNEL); 634 if (!name) 635 return NULL; 636 637 memcpy(name, &response.rap.params[2], len); 638 639 /* include the terminating '\0' */ 640 hidpp_prefix_name(&name, len + 1); 641 642 return name; 643 } 644 645 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial) 646 { 647 struct hidpp_report response; 648 int ret; 649 u8 params[1] = { HIDPP_EXTENDED_PAIRING }; 650 651 ret = hidpp_send_rap_command_sync(hidpp, 652 REPORT_ID_HIDPP_SHORT, 653 HIDPP_GET_LONG_REGISTER, 654 HIDPP_REG_PAIRING_INFORMATION, 655 params, 1, &response); 656 if (ret) 657 return ret; 658 659 /* 660 * We don't care about LE or BE, we will output it as a string 661 * with %4phD, so we need to keep the order. 662 */ 663 *serial = *((u32 *)&response.rap.params[1]); 664 return 0; 665 } 666 667 static int hidpp_unifying_init(struct hidpp_device *hidpp) 668 { 669 struct hid_device *hdev = hidpp->hid_dev; 670 const char *name; 671 u32 serial; 672 int ret; 673 674 ret = hidpp_unifying_get_serial(hidpp, &serial); 675 if (ret) 676 return ret; 677 678 snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD", 679 hdev->product, &serial); 680 dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq); 681 682 name = hidpp_unifying_get_name(hidpp); 683 if (!name) 684 return -EIO; 685 686 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 687 dbg_hid("HID++ Unifying: Got name: %s\n", name); 688 689 kfree(name); 690 return 0; 691 } 692 693 /* -------------------------------------------------------------------------- */ 694 /* 0x0000: Root */ 695 /* -------------------------------------------------------------------------- */ 696 697 #define HIDPP_PAGE_ROOT 0x0000 698 #define HIDPP_PAGE_ROOT_IDX 0x00 699 700 #define CMD_ROOT_GET_FEATURE 0x01 701 #define CMD_ROOT_GET_PROTOCOL_VERSION 0x11 702 703 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature, 704 u8 *feature_index, u8 *feature_type) 705 { 706 struct hidpp_report response; 707 int ret; 708 u8 params[2] = { feature >> 8, feature & 0x00FF }; 709 710 ret = hidpp_send_fap_command_sync(hidpp, 711 HIDPP_PAGE_ROOT_IDX, 712 CMD_ROOT_GET_FEATURE, 713 params, 2, &response); 714 if (ret) 715 return ret; 716 717 if (response.fap.params[0] == 0) 718 return -ENOENT; 719 720 *feature_index = response.fap.params[0]; 721 *feature_type = response.fap.params[1]; 722 723 return ret; 724 } 725 726 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp) 727 { 728 struct hidpp_report response; 729 int ret; 730 731 ret = hidpp_send_fap_command_sync(hidpp, 732 HIDPP_PAGE_ROOT_IDX, 733 CMD_ROOT_GET_PROTOCOL_VERSION, 734 NULL, 0, &response); 735 736 if (ret == HIDPP_ERROR_INVALID_SUBID) { 737 hidpp->protocol_major = 1; 738 hidpp->protocol_minor = 0; 739 return 0; 740 } 741 742 /* the device might not be connected */ 743 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 744 return -EIO; 745 746 if (ret > 0) { 747 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 748 __func__, ret); 749 return -EPROTO; 750 } 751 if (ret) 752 return ret; 753 754 hidpp->protocol_major = response.fap.params[0]; 755 hidpp->protocol_minor = response.fap.params[1]; 756 757 return ret; 758 } 759 760 static bool hidpp_is_connected(struct hidpp_device *hidpp) 761 { 762 int ret; 763 764 ret = hidpp_root_get_protocol_version(hidpp); 765 if (!ret) 766 hid_dbg(hidpp->hid_dev, "HID++ %u.%u device connected.\n", 767 hidpp->protocol_major, hidpp->protocol_minor); 768 return ret == 0; 769 } 770 771 /* -------------------------------------------------------------------------- */ 772 /* 0x0005: GetDeviceNameType */ 773 /* -------------------------------------------------------------------------- */ 774 775 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE 0x0005 776 777 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT 0x01 778 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME 0x11 779 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE 0x21 780 781 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp, 782 u8 feature_index, u8 *nameLength) 783 { 784 struct hidpp_report response; 785 int ret; 786 787 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 788 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response); 789 790 if (ret > 0) { 791 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 792 __func__, ret); 793 return -EPROTO; 794 } 795 if (ret) 796 return ret; 797 798 *nameLength = response.fap.params[0]; 799 800 return ret; 801 } 802 803 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp, 804 u8 feature_index, u8 char_index, char *device_name, int len_buf) 805 { 806 struct hidpp_report response; 807 int ret, i; 808 int count; 809 810 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 811 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1, 812 &response); 813 814 if (ret > 0) { 815 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 816 __func__, ret); 817 return -EPROTO; 818 } 819 if (ret) 820 return ret; 821 822 switch (response.report_id) { 823 case REPORT_ID_HIDPP_VERY_LONG: 824 count = HIDPP_REPORT_VERY_LONG_LENGTH - 4; 825 break; 826 case REPORT_ID_HIDPP_LONG: 827 count = HIDPP_REPORT_LONG_LENGTH - 4; 828 break; 829 case REPORT_ID_HIDPP_SHORT: 830 count = HIDPP_REPORT_SHORT_LENGTH - 4; 831 break; 832 default: 833 return -EPROTO; 834 } 835 836 if (len_buf < count) 837 count = len_buf; 838 839 for (i = 0; i < count; i++) 840 device_name[i] = response.fap.params[i]; 841 842 return count; 843 } 844 845 static char *hidpp_get_device_name(struct hidpp_device *hidpp) 846 { 847 u8 feature_type; 848 u8 feature_index; 849 u8 __name_length; 850 char *name; 851 unsigned index = 0; 852 int ret; 853 854 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE, 855 &feature_index, &feature_type); 856 if (ret) 857 return NULL; 858 859 ret = hidpp_devicenametype_get_count(hidpp, feature_index, 860 &__name_length); 861 if (ret) 862 return NULL; 863 864 name = kzalloc(__name_length + 1, GFP_KERNEL); 865 if (!name) 866 return NULL; 867 868 while (index < __name_length) { 869 ret = hidpp_devicenametype_get_device_name(hidpp, 870 feature_index, index, name + index, 871 __name_length - index); 872 if (ret <= 0) { 873 kfree(name); 874 return NULL; 875 } 876 index += ret; 877 } 878 879 /* include the terminating '\0' */ 880 hidpp_prefix_name(&name, __name_length + 1); 881 882 return name; 883 } 884 885 /* -------------------------------------------------------------------------- */ 886 /* 0x1000: Battery level status */ 887 /* -------------------------------------------------------------------------- */ 888 889 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS 0x1000 890 891 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS 0x00 892 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY 0x10 893 894 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST 0x00 895 896 #define FLAG_BATTERY_LEVEL_DISABLE_OSD BIT(0) 897 #define FLAG_BATTERY_LEVEL_MILEAGE BIT(1) 898 #define FLAG_BATTERY_LEVEL_RECHARGEABLE BIT(2) 899 900 static int hidpp_map_battery_level(int capacity) 901 { 902 if (capacity < 11) 903 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 904 else if (capacity < 31) 905 return POWER_SUPPLY_CAPACITY_LEVEL_LOW; 906 else if (capacity < 81) 907 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 908 return POWER_SUPPLY_CAPACITY_LEVEL_FULL; 909 } 910 911 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity, 912 int *next_capacity, 913 int *level) 914 { 915 int status; 916 917 *capacity = data[0]; 918 *next_capacity = data[1]; 919 *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 920 921 /* When discharging, we can rely on the device reported capacity. 922 * For all other states the device reports 0 (unknown). 923 */ 924 switch (data[2]) { 925 case 0: /* discharging (in use) */ 926 status = POWER_SUPPLY_STATUS_DISCHARGING; 927 *level = hidpp_map_battery_level(*capacity); 928 break; 929 case 1: /* recharging */ 930 status = POWER_SUPPLY_STATUS_CHARGING; 931 break; 932 case 2: /* charge in final stage */ 933 status = POWER_SUPPLY_STATUS_CHARGING; 934 break; 935 case 3: /* charge complete */ 936 status = POWER_SUPPLY_STATUS_FULL; 937 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 938 *capacity = 100; 939 break; 940 case 4: /* recharging below optimal speed */ 941 status = POWER_SUPPLY_STATUS_CHARGING; 942 break; 943 /* 5 = invalid battery type 944 6 = thermal error 945 7 = other charging error */ 946 default: 947 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 948 break; 949 } 950 951 return status; 952 } 953 954 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp, 955 u8 feature_index, 956 int *status, 957 int *capacity, 958 int *next_capacity, 959 int *level) 960 { 961 struct hidpp_report response; 962 int ret; 963 u8 *params = (u8 *)response.fap.params; 964 965 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 966 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS, 967 NULL, 0, &response); 968 if (ret > 0) { 969 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 970 __func__, ret); 971 return -EPROTO; 972 } 973 if (ret) 974 return ret; 975 976 *status = hidpp20_batterylevel_map_status_capacity(params, capacity, 977 next_capacity, 978 level); 979 980 return 0; 981 } 982 983 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp, 984 u8 feature_index) 985 { 986 struct hidpp_report response; 987 int ret; 988 u8 *params = (u8 *)response.fap.params; 989 unsigned int level_count, flags; 990 991 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 992 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY, 993 NULL, 0, &response); 994 if (ret > 0) { 995 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 996 __func__, ret); 997 return -EPROTO; 998 } 999 if (ret) 1000 return ret; 1001 1002 level_count = params[0]; 1003 flags = params[1]; 1004 1005 if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE)) 1006 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 1007 else 1008 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1009 1010 return 0; 1011 } 1012 1013 static int hidpp20_query_battery_info(struct hidpp_device *hidpp) 1014 { 1015 u8 feature_type; 1016 int ret; 1017 int status, capacity, next_capacity, level; 1018 1019 if (hidpp->battery.feature_index == 0xff) { 1020 ret = hidpp_root_get_feature(hidpp, 1021 HIDPP_PAGE_BATTERY_LEVEL_STATUS, 1022 &hidpp->battery.feature_index, 1023 &feature_type); 1024 if (ret) 1025 return ret; 1026 } 1027 1028 ret = hidpp20_batterylevel_get_battery_capacity(hidpp, 1029 hidpp->battery.feature_index, 1030 &status, &capacity, 1031 &next_capacity, &level); 1032 if (ret) 1033 return ret; 1034 1035 ret = hidpp20_batterylevel_get_battery_info(hidpp, 1036 hidpp->battery.feature_index); 1037 if (ret) 1038 return ret; 1039 1040 hidpp->battery.status = status; 1041 hidpp->battery.capacity = capacity; 1042 hidpp->battery.level = level; 1043 /* the capacity is only available when discharging or full */ 1044 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1045 status == POWER_SUPPLY_STATUS_FULL; 1046 1047 return 0; 1048 } 1049 1050 static int hidpp20_battery_event(struct hidpp_device *hidpp, 1051 u8 *data, int size) 1052 { 1053 struct hidpp_report *report = (struct hidpp_report *)data; 1054 int status, capacity, next_capacity, level; 1055 bool changed; 1056 1057 if (report->fap.feature_index != hidpp->battery.feature_index || 1058 report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST) 1059 return 0; 1060 1061 status = hidpp20_batterylevel_map_status_capacity(report->fap.params, 1062 &capacity, 1063 &next_capacity, 1064 &level); 1065 1066 /* the capacity is only available when discharging or full */ 1067 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1068 status == POWER_SUPPLY_STATUS_FULL; 1069 1070 changed = capacity != hidpp->battery.capacity || 1071 level != hidpp->battery.level || 1072 status != hidpp->battery.status; 1073 1074 if (changed) { 1075 hidpp->battery.level = level; 1076 hidpp->battery.capacity = capacity; 1077 hidpp->battery.status = status; 1078 if (hidpp->battery.ps) 1079 power_supply_changed(hidpp->battery.ps); 1080 } 1081 1082 return 0; 1083 } 1084 1085 static enum power_supply_property hidpp_battery_props[] = { 1086 POWER_SUPPLY_PROP_ONLINE, 1087 POWER_SUPPLY_PROP_STATUS, 1088 POWER_SUPPLY_PROP_SCOPE, 1089 POWER_SUPPLY_PROP_MODEL_NAME, 1090 POWER_SUPPLY_PROP_MANUFACTURER, 1091 POWER_SUPPLY_PROP_SERIAL_NUMBER, 1092 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */ 1093 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */ 1094 }; 1095 1096 static int hidpp_battery_get_property(struct power_supply *psy, 1097 enum power_supply_property psp, 1098 union power_supply_propval *val) 1099 { 1100 struct hidpp_device *hidpp = power_supply_get_drvdata(psy); 1101 int ret = 0; 1102 1103 switch(psp) { 1104 case POWER_SUPPLY_PROP_STATUS: 1105 val->intval = hidpp->battery.status; 1106 break; 1107 case POWER_SUPPLY_PROP_CAPACITY: 1108 val->intval = hidpp->battery.capacity; 1109 break; 1110 case POWER_SUPPLY_PROP_CAPACITY_LEVEL: 1111 val->intval = hidpp->battery.level; 1112 break; 1113 case POWER_SUPPLY_PROP_SCOPE: 1114 val->intval = POWER_SUPPLY_SCOPE_DEVICE; 1115 break; 1116 case POWER_SUPPLY_PROP_ONLINE: 1117 val->intval = hidpp->battery.online; 1118 break; 1119 case POWER_SUPPLY_PROP_MODEL_NAME: 1120 if (!strncmp(hidpp->name, "Logitech ", 9)) 1121 val->strval = hidpp->name + 9; 1122 else 1123 val->strval = hidpp->name; 1124 break; 1125 case POWER_SUPPLY_PROP_MANUFACTURER: 1126 val->strval = "Logitech"; 1127 break; 1128 case POWER_SUPPLY_PROP_SERIAL_NUMBER: 1129 val->strval = hidpp->hid_dev->uniq; 1130 break; 1131 default: 1132 ret = -EINVAL; 1133 break; 1134 } 1135 1136 return ret; 1137 } 1138 1139 /* -------------------------------------------------------------------------- */ 1140 /* 0x4301: Solar Keyboard */ 1141 /* -------------------------------------------------------------------------- */ 1142 1143 #define HIDPP_PAGE_SOLAR_KEYBOARD 0x4301 1144 1145 #define CMD_SOLAR_SET_LIGHT_MEASURE 0x00 1146 1147 #define EVENT_SOLAR_BATTERY_BROADCAST 0x00 1148 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE 0x10 1149 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON 0x20 1150 1151 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp) 1152 { 1153 struct hidpp_report response; 1154 u8 params[2] = { 1, 1 }; 1155 u8 feature_type; 1156 int ret; 1157 1158 if (hidpp->battery.feature_index == 0xff) { 1159 ret = hidpp_root_get_feature(hidpp, 1160 HIDPP_PAGE_SOLAR_KEYBOARD, 1161 &hidpp->battery.solar_feature_index, 1162 &feature_type); 1163 if (ret) 1164 return ret; 1165 } 1166 1167 ret = hidpp_send_fap_command_sync(hidpp, 1168 hidpp->battery.solar_feature_index, 1169 CMD_SOLAR_SET_LIGHT_MEASURE, 1170 params, 2, &response); 1171 if (ret > 0) { 1172 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1173 __func__, ret); 1174 return -EPROTO; 1175 } 1176 if (ret) 1177 return ret; 1178 1179 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1180 1181 return 0; 1182 } 1183 1184 static int hidpp_solar_battery_event(struct hidpp_device *hidpp, 1185 u8 *data, int size) 1186 { 1187 struct hidpp_report *report = (struct hidpp_report *)data; 1188 int capacity, lux, status; 1189 u8 function; 1190 1191 function = report->fap.funcindex_clientid; 1192 1193 1194 if (report->fap.feature_index != hidpp->battery.solar_feature_index || 1195 !(function == EVENT_SOLAR_BATTERY_BROADCAST || 1196 function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE || 1197 function == EVENT_SOLAR_CHECK_LIGHT_BUTTON)) 1198 return 0; 1199 1200 capacity = report->fap.params[0]; 1201 1202 switch (function) { 1203 case EVENT_SOLAR_BATTERY_LIGHT_MEASURE: 1204 lux = (report->fap.params[1] << 8) | report->fap.params[2]; 1205 if (lux > 200) 1206 status = POWER_SUPPLY_STATUS_CHARGING; 1207 else 1208 status = POWER_SUPPLY_STATUS_DISCHARGING; 1209 break; 1210 case EVENT_SOLAR_CHECK_LIGHT_BUTTON: 1211 default: 1212 if (capacity < hidpp->battery.capacity) 1213 status = POWER_SUPPLY_STATUS_DISCHARGING; 1214 else 1215 status = POWER_SUPPLY_STATUS_CHARGING; 1216 1217 } 1218 1219 if (capacity == 100) 1220 status = POWER_SUPPLY_STATUS_FULL; 1221 1222 hidpp->battery.online = true; 1223 if (capacity != hidpp->battery.capacity || 1224 status != hidpp->battery.status) { 1225 hidpp->battery.capacity = capacity; 1226 hidpp->battery.status = status; 1227 if (hidpp->battery.ps) 1228 power_supply_changed(hidpp->battery.ps); 1229 } 1230 1231 return 0; 1232 } 1233 1234 /* -------------------------------------------------------------------------- */ 1235 /* 0x6010: Touchpad FW items */ 1236 /* -------------------------------------------------------------------------- */ 1237 1238 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS 0x6010 1239 1240 #define CMD_TOUCHPAD_FW_ITEMS_SET 0x10 1241 1242 struct hidpp_touchpad_fw_items { 1243 uint8_t presence; 1244 uint8_t desired_state; 1245 uint8_t state; 1246 uint8_t persistent; 1247 }; 1248 1249 /** 1250 * send a set state command to the device by reading the current items->state 1251 * field. items is then filled with the current state. 1252 */ 1253 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp, 1254 u8 feature_index, 1255 struct hidpp_touchpad_fw_items *items) 1256 { 1257 struct hidpp_report response; 1258 int ret; 1259 u8 *params = (u8 *)response.fap.params; 1260 1261 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1262 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response); 1263 1264 if (ret > 0) { 1265 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1266 __func__, ret); 1267 return -EPROTO; 1268 } 1269 if (ret) 1270 return ret; 1271 1272 items->presence = params[0]; 1273 items->desired_state = params[1]; 1274 items->state = params[2]; 1275 items->persistent = params[3]; 1276 1277 return 0; 1278 } 1279 1280 /* -------------------------------------------------------------------------- */ 1281 /* 0x6100: TouchPadRawXY */ 1282 /* -------------------------------------------------------------------------- */ 1283 1284 #define HIDPP_PAGE_TOUCHPAD_RAW_XY 0x6100 1285 1286 #define CMD_TOUCHPAD_GET_RAW_INFO 0x01 1287 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE 0x21 1288 1289 #define EVENT_TOUCHPAD_RAW_XY 0x00 1290 1291 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT 0x01 1292 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT 0x03 1293 1294 struct hidpp_touchpad_raw_info { 1295 u16 x_size; 1296 u16 y_size; 1297 u8 z_range; 1298 u8 area_range; 1299 u8 timestamp_unit; 1300 u8 maxcontacts; 1301 u8 origin; 1302 u16 res; 1303 }; 1304 1305 struct hidpp_touchpad_raw_xy_finger { 1306 u8 contact_type; 1307 u8 contact_status; 1308 u16 x; 1309 u16 y; 1310 u8 z; 1311 u8 area; 1312 u8 finger_id; 1313 }; 1314 1315 struct hidpp_touchpad_raw_xy { 1316 u16 timestamp; 1317 struct hidpp_touchpad_raw_xy_finger fingers[2]; 1318 u8 spurious_flag; 1319 u8 end_of_frame; 1320 u8 finger_count; 1321 u8 button; 1322 }; 1323 1324 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp, 1325 u8 feature_index, struct hidpp_touchpad_raw_info *raw_info) 1326 { 1327 struct hidpp_report response; 1328 int ret; 1329 u8 *params = (u8 *)response.fap.params; 1330 1331 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1332 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response); 1333 1334 if (ret > 0) { 1335 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1336 __func__, ret); 1337 return -EPROTO; 1338 } 1339 if (ret) 1340 return ret; 1341 1342 raw_info->x_size = get_unaligned_be16(¶ms[0]); 1343 raw_info->y_size = get_unaligned_be16(¶ms[2]); 1344 raw_info->z_range = params[4]; 1345 raw_info->area_range = params[5]; 1346 raw_info->maxcontacts = params[7]; 1347 raw_info->origin = params[8]; 1348 /* res is given in unit per inch */ 1349 raw_info->res = get_unaligned_be16(¶ms[13]) * 2 / 51; 1350 1351 return ret; 1352 } 1353 1354 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev, 1355 u8 feature_index, bool send_raw_reports, 1356 bool sensor_enhanced_settings) 1357 { 1358 struct hidpp_report response; 1359 1360 /* 1361 * Params: 1362 * bit 0 - enable raw 1363 * bit 1 - 16bit Z, no area 1364 * bit 2 - enhanced sensitivity 1365 * bit 3 - width, height (4 bits each) instead of area 1366 * bit 4 - send raw + gestures (degrades smoothness) 1367 * remaining bits - reserved 1368 */ 1369 u8 params = send_raw_reports | (sensor_enhanced_settings << 2); 1370 1371 return hidpp_send_fap_command_sync(hidpp_dev, feature_index, 1372 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, ¶ms, 1, &response); 1373 } 1374 1375 static void hidpp_touchpad_touch_event(u8 *data, 1376 struct hidpp_touchpad_raw_xy_finger *finger) 1377 { 1378 u8 x_m = data[0] << 2; 1379 u8 y_m = data[2] << 2; 1380 1381 finger->x = x_m << 6 | data[1]; 1382 finger->y = y_m << 6 | data[3]; 1383 1384 finger->contact_type = data[0] >> 6; 1385 finger->contact_status = data[2] >> 6; 1386 1387 finger->z = data[4]; 1388 finger->area = data[5]; 1389 finger->finger_id = data[6] >> 4; 1390 } 1391 1392 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev, 1393 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy) 1394 { 1395 memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy)); 1396 raw_xy->end_of_frame = data[8] & 0x01; 1397 raw_xy->spurious_flag = (data[8] >> 1) & 0x01; 1398 raw_xy->finger_count = data[15] & 0x0f; 1399 raw_xy->button = (data[8] >> 2) & 0x01; 1400 1401 if (raw_xy->finger_count) { 1402 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]); 1403 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]); 1404 } 1405 } 1406 1407 /* -------------------------------------------------------------------------- */ 1408 /* 0x8123: Force feedback support */ 1409 /* -------------------------------------------------------------------------- */ 1410 1411 #define HIDPP_FF_GET_INFO 0x01 1412 #define HIDPP_FF_RESET_ALL 0x11 1413 #define HIDPP_FF_DOWNLOAD_EFFECT 0x21 1414 #define HIDPP_FF_SET_EFFECT_STATE 0x31 1415 #define HIDPP_FF_DESTROY_EFFECT 0x41 1416 #define HIDPP_FF_GET_APERTURE 0x51 1417 #define HIDPP_FF_SET_APERTURE 0x61 1418 #define HIDPP_FF_GET_GLOBAL_GAINS 0x71 1419 #define HIDPP_FF_SET_GLOBAL_GAINS 0x81 1420 1421 #define HIDPP_FF_EFFECT_STATE_GET 0x00 1422 #define HIDPP_FF_EFFECT_STATE_STOP 0x01 1423 #define HIDPP_FF_EFFECT_STATE_PLAY 0x02 1424 #define HIDPP_FF_EFFECT_STATE_PAUSE 0x03 1425 1426 #define HIDPP_FF_EFFECT_CONSTANT 0x00 1427 #define HIDPP_FF_EFFECT_PERIODIC_SINE 0x01 1428 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE 0x02 1429 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE 0x03 1430 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP 0x04 1431 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN 0x05 1432 #define HIDPP_FF_EFFECT_SPRING 0x06 1433 #define HIDPP_FF_EFFECT_DAMPER 0x07 1434 #define HIDPP_FF_EFFECT_FRICTION 0x08 1435 #define HIDPP_FF_EFFECT_INERTIA 0x09 1436 #define HIDPP_FF_EFFECT_RAMP 0x0A 1437 1438 #define HIDPP_FF_EFFECT_AUTOSTART 0x80 1439 1440 #define HIDPP_FF_EFFECTID_NONE -1 1441 #define HIDPP_FF_EFFECTID_AUTOCENTER -2 1442 1443 #define HIDPP_FF_MAX_PARAMS 20 1444 #define HIDPP_FF_RESERVED_SLOTS 1 1445 1446 struct hidpp_ff_private_data { 1447 struct hidpp_device *hidpp; 1448 u8 feature_index; 1449 u8 version; 1450 u16 gain; 1451 s16 range; 1452 u8 slot_autocenter; 1453 u8 num_effects; 1454 int *effect_ids; 1455 struct workqueue_struct *wq; 1456 atomic_t workqueue_size; 1457 }; 1458 1459 struct hidpp_ff_work_data { 1460 struct work_struct work; 1461 struct hidpp_ff_private_data *data; 1462 int effect_id; 1463 u8 command; 1464 u8 params[HIDPP_FF_MAX_PARAMS]; 1465 u8 size; 1466 }; 1467 1468 static const signed short hiddpp_ff_effects[] = { 1469 FF_CONSTANT, 1470 FF_PERIODIC, 1471 FF_SINE, 1472 FF_SQUARE, 1473 FF_SAW_UP, 1474 FF_SAW_DOWN, 1475 FF_TRIANGLE, 1476 FF_SPRING, 1477 FF_DAMPER, 1478 FF_AUTOCENTER, 1479 FF_GAIN, 1480 -1 1481 }; 1482 1483 static const signed short hiddpp_ff_effects_v2[] = { 1484 FF_RAMP, 1485 FF_FRICTION, 1486 FF_INERTIA, 1487 -1 1488 }; 1489 1490 static const u8 HIDPP_FF_CONDITION_CMDS[] = { 1491 HIDPP_FF_EFFECT_SPRING, 1492 HIDPP_FF_EFFECT_FRICTION, 1493 HIDPP_FF_EFFECT_DAMPER, 1494 HIDPP_FF_EFFECT_INERTIA 1495 }; 1496 1497 static const char *HIDPP_FF_CONDITION_NAMES[] = { 1498 "spring", 1499 "friction", 1500 "damper", 1501 "inertia" 1502 }; 1503 1504 1505 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id) 1506 { 1507 int i; 1508 1509 for (i = 0; i < data->num_effects; i++) 1510 if (data->effect_ids[i] == effect_id) 1511 return i+1; 1512 1513 return 0; 1514 } 1515 1516 static void hidpp_ff_work_handler(struct work_struct *w) 1517 { 1518 struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work); 1519 struct hidpp_ff_private_data *data = wd->data; 1520 struct hidpp_report response; 1521 u8 slot; 1522 int ret; 1523 1524 /* add slot number if needed */ 1525 switch (wd->effect_id) { 1526 case HIDPP_FF_EFFECTID_AUTOCENTER: 1527 wd->params[0] = data->slot_autocenter; 1528 break; 1529 case HIDPP_FF_EFFECTID_NONE: 1530 /* leave slot as zero */ 1531 break; 1532 default: 1533 /* find current slot for effect */ 1534 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id); 1535 break; 1536 } 1537 1538 /* send command and wait for reply */ 1539 ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index, 1540 wd->command, wd->params, wd->size, &response); 1541 1542 if (ret) { 1543 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n"); 1544 goto out; 1545 } 1546 1547 /* parse return data */ 1548 switch (wd->command) { 1549 case HIDPP_FF_DOWNLOAD_EFFECT: 1550 slot = response.fap.params[0]; 1551 if (slot > 0 && slot <= data->num_effects) { 1552 if (wd->effect_id >= 0) 1553 /* regular effect uploaded */ 1554 data->effect_ids[slot-1] = wd->effect_id; 1555 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 1556 /* autocenter spring uploaded */ 1557 data->slot_autocenter = slot; 1558 } 1559 break; 1560 case HIDPP_FF_DESTROY_EFFECT: 1561 if (wd->effect_id >= 0) 1562 /* regular effect destroyed */ 1563 data->effect_ids[wd->params[0]-1] = -1; 1564 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 1565 /* autocenter spring destoyed */ 1566 data->slot_autocenter = 0; 1567 break; 1568 case HIDPP_FF_SET_GLOBAL_GAINS: 1569 data->gain = (wd->params[0] << 8) + wd->params[1]; 1570 break; 1571 case HIDPP_FF_SET_APERTURE: 1572 data->range = (wd->params[0] << 8) + wd->params[1]; 1573 break; 1574 default: 1575 /* no action needed */ 1576 break; 1577 } 1578 1579 out: 1580 atomic_dec(&data->workqueue_size); 1581 kfree(wd); 1582 } 1583 1584 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size) 1585 { 1586 struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL); 1587 int s; 1588 1589 if (!wd) 1590 return -ENOMEM; 1591 1592 INIT_WORK(&wd->work, hidpp_ff_work_handler); 1593 1594 wd->data = data; 1595 wd->effect_id = effect_id; 1596 wd->command = command; 1597 wd->size = size; 1598 memcpy(wd->params, params, size); 1599 1600 atomic_inc(&data->workqueue_size); 1601 queue_work(data->wq, &wd->work); 1602 1603 /* warn about excessive queue size */ 1604 s = atomic_read(&data->workqueue_size); 1605 if (s >= 20 && s % 20 == 0) 1606 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s); 1607 1608 return 0; 1609 } 1610 1611 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old) 1612 { 1613 struct hidpp_ff_private_data *data = dev->ff->private; 1614 u8 params[20]; 1615 u8 size; 1616 int force; 1617 1618 /* set common parameters */ 1619 params[2] = effect->replay.length >> 8; 1620 params[3] = effect->replay.length & 255; 1621 params[4] = effect->replay.delay >> 8; 1622 params[5] = effect->replay.delay & 255; 1623 1624 switch (effect->type) { 1625 case FF_CONSTANT: 1626 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1627 params[1] = HIDPP_FF_EFFECT_CONSTANT; 1628 params[6] = force >> 8; 1629 params[7] = force & 255; 1630 params[8] = effect->u.constant.envelope.attack_level >> 7; 1631 params[9] = effect->u.constant.envelope.attack_length >> 8; 1632 params[10] = effect->u.constant.envelope.attack_length & 255; 1633 params[11] = effect->u.constant.envelope.fade_level >> 7; 1634 params[12] = effect->u.constant.envelope.fade_length >> 8; 1635 params[13] = effect->u.constant.envelope.fade_length & 255; 1636 size = 14; 1637 dbg_hid("Uploading constant force level=%d in dir %d = %d\n", 1638 effect->u.constant.level, 1639 effect->direction, force); 1640 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 1641 effect->u.constant.envelope.attack_level, 1642 effect->u.constant.envelope.attack_length, 1643 effect->u.constant.envelope.fade_level, 1644 effect->u.constant.envelope.fade_length); 1645 break; 1646 case FF_PERIODIC: 1647 { 1648 switch (effect->u.periodic.waveform) { 1649 case FF_SINE: 1650 params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE; 1651 break; 1652 case FF_SQUARE: 1653 params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE; 1654 break; 1655 case FF_SAW_UP: 1656 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP; 1657 break; 1658 case FF_SAW_DOWN: 1659 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN; 1660 break; 1661 case FF_TRIANGLE: 1662 params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE; 1663 break; 1664 default: 1665 hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform); 1666 return -EINVAL; 1667 } 1668 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1669 params[6] = effect->u.periodic.magnitude >> 8; 1670 params[7] = effect->u.periodic.magnitude & 255; 1671 params[8] = effect->u.periodic.offset >> 8; 1672 params[9] = effect->u.periodic.offset & 255; 1673 params[10] = effect->u.periodic.period >> 8; 1674 params[11] = effect->u.periodic.period & 255; 1675 params[12] = effect->u.periodic.phase >> 8; 1676 params[13] = effect->u.periodic.phase & 255; 1677 params[14] = effect->u.periodic.envelope.attack_level >> 7; 1678 params[15] = effect->u.periodic.envelope.attack_length >> 8; 1679 params[16] = effect->u.periodic.envelope.attack_length & 255; 1680 params[17] = effect->u.periodic.envelope.fade_level >> 7; 1681 params[18] = effect->u.periodic.envelope.fade_length >> 8; 1682 params[19] = effect->u.periodic.envelope.fade_length & 255; 1683 size = 20; 1684 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n", 1685 effect->u.periodic.magnitude, effect->direction, 1686 effect->u.periodic.offset, 1687 effect->u.periodic.period, 1688 effect->u.periodic.phase); 1689 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 1690 effect->u.periodic.envelope.attack_level, 1691 effect->u.periodic.envelope.attack_length, 1692 effect->u.periodic.envelope.fade_level, 1693 effect->u.periodic.envelope.fade_length); 1694 break; 1695 } 1696 case FF_RAMP: 1697 params[1] = HIDPP_FF_EFFECT_RAMP; 1698 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1699 params[6] = force >> 8; 1700 params[7] = force & 255; 1701 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1702 params[8] = force >> 8; 1703 params[9] = force & 255; 1704 params[10] = effect->u.ramp.envelope.attack_level >> 7; 1705 params[11] = effect->u.ramp.envelope.attack_length >> 8; 1706 params[12] = effect->u.ramp.envelope.attack_length & 255; 1707 params[13] = effect->u.ramp.envelope.fade_level >> 7; 1708 params[14] = effect->u.ramp.envelope.fade_length >> 8; 1709 params[15] = effect->u.ramp.envelope.fade_length & 255; 1710 size = 16; 1711 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n", 1712 effect->u.ramp.start_level, 1713 effect->u.ramp.end_level, 1714 effect->direction, force); 1715 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 1716 effect->u.ramp.envelope.attack_level, 1717 effect->u.ramp.envelope.attack_length, 1718 effect->u.ramp.envelope.fade_level, 1719 effect->u.ramp.envelope.fade_length); 1720 break; 1721 case FF_FRICTION: 1722 case FF_INERTIA: 1723 case FF_SPRING: 1724 case FF_DAMPER: 1725 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING]; 1726 params[6] = effect->u.condition[0].left_saturation >> 9; 1727 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255; 1728 params[8] = effect->u.condition[0].left_coeff >> 8; 1729 params[9] = effect->u.condition[0].left_coeff & 255; 1730 params[10] = effect->u.condition[0].deadband >> 9; 1731 params[11] = (effect->u.condition[0].deadband >> 1) & 255; 1732 params[12] = effect->u.condition[0].center >> 8; 1733 params[13] = effect->u.condition[0].center & 255; 1734 params[14] = effect->u.condition[0].right_coeff >> 8; 1735 params[15] = effect->u.condition[0].right_coeff & 255; 1736 params[16] = effect->u.condition[0].right_saturation >> 9; 1737 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255; 1738 size = 18; 1739 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n", 1740 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING], 1741 effect->u.condition[0].left_coeff, 1742 effect->u.condition[0].left_saturation, 1743 effect->u.condition[0].right_coeff, 1744 effect->u.condition[0].right_saturation); 1745 dbg_hid(" deadband=%d, center=%d\n", 1746 effect->u.condition[0].deadband, 1747 effect->u.condition[0].center); 1748 break; 1749 default: 1750 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type); 1751 return -EINVAL; 1752 } 1753 1754 return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size); 1755 } 1756 1757 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value) 1758 { 1759 struct hidpp_ff_private_data *data = dev->ff->private; 1760 u8 params[2]; 1761 1762 params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP; 1763 1764 dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id); 1765 1766 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params)); 1767 } 1768 1769 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id) 1770 { 1771 struct hidpp_ff_private_data *data = dev->ff->private; 1772 u8 slot = 0; 1773 1774 dbg_hid("Erasing effect %d.\n", effect_id); 1775 1776 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1); 1777 } 1778 1779 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude) 1780 { 1781 struct hidpp_ff_private_data *data = dev->ff->private; 1782 u8 params[18]; 1783 1784 dbg_hid("Setting autocenter to %d.\n", magnitude); 1785 1786 /* start a standard spring effect */ 1787 params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART; 1788 /* zero delay and duration */ 1789 params[2] = params[3] = params[4] = params[5] = 0; 1790 /* set coeff to 25% of saturation */ 1791 params[8] = params[14] = magnitude >> 11; 1792 params[9] = params[15] = (magnitude >> 3) & 255; 1793 params[6] = params[16] = magnitude >> 9; 1794 params[7] = params[17] = (magnitude >> 1) & 255; 1795 /* zero deadband and center */ 1796 params[10] = params[11] = params[12] = params[13] = 0; 1797 1798 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params)); 1799 } 1800 1801 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain) 1802 { 1803 struct hidpp_ff_private_data *data = dev->ff->private; 1804 u8 params[4]; 1805 1806 dbg_hid("Setting gain to %d.\n", gain); 1807 1808 params[0] = gain >> 8; 1809 params[1] = gain & 255; 1810 params[2] = 0; /* no boost */ 1811 params[3] = 0; 1812 1813 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params)); 1814 } 1815 1816 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf) 1817 { 1818 struct hid_device *hid = to_hid_device(dev); 1819 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 1820 struct input_dev *idev = hidinput->input; 1821 struct hidpp_ff_private_data *data = idev->ff->private; 1822 1823 return scnprintf(buf, PAGE_SIZE, "%u\n", data->range); 1824 } 1825 1826 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) 1827 { 1828 struct hid_device *hid = to_hid_device(dev); 1829 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 1830 struct input_dev *idev = hidinput->input; 1831 struct hidpp_ff_private_data *data = idev->ff->private; 1832 u8 params[2]; 1833 int range = simple_strtoul(buf, NULL, 10); 1834 1835 range = clamp(range, 180, 900); 1836 1837 params[0] = range >> 8; 1838 params[1] = range & 0x00FF; 1839 1840 hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params)); 1841 1842 return count; 1843 } 1844 1845 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store); 1846 1847 static void hidpp_ff_destroy(struct ff_device *ff) 1848 { 1849 struct hidpp_ff_private_data *data = ff->private; 1850 1851 kfree(data->effect_ids); 1852 } 1853 1854 static int hidpp_ff_init(struct hidpp_device *hidpp, u8 feature_index) 1855 { 1856 struct hid_device *hid = hidpp->hid_dev; 1857 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 1858 struct input_dev *dev = hidinput->input; 1859 const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor); 1860 const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice); 1861 struct ff_device *ff; 1862 struct hidpp_report response; 1863 struct hidpp_ff_private_data *data; 1864 int error, j, num_slots; 1865 u8 version; 1866 1867 if (!dev) { 1868 hid_err(hid, "Struct input_dev not set!\n"); 1869 return -EINVAL; 1870 } 1871 1872 /* Get firmware release */ 1873 version = bcdDevice & 255; 1874 1875 /* Set supported force feedback capabilities */ 1876 for (j = 0; hiddpp_ff_effects[j] >= 0; j++) 1877 set_bit(hiddpp_ff_effects[j], dev->ffbit); 1878 if (version > 1) 1879 for (j = 0; hiddpp_ff_effects_v2[j] >= 0; j++) 1880 set_bit(hiddpp_ff_effects_v2[j], dev->ffbit); 1881 1882 /* Read number of slots available in device */ 1883 error = hidpp_send_fap_command_sync(hidpp, feature_index, 1884 HIDPP_FF_GET_INFO, NULL, 0, &response); 1885 if (error) { 1886 if (error < 0) 1887 return error; 1888 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1889 __func__, error); 1890 return -EPROTO; 1891 } 1892 1893 num_slots = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS; 1894 1895 error = input_ff_create(dev, num_slots); 1896 1897 if (error) { 1898 hid_err(dev, "Failed to create FF device!\n"); 1899 return error; 1900 } 1901 1902 data = kzalloc(sizeof(*data), GFP_KERNEL); 1903 if (!data) 1904 return -ENOMEM; 1905 data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL); 1906 if (!data->effect_ids) { 1907 kfree(data); 1908 return -ENOMEM; 1909 } 1910 data->hidpp = hidpp; 1911 data->feature_index = feature_index; 1912 data->version = version; 1913 data->slot_autocenter = 0; 1914 data->num_effects = num_slots; 1915 for (j = 0; j < num_slots; j++) 1916 data->effect_ids[j] = -1; 1917 1918 ff = dev->ff; 1919 ff->private = data; 1920 1921 ff->upload = hidpp_ff_upload_effect; 1922 ff->erase = hidpp_ff_erase_effect; 1923 ff->playback = hidpp_ff_playback; 1924 ff->set_gain = hidpp_ff_set_gain; 1925 ff->set_autocenter = hidpp_ff_set_autocenter; 1926 ff->destroy = hidpp_ff_destroy; 1927 1928 1929 /* reset all forces */ 1930 error = hidpp_send_fap_command_sync(hidpp, feature_index, 1931 HIDPP_FF_RESET_ALL, NULL, 0, &response); 1932 1933 /* Read current Range */ 1934 error = hidpp_send_fap_command_sync(hidpp, feature_index, 1935 HIDPP_FF_GET_APERTURE, NULL, 0, &response); 1936 if (error) 1937 hid_warn(hidpp->hid_dev, "Failed to read range from device!\n"); 1938 data->range = error ? 900 : get_unaligned_be16(&response.fap.params[0]); 1939 1940 /* Create sysfs interface */ 1941 error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range); 1942 if (error) 1943 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error); 1944 1945 /* Read the current gain values */ 1946 error = hidpp_send_fap_command_sync(hidpp, feature_index, 1947 HIDPP_FF_GET_GLOBAL_GAINS, NULL, 0, &response); 1948 if (error) 1949 hid_warn(hidpp->hid_dev, "Failed to read gain values from device!\n"); 1950 data->gain = error ? 0xffff : get_unaligned_be16(&response.fap.params[0]); 1951 /* ignore boost value at response.fap.params[2] */ 1952 1953 /* init the hardware command queue */ 1954 data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue"); 1955 atomic_set(&data->workqueue_size, 0); 1956 1957 /* initialize with zero autocenter to get wheel in usable state */ 1958 hidpp_ff_set_autocenter(dev, 0); 1959 1960 hid_info(hid, "Force feeback support loaded (firmware release %d).\n", version); 1961 1962 return 0; 1963 } 1964 1965 static int hidpp_ff_deinit(struct hid_device *hid) 1966 { 1967 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 1968 struct input_dev *dev = hidinput->input; 1969 struct hidpp_ff_private_data *data; 1970 1971 if (!dev) { 1972 hid_err(hid, "Struct input_dev not found!\n"); 1973 return -EINVAL; 1974 } 1975 1976 hid_info(hid, "Unloading HID++ force feedback.\n"); 1977 data = dev->ff->private; 1978 if (!data) { 1979 hid_err(hid, "Private data not found!\n"); 1980 return -EINVAL; 1981 } 1982 1983 destroy_workqueue(data->wq); 1984 device_remove_file(&hid->dev, &dev_attr_range); 1985 1986 return 0; 1987 } 1988 1989 1990 /* ************************************************************************** */ 1991 /* */ 1992 /* Device Support */ 1993 /* */ 1994 /* ************************************************************************** */ 1995 1996 /* -------------------------------------------------------------------------- */ 1997 /* Touchpad HID++ devices */ 1998 /* -------------------------------------------------------------------------- */ 1999 2000 #define WTP_MANUAL_RESOLUTION 39 2001 2002 struct wtp_data { 2003 struct input_dev *input; 2004 u16 x_size, y_size; 2005 u8 finger_count; 2006 u8 mt_feature_index; 2007 u8 button_feature_index; 2008 u8 maxcontacts; 2009 bool flip_y; 2010 unsigned int resolution; 2011 }; 2012 2013 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2014 struct hid_field *field, struct hid_usage *usage, 2015 unsigned long **bit, int *max) 2016 { 2017 return -1; 2018 } 2019 2020 static void wtp_populate_input(struct hidpp_device *hidpp, 2021 struct input_dev *input_dev, bool origin_is_hid_core) 2022 { 2023 struct wtp_data *wd = hidpp->private_data; 2024 2025 __set_bit(EV_ABS, input_dev->evbit); 2026 __set_bit(EV_KEY, input_dev->evbit); 2027 __clear_bit(EV_REL, input_dev->evbit); 2028 __clear_bit(EV_LED, input_dev->evbit); 2029 2030 input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0); 2031 input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution); 2032 input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0); 2033 input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution); 2034 2035 /* Max pressure is not given by the devices, pick one */ 2036 input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0); 2037 2038 input_set_capability(input_dev, EV_KEY, BTN_LEFT); 2039 2040 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) 2041 input_set_capability(input_dev, EV_KEY, BTN_RIGHT); 2042 else 2043 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit); 2044 2045 input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER | 2046 INPUT_MT_DROP_UNUSED); 2047 2048 wd->input = input_dev; 2049 } 2050 2051 static void wtp_touch_event(struct wtp_data *wd, 2052 struct hidpp_touchpad_raw_xy_finger *touch_report) 2053 { 2054 int slot; 2055 2056 if (!touch_report->finger_id || touch_report->contact_type) 2057 /* no actual data */ 2058 return; 2059 2060 slot = input_mt_get_slot_by_key(wd->input, touch_report->finger_id); 2061 2062 input_mt_slot(wd->input, slot); 2063 input_mt_report_slot_state(wd->input, MT_TOOL_FINGER, 2064 touch_report->contact_status); 2065 if (touch_report->contact_status) { 2066 input_event(wd->input, EV_ABS, ABS_MT_POSITION_X, 2067 touch_report->x); 2068 input_event(wd->input, EV_ABS, ABS_MT_POSITION_Y, 2069 wd->flip_y ? wd->y_size - touch_report->y : 2070 touch_report->y); 2071 input_event(wd->input, EV_ABS, ABS_MT_PRESSURE, 2072 touch_report->area); 2073 } 2074 } 2075 2076 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp, 2077 struct hidpp_touchpad_raw_xy *raw) 2078 { 2079 struct wtp_data *wd = hidpp->private_data; 2080 int i; 2081 2082 for (i = 0; i < 2; i++) 2083 wtp_touch_event(wd, &(raw->fingers[i])); 2084 2085 if (raw->end_of_frame && 2086 !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)) 2087 input_event(wd->input, EV_KEY, BTN_LEFT, raw->button); 2088 2089 if (raw->end_of_frame || raw->finger_count <= 2) { 2090 input_mt_sync_frame(wd->input); 2091 input_sync(wd->input); 2092 } 2093 } 2094 2095 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data) 2096 { 2097 struct wtp_data *wd = hidpp->private_data; 2098 u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) + 2099 (data[7] >> 4) * (data[7] >> 4)) / 2; 2100 u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) + 2101 (data[13] >> 4) * (data[13] >> 4)) / 2; 2102 struct hidpp_touchpad_raw_xy raw = { 2103 .timestamp = data[1], 2104 .fingers = { 2105 { 2106 .contact_type = 0, 2107 .contact_status = !!data[7], 2108 .x = get_unaligned_le16(&data[3]), 2109 .y = get_unaligned_le16(&data[5]), 2110 .z = c1_area, 2111 .area = c1_area, 2112 .finger_id = data[2], 2113 }, { 2114 .contact_type = 0, 2115 .contact_status = !!data[13], 2116 .x = get_unaligned_le16(&data[9]), 2117 .y = get_unaligned_le16(&data[11]), 2118 .z = c2_area, 2119 .area = c2_area, 2120 .finger_id = data[8], 2121 } 2122 }, 2123 .finger_count = wd->maxcontacts, 2124 .spurious_flag = 0, 2125 .end_of_frame = (data[0] >> 7) == 0, 2126 .button = data[0] & 0x01, 2127 }; 2128 2129 wtp_send_raw_xy_event(hidpp, &raw); 2130 2131 return 1; 2132 } 2133 2134 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size) 2135 { 2136 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2137 struct wtp_data *wd = hidpp->private_data; 2138 struct hidpp_report *report = (struct hidpp_report *)data; 2139 struct hidpp_touchpad_raw_xy raw; 2140 2141 if (!wd || !wd->input) 2142 return 1; 2143 2144 switch (data[0]) { 2145 case 0x02: 2146 if (size < 2) { 2147 hid_err(hdev, "Received HID report of bad size (%d)", 2148 size); 2149 return 1; 2150 } 2151 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) { 2152 input_event(wd->input, EV_KEY, BTN_LEFT, 2153 !!(data[1] & 0x01)); 2154 input_event(wd->input, EV_KEY, BTN_RIGHT, 2155 !!(data[1] & 0x02)); 2156 input_sync(wd->input); 2157 return 0; 2158 } else { 2159 if (size < 21) 2160 return 1; 2161 return wtp_mouse_raw_xy_event(hidpp, &data[7]); 2162 } 2163 case REPORT_ID_HIDPP_LONG: 2164 /* size is already checked in hidpp_raw_event. */ 2165 if ((report->fap.feature_index != wd->mt_feature_index) || 2166 (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY)) 2167 return 1; 2168 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw); 2169 2170 wtp_send_raw_xy_event(hidpp, &raw); 2171 return 0; 2172 } 2173 2174 return 0; 2175 } 2176 2177 static int wtp_get_config(struct hidpp_device *hidpp) 2178 { 2179 struct wtp_data *wd = hidpp->private_data; 2180 struct hidpp_touchpad_raw_info raw_info = {0}; 2181 u8 feature_type; 2182 int ret; 2183 2184 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY, 2185 &wd->mt_feature_index, &feature_type); 2186 if (ret) 2187 /* means that the device is not powered up */ 2188 return ret; 2189 2190 ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index, 2191 &raw_info); 2192 if (ret) 2193 return ret; 2194 2195 wd->x_size = raw_info.x_size; 2196 wd->y_size = raw_info.y_size; 2197 wd->maxcontacts = raw_info.maxcontacts; 2198 wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT; 2199 wd->resolution = raw_info.res; 2200 if (!wd->resolution) 2201 wd->resolution = WTP_MANUAL_RESOLUTION; 2202 2203 return 0; 2204 } 2205 2206 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id) 2207 { 2208 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2209 struct wtp_data *wd; 2210 2211 wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data), 2212 GFP_KERNEL); 2213 if (!wd) 2214 return -ENOMEM; 2215 2216 hidpp->private_data = wd; 2217 2218 return 0; 2219 }; 2220 2221 static int wtp_connect(struct hid_device *hdev, bool connected) 2222 { 2223 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2224 struct wtp_data *wd = hidpp->private_data; 2225 int ret; 2226 2227 if (!wd->x_size) { 2228 ret = wtp_get_config(hidpp); 2229 if (ret) { 2230 hid_err(hdev, "Can not get wtp config: %d\n", ret); 2231 return ret; 2232 } 2233 } 2234 2235 return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index, 2236 true, true); 2237 } 2238 2239 /* ------------------------------------------------------------------------- */ 2240 /* Logitech M560 devices */ 2241 /* ------------------------------------------------------------------------- */ 2242 2243 /* 2244 * Logitech M560 protocol overview 2245 * 2246 * The Logitech M560 mouse, is designed for windows 8. When the middle and/or 2247 * the sides buttons are pressed, it sends some keyboard keys events 2248 * instead of buttons ones. 2249 * To complicate things further, the middle button keys sequence 2250 * is different from the odd press and the even press. 2251 * 2252 * forward button -> Super_R 2253 * backward button -> Super_L+'d' (press only) 2254 * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only) 2255 * 2nd time: left-click (press only) 2256 * NB: press-only means that when the button is pressed, the 2257 * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated 2258 * together sequentially; instead when the button is released, no event is 2259 * generated ! 2260 * 2261 * With the command 2262 * 10<xx>0a 3500af03 (where <xx> is the mouse id), 2263 * the mouse reacts differently: 2264 * - it never sends a keyboard key event 2265 * - for the three mouse button it sends: 2266 * middle button press 11<xx>0a 3500af00... 2267 * side 1 button (forward) press 11<xx>0a 3500b000... 2268 * side 2 button (backward) press 11<xx>0a 3500ae00... 2269 * middle/side1/side2 button release 11<xx>0a 35000000... 2270 */ 2271 2272 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03}; 2273 2274 struct m560_private_data { 2275 struct input_dev *input; 2276 }; 2277 2278 /* how buttons are mapped in the report */ 2279 #define M560_MOUSE_BTN_LEFT 0x01 2280 #define M560_MOUSE_BTN_RIGHT 0x02 2281 #define M560_MOUSE_BTN_WHEEL_LEFT 0x08 2282 #define M560_MOUSE_BTN_WHEEL_RIGHT 0x10 2283 2284 #define M560_SUB_ID 0x0a 2285 #define M560_BUTTON_MODE_REGISTER 0x35 2286 2287 static int m560_send_config_command(struct hid_device *hdev, bool connected) 2288 { 2289 struct hidpp_report response; 2290 struct hidpp_device *hidpp_dev; 2291 2292 hidpp_dev = hid_get_drvdata(hdev); 2293 2294 return hidpp_send_rap_command_sync( 2295 hidpp_dev, 2296 REPORT_ID_HIDPP_SHORT, 2297 M560_SUB_ID, 2298 M560_BUTTON_MODE_REGISTER, 2299 (u8 *)m560_config_parameter, 2300 sizeof(m560_config_parameter), 2301 &response 2302 ); 2303 } 2304 2305 static int m560_allocate(struct hid_device *hdev) 2306 { 2307 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2308 struct m560_private_data *d; 2309 2310 d = devm_kzalloc(&hdev->dev, sizeof(struct m560_private_data), 2311 GFP_KERNEL); 2312 if (!d) 2313 return -ENOMEM; 2314 2315 hidpp->private_data = d; 2316 2317 return 0; 2318 }; 2319 2320 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size) 2321 { 2322 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2323 struct m560_private_data *mydata = hidpp->private_data; 2324 2325 /* sanity check */ 2326 if (!mydata || !mydata->input) { 2327 hid_err(hdev, "error in parameter\n"); 2328 return -EINVAL; 2329 } 2330 2331 if (size < 7) { 2332 hid_err(hdev, "error in report\n"); 2333 return 0; 2334 } 2335 2336 if (data[0] == REPORT_ID_HIDPP_LONG && 2337 data[2] == M560_SUB_ID && data[6] == 0x00) { 2338 /* 2339 * m560 mouse report for middle, forward and backward button 2340 * 2341 * data[0] = 0x11 2342 * data[1] = device-id 2343 * data[2] = 0x0a 2344 * data[5] = 0xaf -> middle 2345 * 0xb0 -> forward 2346 * 0xae -> backward 2347 * 0x00 -> release all 2348 * data[6] = 0x00 2349 */ 2350 2351 switch (data[5]) { 2352 case 0xaf: 2353 input_report_key(mydata->input, BTN_MIDDLE, 1); 2354 break; 2355 case 0xb0: 2356 input_report_key(mydata->input, BTN_FORWARD, 1); 2357 break; 2358 case 0xae: 2359 input_report_key(mydata->input, BTN_BACK, 1); 2360 break; 2361 case 0x00: 2362 input_report_key(mydata->input, BTN_BACK, 0); 2363 input_report_key(mydata->input, BTN_FORWARD, 0); 2364 input_report_key(mydata->input, BTN_MIDDLE, 0); 2365 break; 2366 default: 2367 hid_err(hdev, "error in report\n"); 2368 return 0; 2369 } 2370 input_sync(mydata->input); 2371 2372 } else if (data[0] == 0x02) { 2373 /* 2374 * Logitech M560 mouse report 2375 * 2376 * data[0] = type (0x02) 2377 * data[1..2] = buttons 2378 * data[3..5] = xy 2379 * data[6] = wheel 2380 */ 2381 2382 int v; 2383 2384 input_report_key(mydata->input, BTN_LEFT, 2385 !!(data[1] & M560_MOUSE_BTN_LEFT)); 2386 input_report_key(mydata->input, BTN_RIGHT, 2387 !!(data[1] & M560_MOUSE_BTN_RIGHT)); 2388 2389 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) 2390 input_report_rel(mydata->input, REL_HWHEEL, -1); 2391 else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) 2392 input_report_rel(mydata->input, REL_HWHEEL, 1); 2393 2394 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12); 2395 input_report_rel(mydata->input, REL_X, v); 2396 2397 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12); 2398 input_report_rel(mydata->input, REL_Y, v); 2399 2400 v = hid_snto32(data[6], 8); 2401 input_report_rel(mydata->input, REL_WHEEL, v); 2402 2403 input_sync(mydata->input); 2404 } 2405 2406 return 1; 2407 } 2408 2409 static void m560_populate_input(struct hidpp_device *hidpp, 2410 struct input_dev *input_dev, bool origin_is_hid_core) 2411 { 2412 struct m560_private_data *mydata = hidpp->private_data; 2413 2414 mydata->input = input_dev; 2415 2416 __set_bit(EV_KEY, mydata->input->evbit); 2417 __set_bit(BTN_MIDDLE, mydata->input->keybit); 2418 __set_bit(BTN_RIGHT, mydata->input->keybit); 2419 __set_bit(BTN_LEFT, mydata->input->keybit); 2420 __set_bit(BTN_BACK, mydata->input->keybit); 2421 __set_bit(BTN_FORWARD, mydata->input->keybit); 2422 2423 __set_bit(EV_REL, mydata->input->evbit); 2424 __set_bit(REL_X, mydata->input->relbit); 2425 __set_bit(REL_Y, mydata->input->relbit); 2426 __set_bit(REL_WHEEL, mydata->input->relbit); 2427 __set_bit(REL_HWHEEL, mydata->input->relbit); 2428 } 2429 2430 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2431 struct hid_field *field, struct hid_usage *usage, 2432 unsigned long **bit, int *max) 2433 { 2434 return -1; 2435 } 2436 2437 /* ------------------------------------------------------------------------- */ 2438 /* Logitech K400 devices */ 2439 /* ------------------------------------------------------------------------- */ 2440 2441 /* 2442 * The Logitech K400 keyboard has an embedded touchpad which is seen 2443 * as a mouse from the OS point of view. There is a hardware shortcut to disable 2444 * tap-to-click but the setting is not remembered accross reset, annoying some 2445 * users. 2446 * 2447 * We can toggle this feature from the host by using the feature 0x6010: 2448 * Touchpad FW items 2449 */ 2450 2451 struct k400_private_data { 2452 u8 feature_index; 2453 }; 2454 2455 static int k400_disable_tap_to_click(struct hidpp_device *hidpp) 2456 { 2457 struct k400_private_data *k400 = hidpp->private_data; 2458 struct hidpp_touchpad_fw_items items = {}; 2459 int ret; 2460 u8 feature_type; 2461 2462 if (!k400->feature_index) { 2463 ret = hidpp_root_get_feature(hidpp, 2464 HIDPP_PAGE_TOUCHPAD_FW_ITEMS, 2465 &k400->feature_index, &feature_type); 2466 if (ret) 2467 /* means that the device is not powered up */ 2468 return ret; 2469 } 2470 2471 ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items); 2472 if (ret) 2473 return ret; 2474 2475 return 0; 2476 } 2477 2478 static int k400_allocate(struct hid_device *hdev) 2479 { 2480 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2481 struct k400_private_data *k400; 2482 2483 k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data), 2484 GFP_KERNEL); 2485 if (!k400) 2486 return -ENOMEM; 2487 2488 hidpp->private_data = k400; 2489 2490 return 0; 2491 }; 2492 2493 static int k400_connect(struct hid_device *hdev, bool connected) 2494 { 2495 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2496 2497 if (!disable_tap_to_click) 2498 return 0; 2499 2500 return k400_disable_tap_to_click(hidpp); 2501 } 2502 2503 /* ------------------------------------------------------------------------- */ 2504 /* Logitech G920 Driving Force Racing Wheel for Xbox One */ 2505 /* ------------------------------------------------------------------------- */ 2506 2507 #define HIDPP_PAGE_G920_FORCE_FEEDBACK 0x8123 2508 2509 static int g920_get_config(struct hidpp_device *hidpp) 2510 { 2511 u8 feature_type; 2512 u8 feature_index; 2513 int ret; 2514 2515 /* Find feature and store for later use */ 2516 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK, 2517 &feature_index, &feature_type); 2518 if (ret) 2519 return ret; 2520 2521 ret = hidpp_ff_init(hidpp, feature_index); 2522 if (ret) 2523 hid_warn(hidpp->hid_dev, "Unable to initialize force feedback support, errno %d\n", 2524 ret); 2525 2526 return 0; 2527 } 2528 2529 /* -------------------------------------------------------------------------- */ 2530 /* Generic HID++ devices */ 2531 /* -------------------------------------------------------------------------- */ 2532 2533 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2534 struct hid_field *field, struct hid_usage *usage, 2535 unsigned long **bit, int *max) 2536 { 2537 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2538 2539 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 2540 return wtp_input_mapping(hdev, hi, field, usage, bit, max); 2541 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 && 2542 field->application != HID_GD_MOUSE) 2543 return m560_input_mapping(hdev, hi, field, usage, bit, max); 2544 2545 return 0; 2546 } 2547 2548 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi, 2549 struct hid_field *field, struct hid_usage *usage, 2550 unsigned long **bit, int *max) 2551 { 2552 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2553 2554 /* Ensure that Logitech G920 is not given a default fuzz/flat value */ 2555 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 2556 if (usage->type == EV_ABS && (usage->code == ABS_X || 2557 usage->code == ABS_Y || usage->code == ABS_Z || 2558 usage->code == ABS_RZ)) { 2559 field->application = HID_GD_MULTIAXIS; 2560 } 2561 } 2562 2563 return 0; 2564 } 2565 2566 2567 static void hidpp_populate_input(struct hidpp_device *hidpp, 2568 struct input_dev *input, bool origin_is_hid_core) 2569 { 2570 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 2571 wtp_populate_input(hidpp, input, origin_is_hid_core); 2572 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 2573 m560_populate_input(hidpp, input, origin_is_hid_core); 2574 } 2575 2576 static int hidpp_input_configured(struct hid_device *hdev, 2577 struct hid_input *hidinput) 2578 { 2579 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2580 struct input_dev *input = hidinput->input; 2581 2582 hidpp_populate_input(hidpp, input, true); 2583 2584 return 0; 2585 } 2586 2587 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data, 2588 int size) 2589 { 2590 struct hidpp_report *question = hidpp->send_receive_buf; 2591 struct hidpp_report *answer = hidpp->send_receive_buf; 2592 struct hidpp_report *report = (struct hidpp_report *)data; 2593 int ret; 2594 2595 /* 2596 * If the mutex is locked then we have a pending answer from a 2597 * previously sent command. 2598 */ 2599 if (unlikely(mutex_is_locked(&hidpp->send_mutex))) { 2600 /* 2601 * Check for a correct hidpp20 answer or the corresponding 2602 * error 2603 */ 2604 if (hidpp_match_answer(question, report) || 2605 hidpp_match_error(question, report)) { 2606 *answer = *report; 2607 hidpp->answer_available = true; 2608 wake_up(&hidpp->wait); 2609 /* 2610 * This was an answer to a command that this driver sent 2611 * We return 1 to hid-core to avoid forwarding the 2612 * command upstream as it has been treated by the driver 2613 */ 2614 2615 return 1; 2616 } 2617 } 2618 2619 if (unlikely(hidpp_report_is_connect_event(report))) { 2620 atomic_set(&hidpp->connected, 2621 !(report->rap.params[0] & (1 << 6))); 2622 if (schedule_work(&hidpp->work) == 0) 2623 dbg_hid("%s: connect event already queued\n", __func__); 2624 return 1; 2625 } 2626 2627 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 2628 ret = hidpp20_battery_event(hidpp, data, size); 2629 if (ret != 0) 2630 return ret; 2631 ret = hidpp_solar_battery_event(hidpp, data, size); 2632 if (ret != 0) 2633 return ret; 2634 } 2635 2636 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 2637 ret = hidpp10_battery_event(hidpp, data, size); 2638 if (ret != 0) 2639 return ret; 2640 } 2641 2642 return 0; 2643 } 2644 2645 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report, 2646 u8 *data, int size) 2647 { 2648 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2649 int ret = 0; 2650 2651 /* Generic HID++ processing. */ 2652 switch (data[0]) { 2653 case REPORT_ID_HIDPP_VERY_LONG: 2654 if (size != HIDPP_REPORT_VERY_LONG_LENGTH) { 2655 hid_err(hdev, "received hid++ report of bad size (%d)", 2656 size); 2657 return 1; 2658 } 2659 ret = hidpp_raw_hidpp_event(hidpp, data, size); 2660 break; 2661 case REPORT_ID_HIDPP_LONG: 2662 if (size != HIDPP_REPORT_LONG_LENGTH) { 2663 hid_err(hdev, "received hid++ report of bad size (%d)", 2664 size); 2665 return 1; 2666 } 2667 ret = hidpp_raw_hidpp_event(hidpp, data, size); 2668 break; 2669 case REPORT_ID_HIDPP_SHORT: 2670 if (size != HIDPP_REPORT_SHORT_LENGTH) { 2671 hid_err(hdev, "received hid++ report of bad size (%d)", 2672 size); 2673 return 1; 2674 } 2675 ret = hidpp_raw_hidpp_event(hidpp, data, size); 2676 break; 2677 } 2678 2679 /* If no report is available for further processing, skip calling 2680 * raw_event of subclasses. */ 2681 if (ret != 0) 2682 return ret; 2683 2684 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 2685 return wtp_raw_event(hdev, data, size); 2686 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 2687 return m560_raw_event(hdev, data, size); 2688 2689 return 0; 2690 } 2691 2692 static int hidpp_initialize_battery(struct hidpp_device *hidpp) 2693 { 2694 static atomic_t battery_no = ATOMIC_INIT(0); 2695 struct power_supply_config cfg = { .drv_data = hidpp }; 2696 struct power_supply_desc *desc = &hidpp->battery.desc; 2697 enum power_supply_property *battery_props; 2698 struct hidpp_battery *battery; 2699 unsigned int num_battery_props; 2700 unsigned long n; 2701 int ret; 2702 2703 if (hidpp->battery.ps) 2704 return 0; 2705 2706 hidpp->battery.feature_index = 0xff; 2707 hidpp->battery.solar_feature_index = 0xff; 2708 2709 if (hidpp->protocol_major >= 2) { 2710 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750) 2711 ret = hidpp_solar_request_battery_event(hidpp); 2712 else 2713 ret = hidpp20_query_battery_info(hidpp); 2714 2715 if (ret) 2716 return ret; 2717 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY; 2718 } else { 2719 ret = hidpp10_query_battery_status(hidpp); 2720 if (ret) { 2721 ret = hidpp10_query_battery_mileage(hidpp); 2722 if (ret) 2723 return -ENOENT; 2724 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 2725 } else { 2726 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 2727 } 2728 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY; 2729 } 2730 2731 battery_props = devm_kmemdup(&hidpp->hid_dev->dev, 2732 hidpp_battery_props, 2733 sizeof(hidpp_battery_props), 2734 GFP_KERNEL); 2735 if (!battery_props) 2736 return -ENOMEM; 2737 2738 num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 2; 2739 2740 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 2741 battery_props[num_battery_props++] = 2742 POWER_SUPPLY_PROP_CAPACITY; 2743 2744 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS) 2745 battery_props[num_battery_props++] = 2746 POWER_SUPPLY_PROP_CAPACITY_LEVEL; 2747 2748 battery = &hidpp->battery; 2749 2750 n = atomic_inc_return(&battery_no) - 1; 2751 desc->properties = battery_props; 2752 desc->num_properties = num_battery_props; 2753 desc->get_property = hidpp_battery_get_property; 2754 sprintf(battery->name, "hidpp_battery_%ld", n); 2755 desc->name = battery->name; 2756 desc->type = POWER_SUPPLY_TYPE_BATTERY; 2757 desc->use_for_apm = 0; 2758 2759 battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev, 2760 &battery->desc, 2761 &cfg); 2762 if (IS_ERR(battery->ps)) 2763 return PTR_ERR(battery->ps); 2764 2765 power_supply_powers(battery->ps, &hidpp->hid_dev->dev); 2766 2767 return ret; 2768 } 2769 2770 static void hidpp_overwrite_name(struct hid_device *hdev) 2771 { 2772 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2773 char *name; 2774 2775 if (hidpp->protocol_major < 2) 2776 return; 2777 2778 name = hidpp_get_device_name(hidpp); 2779 2780 if (!name) { 2781 hid_err(hdev, "unable to retrieve the name of the device"); 2782 } else { 2783 dbg_hid("HID++: Got name: %s\n", name); 2784 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 2785 } 2786 2787 kfree(name); 2788 } 2789 2790 static int hidpp_input_open(struct input_dev *dev) 2791 { 2792 struct hid_device *hid = input_get_drvdata(dev); 2793 2794 return hid_hw_open(hid); 2795 } 2796 2797 static void hidpp_input_close(struct input_dev *dev) 2798 { 2799 struct hid_device *hid = input_get_drvdata(dev); 2800 2801 hid_hw_close(hid); 2802 } 2803 2804 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev) 2805 { 2806 struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev); 2807 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2808 2809 if (!input_dev) 2810 return NULL; 2811 2812 input_set_drvdata(input_dev, hdev); 2813 input_dev->open = hidpp_input_open; 2814 input_dev->close = hidpp_input_close; 2815 2816 input_dev->name = hidpp->name; 2817 input_dev->phys = hdev->phys; 2818 input_dev->uniq = hdev->uniq; 2819 input_dev->id.bustype = hdev->bus; 2820 input_dev->id.vendor = hdev->vendor; 2821 input_dev->id.product = hdev->product; 2822 input_dev->id.version = hdev->version; 2823 input_dev->dev.parent = &hdev->dev; 2824 2825 return input_dev; 2826 } 2827 2828 static void hidpp_connect_event(struct hidpp_device *hidpp) 2829 { 2830 struct hid_device *hdev = hidpp->hid_dev; 2831 int ret = 0; 2832 bool connected = atomic_read(&hidpp->connected); 2833 struct input_dev *input; 2834 char *name, *devm_name; 2835 2836 if (!connected) { 2837 if (hidpp->battery.ps) { 2838 hidpp->battery.online = false; 2839 hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN; 2840 hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 2841 power_supply_changed(hidpp->battery.ps); 2842 } 2843 return; 2844 } 2845 2846 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 2847 ret = wtp_connect(hdev, connected); 2848 if (ret) 2849 return; 2850 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) { 2851 ret = m560_send_config_command(hdev, connected); 2852 if (ret) 2853 return; 2854 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 2855 ret = k400_connect(hdev, connected); 2856 if (ret) 2857 return; 2858 } 2859 2860 /* the device is already connected, we can ask for its name and 2861 * protocol */ 2862 if (!hidpp->protocol_major) { 2863 ret = !hidpp_is_connected(hidpp); 2864 if (ret) { 2865 hid_err(hdev, "Can not get the protocol version.\n"); 2866 return; 2867 } 2868 hid_info(hdev, "HID++ %u.%u device connected.\n", 2869 hidpp->protocol_major, hidpp->protocol_minor); 2870 } 2871 2872 if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) { 2873 name = hidpp_get_device_name(hidpp); 2874 if (!name) { 2875 hid_err(hdev, 2876 "unable to retrieve the name of the device"); 2877 return; 2878 } 2879 2880 devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s", name); 2881 kfree(name); 2882 if (!devm_name) 2883 return; 2884 2885 hidpp->name = devm_name; 2886 } 2887 2888 hidpp_initialize_battery(hidpp); 2889 2890 /* forward current battery state */ 2891 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 2892 hidpp10_enable_battery_reporting(hidpp); 2893 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 2894 hidpp10_query_battery_mileage(hidpp); 2895 else 2896 hidpp10_query_battery_status(hidpp); 2897 } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 2898 hidpp20_query_battery_info(hidpp); 2899 } 2900 if (hidpp->battery.ps) 2901 power_supply_changed(hidpp->battery.ps); 2902 2903 if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input) 2904 /* if the input nodes are already created, we can stop now */ 2905 return; 2906 2907 input = hidpp_allocate_input(hdev); 2908 if (!input) { 2909 hid_err(hdev, "cannot allocate new input device: %d\n", ret); 2910 return; 2911 } 2912 2913 hidpp_populate_input(hidpp, input, false); 2914 2915 ret = input_register_device(input); 2916 if (ret) 2917 input_free_device(input); 2918 2919 hidpp->delayed_input = input; 2920 } 2921 2922 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL); 2923 2924 static struct attribute *sysfs_attrs[] = { 2925 &dev_attr_builtin_power_supply.attr, 2926 NULL 2927 }; 2928 2929 static const struct attribute_group ps_attribute_group = { 2930 .attrs = sysfs_attrs 2931 }; 2932 2933 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id) 2934 { 2935 struct hidpp_device *hidpp; 2936 int ret; 2937 bool connected; 2938 unsigned int connect_mask = HID_CONNECT_DEFAULT; 2939 2940 hidpp = devm_kzalloc(&hdev->dev, sizeof(struct hidpp_device), 2941 GFP_KERNEL); 2942 if (!hidpp) 2943 return -ENOMEM; 2944 2945 hidpp->hid_dev = hdev; 2946 hidpp->name = hdev->name; 2947 hid_set_drvdata(hdev, hidpp); 2948 2949 hidpp->quirks = id->driver_data; 2950 2951 if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE) 2952 hidpp->quirks |= HIDPP_QUIRK_UNIFYING; 2953 2954 if (disable_raw_mode) { 2955 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP; 2956 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT; 2957 } 2958 2959 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 2960 ret = wtp_allocate(hdev, id); 2961 if (ret) 2962 goto allocate_fail; 2963 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) { 2964 ret = m560_allocate(hdev); 2965 if (ret) 2966 goto allocate_fail; 2967 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 2968 ret = k400_allocate(hdev); 2969 if (ret) 2970 goto allocate_fail; 2971 } 2972 2973 INIT_WORK(&hidpp->work, delayed_work_cb); 2974 mutex_init(&hidpp->send_mutex); 2975 init_waitqueue_head(&hidpp->wait); 2976 2977 /* indicates we are handling the battery properties in the kernel */ 2978 ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group); 2979 if (ret) 2980 hid_warn(hdev, "Cannot allocate sysfs group for %s\n", 2981 hdev->name); 2982 2983 ret = hid_parse(hdev); 2984 if (ret) { 2985 hid_err(hdev, "%s:parse failed\n", __func__); 2986 goto hid_parse_fail; 2987 } 2988 2989 if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) 2990 connect_mask &= ~HID_CONNECT_HIDINPUT; 2991 2992 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 2993 ret = hid_hw_start(hdev, connect_mask); 2994 if (ret) { 2995 hid_err(hdev, "hw start failed\n"); 2996 goto hid_hw_start_fail; 2997 } 2998 ret = hid_hw_open(hdev); 2999 if (ret < 0) { 3000 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n", 3001 __func__, ret); 3002 hid_hw_stop(hdev); 3003 goto hid_hw_start_fail; 3004 } 3005 } 3006 3007 3008 /* Allow incoming packets */ 3009 hid_device_io_start(hdev); 3010 3011 if (hidpp->quirks & HIDPP_QUIRK_UNIFYING) 3012 hidpp_unifying_init(hidpp); 3013 3014 connected = hidpp_is_connected(hidpp); 3015 atomic_set(&hidpp->connected, connected); 3016 if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) { 3017 if (!connected) { 3018 ret = -ENODEV; 3019 hid_err(hdev, "Device not connected"); 3020 goto hid_hw_open_failed; 3021 } 3022 3023 hid_info(hdev, "HID++ %u.%u device connected.\n", 3024 hidpp->protocol_major, hidpp->protocol_minor); 3025 3026 hidpp_overwrite_name(hdev); 3027 } 3028 3029 if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) { 3030 ret = wtp_get_config(hidpp); 3031 if (ret) 3032 goto hid_hw_open_failed; 3033 } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) { 3034 ret = g920_get_config(hidpp); 3035 if (ret) 3036 goto hid_hw_open_failed; 3037 } 3038 3039 /* Block incoming packets */ 3040 hid_device_io_stop(hdev); 3041 3042 if (!(hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) { 3043 ret = hid_hw_start(hdev, connect_mask); 3044 if (ret) { 3045 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__); 3046 goto hid_hw_start_fail; 3047 } 3048 } 3049 3050 /* Allow incoming packets */ 3051 hid_device_io_start(hdev); 3052 3053 hidpp_connect_event(hidpp); 3054 3055 return ret; 3056 3057 hid_hw_open_failed: 3058 hid_device_io_stop(hdev); 3059 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3060 hid_hw_close(hdev); 3061 hid_hw_stop(hdev); 3062 } 3063 hid_hw_start_fail: 3064 hid_parse_fail: 3065 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 3066 cancel_work_sync(&hidpp->work); 3067 mutex_destroy(&hidpp->send_mutex); 3068 allocate_fail: 3069 hid_set_drvdata(hdev, NULL); 3070 return ret; 3071 } 3072 3073 static void hidpp_remove(struct hid_device *hdev) 3074 { 3075 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3076 3077 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 3078 3079 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3080 hidpp_ff_deinit(hdev); 3081 hid_hw_close(hdev); 3082 } 3083 hid_hw_stop(hdev); 3084 cancel_work_sync(&hidpp->work); 3085 mutex_destroy(&hidpp->send_mutex); 3086 } 3087 3088 static const struct hid_device_id hidpp_devices[] = { 3089 { /* wireless touchpad */ 3090 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, 3091 USB_VENDOR_ID_LOGITECH, 0x4011), 3092 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT | 3093 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS }, 3094 { /* wireless touchpad T650 */ 3095 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, 3096 USB_VENDOR_ID_LOGITECH, 0x4101), 3097 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT }, 3098 { /* wireless touchpad T651 */ 3099 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 3100 USB_DEVICE_ID_LOGITECH_T651), 3101 .driver_data = HIDPP_QUIRK_CLASS_WTP }, 3102 { /* Mouse logitech M560 */ 3103 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, 3104 USB_VENDOR_ID_LOGITECH, 0x402d), 3105 .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560 }, 3106 { /* Keyboard logitech K400 */ 3107 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, 3108 USB_VENDOR_ID_LOGITECH, 0x4024), 3109 .driver_data = HIDPP_QUIRK_CLASS_K400 }, 3110 { /* Solar Keyboard Logitech K750 */ 3111 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, 3112 USB_VENDOR_ID_LOGITECH, 0x4002), 3113 .driver_data = HIDPP_QUIRK_CLASS_K750 }, 3114 3115 { HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, 3116 USB_VENDOR_ID_LOGITECH, HID_ANY_ID)}, 3117 3118 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL), 3119 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS}, 3120 {} 3121 }; 3122 3123 MODULE_DEVICE_TABLE(hid, hidpp_devices); 3124 3125 static struct hid_driver hidpp_driver = { 3126 .name = "logitech-hidpp-device", 3127 .id_table = hidpp_devices, 3128 .probe = hidpp_probe, 3129 .remove = hidpp_remove, 3130 .raw_event = hidpp_raw_event, 3131 .input_configured = hidpp_input_configured, 3132 .input_mapping = hidpp_input_mapping, 3133 .input_mapped = hidpp_input_mapped, 3134 }; 3135 3136 module_hid_driver(hidpp_driver); 3137