xref: /openbmc/linux/drivers/hid/hid-logitech-hidpp.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  HIDPP protocol for Logitech receivers
4  *
5  *  Copyright (c) 2011 Logitech (c)
6  *  Copyright (c) 2012-2013 Google (c)
7  *  Copyright (c) 2013-2014 Red Hat Inc.
8  */
9 
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/device.h>
14 #include <linux/input.h>
15 #include <linux/usb.h>
16 #include <linux/hid.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/clock.h>
21 #include <linux/kfifo.h>
22 #include <linux/input/mt.h>
23 #include <linux/workqueue.h>
24 #include <linux/atomic.h>
25 #include <linux/fixp-arith.h>
26 #include <asm/unaligned.h>
27 #include "usbhid/usbhid.h"
28 #include "hid-ids.h"
29 
30 MODULE_LICENSE("GPL");
31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
33 
34 static bool disable_raw_mode;
35 module_param(disable_raw_mode, bool, 0644);
36 MODULE_PARM_DESC(disable_raw_mode,
37 	"Disable Raw mode reporting for touchpads and keep firmware gestures.");
38 
39 static bool disable_tap_to_click;
40 module_param(disable_tap_to_click, bool, 0644);
41 MODULE_PARM_DESC(disable_tap_to_click,
42 	"Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
43 
44 #define REPORT_ID_HIDPP_SHORT			0x10
45 #define REPORT_ID_HIDPP_LONG			0x11
46 #define REPORT_ID_HIDPP_VERY_LONG		0x12
47 
48 #define HIDPP_REPORT_SHORT_LENGTH		7
49 #define HIDPP_REPORT_LONG_LENGTH		20
50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH	64
51 
52 #define HIDPP_REPORT_SHORT_SUPPORTED		BIT(0)
53 #define HIDPP_REPORT_LONG_SUPPORTED		BIT(1)
54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED	BIT(2)
55 
56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS	0x03
57 #define HIDPP_SUB_ID_ROLLER			0x05
58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS		0x06
59 
60 #define HIDPP_QUIRK_CLASS_WTP			BIT(0)
61 #define HIDPP_QUIRK_CLASS_M560			BIT(1)
62 #define HIDPP_QUIRK_CLASS_K400			BIT(2)
63 #define HIDPP_QUIRK_CLASS_G920			BIT(3)
64 #define HIDPP_QUIRK_CLASS_K750			BIT(4)
65 
66 /* bits 2..20 are reserved for classes */
67 /* #define HIDPP_QUIRK_CONNECT_EVENTS		BIT(21) disabled */
68 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS	BIT(22)
69 #define HIDPP_QUIRK_NO_HIDINPUT			BIT(23)
70 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS	BIT(24)
71 #define HIDPP_QUIRK_UNIFYING			BIT(25)
72 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0		BIT(26)
73 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120		BIT(27)
74 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121		BIT(28)
75 #define HIDPP_QUIRK_HIDPP_WHEELS		BIT(29)
76 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS	BIT(30)
77 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS	BIT(31)
78 
79 /* These are just aliases for now */
80 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS
81 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL   HIDPP_QUIRK_HIDPP_WHEELS
82 
83 /* Convenience constant to check for any high-res support. */
84 #define HIDPP_QUIRK_HI_RES_SCROLL	(HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
85 					 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
86 					 HIDPP_QUIRK_HI_RES_SCROLL_X2121)
87 
88 #define HIDPP_QUIRK_DELAYED_INIT		HIDPP_QUIRK_NO_HIDINPUT
89 
90 #define HIDPP_CAPABILITY_HIDPP10_BATTERY	BIT(0)
91 #define HIDPP_CAPABILITY_HIDPP20_BATTERY	BIT(1)
92 #define HIDPP_CAPABILITY_BATTERY_MILEAGE	BIT(2)
93 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS	BIT(3)
94 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE	BIT(4)
95 #define HIDPP_CAPABILITY_BATTERY_PERCENTAGE	BIT(5)
96 #define HIDPP_CAPABILITY_UNIFIED_BATTERY	BIT(6)
97 
98 #define lg_map_key_clear(c)  hid_map_usage_clear(hi, usage, bit, max, EV_KEY, (c))
99 
100 /*
101  * There are two hidpp protocols in use, the first version hidpp10 is known
102  * as register access protocol or RAP, the second version hidpp20 is known as
103  * feature access protocol or FAP
104  *
105  * Most older devices (including the Unifying usb receiver) use the RAP protocol
106  * where as most newer devices use the FAP protocol. Both protocols are
107  * compatible with the underlying transport, which could be usb, Unifiying, or
108  * bluetooth. The message lengths are defined by the hid vendor specific report
109  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
110  * the HIDPP_LONG report type (total message length 20 bytes)
111  *
112  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
113  * messages. The Unifying receiver itself responds to RAP messages (device index
114  * is 0xFF for the receiver), and all messages (short or long) with a device
115  * index between 1 and 6 are passed untouched to the corresponding paired
116  * Unifying device.
117  *
118  * The paired device can be RAP or FAP, it will receive the message untouched
119  * from the Unifiying receiver.
120  */
121 
122 struct fap {
123 	u8 feature_index;
124 	u8 funcindex_clientid;
125 	u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
126 };
127 
128 struct rap {
129 	u8 sub_id;
130 	u8 reg_address;
131 	u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
132 };
133 
134 struct hidpp_report {
135 	u8 report_id;
136 	u8 device_index;
137 	union {
138 		struct fap fap;
139 		struct rap rap;
140 		u8 rawbytes[sizeof(struct fap)];
141 	};
142 } __packed;
143 
144 struct hidpp_battery {
145 	u8 feature_index;
146 	u8 solar_feature_index;
147 	u8 voltage_feature_index;
148 	struct power_supply_desc desc;
149 	struct power_supply *ps;
150 	char name[64];
151 	int status;
152 	int capacity;
153 	int level;
154 	int voltage;
155 	int charge_type;
156 	bool online;
157 	u8 supported_levels_1004;
158 };
159 
160 /**
161  * struct hidpp_scroll_counter - Utility class for processing high-resolution
162  *                             scroll events.
163  * @dev: the input device for which events should be reported.
164  * @wheel_multiplier: the scalar multiplier to be applied to each wheel event
165  * @remainder: counts the number of high-resolution units moved since the last
166  *             low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should
167  *             only be used by class methods.
168  * @direction: direction of last movement (1 or -1)
169  * @last_time: last event time, used to reset remainder after inactivity
170  */
171 struct hidpp_scroll_counter {
172 	int wheel_multiplier;
173 	int remainder;
174 	int direction;
175 	unsigned long long last_time;
176 };
177 
178 struct hidpp_device {
179 	struct hid_device *hid_dev;
180 	struct input_dev *input;
181 	struct mutex send_mutex;
182 	void *send_receive_buf;
183 	char *name;		/* will never be NULL and should not be freed */
184 	wait_queue_head_t wait;
185 	int very_long_report_length;
186 	bool answer_available;
187 	u8 protocol_major;
188 	u8 protocol_minor;
189 
190 	void *private_data;
191 
192 	struct work_struct work;
193 	struct kfifo delayed_work_fifo;
194 	atomic_t connected;
195 	struct input_dev *delayed_input;
196 
197 	unsigned long quirks;
198 	unsigned long capabilities;
199 	u8 supported_reports;
200 
201 	struct hidpp_battery battery;
202 	struct hidpp_scroll_counter vertical_wheel_counter;
203 
204 	u8 wireless_feature_index;
205 };
206 
207 /* HID++ 1.0 error codes */
208 #define HIDPP_ERROR				0x8f
209 #define HIDPP_ERROR_SUCCESS			0x00
210 #define HIDPP_ERROR_INVALID_SUBID		0x01
211 #define HIDPP_ERROR_INVALID_ADRESS		0x02
212 #define HIDPP_ERROR_INVALID_VALUE		0x03
213 #define HIDPP_ERROR_CONNECT_FAIL		0x04
214 #define HIDPP_ERROR_TOO_MANY_DEVICES		0x05
215 #define HIDPP_ERROR_ALREADY_EXISTS		0x06
216 #define HIDPP_ERROR_BUSY			0x07
217 #define HIDPP_ERROR_UNKNOWN_DEVICE		0x08
218 #define HIDPP_ERROR_RESOURCE_ERROR		0x09
219 #define HIDPP_ERROR_REQUEST_UNAVAILABLE		0x0a
220 #define HIDPP_ERROR_INVALID_PARAM_VALUE		0x0b
221 #define HIDPP_ERROR_WRONG_PIN_CODE		0x0c
222 /* HID++ 2.0 error codes */
223 #define HIDPP20_ERROR				0xff
224 
225 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
226 
227 static int __hidpp_send_report(struct hid_device *hdev,
228 				struct hidpp_report *hidpp_report)
229 {
230 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
231 	int fields_count, ret;
232 
233 	switch (hidpp_report->report_id) {
234 	case REPORT_ID_HIDPP_SHORT:
235 		fields_count = HIDPP_REPORT_SHORT_LENGTH;
236 		break;
237 	case REPORT_ID_HIDPP_LONG:
238 		fields_count = HIDPP_REPORT_LONG_LENGTH;
239 		break;
240 	case REPORT_ID_HIDPP_VERY_LONG:
241 		fields_count = hidpp->very_long_report_length;
242 		break;
243 	default:
244 		return -ENODEV;
245 	}
246 
247 	/*
248 	 * set the device_index as the receiver, it will be overwritten by
249 	 * hid_hw_request if needed
250 	 */
251 	hidpp_report->device_index = 0xff;
252 
253 	if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
254 		ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
255 	} else {
256 		ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
257 			(u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
258 			HID_REQ_SET_REPORT);
259 	}
260 
261 	return ret == fields_count ? 0 : -1;
262 }
263 
264 /**
265  * hidpp_send_message_sync() returns 0 in case of success, and something else
266  * in case of a failure.
267  * - If ' something else' is positive, that means that an error has been raised
268  *   by the protocol itself.
269  * - If ' something else' is negative, that means that we had a classic error
270  *   (-ENOMEM, -EPIPE, etc...)
271  */
272 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
273 	struct hidpp_report *message,
274 	struct hidpp_report *response)
275 {
276 	int ret;
277 
278 	mutex_lock(&hidpp->send_mutex);
279 
280 	hidpp->send_receive_buf = response;
281 	hidpp->answer_available = false;
282 
283 	/*
284 	 * So that we can later validate the answer when it arrives
285 	 * in hidpp_raw_event
286 	 */
287 	*response = *message;
288 
289 	ret = __hidpp_send_report(hidpp->hid_dev, message);
290 
291 	if (ret) {
292 		dbg_hid("__hidpp_send_report returned err: %d\n", ret);
293 		memset(response, 0, sizeof(struct hidpp_report));
294 		goto exit;
295 	}
296 
297 	if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
298 				5*HZ)) {
299 		dbg_hid("%s:timeout waiting for response\n", __func__);
300 		memset(response, 0, sizeof(struct hidpp_report));
301 		ret = -ETIMEDOUT;
302 	}
303 
304 	if (response->report_id == REPORT_ID_HIDPP_SHORT &&
305 	    response->rap.sub_id == HIDPP_ERROR) {
306 		ret = response->rap.params[1];
307 		dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
308 		goto exit;
309 	}
310 
311 	if ((response->report_id == REPORT_ID_HIDPP_LONG ||
312 			response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
313 			response->fap.feature_index == HIDPP20_ERROR) {
314 		ret = response->fap.params[1];
315 		dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
316 		goto exit;
317 	}
318 
319 exit:
320 	mutex_unlock(&hidpp->send_mutex);
321 	return ret;
322 
323 }
324 
325 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
326 	u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
327 	struct hidpp_report *response)
328 {
329 	struct hidpp_report *message;
330 	int ret;
331 
332 	if (param_count > sizeof(message->fap.params))
333 		return -EINVAL;
334 
335 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
336 	if (!message)
337 		return -ENOMEM;
338 
339 	if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
340 		message->report_id = REPORT_ID_HIDPP_VERY_LONG;
341 	else
342 		message->report_id = REPORT_ID_HIDPP_LONG;
343 	message->fap.feature_index = feat_index;
344 	message->fap.funcindex_clientid = funcindex_clientid;
345 	memcpy(&message->fap.params, params, param_count);
346 
347 	ret = hidpp_send_message_sync(hidpp, message, response);
348 	kfree(message);
349 	return ret;
350 }
351 
352 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
353 	u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
354 	struct hidpp_report *response)
355 {
356 	struct hidpp_report *message;
357 	int ret, max_count;
358 
359 	/* Send as long report if short reports are not supported. */
360 	if (report_id == REPORT_ID_HIDPP_SHORT &&
361 	    !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED))
362 		report_id = REPORT_ID_HIDPP_LONG;
363 
364 	switch (report_id) {
365 	case REPORT_ID_HIDPP_SHORT:
366 		max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
367 		break;
368 	case REPORT_ID_HIDPP_LONG:
369 		max_count = HIDPP_REPORT_LONG_LENGTH - 4;
370 		break;
371 	case REPORT_ID_HIDPP_VERY_LONG:
372 		max_count = hidpp_dev->very_long_report_length - 4;
373 		break;
374 	default:
375 		return -EINVAL;
376 	}
377 
378 	if (param_count > max_count)
379 		return -EINVAL;
380 
381 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
382 	if (!message)
383 		return -ENOMEM;
384 	message->report_id = report_id;
385 	message->rap.sub_id = sub_id;
386 	message->rap.reg_address = reg_address;
387 	memcpy(&message->rap.params, params, param_count);
388 
389 	ret = hidpp_send_message_sync(hidpp_dev, message, response);
390 	kfree(message);
391 	return ret;
392 }
393 
394 static void delayed_work_cb(struct work_struct *work)
395 {
396 	struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
397 							work);
398 	hidpp_connect_event(hidpp);
399 }
400 
401 static inline bool hidpp_match_answer(struct hidpp_report *question,
402 		struct hidpp_report *answer)
403 {
404 	return (answer->fap.feature_index == question->fap.feature_index) &&
405 	   (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
406 }
407 
408 static inline bool hidpp_match_error(struct hidpp_report *question,
409 		struct hidpp_report *answer)
410 {
411 	return ((answer->rap.sub_id == HIDPP_ERROR) ||
412 	    (answer->fap.feature_index == HIDPP20_ERROR)) &&
413 	    (answer->fap.funcindex_clientid == question->fap.feature_index) &&
414 	    (answer->fap.params[0] == question->fap.funcindex_clientid);
415 }
416 
417 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp,
418 		struct hidpp_report *report)
419 {
420 	return (hidpp->wireless_feature_index &&
421 		(report->fap.feature_index == hidpp->wireless_feature_index)) ||
422 		((report->report_id == REPORT_ID_HIDPP_SHORT) &&
423 		(report->rap.sub_id == 0x41));
424 }
425 
426 /**
427  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
428  */
429 static void hidpp_prefix_name(char **name, int name_length)
430 {
431 #define PREFIX_LENGTH 9 /* "Logitech " */
432 
433 	int new_length;
434 	char *new_name;
435 
436 	if (name_length > PREFIX_LENGTH &&
437 	    strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
438 		/* The prefix has is already in the name */
439 		return;
440 
441 	new_length = PREFIX_LENGTH + name_length;
442 	new_name = kzalloc(new_length, GFP_KERNEL);
443 	if (!new_name)
444 		return;
445 
446 	snprintf(new_name, new_length, "Logitech %s", *name);
447 
448 	kfree(*name);
449 
450 	*name = new_name;
451 }
452 
453 /**
454  * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll
455  *                                        events given a high-resolution wheel
456  *                                        movement.
457  * @counter: a hid_scroll_counter struct describing the wheel.
458  * @hi_res_value: the movement of the wheel, in the mouse's high-resolution
459  *                units.
460  *
461  * Given a high-resolution movement, this function converts the movement into
462  * fractions of 120 and emits high-resolution scroll events for the input
463  * device. It also uses the multiplier from &struct hid_scroll_counter to
464  * emit low-resolution scroll events when appropriate for
465  * backwards-compatibility with userspace input libraries.
466  */
467 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev,
468 					       struct hidpp_scroll_counter *counter,
469 					       int hi_res_value)
470 {
471 	int low_res_value, remainder, direction;
472 	unsigned long long now, previous;
473 
474 	hi_res_value = hi_res_value * 120/counter->wheel_multiplier;
475 	input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value);
476 
477 	remainder = counter->remainder;
478 	direction = hi_res_value > 0 ? 1 : -1;
479 
480 	now = sched_clock();
481 	previous = counter->last_time;
482 	counter->last_time = now;
483 	/*
484 	 * Reset the remainder after a period of inactivity or when the
485 	 * direction changes. This prevents the REL_WHEEL emulation point
486 	 * from sliding for devices that don't always provide the same
487 	 * number of movements per detent.
488 	 */
489 	if (now - previous > 1000000000 || direction != counter->direction)
490 		remainder = 0;
491 
492 	counter->direction = direction;
493 	remainder += hi_res_value;
494 
495 	/* Some wheels will rest 7/8ths of a detent from the previous detent
496 	 * after slow movement, so we want the threshold for low-res events to
497 	 * be in the middle between two detents (e.g. after 4/8ths) as
498 	 * opposed to on the detents themselves (8/8ths).
499 	 */
500 	if (abs(remainder) >= 60) {
501 		/* Add (or subtract) 1 because we want to trigger when the wheel
502 		 * is half-way to the next detent (i.e. scroll 1 detent after a
503 		 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement,
504 		 * etc.).
505 		 */
506 		low_res_value = remainder / 120;
507 		if (low_res_value == 0)
508 			low_res_value = (hi_res_value > 0 ? 1 : -1);
509 		input_report_rel(input_dev, REL_WHEEL, low_res_value);
510 		remainder -= low_res_value * 120;
511 	}
512 	counter->remainder = remainder;
513 }
514 
515 /* -------------------------------------------------------------------------- */
516 /* HIDP++ 1.0 commands                                                        */
517 /* -------------------------------------------------------------------------- */
518 
519 #define HIDPP_SET_REGISTER				0x80
520 #define HIDPP_GET_REGISTER				0x81
521 #define HIDPP_SET_LONG_REGISTER				0x82
522 #define HIDPP_GET_LONG_REGISTER				0x83
523 
524 /**
525  * hidpp10_set_register - Modify a HID++ 1.0 register.
526  * @hidpp_dev: the device to set the register on.
527  * @register_address: the address of the register to modify.
528  * @byte: the byte of the register to modify. Should be less than 3.
529  * @mask: mask of the bits to modify
530  * @value: new values for the bits in mask
531  * Return: 0 if successful, otherwise a negative error code.
532  */
533 static int hidpp10_set_register(struct hidpp_device *hidpp_dev,
534 	u8 register_address, u8 byte, u8 mask, u8 value)
535 {
536 	struct hidpp_report response;
537 	int ret;
538 	u8 params[3] = { 0 };
539 
540 	ret = hidpp_send_rap_command_sync(hidpp_dev,
541 					  REPORT_ID_HIDPP_SHORT,
542 					  HIDPP_GET_REGISTER,
543 					  register_address,
544 					  NULL, 0, &response);
545 	if (ret)
546 		return ret;
547 
548 	memcpy(params, response.rap.params, 3);
549 
550 	params[byte] &= ~mask;
551 	params[byte] |= value & mask;
552 
553 	return hidpp_send_rap_command_sync(hidpp_dev,
554 					   REPORT_ID_HIDPP_SHORT,
555 					   HIDPP_SET_REGISTER,
556 					   register_address,
557 					   params, 3, &response);
558 }
559 
560 #define HIDPP_REG_ENABLE_REPORTS			0x00
561 #define HIDPP_ENABLE_CONSUMER_REPORT			BIT(0)
562 #define HIDPP_ENABLE_WHEEL_REPORT			BIT(2)
563 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT		BIT(3)
564 #define HIDPP_ENABLE_BAT_REPORT				BIT(4)
565 #define HIDPP_ENABLE_HWHEEL_REPORT			BIT(5)
566 
567 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
568 {
569 	return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0,
570 			  HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT);
571 }
572 
573 #define HIDPP_REG_FEATURES				0x01
574 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC		BIT(1)
575 #define HIDPP_ENABLE_FAST_SCROLL			BIT(6)
576 
577 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
578 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
579 {
580 	return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0,
581 			  HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL);
582 }
583 
584 #define HIDPP_REG_BATTERY_STATUS			0x07
585 
586 static int hidpp10_battery_status_map_level(u8 param)
587 {
588 	int level;
589 
590 	switch (param) {
591 	case 1 ... 2:
592 		level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
593 		break;
594 	case 3 ... 4:
595 		level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
596 		break;
597 	case 5 ... 6:
598 		level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
599 		break;
600 	case 7:
601 		level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
602 		break;
603 	default:
604 		level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
605 	}
606 
607 	return level;
608 }
609 
610 static int hidpp10_battery_status_map_status(u8 param)
611 {
612 	int status;
613 
614 	switch (param) {
615 	case 0x00:
616 		/* discharging (in use) */
617 		status = POWER_SUPPLY_STATUS_DISCHARGING;
618 		break;
619 	case 0x21: /* (standard) charging */
620 	case 0x24: /* fast charging */
621 	case 0x25: /* slow charging */
622 		status = POWER_SUPPLY_STATUS_CHARGING;
623 		break;
624 	case 0x26: /* topping charge */
625 	case 0x22: /* charge complete */
626 		status = POWER_SUPPLY_STATUS_FULL;
627 		break;
628 	case 0x20: /* unknown */
629 		status = POWER_SUPPLY_STATUS_UNKNOWN;
630 		break;
631 	/*
632 	 * 0x01...0x1F = reserved (not charging)
633 	 * 0x23 = charging error
634 	 * 0x27..0xff = reserved
635 	 */
636 	default:
637 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
638 		break;
639 	}
640 
641 	return status;
642 }
643 
644 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
645 {
646 	struct hidpp_report response;
647 	int ret, status;
648 
649 	ret = hidpp_send_rap_command_sync(hidpp,
650 					REPORT_ID_HIDPP_SHORT,
651 					HIDPP_GET_REGISTER,
652 					HIDPP_REG_BATTERY_STATUS,
653 					NULL, 0, &response);
654 	if (ret)
655 		return ret;
656 
657 	hidpp->battery.level =
658 		hidpp10_battery_status_map_level(response.rap.params[0]);
659 	status = hidpp10_battery_status_map_status(response.rap.params[1]);
660 	hidpp->battery.status = status;
661 	/* the capacity is only available when discharging or full */
662 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
663 				status == POWER_SUPPLY_STATUS_FULL;
664 
665 	return 0;
666 }
667 
668 #define HIDPP_REG_BATTERY_MILEAGE			0x0D
669 
670 static int hidpp10_battery_mileage_map_status(u8 param)
671 {
672 	int status;
673 
674 	switch (param >> 6) {
675 	case 0x00:
676 		/* discharging (in use) */
677 		status = POWER_SUPPLY_STATUS_DISCHARGING;
678 		break;
679 	case 0x01: /* charging */
680 		status = POWER_SUPPLY_STATUS_CHARGING;
681 		break;
682 	case 0x02: /* charge complete */
683 		status = POWER_SUPPLY_STATUS_FULL;
684 		break;
685 	/*
686 	 * 0x03 = charging error
687 	 */
688 	default:
689 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
690 		break;
691 	}
692 
693 	return status;
694 }
695 
696 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
697 {
698 	struct hidpp_report response;
699 	int ret, status;
700 
701 	ret = hidpp_send_rap_command_sync(hidpp,
702 					REPORT_ID_HIDPP_SHORT,
703 					HIDPP_GET_REGISTER,
704 					HIDPP_REG_BATTERY_MILEAGE,
705 					NULL, 0, &response);
706 	if (ret)
707 		return ret;
708 
709 	hidpp->battery.capacity = response.rap.params[0];
710 	status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
711 	hidpp->battery.status = status;
712 	/* the capacity is only available when discharging or full */
713 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
714 				status == POWER_SUPPLY_STATUS_FULL;
715 
716 	return 0;
717 }
718 
719 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
720 {
721 	struct hidpp_report *report = (struct hidpp_report *)data;
722 	int status, capacity, level;
723 	bool changed;
724 
725 	if (report->report_id != REPORT_ID_HIDPP_SHORT)
726 		return 0;
727 
728 	switch (report->rap.sub_id) {
729 	case HIDPP_REG_BATTERY_STATUS:
730 		capacity = hidpp->battery.capacity;
731 		level = hidpp10_battery_status_map_level(report->rawbytes[1]);
732 		status = hidpp10_battery_status_map_status(report->rawbytes[2]);
733 		break;
734 	case HIDPP_REG_BATTERY_MILEAGE:
735 		capacity = report->rap.params[0];
736 		level = hidpp->battery.level;
737 		status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
738 		break;
739 	default:
740 		return 0;
741 	}
742 
743 	changed = capacity != hidpp->battery.capacity ||
744 		  level != hidpp->battery.level ||
745 		  status != hidpp->battery.status;
746 
747 	/* the capacity is only available when discharging or full */
748 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
749 				status == POWER_SUPPLY_STATUS_FULL;
750 
751 	if (changed) {
752 		hidpp->battery.level = level;
753 		hidpp->battery.status = status;
754 		if (hidpp->battery.ps)
755 			power_supply_changed(hidpp->battery.ps);
756 	}
757 
758 	return 0;
759 }
760 
761 #define HIDPP_REG_PAIRING_INFORMATION			0xB5
762 #define HIDPP_EXTENDED_PAIRING				0x30
763 #define HIDPP_DEVICE_NAME				0x40
764 
765 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
766 {
767 	struct hidpp_report response;
768 	int ret;
769 	u8 params[1] = { HIDPP_DEVICE_NAME };
770 	char *name;
771 	int len;
772 
773 	ret = hidpp_send_rap_command_sync(hidpp_dev,
774 					REPORT_ID_HIDPP_SHORT,
775 					HIDPP_GET_LONG_REGISTER,
776 					HIDPP_REG_PAIRING_INFORMATION,
777 					params, 1, &response);
778 	if (ret)
779 		return NULL;
780 
781 	len = response.rap.params[1];
782 
783 	if (2 + len > sizeof(response.rap.params))
784 		return NULL;
785 
786 	if (len < 4) /* logitech devices are usually at least Xddd */
787 		return NULL;
788 
789 	name = kzalloc(len + 1, GFP_KERNEL);
790 	if (!name)
791 		return NULL;
792 
793 	memcpy(name, &response.rap.params[2], len);
794 
795 	/* include the terminating '\0' */
796 	hidpp_prefix_name(&name, len + 1);
797 
798 	return name;
799 }
800 
801 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
802 {
803 	struct hidpp_report response;
804 	int ret;
805 	u8 params[1] = { HIDPP_EXTENDED_PAIRING };
806 
807 	ret = hidpp_send_rap_command_sync(hidpp,
808 					REPORT_ID_HIDPP_SHORT,
809 					HIDPP_GET_LONG_REGISTER,
810 					HIDPP_REG_PAIRING_INFORMATION,
811 					params, 1, &response);
812 	if (ret)
813 		return ret;
814 
815 	/*
816 	 * We don't care about LE or BE, we will output it as a string
817 	 * with %4phD, so we need to keep the order.
818 	 */
819 	*serial = *((u32 *)&response.rap.params[1]);
820 	return 0;
821 }
822 
823 static int hidpp_unifying_init(struct hidpp_device *hidpp)
824 {
825 	struct hid_device *hdev = hidpp->hid_dev;
826 	const char *name;
827 	u32 serial;
828 	int ret;
829 
830 	ret = hidpp_unifying_get_serial(hidpp, &serial);
831 	if (ret)
832 		return ret;
833 
834 	snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
835 		 hdev->product, &serial);
836 	dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
837 
838 	name = hidpp_unifying_get_name(hidpp);
839 	if (!name)
840 		return -EIO;
841 
842 	snprintf(hdev->name, sizeof(hdev->name), "%s", name);
843 	dbg_hid("HID++ Unifying: Got name: %s\n", name);
844 
845 	kfree(name);
846 	return 0;
847 }
848 
849 /* -------------------------------------------------------------------------- */
850 /* 0x0000: Root                                                               */
851 /* -------------------------------------------------------------------------- */
852 
853 #define HIDPP_PAGE_ROOT					0x0000
854 #define HIDPP_PAGE_ROOT_IDX				0x00
855 
856 #define CMD_ROOT_GET_FEATURE				0x01
857 #define CMD_ROOT_GET_PROTOCOL_VERSION			0x11
858 
859 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
860 	u8 *feature_index, u8 *feature_type)
861 {
862 	struct hidpp_report response;
863 	int ret;
864 	u8 params[2] = { feature >> 8, feature & 0x00FF };
865 
866 	ret = hidpp_send_fap_command_sync(hidpp,
867 			HIDPP_PAGE_ROOT_IDX,
868 			CMD_ROOT_GET_FEATURE,
869 			params, 2, &response);
870 	if (ret)
871 		return ret;
872 
873 	if (response.fap.params[0] == 0)
874 		return -ENOENT;
875 
876 	*feature_index = response.fap.params[0];
877 	*feature_type = response.fap.params[1];
878 
879 	return ret;
880 }
881 
882 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
883 {
884 	const u8 ping_byte = 0x5a;
885 	u8 ping_data[3] = { 0, 0, ping_byte };
886 	struct hidpp_report response;
887 	int ret;
888 
889 	ret = hidpp_send_rap_command_sync(hidpp,
890 			REPORT_ID_HIDPP_SHORT,
891 			HIDPP_PAGE_ROOT_IDX,
892 			CMD_ROOT_GET_PROTOCOL_VERSION,
893 			ping_data, sizeof(ping_data), &response);
894 
895 	if (ret == HIDPP_ERROR_INVALID_SUBID) {
896 		hidpp->protocol_major = 1;
897 		hidpp->protocol_minor = 0;
898 		goto print_version;
899 	}
900 
901 	/* the device might not be connected */
902 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
903 		return -EIO;
904 
905 	if (ret > 0) {
906 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
907 			__func__, ret);
908 		return -EPROTO;
909 	}
910 	if (ret)
911 		return ret;
912 
913 	if (response.rap.params[2] != ping_byte) {
914 		hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n",
915 			__func__, response.rap.params[2], ping_byte);
916 		return -EPROTO;
917 	}
918 
919 	hidpp->protocol_major = response.rap.params[0];
920 	hidpp->protocol_minor = response.rap.params[1];
921 
922 print_version:
923 	hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
924 		 hidpp->protocol_major, hidpp->protocol_minor);
925 	return 0;
926 }
927 
928 /* -------------------------------------------------------------------------- */
929 /* 0x0005: GetDeviceNameType                                                  */
930 /* -------------------------------------------------------------------------- */
931 
932 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE			0x0005
933 
934 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT		0x01
935 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME	0x11
936 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE		0x21
937 
938 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
939 	u8 feature_index, u8 *nameLength)
940 {
941 	struct hidpp_report response;
942 	int ret;
943 
944 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
945 		CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
946 
947 	if (ret > 0) {
948 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
949 			__func__, ret);
950 		return -EPROTO;
951 	}
952 	if (ret)
953 		return ret;
954 
955 	*nameLength = response.fap.params[0];
956 
957 	return ret;
958 }
959 
960 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
961 	u8 feature_index, u8 char_index, char *device_name, int len_buf)
962 {
963 	struct hidpp_report response;
964 	int ret, i;
965 	int count;
966 
967 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
968 		CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
969 		&response);
970 
971 	if (ret > 0) {
972 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
973 			__func__, ret);
974 		return -EPROTO;
975 	}
976 	if (ret)
977 		return ret;
978 
979 	switch (response.report_id) {
980 	case REPORT_ID_HIDPP_VERY_LONG:
981 		count = hidpp->very_long_report_length - 4;
982 		break;
983 	case REPORT_ID_HIDPP_LONG:
984 		count = HIDPP_REPORT_LONG_LENGTH - 4;
985 		break;
986 	case REPORT_ID_HIDPP_SHORT:
987 		count = HIDPP_REPORT_SHORT_LENGTH - 4;
988 		break;
989 	default:
990 		return -EPROTO;
991 	}
992 
993 	if (len_buf < count)
994 		count = len_buf;
995 
996 	for (i = 0; i < count; i++)
997 		device_name[i] = response.fap.params[i];
998 
999 	return count;
1000 }
1001 
1002 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
1003 {
1004 	u8 feature_type;
1005 	u8 feature_index;
1006 	u8 __name_length;
1007 	char *name;
1008 	unsigned index = 0;
1009 	int ret;
1010 
1011 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
1012 		&feature_index, &feature_type);
1013 	if (ret)
1014 		return NULL;
1015 
1016 	ret = hidpp_devicenametype_get_count(hidpp, feature_index,
1017 		&__name_length);
1018 	if (ret)
1019 		return NULL;
1020 
1021 	name = kzalloc(__name_length + 1, GFP_KERNEL);
1022 	if (!name)
1023 		return NULL;
1024 
1025 	while (index < __name_length) {
1026 		ret = hidpp_devicenametype_get_device_name(hidpp,
1027 			feature_index, index, name + index,
1028 			__name_length - index);
1029 		if (ret <= 0) {
1030 			kfree(name);
1031 			return NULL;
1032 		}
1033 		index += ret;
1034 	}
1035 
1036 	/* include the terminating '\0' */
1037 	hidpp_prefix_name(&name, __name_length + 1);
1038 
1039 	return name;
1040 }
1041 
1042 /* -------------------------------------------------------------------------- */
1043 /* 0x1000: Battery level status                                               */
1044 /* -------------------------------------------------------------------------- */
1045 
1046 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS				0x1000
1047 
1048 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS	0x00
1049 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY		0x10
1050 
1051 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST			0x00
1052 
1053 #define FLAG_BATTERY_LEVEL_DISABLE_OSD				BIT(0)
1054 #define FLAG_BATTERY_LEVEL_MILEAGE				BIT(1)
1055 #define FLAG_BATTERY_LEVEL_RECHARGEABLE				BIT(2)
1056 
1057 static int hidpp_map_battery_level(int capacity)
1058 {
1059 	if (capacity < 11)
1060 		return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1061 	/*
1062 	 * The spec says this should be < 31 but some devices report 30
1063 	 * with brand new batteries and Windows reports 30 as "Good".
1064 	 */
1065 	else if (capacity < 30)
1066 		return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1067 	else if (capacity < 81)
1068 		return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1069 	return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1070 }
1071 
1072 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
1073 						    int *next_capacity,
1074 						    int *level)
1075 {
1076 	int status;
1077 
1078 	*capacity = data[0];
1079 	*next_capacity = data[1];
1080 	*level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1081 
1082 	/* When discharging, we can rely on the device reported capacity.
1083 	 * For all other states the device reports 0 (unknown).
1084 	 */
1085 	switch (data[2]) {
1086 		case 0: /* discharging (in use) */
1087 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1088 			*level = hidpp_map_battery_level(*capacity);
1089 			break;
1090 		case 1: /* recharging */
1091 			status = POWER_SUPPLY_STATUS_CHARGING;
1092 			break;
1093 		case 2: /* charge in final stage */
1094 			status = POWER_SUPPLY_STATUS_CHARGING;
1095 			break;
1096 		case 3: /* charge complete */
1097 			status = POWER_SUPPLY_STATUS_FULL;
1098 			*level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1099 			*capacity = 100;
1100 			break;
1101 		case 4: /* recharging below optimal speed */
1102 			status = POWER_SUPPLY_STATUS_CHARGING;
1103 			break;
1104 		/* 5 = invalid battery type
1105 		   6 = thermal error
1106 		   7 = other charging error */
1107 		default:
1108 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1109 			break;
1110 	}
1111 
1112 	return status;
1113 }
1114 
1115 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
1116 						     u8 feature_index,
1117 						     int *status,
1118 						     int *capacity,
1119 						     int *next_capacity,
1120 						     int *level)
1121 {
1122 	struct hidpp_report response;
1123 	int ret;
1124 	u8 *params = (u8 *)response.fap.params;
1125 
1126 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1127 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
1128 					  NULL, 0, &response);
1129 	/* Ignore these intermittent errors */
1130 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1131 		return -EIO;
1132 	if (ret > 0) {
1133 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1134 			__func__, ret);
1135 		return -EPROTO;
1136 	}
1137 	if (ret)
1138 		return ret;
1139 
1140 	*status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1141 							   next_capacity,
1142 							   level);
1143 
1144 	return 0;
1145 }
1146 
1147 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1148 						  u8 feature_index)
1149 {
1150 	struct hidpp_report response;
1151 	int ret;
1152 	u8 *params = (u8 *)response.fap.params;
1153 	unsigned int level_count, flags;
1154 
1155 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1156 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1157 					  NULL, 0, &response);
1158 	if (ret > 0) {
1159 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1160 			__func__, ret);
1161 		return -EPROTO;
1162 	}
1163 	if (ret)
1164 		return ret;
1165 
1166 	level_count = params[0];
1167 	flags = params[1];
1168 
1169 	if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1170 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1171 	else
1172 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1173 
1174 	return 0;
1175 }
1176 
1177 static int hidpp20_query_battery_info_1000(struct hidpp_device *hidpp)
1178 {
1179 	u8 feature_type;
1180 	int ret;
1181 	int status, capacity, next_capacity, level;
1182 
1183 	if (hidpp->battery.feature_index == 0xff) {
1184 		ret = hidpp_root_get_feature(hidpp,
1185 					     HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1186 					     &hidpp->battery.feature_index,
1187 					     &feature_type);
1188 		if (ret)
1189 			return ret;
1190 	}
1191 
1192 	ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1193 						hidpp->battery.feature_index,
1194 						&status, &capacity,
1195 						&next_capacity, &level);
1196 	if (ret)
1197 		return ret;
1198 
1199 	ret = hidpp20_batterylevel_get_battery_info(hidpp,
1200 						hidpp->battery.feature_index);
1201 	if (ret)
1202 		return ret;
1203 
1204 	hidpp->battery.status = status;
1205 	hidpp->battery.capacity = capacity;
1206 	hidpp->battery.level = level;
1207 	/* the capacity is only available when discharging or full */
1208 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1209 				status == POWER_SUPPLY_STATUS_FULL;
1210 
1211 	return 0;
1212 }
1213 
1214 static int hidpp20_battery_event_1000(struct hidpp_device *hidpp,
1215 				 u8 *data, int size)
1216 {
1217 	struct hidpp_report *report = (struct hidpp_report *)data;
1218 	int status, capacity, next_capacity, level;
1219 	bool changed;
1220 
1221 	if (report->fap.feature_index != hidpp->battery.feature_index ||
1222 	    report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1223 		return 0;
1224 
1225 	status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1226 							  &capacity,
1227 							  &next_capacity,
1228 							  &level);
1229 
1230 	/* the capacity is only available when discharging or full */
1231 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1232 				status == POWER_SUPPLY_STATUS_FULL;
1233 
1234 	changed = capacity != hidpp->battery.capacity ||
1235 		  level != hidpp->battery.level ||
1236 		  status != hidpp->battery.status;
1237 
1238 	if (changed) {
1239 		hidpp->battery.level = level;
1240 		hidpp->battery.capacity = capacity;
1241 		hidpp->battery.status = status;
1242 		if (hidpp->battery.ps)
1243 			power_supply_changed(hidpp->battery.ps);
1244 	}
1245 
1246 	return 0;
1247 }
1248 
1249 /* -------------------------------------------------------------------------- */
1250 /* 0x1001: Battery voltage                                                    */
1251 /* -------------------------------------------------------------------------- */
1252 
1253 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001
1254 
1255 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00
1256 
1257 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00
1258 
1259 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage,
1260 						int *level, int *charge_type)
1261 {
1262 	int status;
1263 
1264 	long flags = (long) data[2];
1265 
1266 	if (flags & 0x80)
1267 		switch (flags & 0x07) {
1268 		case 0:
1269 			status = POWER_SUPPLY_STATUS_CHARGING;
1270 			break;
1271 		case 1:
1272 			status = POWER_SUPPLY_STATUS_FULL;
1273 			*level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1274 			break;
1275 		case 2:
1276 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1277 			break;
1278 		default:
1279 			status = POWER_SUPPLY_STATUS_UNKNOWN;
1280 			break;
1281 		}
1282 	else
1283 		status = POWER_SUPPLY_STATUS_DISCHARGING;
1284 
1285 	*charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD;
1286 	if (test_bit(3, &flags)) {
1287 		*charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST;
1288 	}
1289 	if (test_bit(4, &flags)) {
1290 		*charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
1291 	}
1292 	if (test_bit(5, &flags)) {
1293 		*level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1294 	}
1295 
1296 	*voltage = get_unaligned_be16(data);
1297 
1298 	return status;
1299 }
1300 
1301 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp,
1302 						 u8 feature_index,
1303 						 int *status, int *voltage,
1304 						 int *level, int *charge_type)
1305 {
1306 	struct hidpp_report response;
1307 	int ret;
1308 	u8 *params = (u8 *)response.fap.params;
1309 
1310 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1311 					  CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE,
1312 					  NULL, 0, &response);
1313 
1314 	if (ret > 0) {
1315 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1316 			__func__, ret);
1317 		return -EPROTO;
1318 	}
1319 	if (ret)
1320 		return ret;
1321 
1322 	hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE;
1323 
1324 	*status = hidpp20_battery_map_status_voltage(params, voltage,
1325 						     level, charge_type);
1326 
1327 	return 0;
1328 }
1329 
1330 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp)
1331 {
1332 	u8 feature_type;
1333 	int ret;
1334 	int status, voltage, level, charge_type;
1335 
1336 	if (hidpp->battery.voltage_feature_index == 0xff) {
1337 		ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE,
1338 					     &hidpp->battery.voltage_feature_index,
1339 					     &feature_type);
1340 		if (ret)
1341 			return ret;
1342 	}
1343 
1344 	ret = hidpp20_battery_get_battery_voltage(hidpp,
1345 						  hidpp->battery.voltage_feature_index,
1346 						  &status, &voltage, &level, &charge_type);
1347 
1348 	if (ret)
1349 		return ret;
1350 
1351 	hidpp->battery.status = status;
1352 	hidpp->battery.voltage = voltage;
1353 	hidpp->battery.level = level;
1354 	hidpp->battery.charge_type = charge_type;
1355 	hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1356 
1357 	return 0;
1358 }
1359 
1360 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp,
1361 					    u8 *data, int size)
1362 {
1363 	struct hidpp_report *report = (struct hidpp_report *)data;
1364 	int status, voltage, level, charge_type;
1365 
1366 	if (report->fap.feature_index != hidpp->battery.voltage_feature_index ||
1367 		report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST)
1368 		return 0;
1369 
1370 	status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage,
1371 						    &level, &charge_type);
1372 
1373 	hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1374 
1375 	if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) {
1376 		hidpp->battery.voltage = voltage;
1377 		hidpp->battery.status = status;
1378 		hidpp->battery.level = level;
1379 		hidpp->battery.charge_type = charge_type;
1380 		if (hidpp->battery.ps)
1381 			power_supply_changed(hidpp->battery.ps);
1382 	}
1383 	return 0;
1384 }
1385 
1386 /* -------------------------------------------------------------------------- */
1387 /* 0x1004: Unified battery                                                    */
1388 /* -------------------------------------------------------------------------- */
1389 
1390 #define HIDPP_PAGE_UNIFIED_BATTERY				0x1004
1391 
1392 #define CMD_UNIFIED_BATTERY_GET_CAPABILITIES			0x00
1393 #define CMD_UNIFIED_BATTERY_GET_STATUS				0x10
1394 
1395 #define EVENT_UNIFIED_BATTERY_STATUS_EVENT			0x00
1396 
1397 #define FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL			BIT(0)
1398 #define FLAG_UNIFIED_BATTERY_LEVEL_LOW				BIT(1)
1399 #define FLAG_UNIFIED_BATTERY_LEVEL_GOOD				BIT(2)
1400 #define FLAG_UNIFIED_BATTERY_LEVEL_FULL				BIT(3)
1401 
1402 #define FLAG_UNIFIED_BATTERY_FLAGS_RECHARGEABLE			BIT(0)
1403 #define FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE		BIT(1)
1404 
1405 static int hidpp20_unifiedbattery_get_capabilities(struct hidpp_device *hidpp,
1406 						   u8 feature_index)
1407 {
1408 	struct hidpp_report response;
1409 	int ret;
1410 	u8 *params = (u8 *)response.fap.params;
1411 
1412 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS ||
1413 	    hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) {
1414 		/* we have already set the device capabilities, so let's skip */
1415 		return 0;
1416 	}
1417 
1418 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1419 					  CMD_UNIFIED_BATTERY_GET_CAPABILITIES,
1420 					  NULL, 0, &response);
1421 	/* Ignore these intermittent errors */
1422 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1423 		return -EIO;
1424 	if (ret > 0) {
1425 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1426 			__func__, ret);
1427 		return -EPROTO;
1428 	}
1429 	if (ret)
1430 		return ret;
1431 
1432 	/*
1433 	 * If the device supports state of charge (battery percentage) we won't
1434 	 * export the battery level information. there are 4 possible battery
1435 	 * levels and they all are optional, this means that the device might
1436 	 * not support any of them, we are just better off with the battery
1437 	 * percentage.
1438 	 */
1439 	if (params[1] & FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE) {
1440 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_PERCENTAGE;
1441 		hidpp->battery.supported_levels_1004 = 0;
1442 	} else {
1443 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1444 		hidpp->battery.supported_levels_1004 = params[0];
1445 	}
1446 
1447 	return 0;
1448 }
1449 
1450 static int hidpp20_unifiedbattery_map_status(struct hidpp_device *hidpp,
1451 					     u8 charging_status,
1452 					     u8 external_power_status)
1453 {
1454 	int status;
1455 
1456 	switch (charging_status) {
1457 		case 0: /* discharging */
1458 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1459 			break;
1460 		case 1: /* charging */
1461 		case 2: /* charging slow */
1462 			status = POWER_SUPPLY_STATUS_CHARGING;
1463 			break;
1464 		case 3: /* complete */
1465 			status = POWER_SUPPLY_STATUS_FULL;
1466 			break;
1467 		case 4: /* error */
1468 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1469 			hid_info(hidpp->hid_dev, "%s: charging error",
1470 				 hidpp->name);
1471 			break;
1472 		default:
1473 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1474 			break;
1475 	}
1476 
1477 	return status;
1478 }
1479 
1480 static int hidpp20_unifiedbattery_map_level(struct hidpp_device *hidpp,
1481 					    u8 battery_level)
1482 {
1483 	/* cler unsupported level bits */
1484 	battery_level &= hidpp->battery.supported_levels_1004;
1485 
1486 	if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_FULL)
1487 		return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1488 	else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_GOOD)
1489 		return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1490 	else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_LOW)
1491 		return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1492 	else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL)
1493 		return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1494 
1495 	return POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1496 }
1497 
1498 static int hidpp20_unifiedbattery_get_status(struct hidpp_device *hidpp,
1499 					     u8 feature_index,
1500 					     u8 *state_of_charge,
1501 					     int *status,
1502 					     int *level)
1503 {
1504 	struct hidpp_report response;
1505 	int ret;
1506 	u8 *params = (u8 *)response.fap.params;
1507 
1508 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1509 					  CMD_UNIFIED_BATTERY_GET_STATUS,
1510 					  NULL, 0, &response);
1511 	/* Ignore these intermittent errors */
1512 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1513 		return -EIO;
1514 	if (ret > 0) {
1515 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1516 			__func__, ret);
1517 		return -EPROTO;
1518 	}
1519 	if (ret)
1520 		return ret;
1521 
1522 	*state_of_charge = params[0];
1523 	*status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]);
1524 	*level = hidpp20_unifiedbattery_map_level(hidpp, params[1]);
1525 
1526 	return 0;
1527 }
1528 
1529 static int hidpp20_query_battery_info_1004(struct hidpp_device *hidpp)
1530 {
1531 	u8 feature_type;
1532 	int ret;
1533 	u8 state_of_charge;
1534 	int status, level;
1535 
1536 	if (hidpp->battery.feature_index == 0xff) {
1537 		ret = hidpp_root_get_feature(hidpp,
1538 					     HIDPP_PAGE_UNIFIED_BATTERY,
1539 					     &hidpp->battery.feature_index,
1540 					     &feature_type);
1541 		if (ret)
1542 			return ret;
1543 	}
1544 
1545 	ret = hidpp20_unifiedbattery_get_capabilities(hidpp,
1546 					hidpp->battery.feature_index);
1547 	if (ret)
1548 		return ret;
1549 
1550 	ret = hidpp20_unifiedbattery_get_status(hidpp,
1551 						hidpp->battery.feature_index,
1552 						&state_of_charge,
1553 						&status,
1554 						&level);
1555 	if (ret)
1556 		return ret;
1557 
1558 	hidpp->capabilities |= HIDPP_CAPABILITY_UNIFIED_BATTERY;
1559 	hidpp->battery.capacity = state_of_charge;
1560 	hidpp->battery.status = status;
1561 	hidpp->battery.level = level;
1562 	hidpp->battery.online = true;
1563 
1564 	return 0;
1565 }
1566 
1567 static int hidpp20_battery_event_1004(struct hidpp_device *hidpp,
1568 				 u8 *data, int size)
1569 {
1570 	struct hidpp_report *report = (struct hidpp_report *)data;
1571 	u8 *params = (u8 *)report->fap.params;
1572 	int state_of_charge, status, level;
1573 	bool changed;
1574 
1575 	if (report->fap.feature_index != hidpp->battery.feature_index ||
1576 	    report->fap.funcindex_clientid != EVENT_UNIFIED_BATTERY_STATUS_EVENT)
1577 		return 0;
1578 
1579 	state_of_charge = params[0];
1580 	status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]);
1581 	level = hidpp20_unifiedbattery_map_level(hidpp, params[1]);
1582 
1583 	changed = status != hidpp->battery.status ||
1584 		  (state_of_charge != hidpp->battery.capacity &&
1585 		   hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) ||
1586 		  (level != hidpp->battery.level &&
1587 		   hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS);
1588 
1589 	if (changed) {
1590 		hidpp->battery.capacity = state_of_charge;
1591 		hidpp->battery.status = status;
1592 		hidpp->battery.level = level;
1593 		if (hidpp->battery.ps)
1594 			power_supply_changed(hidpp->battery.ps);
1595 	}
1596 
1597 	return 0;
1598 }
1599 
1600 /* -------------------------------------------------------------------------- */
1601 /* Battery feature helpers                                                    */
1602 /* -------------------------------------------------------------------------- */
1603 
1604 static enum power_supply_property hidpp_battery_props[] = {
1605 	POWER_SUPPLY_PROP_ONLINE,
1606 	POWER_SUPPLY_PROP_STATUS,
1607 	POWER_SUPPLY_PROP_SCOPE,
1608 	POWER_SUPPLY_PROP_MODEL_NAME,
1609 	POWER_SUPPLY_PROP_MANUFACTURER,
1610 	POWER_SUPPLY_PROP_SERIAL_NUMBER,
1611 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1612 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1613 	0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */
1614 };
1615 
1616 static int hidpp_battery_get_property(struct power_supply *psy,
1617 				      enum power_supply_property psp,
1618 				      union power_supply_propval *val)
1619 {
1620 	struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1621 	int ret = 0;
1622 
1623 	switch(psp) {
1624 		case POWER_SUPPLY_PROP_STATUS:
1625 			val->intval = hidpp->battery.status;
1626 			break;
1627 		case POWER_SUPPLY_PROP_CAPACITY:
1628 			val->intval = hidpp->battery.capacity;
1629 			break;
1630 		case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1631 			val->intval = hidpp->battery.level;
1632 			break;
1633 		case POWER_SUPPLY_PROP_SCOPE:
1634 			val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1635 			break;
1636 		case POWER_SUPPLY_PROP_ONLINE:
1637 			val->intval = hidpp->battery.online;
1638 			break;
1639 		case POWER_SUPPLY_PROP_MODEL_NAME:
1640 			if (!strncmp(hidpp->name, "Logitech ", 9))
1641 				val->strval = hidpp->name + 9;
1642 			else
1643 				val->strval = hidpp->name;
1644 			break;
1645 		case POWER_SUPPLY_PROP_MANUFACTURER:
1646 			val->strval = "Logitech";
1647 			break;
1648 		case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1649 			val->strval = hidpp->hid_dev->uniq;
1650 			break;
1651 		case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1652 			/* hardware reports voltage in in mV. sysfs expects uV */
1653 			val->intval = hidpp->battery.voltage * 1000;
1654 			break;
1655 		case POWER_SUPPLY_PROP_CHARGE_TYPE:
1656 			val->intval = hidpp->battery.charge_type;
1657 			break;
1658 		default:
1659 			ret = -EINVAL;
1660 			break;
1661 	}
1662 
1663 	return ret;
1664 }
1665 
1666 /* -------------------------------------------------------------------------- */
1667 /* 0x1d4b: Wireless device status                                             */
1668 /* -------------------------------------------------------------------------- */
1669 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS			0x1d4b
1670 
1671 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp)
1672 {
1673 	u8 feature_type;
1674 	int ret;
1675 
1676 	ret = hidpp_root_get_feature(hidpp,
1677 				     HIDPP_PAGE_WIRELESS_DEVICE_STATUS,
1678 				     &hidpp->wireless_feature_index,
1679 				     &feature_type);
1680 
1681 	return ret;
1682 }
1683 
1684 /* -------------------------------------------------------------------------- */
1685 /* 0x2120: Hi-resolution scrolling                                            */
1686 /* -------------------------------------------------------------------------- */
1687 
1688 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING			0x2120
1689 
1690 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE	0x10
1691 
1692 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1693 	bool enabled, u8 *multiplier)
1694 {
1695 	u8 feature_index;
1696 	u8 feature_type;
1697 	int ret;
1698 	u8 params[1];
1699 	struct hidpp_report response;
1700 
1701 	ret = hidpp_root_get_feature(hidpp,
1702 				     HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1703 				     &feature_index,
1704 				     &feature_type);
1705 	if (ret)
1706 		return ret;
1707 
1708 	params[0] = enabled ? BIT(0) : 0;
1709 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1710 					  CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1711 					  params, sizeof(params), &response);
1712 	if (ret)
1713 		return ret;
1714 	*multiplier = response.fap.params[1];
1715 	return 0;
1716 }
1717 
1718 /* -------------------------------------------------------------------------- */
1719 /* 0x2121: HiRes Wheel                                                        */
1720 /* -------------------------------------------------------------------------- */
1721 
1722 #define HIDPP_PAGE_HIRES_WHEEL		0x2121
1723 
1724 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY	0x00
1725 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE		0x20
1726 
1727 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1728 	u8 *multiplier)
1729 {
1730 	u8 feature_index;
1731 	u8 feature_type;
1732 	int ret;
1733 	struct hidpp_report response;
1734 
1735 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1736 				     &feature_index, &feature_type);
1737 	if (ret)
1738 		goto return_default;
1739 
1740 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1741 					  CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1742 					  NULL, 0, &response);
1743 	if (ret)
1744 		goto return_default;
1745 
1746 	*multiplier = response.fap.params[0];
1747 	return 0;
1748 return_default:
1749 	hid_warn(hidpp->hid_dev,
1750 		 "Couldn't get wheel multiplier (error %d)\n", ret);
1751 	return ret;
1752 }
1753 
1754 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1755 	bool high_resolution, bool use_hidpp)
1756 {
1757 	u8 feature_index;
1758 	u8 feature_type;
1759 	int ret;
1760 	u8 params[1];
1761 	struct hidpp_report response;
1762 
1763 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1764 				     &feature_index, &feature_type);
1765 	if (ret)
1766 		return ret;
1767 
1768 	params[0] = (invert          ? BIT(2) : 0) |
1769 		    (high_resolution ? BIT(1) : 0) |
1770 		    (use_hidpp       ? BIT(0) : 0);
1771 
1772 	return hidpp_send_fap_command_sync(hidpp, feature_index,
1773 					   CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1774 					   params, sizeof(params), &response);
1775 }
1776 
1777 /* -------------------------------------------------------------------------- */
1778 /* 0x4301: Solar Keyboard                                                     */
1779 /* -------------------------------------------------------------------------- */
1780 
1781 #define HIDPP_PAGE_SOLAR_KEYBOARD			0x4301
1782 
1783 #define CMD_SOLAR_SET_LIGHT_MEASURE			0x00
1784 
1785 #define EVENT_SOLAR_BATTERY_BROADCAST			0x00
1786 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE		0x10
1787 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON			0x20
1788 
1789 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1790 {
1791 	struct hidpp_report response;
1792 	u8 params[2] = { 1, 1 };
1793 	u8 feature_type;
1794 	int ret;
1795 
1796 	if (hidpp->battery.feature_index == 0xff) {
1797 		ret = hidpp_root_get_feature(hidpp,
1798 					     HIDPP_PAGE_SOLAR_KEYBOARD,
1799 					     &hidpp->battery.solar_feature_index,
1800 					     &feature_type);
1801 		if (ret)
1802 			return ret;
1803 	}
1804 
1805 	ret = hidpp_send_fap_command_sync(hidpp,
1806 					  hidpp->battery.solar_feature_index,
1807 					  CMD_SOLAR_SET_LIGHT_MEASURE,
1808 					  params, 2, &response);
1809 	if (ret > 0) {
1810 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1811 			__func__, ret);
1812 		return -EPROTO;
1813 	}
1814 	if (ret)
1815 		return ret;
1816 
1817 	hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1818 
1819 	return 0;
1820 }
1821 
1822 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1823 				     u8 *data, int size)
1824 {
1825 	struct hidpp_report *report = (struct hidpp_report *)data;
1826 	int capacity, lux, status;
1827 	u8 function;
1828 
1829 	function = report->fap.funcindex_clientid;
1830 
1831 
1832 	if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1833 	    !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1834 	      function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1835 	      function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1836 		return 0;
1837 
1838 	capacity = report->fap.params[0];
1839 
1840 	switch (function) {
1841 	case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1842 		lux = (report->fap.params[1] << 8) | report->fap.params[2];
1843 		if (lux > 200)
1844 			status = POWER_SUPPLY_STATUS_CHARGING;
1845 		else
1846 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1847 		break;
1848 	case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1849 	default:
1850 		if (capacity < hidpp->battery.capacity)
1851 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1852 		else
1853 			status = POWER_SUPPLY_STATUS_CHARGING;
1854 
1855 	}
1856 
1857 	if (capacity == 100)
1858 		status = POWER_SUPPLY_STATUS_FULL;
1859 
1860 	hidpp->battery.online = true;
1861 	if (capacity != hidpp->battery.capacity ||
1862 	    status != hidpp->battery.status) {
1863 		hidpp->battery.capacity = capacity;
1864 		hidpp->battery.status = status;
1865 		if (hidpp->battery.ps)
1866 			power_supply_changed(hidpp->battery.ps);
1867 	}
1868 
1869 	return 0;
1870 }
1871 
1872 /* -------------------------------------------------------------------------- */
1873 /* 0x6010: Touchpad FW items                                                  */
1874 /* -------------------------------------------------------------------------- */
1875 
1876 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS			0x6010
1877 
1878 #define CMD_TOUCHPAD_FW_ITEMS_SET			0x10
1879 
1880 struct hidpp_touchpad_fw_items {
1881 	uint8_t presence;
1882 	uint8_t desired_state;
1883 	uint8_t state;
1884 	uint8_t persistent;
1885 };
1886 
1887 /**
1888  * send a set state command to the device by reading the current items->state
1889  * field. items is then filled with the current state.
1890  */
1891 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1892 				       u8 feature_index,
1893 				       struct hidpp_touchpad_fw_items *items)
1894 {
1895 	struct hidpp_report response;
1896 	int ret;
1897 	u8 *params = (u8 *)response.fap.params;
1898 
1899 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1900 		CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1901 
1902 	if (ret > 0) {
1903 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1904 			__func__, ret);
1905 		return -EPROTO;
1906 	}
1907 	if (ret)
1908 		return ret;
1909 
1910 	items->presence = params[0];
1911 	items->desired_state = params[1];
1912 	items->state = params[2];
1913 	items->persistent = params[3];
1914 
1915 	return 0;
1916 }
1917 
1918 /* -------------------------------------------------------------------------- */
1919 /* 0x6100: TouchPadRawXY                                                      */
1920 /* -------------------------------------------------------------------------- */
1921 
1922 #define HIDPP_PAGE_TOUCHPAD_RAW_XY			0x6100
1923 
1924 #define CMD_TOUCHPAD_GET_RAW_INFO			0x01
1925 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE		0x21
1926 
1927 #define EVENT_TOUCHPAD_RAW_XY				0x00
1928 
1929 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT		0x01
1930 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT		0x03
1931 
1932 struct hidpp_touchpad_raw_info {
1933 	u16 x_size;
1934 	u16 y_size;
1935 	u8 z_range;
1936 	u8 area_range;
1937 	u8 timestamp_unit;
1938 	u8 maxcontacts;
1939 	u8 origin;
1940 	u16 res;
1941 };
1942 
1943 struct hidpp_touchpad_raw_xy_finger {
1944 	u8 contact_type;
1945 	u8 contact_status;
1946 	u16 x;
1947 	u16 y;
1948 	u8 z;
1949 	u8 area;
1950 	u8 finger_id;
1951 };
1952 
1953 struct hidpp_touchpad_raw_xy {
1954 	u16 timestamp;
1955 	struct hidpp_touchpad_raw_xy_finger fingers[2];
1956 	u8 spurious_flag;
1957 	u8 end_of_frame;
1958 	u8 finger_count;
1959 	u8 button;
1960 };
1961 
1962 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1963 	u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1964 {
1965 	struct hidpp_report response;
1966 	int ret;
1967 	u8 *params = (u8 *)response.fap.params;
1968 
1969 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1970 		CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1971 
1972 	if (ret > 0) {
1973 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1974 			__func__, ret);
1975 		return -EPROTO;
1976 	}
1977 	if (ret)
1978 		return ret;
1979 
1980 	raw_info->x_size = get_unaligned_be16(&params[0]);
1981 	raw_info->y_size = get_unaligned_be16(&params[2]);
1982 	raw_info->z_range = params[4];
1983 	raw_info->area_range = params[5];
1984 	raw_info->maxcontacts = params[7];
1985 	raw_info->origin = params[8];
1986 	/* res is given in unit per inch */
1987 	raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1988 
1989 	return ret;
1990 }
1991 
1992 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1993 		u8 feature_index, bool send_raw_reports,
1994 		bool sensor_enhanced_settings)
1995 {
1996 	struct hidpp_report response;
1997 
1998 	/*
1999 	 * Params:
2000 	 *   bit 0 - enable raw
2001 	 *   bit 1 - 16bit Z, no area
2002 	 *   bit 2 - enhanced sensitivity
2003 	 *   bit 3 - width, height (4 bits each) instead of area
2004 	 *   bit 4 - send raw + gestures (degrades smoothness)
2005 	 *   remaining bits - reserved
2006 	 */
2007 	u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
2008 
2009 	return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
2010 		CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
2011 }
2012 
2013 static void hidpp_touchpad_touch_event(u8 *data,
2014 	struct hidpp_touchpad_raw_xy_finger *finger)
2015 {
2016 	u8 x_m = data[0] << 2;
2017 	u8 y_m = data[2] << 2;
2018 
2019 	finger->x = x_m << 6 | data[1];
2020 	finger->y = y_m << 6 | data[3];
2021 
2022 	finger->contact_type = data[0] >> 6;
2023 	finger->contact_status = data[2] >> 6;
2024 
2025 	finger->z = data[4];
2026 	finger->area = data[5];
2027 	finger->finger_id = data[6] >> 4;
2028 }
2029 
2030 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
2031 		u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
2032 {
2033 	memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
2034 	raw_xy->end_of_frame = data[8] & 0x01;
2035 	raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
2036 	raw_xy->finger_count = data[15] & 0x0f;
2037 	raw_xy->button = (data[8] >> 2) & 0x01;
2038 
2039 	if (raw_xy->finger_count) {
2040 		hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
2041 		hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
2042 	}
2043 }
2044 
2045 /* -------------------------------------------------------------------------- */
2046 /* 0x8123: Force feedback support                                             */
2047 /* -------------------------------------------------------------------------- */
2048 
2049 #define HIDPP_FF_GET_INFO		0x01
2050 #define HIDPP_FF_RESET_ALL		0x11
2051 #define HIDPP_FF_DOWNLOAD_EFFECT	0x21
2052 #define HIDPP_FF_SET_EFFECT_STATE	0x31
2053 #define HIDPP_FF_DESTROY_EFFECT		0x41
2054 #define HIDPP_FF_GET_APERTURE		0x51
2055 #define HIDPP_FF_SET_APERTURE		0x61
2056 #define HIDPP_FF_GET_GLOBAL_GAINS	0x71
2057 #define HIDPP_FF_SET_GLOBAL_GAINS	0x81
2058 
2059 #define HIDPP_FF_EFFECT_STATE_GET	0x00
2060 #define HIDPP_FF_EFFECT_STATE_STOP	0x01
2061 #define HIDPP_FF_EFFECT_STATE_PLAY	0x02
2062 #define HIDPP_FF_EFFECT_STATE_PAUSE	0x03
2063 
2064 #define HIDPP_FF_EFFECT_CONSTANT	0x00
2065 #define HIDPP_FF_EFFECT_PERIODIC_SINE		0x01
2066 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE		0x02
2067 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE	0x03
2068 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP	0x04
2069 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN	0x05
2070 #define HIDPP_FF_EFFECT_SPRING		0x06
2071 #define HIDPP_FF_EFFECT_DAMPER		0x07
2072 #define HIDPP_FF_EFFECT_FRICTION	0x08
2073 #define HIDPP_FF_EFFECT_INERTIA		0x09
2074 #define HIDPP_FF_EFFECT_RAMP		0x0A
2075 
2076 #define HIDPP_FF_EFFECT_AUTOSTART	0x80
2077 
2078 #define HIDPP_FF_EFFECTID_NONE		-1
2079 #define HIDPP_FF_EFFECTID_AUTOCENTER	-2
2080 #define HIDPP_AUTOCENTER_PARAMS_LENGTH	18
2081 
2082 #define HIDPP_FF_MAX_PARAMS	20
2083 #define HIDPP_FF_RESERVED_SLOTS	1
2084 
2085 struct hidpp_ff_private_data {
2086 	struct hidpp_device *hidpp;
2087 	u8 feature_index;
2088 	u8 version;
2089 	u16 gain;
2090 	s16 range;
2091 	u8 slot_autocenter;
2092 	u8 num_effects;
2093 	int *effect_ids;
2094 	struct workqueue_struct *wq;
2095 	atomic_t workqueue_size;
2096 };
2097 
2098 struct hidpp_ff_work_data {
2099 	struct work_struct work;
2100 	struct hidpp_ff_private_data *data;
2101 	int effect_id;
2102 	u8 command;
2103 	u8 params[HIDPP_FF_MAX_PARAMS];
2104 	u8 size;
2105 };
2106 
2107 static const signed short hidpp_ff_effects[] = {
2108 	FF_CONSTANT,
2109 	FF_PERIODIC,
2110 	FF_SINE,
2111 	FF_SQUARE,
2112 	FF_SAW_UP,
2113 	FF_SAW_DOWN,
2114 	FF_TRIANGLE,
2115 	FF_SPRING,
2116 	FF_DAMPER,
2117 	FF_AUTOCENTER,
2118 	FF_GAIN,
2119 	-1
2120 };
2121 
2122 static const signed short hidpp_ff_effects_v2[] = {
2123 	FF_RAMP,
2124 	FF_FRICTION,
2125 	FF_INERTIA,
2126 	-1
2127 };
2128 
2129 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
2130 	HIDPP_FF_EFFECT_SPRING,
2131 	HIDPP_FF_EFFECT_FRICTION,
2132 	HIDPP_FF_EFFECT_DAMPER,
2133 	HIDPP_FF_EFFECT_INERTIA
2134 };
2135 
2136 static const char *HIDPP_FF_CONDITION_NAMES[] = {
2137 	"spring",
2138 	"friction",
2139 	"damper",
2140 	"inertia"
2141 };
2142 
2143 
2144 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
2145 {
2146 	int i;
2147 
2148 	for (i = 0; i < data->num_effects; i++)
2149 		if (data->effect_ids[i] == effect_id)
2150 			return i+1;
2151 
2152 	return 0;
2153 }
2154 
2155 static void hidpp_ff_work_handler(struct work_struct *w)
2156 {
2157 	struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
2158 	struct hidpp_ff_private_data *data = wd->data;
2159 	struct hidpp_report response;
2160 	u8 slot;
2161 	int ret;
2162 
2163 	/* add slot number if needed */
2164 	switch (wd->effect_id) {
2165 	case HIDPP_FF_EFFECTID_AUTOCENTER:
2166 		wd->params[0] = data->slot_autocenter;
2167 		break;
2168 	case HIDPP_FF_EFFECTID_NONE:
2169 		/* leave slot as zero */
2170 		break;
2171 	default:
2172 		/* find current slot for effect */
2173 		wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
2174 		break;
2175 	}
2176 
2177 	/* send command and wait for reply */
2178 	ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
2179 		wd->command, wd->params, wd->size, &response);
2180 
2181 	if (ret) {
2182 		hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
2183 		goto out;
2184 	}
2185 
2186 	/* parse return data */
2187 	switch (wd->command) {
2188 	case HIDPP_FF_DOWNLOAD_EFFECT:
2189 		slot = response.fap.params[0];
2190 		if (slot > 0 && slot <= data->num_effects) {
2191 			if (wd->effect_id >= 0)
2192 				/* regular effect uploaded */
2193 				data->effect_ids[slot-1] = wd->effect_id;
2194 			else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
2195 				/* autocenter spring uploaded */
2196 				data->slot_autocenter = slot;
2197 		}
2198 		break;
2199 	case HIDPP_FF_DESTROY_EFFECT:
2200 		if (wd->effect_id >= 0)
2201 			/* regular effect destroyed */
2202 			data->effect_ids[wd->params[0]-1] = -1;
2203 		else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
2204 			/* autocenter spring destoyed */
2205 			data->slot_autocenter = 0;
2206 		break;
2207 	case HIDPP_FF_SET_GLOBAL_GAINS:
2208 		data->gain = (wd->params[0] << 8) + wd->params[1];
2209 		break;
2210 	case HIDPP_FF_SET_APERTURE:
2211 		data->range = (wd->params[0] << 8) + wd->params[1];
2212 		break;
2213 	default:
2214 		/* no action needed */
2215 		break;
2216 	}
2217 
2218 out:
2219 	atomic_dec(&data->workqueue_size);
2220 	kfree(wd);
2221 }
2222 
2223 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
2224 {
2225 	struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
2226 	int s;
2227 
2228 	if (!wd)
2229 		return -ENOMEM;
2230 
2231 	INIT_WORK(&wd->work, hidpp_ff_work_handler);
2232 
2233 	wd->data = data;
2234 	wd->effect_id = effect_id;
2235 	wd->command = command;
2236 	wd->size = size;
2237 	memcpy(wd->params, params, size);
2238 
2239 	atomic_inc(&data->workqueue_size);
2240 	queue_work(data->wq, &wd->work);
2241 
2242 	/* warn about excessive queue size */
2243 	s = atomic_read(&data->workqueue_size);
2244 	if (s >= 20 && s % 20 == 0)
2245 		hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
2246 
2247 	return 0;
2248 }
2249 
2250 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
2251 {
2252 	struct hidpp_ff_private_data *data = dev->ff->private;
2253 	u8 params[20];
2254 	u8 size;
2255 	int force;
2256 
2257 	/* set common parameters */
2258 	params[2] = effect->replay.length >> 8;
2259 	params[3] = effect->replay.length & 255;
2260 	params[4] = effect->replay.delay >> 8;
2261 	params[5] = effect->replay.delay & 255;
2262 
2263 	switch (effect->type) {
2264 	case FF_CONSTANT:
2265 		force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2266 		params[1] = HIDPP_FF_EFFECT_CONSTANT;
2267 		params[6] = force >> 8;
2268 		params[7] = force & 255;
2269 		params[8] = effect->u.constant.envelope.attack_level >> 7;
2270 		params[9] = effect->u.constant.envelope.attack_length >> 8;
2271 		params[10] = effect->u.constant.envelope.attack_length & 255;
2272 		params[11] = effect->u.constant.envelope.fade_level >> 7;
2273 		params[12] = effect->u.constant.envelope.fade_length >> 8;
2274 		params[13] = effect->u.constant.envelope.fade_length & 255;
2275 		size = 14;
2276 		dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
2277 				effect->u.constant.level,
2278 				effect->direction, force);
2279 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2280 				effect->u.constant.envelope.attack_level,
2281 				effect->u.constant.envelope.attack_length,
2282 				effect->u.constant.envelope.fade_level,
2283 				effect->u.constant.envelope.fade_length);
2284 		break;
2285 	case FF_PERIODIC:
2286 	{
2287 		switch (effect->u.periodic.waveform) {
2288 		case FF_SINE:
2289 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
2290 			break;
2291 		case FF_SQUARE:
2292 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
2293 			break;
2294 		case FF_SAW_UP:
2295 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
2296 			break;
2297 		case FF_SAW_DOWN:
2298 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
2299 			break;
2300 		case FF_TRIANGLE:
2301 			params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
2302 			break;
2303 		default:
2304 			hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
2305 			return -EINVAL;
2306 		}
2307 		force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2308 		params[6] = effect->u.periodic.magnitude >> 8;
2309 		params[7] = effect->u.periodic.magnitude & 255;
2310 		params[8] = effect->u.periodic.offset >> 8;
2311 		params[9] = effect->u.periodic.offset & 255;
2312 		params[10] = effect->u.periodic.period >> 8;
2313 		params[11] = effect->u.periodic.period & 255;
2314 		params[12] = effect->u.periodic.phase >> 8;
2315 		params[13] = effect->u.periodic.phase & 255;
2316 		params[14] = effect->u.periodic.envelope.attack_level >> 7;
2317 		params[15] = effect->u.periodic.envelope.attack_length >> 8;
2318 		params[16] = effect->u.periodic.envelope.attack_length & 255;
2319 		params[17] = effect->u.periodic.envelope.fade_level >> 7;
2320 		params[18] = effect->u.periodic.envelope.fade_length >> 8;
2321 		params[19] = effect->u.periodic.envelope.fade_length & 255;
2322 		size = 20;
2323 		dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
2324 				effect->u.periodic.magnitude, effect->direction,
2325 				effect->u.periodic.offset,
2326 				effect->u.periodic.period,
2327 				effect->u.periodic.phase);
2328 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2329 				effect->u.periodic.envelope.attack_level,
2330 				effect->u.periodic.envelope.attack_length,
2331 				effect->u.periodic.envelope.fade_level,
2332 				effect->u.periodic.envelope.fade_length);
2333 		break;
2334 	}
2335 	case FF_RAMP:
2336 		params[1] = HIDPP_FF_EFFECT_RAMP;
2337 		force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2338 		params[6] = force >> 8;
2339 		params[7] = force & 255;
2340 		force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2341 		params[8] = force >> 8;
2342 		params[9] = force & 255;
2343 		params[10] = effect->u.ramp.envelope.attack_level >> 7;
2344 		params[11] = effect->u.ramp.envelope.attack_length >> 8;
2345 		params[12] = effect->u.ramp.envelope.attack_length & 255;
2346 		params[13] = effect->u.ramp.envelope.fade_level >> 7;
2347 		params[14] = effect->u.ramp.envelope.fade_length >> 8;
2348 		params[15] = effect->u.ramp.envelope.fade_length & 255;
2349 		size = 16;
2350 		dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
2351 				effect->u.ramp.start_level,
2352 				effect->u.ramp.end_level,
2353 				effect->direction, force);
2354 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2355 				effect->u.ramp.envelope.attack_level,
2356 				effect->u.ramp.envelope.attack_length,
2357 				effect->u.ramp.envelope.fade_level,
2358 				effect->u.ramp.envelope.fade_length);
2359 		break;
2360 	case FF_FRICTION:
2361 	case FF_INERTIA:
2362 	case FF_SPRING:
2363 	case FF_DAMPER:
2364 		params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
2365 		params[6] = effect->u.condition[0].left_saturation >> 9;
2366 		params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
2367 		params[8] = effect->u.condition[0].left_coeff >> 8;
2368 		params[9] = effect->u.condition[0].left_coeff & 255;
2369 		params[10] = effect->u.condition[0].deadband >> 9;
2370 		params[11] = (effect->u.condition[0].deadband >> 1) & 255;
2371 		params[12] = effect->u.condition[0].center >> 8;
2372 		params[13] = effect->u.condition[0].center & 255;
2373 		params[14] = effect->u.condition[0].right_coeff >> 8;
2374 		params[15] = effect->u.condition[0].right_coeff & 255;
2375 		params[16] = effect->u.condition[0].right_saturation >> 9;
2376 		params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
2377 		size = 18;
2378 		dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
2379 				HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
2380 				effect->u.condition[0].left_coeff,
2381 				effect->u.condition[0].left_saturation,
2382 				effect->u.condition[0].right_coeff,
2383 				effect->u.condition[0].right_saturation);
2384 		dbg_hid("          deadband=%d, center=%d\n",
2385 				effect->u.condition[0].deadband,
2386 				effect->u.condition[0].center);
2387 		break;
2388 	default:
2389 		hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
2390 		return -EINVAL;
2391 	}
2392 
2393 	return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
2394 }
2395 
2396 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
2397 {
2398 	struct hidpp_ff_private_data *data = dev->ff->private;
2399 	u8 params[2];
2400 
2401 	params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
2402 
2403 	dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
2404 
2405 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
2406 }
2407 
2408 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
2409 {
2410 	struct hidpp_ff_private_data *data = dev->ff->private;
2411 	u8 slot = 0;
2412 
2413 	dbg_hid("Erasing effect %d.\n", effect_id);
2414 
2415 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
2416 }
2417 
2418 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
2419 {
2420 	struct hidpp_ff_private_data *data = dev->ff->private;
2421 	u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH];
2422 
2423 	dbg_hid("Setting autocenter to %d.\n", magnitude);
2424 
2425 	/* start a standard spring effect */
2426 	params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
2427 	/* zero delay and duration */
2428 	params[2] = params[3] = params[4] = params[5] = 0;
2429 	/* set coeff to 25% of saturation */
2430 	params[8] = params[14] = magnitude >> 11;
2431 	params[9] = params[15] = (magnitude >> 3) & 255;
2432 	params[6] = params[16] = magnitude >> 9;
2433 	params[7] = params[17] = (magnitude >> 1) & 255;
2434 	/* zero deadband and center */
2435 	params[10] = params[11] = params[12] = params[13] = 0;
2436 
2437 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
2438 }
2439 
2440 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
2441 {
2442 	struct hidpp_ff_private_data *data = dev->ff->private;
2443 	u8 params[4];
2444 
2445 	dbg_hid("Setting gain to %d.\n", gain);
2446 
2447 	params[0] = gain >> 8;
2448 	params[1] = gain & 255;
2449 	params[2] = 0; /* no boost */
2450 	params[3] = 0;
2451 
2452 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
2453 }
2454 
2455 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
2456 {
2457 	struct hid_device *hid = to_hid_device(dev);
2458 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2459 	struct input_dev *idev = hidinput->input;
2460 	struct hidpp_ff_private_data *data = idev->ff->private;
2461 
2462 	return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
2463 }
2464 
2465 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2466 {
2467 	struct hid_device *hid = to_hid_device(dev);
2468 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2469 	struct input_dev *idev = hidinput->input;
2470 	struct hidpp_ff_private_data *data = idev->ff->private;
2471 	u8 params[2];
2472 	int range = simple_strtoul(buf, NULL, 10);
2473 
2474 	range = clamp(range, 180, 900);
2475 
2476 	params[0] = range >> 8;
2477 	params[1] = range & 0x00FF;
2478 
2479 	hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
2480 
2481 	return count;
2482 }
2483 
2484 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
2485 
2486 static void hidpp_ff_destroy(struct ff_device *ff)
2487 {
2488 	struct hidpp_ff_private_data *data = ff->private;
2489 	struct hid_device *hid = data->hidpp->hid_dev;
2490 
2491 	hid_info(hid, "Unloading HID++ force feedback.\n");
2492 
2493 	device_remove_file(&hid->dev, &dev_attr_range);
2494 	destroy_workqueue(data->wq);
2495 	kfree(data->effect_ids);
2496 }
2497 
2498 static int hidpp_ff_init(struct hidpp_device *hidpp,
2499 			 struct hidpp_ff_private_data *data)
2500 {
2501 	struct hid_device *hid = hidpp->hid_dev;
2502 	struct hid_input *hidinput;
2503 	struct input_dev *dev;
2504 	const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
2505 	const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
2506 	struct ff_device *ff;
2507 	int error, j, num_slots = data->num_effects;
2508 	u8 version;
2509 
2510 	if (list_empty(&hid->inputs)) {
2511 		hid_err(hid, "no inputs found\n");
2512 		return -ENODEV;
2513 	}
2514 	hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2515 	dev = hidinput->input;
2516 
2517 	if (!dev) {
2518 		hid_err(hid, "Struct input_dev not set!\n");
2519 		return -EINVAL;
2520 	}
2521 
2522 	/* Get firmware release */
2523 	version = bcdDevice & 255;
2524 
2525 	/* Set supported force feedback capabilities */
2526 	for (j = 0; hidpp_ff_effects[j] >= 0; j++)
2527 		set_bit(hidpp_ff_effects[j], dev->ffbit);
2528 	if (version > 1)
2529 		for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++)
2530 			set_bit(hidpp_ff_effects_v2[j], dev->ffbit);
2531 
2532 	error = input_ff_create(dev, num_slots);
2533 
2534 	if (error) {
2535 		hid_err(dev, "Failed to create FF device!\n");
2536 		return error;
2537 	}
2538 	/*
2539 	 * Create a copy of passed data, so we can transfer memory
2540 	 * ownership to FF core
2541 	 */
2542 	data = kmemdup(data, sizeof(*data), GFP_KERNEL);
2543 	if (!data)
2544 		return -ENOMEM;
2545 	data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2546 	if (!data->effect_ids) {
2547 		kfree(data);
2548 		return -ENOMEM;
2549 	}
2550 	data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2551 	if (!data->wq) {
2552 		kfree(data->effect_ids);
2553 		kfree(data);
2554 		return -ENOMEM;
2555 	}
2556 
2557 	data->hidpp = hidpp;
2558 	data->version = version;
2559 	for (j = 0; j < num_slots; j++)
2560 		data->effect_ids[j] = -1;
2561 
2562 	ff = dev->ff;
2563 	ff->private = data;
2564 
2565 	ff->upload = hidpp_ff_upload_effect;
2566 	ff->erase = hidpp_ff_erase_effect;
2567 	ff->playback = hidpp_ff_playback;
2568 	ff->set_gain = hidpp_ff_set_gain;
2569 	ff->set_autocenter = hidpp_ff_set_autocenter;
2570 	ff->destroy = hidpp_ff_destroy;
2571 
2572 	/* Create sysfs interface */
2573 	error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2574 	if (error)
2575 		hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2576 
2577 	/* init the hardware command queue */
2578 	atomic_set(&data->workqueue_size, 0);
2579 
2580 	hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2581 		 version);
2582 
2583 	return 0;
2584 }
2585 
2586 /* ************************************************************************** */
2587 /*                                                                            */
2588 /* Device Support                                                             */
2589 /*                                                                            */
2590 /* ************************************************************************** */
2591 
2592 /* -------------------------------------------------------------------------- */
2593 /* Touchpad HID++ devices                                                     */
2594 /* -------------------------------------------------------------------------- */
2595 
2596 #define WTP_MANUAL_RESOLUTION				39
2597 
2598 struct wtp_data {
2599 	u16 x_size, y_size;
2600 	u8 finger_count;
2601 	u8 mt_feature_index;
2602 	u8 button_feature_index;
2603 	u8 maxcontacts;
2604 	bool flip_y;
2605 	unsigned int resolution;
2606 };
2607 
2608 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2609 		struct hid_field *field, struct hid_usage *usage,
2610 		unsigned long **bit, int *max)
2611 {
2612 	return -1;
2613 }
2614 
2615 static void wtp_populate_input(struct hidpp_device *hidpp,
2616 			       struct input_dev *input_dev)
2617 {
2618 	struct wtp_data *wd = hidpp->private_data;
2619 
2620 	__set_bit(EV_ABS, input_dev->evbit);
2621 	__set_bit(EV_KEY, input_dev->evbit);
2622 	__clear_bit(EV_REL, input_dev->evbit);
2623 	__clear_bit(EV_LED, input_dev->evbit);
2624 
2625 	input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2626 	input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2627 	input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2628 	input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2629 
2630 	/* Max pressure is not given by the devices, pick one */
2631 	input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2632 
2633 	input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2634 
2635 	if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2636 		input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2637 	else
2638 		__set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2639 
2640 	input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2641 		INPUT_MT_DROP_UNUSED);
2642 }
2643 
2644 static void wtp_touch_event(struct hidpp_device *hidpp,
2645 	struct hidpp_touchpad_raw_xy_finger *touch_report)
2646 {
2647 	struct wtp_data *wd = hidpp->private_data;
2648 	int slot;
2649 
2650 	if (!touch_report->finger_id || touch_report->contact_type)
2651 		/* no actual data */
2652 		return;
2653 
2654 	slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id);
2655 
2656 	input_mt_slot(hidpp->input, slot);
2657 	input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER,
2658 					touch_report->contact_status);
2659 	if (touch_report->contact_status) {
2660 		input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X,
2661 				touch_report->x);
2662 		input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y,
2663 				wd->flip_y ? wd->y_size - touch_report->y :
2664 					     touch_report->y);
2665 		input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE,
2666 				touch_report->area);
2667 	}
2668 }
2669 
2670 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2671 		struct hidpp_touchpad_raw_xy *raw)
2672 {
2673 	int i;
2674 
2675 	for (i = 0; i < 2; i++)
2676 		wtp_touch_event(hidpp, &(raw->fingers[i]));
2677 
2678 	if (raw->end_of_frame &&
2679 	    !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2680 		input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button);
2681 
2682 	if (raw->end_of_frame || raw->finger_count <= 2) {
2683 		input_mt_sync_frame(hidpp->input);
2684 		input_sync(hidpp->input);
2685 	}
2686 }
2687 
2688 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2689 {
2690 	struct wtp_data *wd = hidpp->private_data;
2691 	u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2692 		      (data[7] >> 4) * (data[7] >> 4)) / 2;
2693 	u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2694 		      (data[13] >> 4) * (data[13] >> 4)) / 2;
2695 	struct hidpp_touchpad_raw_xy raw = {
2696 		.timestamp = data[1],
2697 		.fingers = {
2698 			{
2699 				.contact_type = 0,
2700 				.contact_status = !!data[7],
2701 				.x = get_unaligned_le16(&data[3]),
2702 				.y = get_unaligned_le16(&data[5]),
2703 				.z = c1_area,
2704 				.area = c1_area,
2705 				.finger_id = data[2],
2706 			}, {
2707 				.contact_type = 0,
2708 				.contact_status = !!data[13],
2709 				.x = get_unaligned_le16(&data[9]),
2710 				.y = get_unaligned_le16(&data[11]),
2711 				.z = c2_area,
2712 				.area = c2_area,
2713 				.finger_id = data[8],
2714 			}
2715 		},
2716 		.finger_count = wd->maxcontacts,
2717 		.spurious_flag = 0,
2718 		.end_of_frame = (data[0] >> 7) == 0,
2719 		.button = data[0] & 0x01,
2720 	};
2721 
2722 	wtp_send_raw_xy_event(hidpp, &raw);
2723 
2724 	return 1;
2725 }
2726 
2727 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2728 {
2729 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2730 	struct wtp_data *wd = hidpp->private_data;
2731 	struct hidpp_report *report = (struct hidpp_report *)data;
2732 	struct hidpp_touchpad_raw_xy raw;
2733 
2734 	if (!wd || !hidpp->input)
2735 		return 1;
2736 
2737 	switch (data[0]) {
2738 	case 0x02:
2739 		if (size < 2) {
2740 			hid_err(hdev, "Received HID report of bad size (%d)",
2741 				size);
2742 			return 1;
2743 		}
2744 		if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2745 			input_event(hidpp->input, EV_KEY, BTN_LEFT,
2746 					!!(data[1] & 0x01));
2747 			input_event(hidpp->input, EV_KEY, BTN_RIGHT,
2748 					!!(data[1] & 0x02));
2749 			input_sync(hidpp->input);
2750 			return 0;
2751 		} else {
2752 			if (size < 21)
2753 				return 1;
2754 			return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2755 		}
2756 	case REPORT_ID_HIDPP_LONG:
2757 		/* size is already checked in hidpp_raw_event. */
2758 		if ((report->fap.feature_index != wd->mt_feature_index) ||
2759 		    (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2760 			return 1;
2761 		hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2762 
2763 		wtp_send_raw_xy_event(hidpp, &raw);
2764 		return 0;
2765 	}
2766 
2767 	return 0;
2768 }
2769 
2770 static int wtp_get_config(struct hidpp_device *hidpp)
2771 {
2772 	struct wtp_data *wd = hidpp->private_data;
2773 	struct hidpp_touchpad_raw_info raw_info = {0};
2774 	u8 feature_type;
2775 	int ret;
2776 
2777 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2778 		&wd->mt_feature_index, &feature_type);
2779 	if (ret)
2780 		/* means that the device is not powered up */
2781 		return ret;
2782 
2783 	ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2784 		&raw_info);
2785 	if (ret)
2786 		return ret;
2787 
2788 	wd->x_size = raw_info.x_size;
2789 	wd->y_size = raw_info.y_size;
2790 	wd->maxcontacts = raw_info.maxcontacts;
2791 	wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2792 	wd->resolution = raw_info.res;
2793 	if (!wd->resolution)
2794 		wd->resolution = WTP_MANUAL_RESOLUTION;
2795 
2796 	return 0;
2797 }
2798 
2799 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2800 {
2801 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2802 	struct wtp_data *wd;
2803 
2804 	wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2805 			GFP_KERNEL);
2806 	if (!wd)
2807 		return -ENOMEM;
2808 
2809 	hidpp->private_data = wd;
2810 
2811 	return 0;
2812 };
2813 
2814 static int wtp_connect(struct hid_device *hdev, bool connected)
2815 {
2816 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2817 	struct wtp_data *wd = hidpp->private_data;
2818 	int ret;
2819 
2820 	if (!wd->x_size) {
2821 		ret = wtp_get_config(hidpp);
2822 		if (ret) {
2823 			hid_err(hdev, "Can not get wtp config: %d\n", ret);
2824 			return ret;
2825 		}
2826 	}
2827 
2828 	return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2829 			true, true);
2830 }
2831 
2832 /* ------------------------------------------------------------------------- */
2833 /* Logitech M560 devices                                                     */
2834 /* ------------------------------------------------------------------------- */
2835 
2836 /*
2837  * Logitech M560 protocol overview
2838  *
2839  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2840  * the sides buttons are pressed, it sends some keyboard keys events
2841  * instead of buttons ones.
2842  * To complicate things further, the middle button keys sequence
2843  * is different from the odd press and the even press.
2844  *
2845  * forward button -> Super_R
2846  * backward button -> Super_L+'d' (press only)
2847  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2848  *                  2nd time: left-click (press only)
2849  * NB: press-only means that when the button is pressed, the
2850  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2851  * together sequentially; instead when the button is released, no event is
2852  * generated !
2853  *
2854  * With the command
2855  *	10<xx>0a 3500af03 (where <xx> is the mouse id),
2856  * the mouse reacts differently:
2857  * - it never sends a keyboard key event
2858  * - for the three mouse button it sends:
2859  *	middle button               press   11<xx>0a 3500af00...
2860  *	side 1 button (forward)     press   11<xx>0a 3500b000...
2861  *	side 2 button (backward)    press   11<xx>0a 3500ae00...
2862  *	middle/side1/side2 button   release 11<xx>0a 35000000...
2863  */
2864 
2865 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2866 
2867 /* how buttons are mapped in the report */
2868 #define M560_MOUSE_BTN_LEFT		0x01
2869 #define M560_MOUSE_BTN_RIGHT		0x02
2870 #define M560_MOUSE_BTN_WHEEL_LEFT	0x08
2871 #define M560_MOUSE_BTN_WHEEL_RIGHT	0x10
2872 
2873 #define M560_SUB_ID			0x0a
2874 #define M560_BUTTON_MODE_REGISTER	0x35
2875 
2876 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2877 {
2878 	struct hidpp_report response;
2879 	struct hidpp_device *hidpp_dev;
2880 
2881 	hidpp_dev = hid_get_drvdata(hdev);
2882 
2883 	return hidpp_send_rap_command_sync(
2884 		hidpp_dev,
2885 		REPORT_ID_HIDPP_SHORT,
2886 		M560_SUB_ID,
2887 		M560_BUTTON_MODE_REGISTER,
2888 		(u8 *)m560_config_parameter,
2889 		sizeof(m560_config_parameter),
2890 		&response
2891 	);
2892 }
2893 
2894 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2895 {
2896 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2897 
2898 	/* sanity check */
2899 	if (!hidpp->input) {
2900 		hid_err(hdev, "error in parameter\n");
2901 		return -EINVAL;
2902 	}
2903 
2904 	if (size < 7) {
2905 		hid_err(hdev, "error in report\n");
2906 		return 0;
2907 	}
2908 
2909 	if (data[0] == REPORT_ID_HIDPP_LONG &&
2910 	    data[2] == M560_SUB_ID && data[6] == 0x00) {
2911 		/*
2912 		 * m560 mouse report for middle, forward and backward button
2913 		 *
2914 		 * data[0] = 0x11
2915 		 * data[1] = device-id
2916 		 * data[2] = 0x0a
2917 		 * data[5] = 0xaf -> middle
2918 		 *	     0xb0 -> forward
2919 		 *	     0xae -> backward
2920 		 *	     0x00 -> release all
2921 		 * data[6] = 0x00
2922 		 */
2923 
2924 		switch (data[5]) {
2925 		case 0xaf:
2926 			input_report_key(hidpp->input, BTN_MIDDLE, 1);
2927 			break;
2928 		case 0xb0:
2929 			input_report_key(hidpp->input, BTN_FORWARD, 1);
2930 			break;
2931 		case 0xae:
2932 			input_report_key(hidpp->input, BTN_BACK, 1);
2933 			break;
2934 		case 0x00:
2935 			input_report_key(hidpp->input, BTN_BACK, 0);
2936 			input_report_key(hidpp->input, BTN_FORWARD, 0);
2937 			input_report_key(hidpp->input, BTN_MIDDLE, 0);
2938 			break;
2939 		default:
2940 			hid_err(hdev, "error in report\n");
2941 			return 0;
2942 		}
2943 		input_sync(hidpp->input);
2944 
2945 	} else if (data[0] == 0x02) {
2946 		/*
2947 		 * Logitech M560 mouse report
2948 		 *
2949 		 * data[0] = type (0x02)
2950 		 * data[1..2] = buttons
2951 		 * data[3..5] = xy
2952 		 * data[6] = wheel
2953 		 */
2954 
2955 		int v;
2956 
2957 		input_report_key(hidpp->input, BTN_LEFT,
2958 			!!(data[1] & M560_MOUSE_BTN_LEFT));
2959 		input_report_key(hidpp->input, BTN_RIGHT,
2960 			!!(data[1] & M560_MOUSE_BTN_RIGHT));
2961 
2962 		if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) {
2963 			input_report_rel(hidpp->input, REL_HWHEEL, -1);
2964 			input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2965 					 -120);
2966 		} else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) {
2967 			input_report_rel(hidpp->input, REL_HWHEEL, 1);
2968 			input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2969 					 120);
2970 		}
2971 
2972 		v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2973 		input_report_rel(hidpp->input, REL_X, v);
2974 
2975 		v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2976 		input_report_rel(hidpp->input, REL_Y, v);
2977 
2978 		v = hid_snto32(data[6], 8);
2979 		if (v != 0)
2980 			hidpp_scroll_counter_handle_scroll(hidpp->input,
2981 					&hidpp->vertical_wheel_counter, v);
2982 
2983 		input_sync(hidpp->input);
2984 	}
2985 
2986 	return 1;
2987 }
2988 
2989 static void m560_populate_input(struct hidpp_device *hidpp,
2990 				struct input_dev *input_dev)
2991 {
2992 	__set_bit(EV_KEY, input_dev->evbit);
2993 	__set_bit(BTN_MIDDLE, input_dev->keybit);
2994 	__set_bit(BTN_RIGHT, input_dev->keybit);
2995 	__set_bit(BTN_LEFT, input_dev->keybit);
2996 	__set_bit(BTN_BACK, input_dev->keybit);
2997 	__set_bit(BTN_FORWARD, input_dev->keybit);
2998 
2999 	__set_bit(EV_REL, input_dev->evbit);
3000 	__set_bit(REL_X, input_dev->relbit);
3001 	__set_bit(REL_Y, input_dev->relbit);
3002 	__set_bit(REL_WHEEL, input_dev->relbit);
3003 	__set_bit(REL_HWHEEL, input_dev->relbit);
3004 	__set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
3005 	__set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
3006 }
3007 
3008 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3009 		struct hid_field *field, struct hid_usage *usage,
3010 		unsigned long **bit, int *max)
3011 {
3012 	return -1;
3013 }
3014 
3015 /* ------------------------------------------------------------------------- */
3016 /* Logitech K400 devices                                                     */
3017 /* ------------------------------------------------------------------------- */
3018 
3019 /*
3020  * The Logitech K400 keyboard has an embedded touchpad which is seen
3021  * as a mouse from the OS point of view. There is a hardware shortcut to disable
3022  * tap-to-click but the setting is not remembered accross reset, annoying some
3023  * users.
3024  *
3025  * We can toggle this feature from the host by using the feature 0x6010:
3026  * Touchpad FW items
3027  */
3028 
3029 struct k400_private_data {
3030 	u8 feature_index;
3031 };
3032 
3033 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
3034 {
3035 	struct k400_private_data *k400 = hidpp->private_data;
3036 	struct hidpp_touchpad_fw_items items = {};
3037 	int ret;
3038 	u8 feature_type;
3039 
3040 	if (!k400->feature_index) {
3041 		ret = hidpp_root_get_feature(hidpp,
3042 			HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
3043 			&k400->feature_index, &feature_type);
3044 		if (ret)
3045 			/* means that the device is not powered up */
3046 			return ret;
3047 	}
3048 
3049 	ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
3050 	if (ret)
3051 		return ret;
3052 
3053 	return 0;
3054 }
3055 
3056 static int k400_allocate(struct hid_device *hdev)
3057 {
3058 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3059 	struct k400_private_data *k400;
3060 
3061 	k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
3062 			    GFP_KERNEL);
3063 	if (!k400)
3064 		return -ENOMEM;
3065 
3066 	hidpp->private_data = k400;
3067 
3068 	return 0;
3069 };
3070 
3071 static int k400_connect(struct hid_device *hdev, bool connected)
3072 {
3073 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3074 
3075 	if (!disable_tap_to_click)
3076 		return 0;
3077 
3078 	return k400_disable_tap_to_click(hidpp);
3079 }
3080 
3081 /* ------------------------------------------------------------------------- */
3082 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
3083 /* ------------------------------------------------------------------------- */
3084 
3085 #define HIDPP_PAGE_G920_FORCE_FEEDBACK			0x8123
3086 
3087 static int g920_ff_set_autocenter(struct hidpp_device *hidpp,
3088 				  struct hidpp_ff_private_data *data)
3089 {
3090 	struct hidpp_report response;
3091 	u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = {
3092 		[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART,
3093 	};
3094 	int ret;
3095 
3096 	/* initialize with zero autocenter to get wheel in usable state */
3097 
3098 	dbg_hid("Setting autocenter to 0.\n");
3099 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3100 					  HIDPP_FF_DOWNLOAD_EFFECT,
3101 					  params, ARRAY_SIZE(params),
3102 					  &response);
3103 	if (ret)
3104 		hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n");
3105 	else
3106 		data->slot_autocenter = response.fap.params[0];
3107 
3108 	return ret;
3109 }
3110 
3111 static int g920_get_config(struct hidpp_device *hidpp,
3112 			   struct hidpp_ff_private_data *data)
3113 {
3114 	struct hidpp_report response;
3115 	u8 feature_type;
3116 	int ret;
3117 
3118 	memset(data, 0, sizeof(*data));
3119 
3120 	/* Find feature and store for later use */
3121 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
3122 				     &data->feature_index, &feature_type);
3123 	if (ret)
3124 		return ret;
3125 
3126 	/* Read number of slots available in device */
3127 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3128 					  HIDPP_FF_GET_INFO,
3129 					  NULL, 0,
3130 					  &response);
3131 	if (ret) {
3132 		if (ret < 0)
3133 			return ret;
3134 		hid_err(hidpp->hid_dev,
3135 			"%s: received protocol error 0x%02x\n", __func__, ret);
3136 		return -EPROTO;
3137 	}
3138 
3139 	data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
3140 
3141 	/* reset all forces */
3142 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3143 					  HIDPP_FF_RESET_ALL,
3144 					  NULL, 0,
3145 					  &response);
3146 	if (ret)
3147 		hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n");
3148 
3149 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3150 					  HIDPP_FF_GET_APERTURE,
3151 					  NULL, 0,
3152 					  &response);
3153 	if (ret) {
3154 		hid_warn(hidpp->hid_dev,
3155 			 "Failed to read range from device!\n");
3156 	}
3157 	data->range = ret ?
3158 		900 : get_unaligned_be16(&response.fap.params[0]);
3159 
3160 	/* Read the current gain values */
3161 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3162 					  HIDPP_FF_GET_GLOBAL_GAINS,
3163 					  NULL, 0,
3164 					  &response);
3165 	if (ret)
3166 		hid_warn(hidpp->hid_dev,
3167 			 "Failed to read gain values from device!\n");
3168 	data->gain = ret ?
3169 		0xffff : get_unaligned_be16(&response.fap.params[0]);
3170 
3171 	/* ignore boost value at response.fap.params[2] */
3172 
3173 	return g920_ff_set_autocenter(hidpp, data);
3174 }
3175 
3176 /* -------------------------------------------------------------------------- */
3177 /* Logitech Dinovo Mini keyboard with builtin touchpad                        */
3178 /* -------------------------------------------------------------------------- */
3179 #define DINOVO_MINI_PRODUCT_ID		0xb30c
3180 
3181 static int lg_dinovo_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3182 		struct hid_field *field, struct hid_usage *usage,
3183 		unsigned long **bit, int *max)
3184 {
3185 	if ((usage->hid & HID_USAGE_PAGE) != HID_UP_LOGIVENDOR)
3186 		return 0;
3187 
3188 	switch (usage->hid & HID_USAGE) {
3189 	case 0x00d: lg_map_key_clear(KEY_MEDIA);	break;
3190 	default:
3191 		return 0;
3192 	}
3193 	return 1;
3194 }
3195 
3196 /* -------------------------------------------------------------------------- */
3197 /* HID++1.0 devices which use HID++ reports for their wheels                  */
3198 /* -------------------------------------------------------------------------- */
3199 static int hidpp10_wheel_connect(struct hidpp_device *hidpp)
3200 {
3201 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3202 			HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT,
3203 			HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT);
3204 }
3205 
3206 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp,
3207 				   u8 *data, int size)
3208 {
3209 	s8 value, hvalue;
3210 
3211 	if (!hidpp->input)
3212 		return -EINVAL;
3213 
3214 	if (size < 7)
3215 		return 0;
3216 
3217 	if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER)
3218 		return 0;
3219 
3220 	value = data[3];
3221 	hvalue = data[4];
3222 
3223 	input_report_rel(hidpp->input, REL_WHEEL, value);
3224 	input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120);
3225 	input_report_rel(hidpp->input, REL_HWHEEL, hvalue);
3226 	input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120);
3227 	input_sync(hidpp->input);
3228 
3229 	return 1;
3230 }
3231 
3232 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp,
3233 					 struct input_dev *input_dev)
3234 {
3235 	__set_bit(EV_REL, input_dev->evbit);
3236 	__set_bit(REL_WHEEL, input_dev->relbit);
3237 	__set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
3238 	__set_bit(REL_HWHEEL, input_dev->relbit);
3239 	__set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
3240 }
3241 
3242 /* -------------------------------------------------------------------------- */
3243 /* HID++1.0 mice which use HID++ reports for extra mouse buttons              */
3244 /* -------------------------------------------------------------------------- */
3245 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp)
3246 {
3247 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3248 				    HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT,
3249 				    HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT);
3250 }
3251 
3252 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp,
3253 				    u8 *data, int size)
3254 {
3255 	int i;
3256 
3257 	if (!hidpp->input)
3258 		return -EINVAL;
3259 
3260 	if (size < 7)
3261 		return 0;
3262 
3263 	if (data[0] != REPORT_ID_HIDPP_SHORT ||
3264 	    data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS)
3265 		return 0;
3266 
3267 	/*
3268 	 * Buttons are either delivered through the regular mouse report *or*
3269 	 * through the extra buttons report. At least for button 6 how it is
3270 	 * delivered differs per receiver firmware version. Even receivers with
3271 	 * the same usb-id show different behavior, so we handle both cases.
3272 	 */
3273 	for (i = 0; i < 8; i++)
3274 		input_report_key(hidpp->input, BTN_MOUSE + i,
3275 				 (data[3] & (1 << i)));
3276 
3277 	/* Some mice report events on button 9+, use BTN_MISC */
3278 	for (i = 0; i < 8; i++)
3279 		input_report_key(hidpp->input, BTN_MISC + i,
3280 				 (data[4] & (1 << i)));
3281 
3282 	input_sync(hidpp->input);
3283 	return 1;
3284 }
3285 
3286 static void hidpp10_extra_mouse_buttons_populate_input(
3287 			struct hidpp_device *hidpp, struct input_dev *input_dev)
3288 {
3289 	/* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */
3290 	__set_bit(BTN_0, input_dev->keybit);
3291 	__set_bit(BTN_1, input_dev->keybit);
3292 	__set_bit(BTN_2, input_dev->keybit);
3293 	__set_bit(BTN_3, input_dev->keybit);
3294 	__set_bit(BTN_4, input_dev->keybit);
3295 	__set_bit(BTN_5, input_dev->keybit);
3296 	__set_bit(BTN_6, input_dev->keybit);
3297 	__set_bit(BTN_7, input_dev->keybit);
3298 }
3299 
3300 /* -------------------------------------------------------------------------- */
3301 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */
3302 /* -------------------------------------------------------------------------- */
3303 
3304 /* Find the consumer-page input report desc and change Maximums to 0x107f */
3305 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp,
3306 					      u8 *_rdesc, unsigned int *rsize)
3307 {
3308 	/* Note 0 terminated so we can use strnstr to search for this. */
3309 	static const char consumer_rdesc_start[] = {
3310 		0x05, 0x0C,	/* USAGE_PAGE (Consumer Devices)       */
3311 		0x09, 0x01,	/* USAGE (Consumer Control)            */
3312 		0xA1, 0x01,	/* COLLECTION (Application)            */
3313 		0x85, 0x03,	/* REPORT_ID = 3                       */
3314 		0x75, 0x10,	/* REPORT_SIZE (16)                    */
3315 		0x95, 0x02,	/* REPORT_COUNT (2)                    */
3316 		0x15, 0x01,	/* LOGICAL_MIN (1)                     */
3317 		0x26, 0x00	/* LOGICAL_MAX (...                    */
3318 	};
3319 	char *consumer_rdesc, *rdesc = (char *)_rdesc;
3320 	unsigned int size;
3321 
3322 	consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize);
3323 	size = *rsize - (consumer_rdesc - rdesc);
3324 	if (consumer_rdesc && size >= 25) {
3325 		consumer_rdesc[15] = 0x7f;
3326 		consumer_rdesc[16] = 0x10;
3327 		consumer_rdesc[20] = 0x7f;
3328 		consumer_rdesc[21] = 0x10;
3329 	}
3330 	return _rdesc;
3331 }
3332 
3333 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp)
3334 {
3335 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3336 				    HIDPP_ENABLE_CONSUMER_REPORT,
3337 				    HIDPP_ENABLE_CONSUMER_REPORT);
3338 }
3339 
3340 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp,
3341 					   u8 *data, int size)
3342 {
3343 	u8 consumer_report[5];
3344 
3345 	if (size < 7)
3346 		return 0;
3347 
3348 	if (data[0] != REPORT_ID_HIDPP_SHORT ||
3349 	    data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS)
3350 		return 0;
3351 
3352 	/*
3353 	 * Build a normal consumer report (3) out of the data, this detour
3354 	 * is necessary to get some keyboards to report their 0x10xx usages.
3355 	 */
3356 	consumer_report[0] = 0x03;
3357 	memcpy(&consumer_report[1], &data[3], 4);
3358 	/* We are called from atomic context */
3359 	hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT,
3360 			     consumer_report, 5, 1);
3361 
3362 	return 1;
3363 }
3364 
3365 /* -------------------------------------------------------------------------- */
3366 /* High-resolution scroll wheels                                              */
3367 /* -------------------------------------------------------------------------- */
3368 
3369 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
3370 {
3371 	int ret;
3372 	u8 multiplier = 1;
3373 
3374 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
3375 		ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
3376 		if (ret == 0)
3377 			ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
3378 	} else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
3379 		ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
3380 							   &multiplier);
3381 	} else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ {
3382 		ret = hidpp10_enable_scrolling_acceleration(hidpp);
3383 		multiplier = 8;
3384 	}
3385 	if (ret)
3386 		return ret;
3387 
3388 	if (multiplier == 0)
3389 		multiplier = 1;
3390 
3391 	hidpp->vertical_wheel_counter.wheel_multiplier = multiplier;
3392 	hid_dbg(hidpp->hid_dev, "wheel multiplier = %d\n", multiplier);
3393 	return 0;
3394 }
3395 
3396 /* -------------------------------------------------------------------------- */
3397 /* Generic HID++ devices                                                      */
3398 /* -------------------------------------------------------------------------- */
3399 
3400 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc,
3401 			      unsigned int *rsize)
3402 {
3403 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3404 
3405 	if (!hidpp)
3406 		return rdesc;
3407 
3408 	/* For 27 MHz keyboards the quirk gets set after hid_parse. */
3409 	if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE ||
3410 	    (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS))
3411 		rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize);
3412 
3413 	return rdesc;
3414 }
3415 
3416 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3417 		struct hid_field *field, struct hid_usage *usage,
3418 		unsigned long **bit, int *max)
3419 {
3420 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3421 
3422 	if (!hidpp)
3423 		return 0;
3424 
3425 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3426 		return wtp_input_mapping(hdev, hi, field, usage, bit, max);
3427 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
3428 			field->application != HID_GD_MOUSE)
3429 		return m560_input_mapping(hdev, hi, field, usage, bit, max);
3430 
3431 	if (hdev->product == DINOVO_MINI_PRODUCT_ID)
3432 		return lg_dinovo_input_mapping(hdev, hi, field, usage, bit, max);
3433 
3434 	return 0;
3435 }
3436 
3437 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
3438 		struct hid_field *field, struct hid_usage *usage,
3439 		unsigned long **bit, int *max)
3440 {
3441 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3442 
3443 	if (!hidpp)
3444 		return 0;
3445 
3446 	/* Ensure that Logitech G920 is not given a default fuzz/flat value */
3447 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3448 		if (usage->type == EV_ABS && (usage->code == ABS_X ||
3449 				usage->code == ABS_Y || usage->code == ABS_Z ||
3450 				usage->code == ABS_RZ)) {
3451 			field->application = HID_GD_MULTIAXIS;
3452 		}
3453 	}
3454 
3455 	return 0;
3456 }
3457 
3458 
3459 static void hidpp_populate_input(struct hidpp_device *hidpp,
3460 				 struct input_dev *input)
3461 {
3462 	hidpp->input = input;
3463 
3464 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3465 		wtp_populate_input(hidpp, input);
3466 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3467 		m560_populate_input(hidpp, input);
3468 
3469 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS)
3470 		hidpp10_wheel_populate_input(hidpp, input);
3471 
3472 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS)
3473 		hidpp10_extra_mouse_buttons_populate_input(hidpp, input);
3474 }
3475 
3476 static int hidpp_input_configured(struct hid_device *hdev,
3477 				struct hid_input *hidinput)
3478 {
3479 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3480 	struct input_dev *input = hidinput->input;
3481 
3482 	if (!hidpp)
3483 		return 0;
3484 
3485 	hidpp_populate_input(hidpp, input);
3486 
3487 	return 0;
3488 }
3489 
3490 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
3491 		int size)
3492 {
3493 	struct hidpp_report *question = hidpp->send_receive_buf;
3494 	struct hidpp_report *answer = hidpp->send_receive_buf;
3495 	struct hidpp_report *report = (struct hidpp_report *)data;
3496 	int ret;
3497 
3498 	/*
3499 	 * If the mutex is locked then we have a pending answer from a
3500 	 * previously sent command.
3501 	 */
3502 	if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
3503 		/*
3504 		 * Check for a correct hidpp20 answer or the corresponding
3505 		 * error
3506 		 */
3507 		if (hidpp_match_answer(question, report) ||
3508 				hidpp_match_error(question, report)) {
3509 			*answer = *report;
3510 			hidpp->answer_available = true;
3511 			wake_up(&hidpp->wait);
3512 			/*
3513 			 * This was an answer to a command that this driver sent
3514 			 * We return 1 to hid-core to avoid forwarding the
3515 			 * command upstream as it has been treated by the driver
3516 			 */
3517 
3518 			return 1;
3519 		}
3520 	}
3521 
3522 	if (unlikely(hidpp_report_is_connect_event(hidpp, report))) {
3523 		atomic_set(&hidpp->connected,
3524 				!(report->rap.params[0] & (1 << 6)));
3525 		if (schedule_work(&hidpp->work) == 0)
3526 			dbg_hid("%s: connect event already queued\n", __func__);
3527 		return 1;
3528 	}
3529 
3530 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3531 		ret = hidpp20_battery_event_1000(hidpp, data, size);
3532 		if (ret != 0)
3533 			return ret;
3534 		ret = hidpp20_battery_event_1004(hidpp, data, size);
3535 		if (ret != 0)
3536 			return ret;
3537 		ret = hidpp_solar_battery_event(hidpp, data, size);
3538 		if (ret != 0)
3539 			return ret;
3540 		ret = hidpp20_battery_voltage_event(hidpp, data, size);
3541 		if (ret != 0)
3542 			return ret;
3543 	}
3544 
3545 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3546 		ret = hidpp10_battery_event(hidpp, data, size);
3547 		if (ret != 0)
3548 			return ret;
3549 	}
3550 
3551 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3552 		ret = hidpp10_wheel_raw_event(hidpp, data, size);
3553 		if (ret != 0)
3554 			return ret;
3555 	}
3556 
3557 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3558 		ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size);
3559 		if (ret != 0)
3560 			return ret;
3561 	}
3562 
3563 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3564 		ret = hidpp10_consumer_keys_raw_event(hidpp, data, size);
3565 		if (ret != 0)
3566 			return ret;
3567 	}
3568 
3569 	return 0;
3570 }
3571 
3572 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
3573 		u8 *data, int size)
3574 {
3575 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3576 	int ret = 0;
3577 
3578 	if (!hidpp)
3579 		return 0;
3580 
3581 	/* Generic HID++ processing. */
3582 	switch (data[0]) {
3583 	case REPORT_ID_HIDPP_VERY_LONG:
3584 		if (size != hidpp->very_long_report_length) {
3585 			hid_err(hdev, "received hid++ report of bad size (%d)",
3586 				size);
3587 			return 1;
3588 		}
3589 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3590 		break;
3591 	case REPORT_ID_HIDPP_LONG:
3592 		if (size != HIDPP_REPORT_LONG_LENGTH) {
3593 			hid_err(hdev, "received hid++ report of bad size (%d)",
3594 				size);
3595 			return 1;
3596 		}
3597 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3598 		break;
3599 	case REPORT_ID_HIDPP_SHORT:
3600 		if (size != HIDPP_REPORT_SHORT_LENGTH) {
3601 			hid_err(hdev, "received hid++ report of bad size (%d)",
3602 				size);
3603 			return 1;
3604 		}
3605 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3606 		break;
3607 	}
3608 
3609 	/* If no report is available for further processing, skip calling
3610 	 * raw_event of subclasses. */
3611 	if (ret != 0)
3612 		return ret;
3613 
3614 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3615 		return wtp_raw_event(hdev, data, size);
3616 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3617 		return m560_raw_event(hdev, data, size);
3618 
3619 	return 0;
3620 }
3621 
3622 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
3623 	struct hid_usage *usage, __s32 value)
3624 {
3625 	/* This function will only be called for scroll events, due to the
3626 	 * restriction imposed in hidpp_usages.
3627 	 */
3628 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3629 	struct hidpp_scroll_counter *counter;
3630 
3631 	if (!hidpp)
3632 		return 0;
3633 
3634 	counter = &hidpp->vertical_wheel_counter;
3635 	/* A scroll event may occur before the multiplier has been retrieved or
3636 	 * the input device set, or high-res scroll enabling may fail. In such
3637 	 * cases we must return early (falling back to default behaviour) to
3638 	 * avoid a crash in hidpp_scroll_counter_handle_scroll.
3639 	 */
3640 	if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
3641 	    || hidpp->input == NULL || counter->wheel_multiplier == 0)
3642 		return 0;
3643 
3644 	hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value);
3645 	return 1;
3646 }
3647 
3648 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
3649 {
3650 	static atomic_t battery_no = ATOMIC_INIT(0);
3651 	struct power_supply_config cfg = { .drv_data = hidpp };
3652 	struct power_supply_desc *desc = &hidpp->battery.desc;
3653 	enum power_supply_property *battery_props;
3654 	struct hidpp_battery *battery;
3655 	unsigned int num_battery_props;
3656 	unsigned long n;
3657 	int ret;
3658 
3659 	if (hidpp->battery.ps)
3660 		return 0;
3661 
3662 	hidpp->battery.feature_index = 0xff;
3663 	hidpp->battery.solar_feature_index = 0xff;
3664 	hidpp->battery.voltage_feature_index = 0xff;
3665 
3666 	if (hidpp->protocol_major >= 2) {
3667 		if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
3668 			ret = hidpp_solar_request_battery_event(hidpp);
3669 		else {
3670 			/* we only support one battery feature right now, so let's
3671 			   first check the ones that support battery level first
3672 			   and leave voltage for last */
3673 			ret = hidpp20_query_battery_info_1000(hidpp);
3674 			if (ret)
3675 				ret = hidpp20_query_battery_info_1004(hidpp);
3676 			if (ret)
3677 				ret = hidpp20_query_battery_voltage_info(hidpp);
3678 		}
3679 
3680 		if (ret)
3681 			return ret;
3682 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
3683 	} else {
3684 		ret = hidpp10_query_battery_status(hidpp);
3685 		if (ret) {
3686 			ret = hidpp10_query_battery_mileage(hidpp);
3687 			if (ret)
3688 				return -ENOENT;
3689 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
3690 		} else {
3691 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
3692 		}
3693 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
3694 	}
3695 
3696 	battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
3697 				     hidpp_battery_props,
3698 				     sizeof(hidpp_battery_props),
3699 				     GFP_KERNEL);
3700 	if (!battery_props)
3701 		return -ENOMEM;
3702 
3703 	num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3;
3704 
3705 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE ||
3706 	    hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE)
3707 		battery_props[num_battery_props++] =
3708 				POWER_SUPPLY_PROP_CAPACITY;
3709 
3710 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
3711 		battery_props[num_battery_props++] =
3712 				POWER_SUPPLY_PROP_CAPACITY_LEVEL;
3713 
3714 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3715 		battery_props[num_battery_props++] =
3716 			POWER_SUPPLY_PROP_VOLTAGE_NOW;
3717 
3718 	battery = &hidpp->battery;
3719 
3720 	n = atomic_inc_return(&battery_no) - 1;
3721 	desc->properties = battery_props;
3722 	desc->num_properties = num_battery_props;
3723 	desc->get_property = hidpp_battery_get_property;
3724 	sprintf(battery->name, "hidpp_battery_%ld", n);
3725 	desc->name = battery->name;
3726 	desc->type = POWER_SUPPLY_TYPE_BATTERY;
3727 	desc->use_for_apm = 0;
3728 
3729 	battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
3730 						 &battery->desc,
3731 						 &cfg);
3732 	if (IS_ERR(battery->ps))
3733 		return PTR_ERR(battery->ps);
3734 
3735 	power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
3736 
3737 	return ret;
3738 }
3739 
3740 static void hidpp_overwrite_name(struct hid_device *hdev)
3741 {
3742 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3743 	char *name;
3744 
3745 	if (hidpp->protocol_major < 2)
3746 		return;
3747 
3748 	name = hidpp_get_device_name(hidpp);
3749 
3750 	if (!name) {
3751 		hid_err(hdev, "unable to retrieve the name of the device");
3752 	} else {
3753 		dbg_hid("HID++: Got name: %s\n", name);
3754 		snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3755 	}
3756 
3757 	kfree(name);
3758 }
3759 
3760 static int hidpp_input_open(struct input_dev *dev)
3761 {
3762 	struct hid_device *hid = input_get_drvdata(dev);
3763 
3764 	return hid_hw_open(hid);
3765 }
3766 
3767 static void hidpp_input_close(struct input_dev *dev)
3768 {
3769 	struct hid_device *hid = input_get_drvdata(dev);
3770 
3771 	hid_hw_close(hid);
3772 }
3773 
3774 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3775 {
3776 	struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3777 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3778 
3779 	if (!input_dev)
3780 		return NULL;
3781 
3782 	input_set_drvdata(input_dev, hdev);
3783 	input_dev->open = hidpp_input_open;
3784 	input_dev->close = hidpp_input_close;
3785 
3786 	input_dev->name = hidpp->name;
3787 	input_dev->phys = hdev->phys;
3788 	input_dev->uniq = hdev->uniq;
3789 	input_dev->id.bustype = hdev->bus;
3790 	input_dev->id.vendor  = hdev->vendor;
3791 	input_dev->id.product = hdev->product;
3792 	input_dev->id.version = hdev->version;
3793 	input_dev->dev.parent = &hdev->dev;
3794 
3795 	return input_dev;
3796 }
3797 
3798 static void hidpp_connect_event(struct hidpp_device *hidpp)
3799 {
3800 	struct hid_device *hdev = hidpp->hid_dev;
3801 	int ret = 0;
3802 	bool connected = atomic_read(&hidpp->connected);
3803 	struct input_dev *input;
3804 	char *name, *devm_name;
3805 
3806 	if (!connected) {
3807 		if (hidpp->battery.ps) {
3808 			hidpp->battery.online = false;
3809 			hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3810 			hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3811 			power_supply_changed(hidpp->battery.ps);
3812 		}
3813 		return;
3814 	}
3815 
3816 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3817 		ret = wtp_connect(hdev, connected);
3818 		if (ret)
3819 			return;
3820 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3821 		ret = m560_send_config_command(hdev, connected);
3822 		if (ret)
3823 			return;
3824 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3825 		ret = k400_connect(hdev, connected);
3826 		if (ret)
3827 			return;
3828 	}
3829 
3830 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3831 		ret = hidpp10_wheel_connect(hidpp);
3832 		if (ret)
3833 			return;
3834 	}
3835 
3836 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3837 		ret = hidpp10_extra_mouse_buttons_connect(hidpp);
3838 		if (ret)
3839 			return;
3840 	}
3841 
3842 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3843 		ret = hidpp10_consumer_keys_connect(hidpp);
3844 		if (ret)
3845 			return;
3846 	}
3847 
3848 	/* the device is already connected, we can ask for its name and
3849 	 * protocol */
3850 	if (!hidpp->protocol_major) {
3851 		ret = hidpp_root_get_protocol_version(hidpp);
3852 		if (ret) {
3853 			hid_err(hdev, "Can not get the protocol version.\n");
3854 			return;
3855 		}
3856 	}
3857 
3858 	if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3859 		name = hidpp_get_device_name(hidpp);
3860 		if (name) {
3861 			devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL,
3862 						   "%s", name);
3863 			kfree(name);
3864 			if (!devm_name)
3865 				return;
3866 
3867 			hidpp->name = devm_name;
3868 		}
3869 	}
3870 
3871 	hidpp_initialize_battery(hidpp);
3872 
3873 	/* forward current battery state */
3874 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3875 		hidpp10_enable_battery_reporting(hidpp);
3876 		if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3877 			hidpp10_query_battery_mileage(hidpp);
3878 		else
3879 			hidpp10_query_battery_status(hidpp);
3880 	} else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3881 		if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3882 			hidpp20_query_battery_voltage_info(hidpp);
3883 		else if (hidpp->capabilities & HIDPP_CAPABILITY_UNIFIED_BATTERY)
3884 			hidpp20_query_battery_info_1004(hidpp);
3885 		else
3886 			hidpp20_query_battery_info_1000(hidpp);
3887 	}
3888 	if (hidpp->battery.ps)
3889 		power_supply_changed(hidpp->battery.ps);
3890 
3891 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3892 		hi_res_scroll_enable(hidpp);
3893 
3894 	if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3895 		/* if the input nodes are already created, we can stop now */
3896 		return;
3897 
3898 	input = hidpp_allocate_input(hdev);
3899 	if (!input) {
3900 		hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3901 		return;
3902 	}
3903 
3904 	hidpp_populate_input(hidpp, input);
3905 
3906 	ret = input_register_device(input);
3907 	if (ret)
3908 		input_free_device(input);
3909 
3910 	hidpp->delayed_input = input;
3911 }
3912 
3913 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3914 
3915 static struct attribute *sysfs_attrs[] = {
3916 	&dev_attr_builtin_power_supply.attr,
3917 	NULL
3918 };
3919 
3920 static const struct attribute_group ps_attribute_group = {
3921 	.attrs = sysfs_attrs
3922 };
3923 
3924 static int hidpp_get_report_length(struct hid_device *hdev, int id)
3925 {
3926 	struct hid_report_enum *re;
3927 	struct hid_report *report;
3928 
3929 	re = &(hdev->report_enum[HID_OUTPUT_REPORT]);
3930 	report = re->report_id_hash[id];
3931 	if (!report)
3932 		return 0;
3933 
3934 	return report->field[0]->report_count + 1;
3935 }
3936 
3937 static u8 hidpp_validate_device(struct hid_device *hdev)
3938 {
3939 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3940 	int id, report_length;
3941 	u8 supported_reports = 0;
3942 
3943 	id = REPORT_ID_HIDPP_SHORT;
3944 	report_length = hidpp_get_report_length(hdev, id);
3945 	if (report_length) {
3946 		if (report_length < HIDPP_REPORT_SHORT_LENGTH)
3947 			goto bad_device;
3948 
3949 		supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED;
3950 	}
3951 
3952 	id = REPORT_ID_HIDPP_LONG;
3953 	report_length = hidpp_get_report_length(hdev, id);
3954 	if (report_length) {
3955 		if (report_length < HIDPP_REPORT_LONG_LENGTH)
3956 			goto bad_device;
3957 
3958 		supported_reports |= HIDPP_REPORT_LONG_SUPPORTED;
3959 	}
3960 
3961 	id = REPORT_ID_HIDPP_VERY_LONG;
3962 	report_length = hidpp_get_report_length(hdev, id);
3963 	if (report_length) {
3964 		if (report_length < HIDPP_REPORT_LONG_LENGTH ||
3965 		    report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH)
3966 			goto bad_device;
3967 
3968 		supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED;
3969 		hidpp->very_long_report_length = report_length;
3970 	}
3971 
3972 	return supported_reports;
3973 
3974 bad_device:
3975 	hid_warn(hdev, "not enough values in hidpp report %d\n", id);
3976 	return false;
3977 }
3978 
3979 static bool hidpp_application_equals(struct hid_device *hdev,
3980 				     unsigned int application)
3981 {
3982 	struct list_head *report_list;
3983 	struct hid_report *report;
3984 
3985 	report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list;
3986 	report = list_first_entry_or_null(report_list, struct hid_report, list);
3987 	return report && report->application == application;
3988 }
3989 
3990 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
3991 {
3992 	struct hidpp_device *hidpp;
3993 	int ret;
3994 	bool connected;
3995 	unsigned int connect_mask = HID_CONNECT_DEFAULT;
3996 	struct hidpp_ff_private_data data;
3997 
3998 	/* report_fixup needs drvdata to be set before we call hid_parse */
3999 	hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL);
4000 	if (!hidpp)
4001 		return -ENOMEM;
4002 
4003 	hidpp->hid_dev = hdev;
4004 	hidpp->name = hdev->name;
4005 	hidpp->quirks = id->driver_data;
4006 	hid_set_drvdata(hdev, hidpp);
4007 
4008 	ret = hid_parse(hdev);
4009 	if (ret) {
4010 		hid_err(hdev, "%s:parse failed\n", __func__);
4011 		return ret;
4012 	}
4013 
4014 	/*
4015 	 * Make sure the device is HID++ capable, otherwise treat as generic HID
4016 	 */
4017 	hidpp->supported_reports = hidpp_validate_device(hdev);
4018 
4019 	if (!hidpp->supported_reports) {
4020 		hid_set_drvdata(hdev, NULL);
4021 		devm_kfree(&hdev->dev, hidpp);
4022 		return hid_hw_start(hdev, HID_CONNECT_DEFAULT);
4023 	}
4024 
4025 	if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
4026 		hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
4027 
4028 	if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
4029 	    hidpp_application_equals(hdev, HID_GD_MOUSE))
4030 		hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS |
4031 				 HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS;
4032 
4033 	if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
4034 	    hidpp_application_equals(hdev, HID_GD_KEYBOARD))
4035 		hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS;
4036 
4037 	if (disable_raw_mode) {
4038 		hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
4039 		hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
4040 	}
4041 
4042 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
4043 		ret = wtp_allocate(hdev, id);
4044 		if (ret)
4045 			return ret;
4046 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
4047 		ret = k400_allocate(hdev);
4048 		if (ret)
4049 			return ret;
4050 	}
4051 
4052 	INIT_WORK(&hidpp->work, delayed_work_cb);
4053 	mutex_init(&hidpp->send_mutex);
4054 	init_waitqueue_head(&hidpp->wait);
4055 
4056 	/* indicates we are handling the battery properties in the kernel */
4057 	ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
4058 	if (ret)
4059 		hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
4060 			 hdev->name);
4061 
4062 	/*
4063 	 * Plain USB connections need to actually call start and open
4064 	 * on the transport driver to allow incoming data.
4065 	 */
4066 	ret = hid_hw_start(hdev, 0);
4067 	if (ret) {
4068 		hid_err(hdev, "hw start failed\n");
4069 		goto hid_hw_start_fail;
4070 	}
4071 
4072 	ret = hid_hw_open(hdev);
4073 	if (ret < 0) {
4074 		dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
4075 			__func__, ret);
4076 		goto hid_hw_open_fail;
4077 	}
4078 
4079 	/* Allow incoming packets */
4080 	hid_device_io_start(hdev);
4081 
4082 	if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
4083 		hidpp_unifying_init(hidpp);
4084 
4085 	connected = hidpp_root_get_protocol_version(hidpp) == 0;
4086 	atomic_set(&hidpp->connected, connected);
4087 	if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
4088 		if (!connected) {
4089 			ret = -ENODEV;
4090 			hid_err(hdev, "Device not connected");
4091 			goto hid_hw_init_fail;
4092 		}
4093 
4094 		hidpp_overwrite_name(hdev);
4095 	}
4096 
4097 	if (connected && hidpp->protocol_major >= 2) {
4098 		ret = hidpp_set_wireless_feature_index(hidpp);
4099 		if (ret == -ENOENT)
4100 			hidpp->wireless_feature_index = 0;
4101 		else if (ret)
4102 			goto hid_hw_init_fail;
4103 	}
4104 
4105 	if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
4106 		ret = wtp_get_config(hidpp);
4107 		if (ret)
4108 			goto hid_hw_init_fail;
4109 	} else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
4110 		ret = g920_get_config(hidpp, &data);
4111 		if (ret)
4112 			goto hid_hw_init_fail;
4113 	}
4114 
4115 	hidpp_connect_event(hidpp);
4116 
4117 	/* Reset the HID node state */
4118 	hid_device_io_stop(hdev);
4119 	hid_hw_close(hdev);
4120 	hid_hw_stop(hdev);
4121 
4122 	if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
4123 		connect_mask &= ~HID_CONNECT_HIDINPUT;
4124 
4125 	/* Now export the actual inputs and hidraw nodes to the world */
4126 	ret = hid_hw_start(hdev, connect_mask);
4127 	if (ret) {
4128 		hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
4129 		goto hid_hw_start_fail;
4130 	}
4131 
4132 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
4133 		ret = hidpp_ff_init(hidpp, &data);
4134 		if (ret)
4135 			hid_warn(hidpp->hid_dev,
4136 		     "Unable to initialize force feedback support, errno %d\n",
4137 				 ret);
4138 	}
4139 
4140 	return ret;
4141 
4142 hid_hw_init_fail:
4143 	hid_hw_close(hdev);
4144 hid_hw_open_fail:
4145 	hid_hw_stop(hdev);
4146 hid_hw_start_fail:
4147 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
4148 	cancel_work_sync(&hidpp->work);
4149 	mutex_destroy(&hidpp->send_mutex);
4150 	return ret;
4151 }
4152 
4153 static void hidpp_remove(struct hid_device *hdev)
4154 {
4155 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
4156 
4157 	if (!hidpp)
4158 		return hid_hw_stop(hdev);
4159 
4160 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
4161 
4162 	hid_hw_stop(hdev);
4163 	cancel_work_sync(&hidpp->work);
4164 	mutex_destroy(&hidpp->send_mutex);
4165 }
4166 
4167 #define LDJ_DEVICE(product) \
4168 	HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
4169 		   USB_VENDOR_ID_LOGITECH, (product))
4170 
4171 #define L27MHZ_DEVICE(product) \
4172 	HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \
4173 		   USB_VENDOR_ID_LOGITECH, (product))
4174 
4175 static const struct hid_device_id hidpp_devices[] = {
4176 	{ /* wireless touchpad */
4177 	  LDJ_DEVICE(0x4011),
4178 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
4179 			 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
4180 	{ /* wireless touchpad T650 */
4181 	  LDJ_DEVICE(0x4101),
4182 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
4183 	{ /* wireless touchpad T651 */
4184 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
4185 		USB_DEVICE_ID_LOGITECH_T651),
4186 	  .driver_data = HIDPP_QUIRK_CLASS_WTP },
4187 	{ /* Mouse Logitech Anywhere MX */
4188 	  LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4189 	{ /* Mouse Logitech Cube */
4190 	  LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4191 	{ /* Mouse Logitech M335 */
4192 	  LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4193 	{ /* Mouse Logitech M515 */
4194 	  LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4195 	{ /* Mouse logitech M560 */
4196 	  LDJ_DEVICE(0x402d),
4197 	  .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
4198 		| HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4199 	{ /* Mouse Logitech M705 (firmware RQM17) */
4200 	  LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4201 	{ /* Mouse Logitech M705 (firmware RQM67) */
4202 	  LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4203 	{ /* Mouse Logitech M720 */
4204 	  LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4205 	{ /* Mouse Logitech MX Anywhere 2 */
4206 	  LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4207 	{ LDJ_DEVICE(0x4072), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4208 	{ LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4209 	{ LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4210 	{ LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4211 	{ /* Mouse Logitech MX Anywhere 2S */
4212 	  LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4213 	{ /* Mouse Logitech MX Master */
4214 	  LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4215 	{ LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4216 	{ LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4217 	{ /* Mouse Logitech MX Master 2S */
4218 	  LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4219 	{ /* Mouse Logitech MX Master 3 */
4220 	  LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4221 	{ /* Mouse Logitech Performance MX */
4222 	  LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4223 	{ /* Keyboard logitech K400 */
4224 	  LDJ_DEVICE(0x4024),
4225 	  .driver_data = HIDPP_QUIRK_CLASS_K400 },
4226 	{ /* Solar Keyboard Logitech K750 */
4227 	  LDJ_DEVICE(0x4002),
4228 	  .driver_data = HIDPP_QUIRK_CLASS_K750 },
4229 	{ /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */
4230 	  LDJ_DEVICE(0xb305),
4231 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4232 	{ /* Dinovo Edge (Bluetooth-receiver in HID proxy mode) */
4233 	  LDJ_DEVICE(0xb309),
4234 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4235 	{ /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */
4236 	  LDJ_DEVICE(0xb30b),
4237 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4238 
4239 	{ LDJ_DEVICE(HID_ANY_ID) },
4240 
4241 	{ /* Keyboard LX501 (Y-RR53) */
4242 	  L27MHZ_DEVICE(0x0049),
4243 	  .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
4244 	{ /* Keyboard MX3000 (Y-RAM74) */
4245 	  L27MHZ_DEVICE(0x0057),
4246 	  .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
4247 	{ /* Keyboard MX3200 (Y-RAV80) */
4248 	  L27MHZ_DEVICE(0x005c),
4249 	  .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
4250 	{ /* S510 Media Remote */
4251 	  L27MHZ_DEVICE(0x00fe),
4252 	  .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
4253 
4254 	{ L27MHZ_DEVICE(HID_ANY_ID) },
4255 
4256 	{ /* Logitech G403 Wireless Gaming Mouse over USB */
4257 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) },
4258 	{ /* Logitech G703 Gaming Mouse over USB */
4259 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) },
4260 	{ /* Logitech G703 Hero Gaming Mouse over USB */
4261 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) },
4262 	{ /* Logitech G900 Gaming Mouse over USB */
4263 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) },
4264 	{ /* Logitech G903 Gaming Mouse over USB */
4265 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) },
4266 	{ /* Logitech G903 Hero Gaming Mouse over USB */
4267 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) },
4268 	{ /* Logitech G920 Wheel over USB */
4269 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
4270 		.driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
4271 	{ /* Logitech G Pro Gaming Mouse over USB */
4272 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) },
4273 
4274 	{ /* MX5000 keyboard over Bluetooth */
4275 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305),
4276 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4277 	{ /* Dinovo Edge keyboard over Bluetooth */
4278 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb309),
4279 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4280 	{ /* MX5500 keyboard over Bluetooth */
4281 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b),
4282 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4283 	{ /* M-RCQ142 V470 Cordless Laser Mouse over Bluetooth */
4284 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb008) },
4285 	{ /* MX Master mouse over Bluetooth */
4286 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012),
4287 	  .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4288 	{ /* MX Ergo trackball over Bluetooth */
4289 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01d) },
4290 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e),
4291 	  .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4292 	{ /* MX Master 3 mouse over Bluetooth */
4293 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023),
4294 	  .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4295 	{}
4296 };
4297 
4298 MODULE_DEVICE_TABLE(hid, hidpp_devices);
4299 
4300 static const struct hid_usage_id hidpp_usages[] = {
4301 	{ HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES },
4302 	{ HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
4303 };
4304 
4305 static struct hid_driver hidpp_driver = {
4306 	.name = "logitech-hidpp-device",
4307 	.id_table = hidpp_devices,
4308 	.report_fixup = hidpp_report_fixup,
4309 	.probe = hidpp_probe,
4310 	.remove = hidpp_remove,
4311 	.raw_event = hidpp_raw_event,
4312 	.usage_table = hidpp_usages,
4313 	.event = hidpp_event,
4314 	.input_configured = hidpp_input_configured,
4315 	.input_mapping = hidpp_input_mapping,
4316 	.input_mapped = hidpp_input_mapped,
4317 };
4318 
4319 module_hid_driver(hidpp_driver);
4320