1 /*
2  *  HIDPP protocol for Logitech Unifying receivers
3  *
4  *  Copyright (c) 2011 Logitech (c)
5  *  Copyright (c) 2012-2013 Google (c)
6  *  Copyright (c) 2013-2014 Red Hat Inc.
7  */
8 
9 /*
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the Free
12  * Software Foundation; version 2 of the License.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/device.h>
18 #include <linux/input.h>
19 #include <linux/usb.h>
20 #include <linux/hid.h>
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/sched.h>
24 #include <linux/sched/clock.h>
25 #include <linux/kfifo.h>
26 #include <linux/input/mt.h>
27 #include <linux/workqueue.h>
28 #include <linux/atomic.h>
29 #include <linux/fixp-arith.h>
30 #include <asm/unaligned.h>
31 #include "usbhid/usbhid.h"
32 #include "hid-ids.h"
33 
34 MODULE_LICENSE("GPL");
35 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
36 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
37 
38 static bool disable_raw_mode;
39 module_param(disable_raw_mode, bool, 0644);
40 MODULE_PARM_DESC(disable_raw_mode,
41 	"Disable Raw mode reporting for touchpads and keep firmware gestures.");
42 
43 static bool disable_tap_to_click;
44 module_param(disable_tap_to_click, bool, 0644);
45 MODULE_PARM_DESC(disable_tap_to_click,
46 	"Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
47 
48 #define REPORT_ID_HIDPP_SHORT			0x10
49 #define REPORT_ID_HIDPP_LONG			0x11
50 #define REPORT_ID_HIDPP_VERY_LONG		0x12
51 
52 #define HIDPP_REPORT_SHORT_LENGTH		7
53 #define HIDPP_REPORT_LONG_LENGTH		20
54 #define HIDPP_REPORT_VERY_LONG_LENGTH		64
55 
56 #define HIDPP_QUIRK_CLASS_WTP			BIT(0)
57 #define HIDPP_QUIRK_CLASS_M560			BIT(1)
58 #define HIDPP_QUIRK_CLASS_K400			BIT(2)
59 #define HIDPP_QUIRK_CLASS_G920			BIT(3)
60 #define HIDPP_QUIRK_CLASS_K750			BIT(4)
61 
62 /* bits 2..20 are reserved for classes */
63 /* #define HIDPP_QUIRK_CONNECT_EVENTS		BIT(21) disabled */
64 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS	BIT(22)
65 #define HIDPP_QUIRK_NO_HIDINPUT			BIT(23)
66 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS	BIT(24)
67 #define HIDPP_QUIRK_UNIFYING			BIT(25)
68 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0		BIT(26)
69 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120		BIT(27)
70 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121		BIT(28)
71 
72 /* Convenience constant to check for any high-res support. */
73 #define HIDPP_QUIRK_HI_RES_SCROLL	(HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
74 					 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
75 					 HIDPP_QUIRK_HI_RES_SCROLL_X2121)
76 
77 #define HIDPP_QUIRK_DELAYED_INIT		HIDPP_QUIRK_NO_HIDINPUT
78 
79 #define HIDPP_CAPABILITY_HIDPP10_BATTERY	BIT(0)
80 #define HIDPP_CAPABILITY_HIDPP20_BATTERY	BIT(1)
81 #define HIDPP_CAPABILITY_BATTERY_MILEAGE	BIT(2)
82 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS	BIT(3)
83 
84 /*
85  * There are two hidpp protocols in use, the first version hidpp10 is known
86  * as register access protocol or RAP, the second version hidpp20 is known as
87  * feature access protocol or FAP
88  *
89  * Most older devices (including the Unifying usb receiver) use the RAP protocol
90  * where as most newer devices use the FAP protocol. Both protocols are
91  * compatible with the underlying transport, which could be usb, Unifiying, or
92  * bluetooth. The message lengths are defined by the hid vendor specific report
93  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
94  * the HIDPP_LONG report type (total message length 20 bytes)
95  *
96  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
97  * messages. The Unifying receiver itself responds to RAP messages (device index
98  * is 0xFF for the receiver), and all messages (short or long) with a device
99  * index between 1 and 6 are passed untouched to the corresponding paired
100  * Unifying device.
101  *
102  * The paired device can be RAP or FAP, it will receive the message untouched
103  * from the Unifiying receiver.
104  */
105 
106 struct fap {
107 	u8 feature_index;
108 	u8 funcindex_clientid;
109 	u8 params[HIDPP_REPORT_VERY_LONG_LENGTH - 4U];
110 };
111 
112 struct rap {
113 	u8 sub_id;
114 	u8 reg_address;
115 	u8 params[HIDPP_REPORT_VERY_LONG_LENGTH - 4U];
116 };
117 
118 struct hidpp_report {
119 	u8 report_id;
120 	u8 device_index;
121 	union {
122 		struct fap fap;
123 		struct rap rap;
124 		u8 rawbytes[sizeof(struct fap)];
125 	};
126 } __packed;
127 
128 struct hidpp_battery {
129 	u8 feature_index;
130 	u8 solar_feature_index;
131 	struct power_supply_desc desc;
132 	struct power_supply *ps;
133 	char name[64];
134 	int status;
135 	int capacity;
136 	int level;
137 	bool online;
138 };
139 
140 /**
141  * struct hidpp_scroll_counter - Utility class for processing high-resolution
142  *                             scroll events.
143  * @dev: the input device for which events should be reported.
144  * @wheel_multiplier: the scalar multiplier to be applied to each wheel event
145  * @remainder: counts the number of high-resolution units moved since the last
146  *             low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should
147  *             only be used by class methods.
148  * @direction: direction of last movement (1 or -1)
149  * @last_time: last event time, used to reset remainder after inactivity
150  */
151 struct hidpp_scroll_counter {
152 	struct input_dev *dev;
153 	int wheel_multiplier;
154 	int remainder;
155 	int direction;
156 	unsigned long long last_time;
157 };
158 
159 struct hidpp_device {
160 	struct hid_device *hid_dev;
161 	struct mutex send_mutex;
162 	void *send_receive_buf;
163 	char *name;		/* will never be NULL and should not be freed */
164 	wait_queue_head_t wait;
165 	bool answer_available;
166 	u8 protocol_major;
167 	u8 protocol_minor;
168 
169 	void *private_data;
170 
171 	struct work_struct work;
172 	struct kfifo delayed_work_fifo;
173 	atomic_t connected;
174 	struct input_dev *delayed_input;
175 
176 	unsigned long quirks;
177 	unsigned long capabilities;
178 
179 	struct hidpp_battery battery;
180 	struct hidpp_scroll_counter vertical_wheel_counter;
181 };
182 
183 /* HID++ 1.0 error codes */
184 #define HIDPP_ERROR				0x8f
185 #define HIDPP_ERROR_SUCCESS			0x00
186 #define HIDPP_ERROR_INVALID_SUBID		0x01
187 #define HIDPP_ERROR_INVALID_ADRESS		0x02
188 #define HIDPP_ERROR_INVALID_VALUE		0x03
189 #define HIDPP_ERROR_CONNECT_FAIL		0x04
190 #define HIDPP_ERROR_TOO_MANY_DEVICES		0x05
191 #define HIDPP_ERROR_ALREADY_EXISTS		0x06
192 #define HIDPP_ERROR_BUSY			0x07
193 #define HIDPP_ERROR_UNKNOWN_DEVICE		0x08
194 #define HIDPP_ERROR_RESOURCE_ERROR		0x09
195 #define HIDPP_ERROR_REQUEST_UNAVAILABLE		0x0a
196 #define HIDPP_ERROR_INVALID_PARAM_VALUE		0x0b
197 #define HIDPP_ERROR_WRONG_PIN_CODE		0x0c
198 /* HID++ 2.0 error codes */
199 #define HIDPP20_ERROR				0xff
200 
201 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
202 
203 static int __hidpp_send_report(struct hid_device *hdev,
204 				struct hidpp_report *hidpp_report)
205 {
206 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
207 	int fields_count, ret;
208 
209 	hidpp = hid_get_drvdata(hdev);
210 
211 	switch (hidpp_report->report_id) {
212 	case REPORT_ID_HIDPP_SHORT:
213 		fields_count = HIDPP_REPORT_SHORT_LENGTH;
214 		break;
215 	case REPORT_ID_HIDPP_LONG:
216 		fields_count = HIDPP_REPORT_LONG_LENGTH;
217 		break;
218 	case REPORT_ID_HIDPP_VERY_LONG:
219 		fields_count = HIDPP_REPORT_VERY_LONG_LENGTH;
220 		break;
221 	default:
222 		return -ENODEV;
223 	}
224 
225 	/*
226 	 * set the device_index as the receiver, it will be overwritten by
227 	 * hid_hw_request if needed
228 	 */
229 	hidpp_report->device_index = 0xff;
230 
231 	if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
232 		ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
233 	} else {
234 		ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
235 			(u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
236 			HID_REQ_SET_REPORT);
237 	}
238 
239 	return ret == fields_count ? 0 : -1;
240 }
241 
242 /**
243  * hidpp_send_message_sync() returns 0 in case of success, and something else
244  * in case of a failure.
245  * - If ' something else' is positive, that means that an error has been raised
246  *   by the protocol itself.
247  * - If ' something else' is negative, that means that we had a classic error
248  *   (-ENOMEM, -EPIPE, etc...)
249  */
250 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
251 	struct hidpp_report *message,
252 	struct hidpp_report *response)
253 {
254 	int ret;
255 
256 	mutex_lock(&hidpp->send_mutex);
257 
258 	hidpp->send_receive_buf = response;
259 	hidpp->answer_available = false;
260 
261 	/*
262 	 * So that we can later validate the answer when it arrives
263 	 * in hidpp_raw_event
264 	 */
265 	*response = *message;
266 
267 	ret = __hidpp_send_report(hidpp->hid_dev, message);
268 
269 	if (ret) {
270 		dbg_hid("__hidpp_send_report returned err: %d\n", ret);
271 		memset(response, 0, sizeof(struct hidpp_report));
272 		goto exit;
273 	}
274 
275 	if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
276 				5*HZ)) {
277 		dbg_hid("%s:timeout waiting for response\n", __func__);
278 		memset(response, 0, sizeof(struct hidpp_report));
279 		ret = -ETIMEDOUT;
280 	}
281 
282 	if (response->report_id == REPORT_ID_HIDPP_SHORT &&
283 	    response->rap.sub_id == HIDPP_ERROR) {
284 		ret = response->rap.params[1];
285 		dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
286 		goto exit;
287 	}
288 
289 	if ((response->report_id == REPORT_ID_HIDPP_LONG ||
290 			response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
291 			response->fap.feature_index == HIDPP20_ERROR) {
292 		ret = response->fap.params[1];
293 		dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
294 		goto exit;
295 	}
296 
297 exit:
298 	mutex_unlock(&hidpp->send_mutex);
299 	return ret;
300 
301 }
302 
303 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
304 	u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
305 	struct hidpp_report *response)
306 {
307 	struct hidpp_report *message;
308 	int ret;
309 
310 	if (param_count > sizeof(message->fap.params))
311 		return -EINVAL;
312 
313 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
314 	if (!message)
315 		return -ENOMEM;
316 
317 	if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
318 		message->report_id = REPORT_ID_HIDPP_VERY_LONG;
319 	else
320 		message->report_id = REPORT_ID_HIDPP_LONG;
321 	message->fap.feature_index = feat_index;
322 	message->fap.funcindex_clientid = funcindex_clientid;
323 	memcpy(&message->fap.params, params, param_count);
324 
325 	ret = hidpp_send_message_sync(hidpp, message, response);
326 	kfree(message);
327 	return ret;
328 }
329 
330 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
331 	u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
332 	struct hidpp_report *response)
333 {
334 	struct hidpp_report *message;
335 	int ret, max_count;
336 
337 	switch (report_id) {
338 	case REPORT_ID_HIDPP_SHORT:
339 		max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
340 		break;
341 	case REPORT_ID_HIDPP_LONG:
342 		max_count = HIDPP_REPORT_LONG_LENGTH - 4;
343 		break;
344 	case REPORT_ID_HIDPP_VERY_LONG:
345 		max_count = HIDPP_REPORT_VERY_LONG_LENGTH - 4;
346 		break;
347 	default:
348 		return -EINVAL;
349 	}
350 
351 	if (param_count > max_count)
352 		return -EINVAL;
353 
354 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
355 	if (!message)
356 		return -ENOMEM;
357 	message->report_id = report_id;
358 	message->rap.sub_id = sub_id;
359 	message->rap.reg_address = reg_address;
360 	memcpy(&message->rap.params, params, param_count);
361 
362 	ret = hidpp_send_message_sync(hidpp_dev, message, response);
363 	kfree(message);
364 	return ret;
365 }
366 
367 static void delayed_work_cb(struct work_struct *work)
368 {
369 	struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
370 							work);
371 	hidpp_connect_event(hidpp);
372 }
373 
374 static inline bool hidpp_match_answer(struct hidpp_report *question,
375 		struct hidpp_report *answer)
376 {
377 	return (answer->fap.feature_index == question->fap.feature_index) &&
378 	   (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
379 }
380 
381 static inline bool hidpp_match_error(struct hidpp_report *question,
382 		struct hidpp_report *answer)
383 {
384 	return ((answer->rap.sub_id == HIDPP_ERROR) ||
385 	    (answer->fap.feature_index == HIDPP20_ERROR)) &&
386 	    (answer->fap.funcindex_clientid == question->fap.feature_index) &&
387 	    (answer->fap.params[0] == question->fap.funcindex_clientid);
388 }
389 
390 static inline bool hidpp_report_is_connect_event(struct hidpp_report *report)
391 {
392 	return (report->report_id == REPORT_ID_HIDPP_SHORT) &&
393 		(report->rap.sub_id == 0x41);
394 }
395 
396 /**
397  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
398  */
399 static void hidpp_prefix_name(char **name, int name_length)
400 {
401 #define PREFIX_LENGTH 9 /* "Logitech " */
402 
403 	int new_length;
404 	char *new_name;
405 
406 	if (name_length > PREFIX_LENGTH &&
407 	    strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
408 		/* The prefix has is already in the name */
409 		return;
410 
411 	new_length = PREFIX_LENGTH + name_length;
412 	new_name = kzalloc(new_length, GFP_KERNEL);
413 	if (!new_name)
414 		return;
415 
416 	snprintf(new_name, new_length, "Logitech %s", *name);
417 
418 	kfree(*name);
419 
420 	*name = new_name;
421 }
422 
423 /**
424  * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll
425  *                                        events given a high-resolution wheel
426  *                                        movement.
427  * @counter: a hid_scroll_counter struct describing the wheel.
428  * @hi_res_value: the movement of the wheel, in the mouse's high-resolution
429  *                units.
430  *
431  * Given a high-resolution movement, this function converts the movement into
432  * fractions of 120 and emits high-resolution scroll events for the input
433  * device. It also uses the multiplier from &struct hid_scroll_counter to
434  * emit low-resolution scroll events when appropriate for
435  * backwards-compatibility with userspace input libraries.
436  */
437 static void hidpp_scroll_counter_handle_scroll(struct hidpp_scroll_counter *counter,
438 					       int hi_res_value)
439 {
440 	int low_res_value, remainder, direction;
441 	unsigned long long now, previous;
442 
443 	hi_res_value = hi_res_value * 120/counter->wheel_multiplier;
444 	input_report_rel(counter->dev, REL_WHEEL_HI_RES, hi_res_value);
445 
446 	remainder = counter->remainder;
447 	direction = hi_res_value > 0 ? 1 : -1;
448 
449 	now = sched_clock();
450 	previous = counter->last_time;
451 	counter->last_time = now;
452 	/*
453 	 * Reset the remainder after a period of inactivity or when the
454 	 * direction changes. This prevents the REL_WHEEL emulation point
455 	 * from sliding for devices that don't always provide the same
456 	 * number of movements per detent.
457 	 */
458 	if (now - previous > 1000000000 || direction != counter->direction)
459 		remainder = 0;
460 
461 	counter->direction = direction;
462 	remainder += hi_res_value;
463 
464 	/* Some wheels will rest 7/8ths of a detent from the previous detent
465 	 * after slow movement, so we want the threshold for low-res events to
466 	 * be in the middle between two detents (e.g. after 4/8ths) as
467 	 * opposed to on the detents themselves (8/8ths).
468 	 */
469 	if (abs(remainder) >= 60) {
470 		/* Add (or subtract) 1 because we want to trigger when the wheel
471 		 * is half-way to the next detent (i.e. scroll 1 detent after a
472 		 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement,
473 		 * etc.).
474 		 */
475 		low_res_value = remainder / 120;
476 		if (low_res_value == 0)
477 			low_res_value = (hi_res_value > 0 ? 1 : -1);
478 		input_report_rel(counter->dev, REL_WHEEL, low_res_value);
479 		remainder -= low_res_value * 120;
480 	}
481 	counter->remainder = remainder;
482 }
483 
484 /* -------------------------------------------------------------------------- */
485 /* HIDP++ 1.0 commands                                                        */
486 /* -------------------------------------------------------------------------- */
487 
488 #define HIDPP_SET_REGISTER				0x80
489 #define HIDPP_GET_REGISTER				0x81
490 #define HIDPP_SET_LONG_REGISTER				0x82
491 #define HIDPP_GET_LONG_REGISTER				0x83
492 
493 /**
494  * hidpp10_set_register_bit() - Sets a single bit in a HID++ 1.0 register.
495  * @hidpp_dev: the device to set the register on.
496  * @register_address: the address of the register to modify.
497  * @byte: the byte of the register to modify. Should be less than 3.
498  * Return: 0 if successful, otherwise a negative error code.
499  */
500 static int hidpp10_set_register_bit(struct hidpp_device *hidpp_dev,
501 	u8 register_address, u8 byte, u8 bit)
502 {
503 	struct hidpp_report response;
504 	int ret;
505 	u8 params[3] = { 0 };
506 
507 	ret = hidpp_send_rap_command_sync(hidpp_dev,
508 					  REPORT_ID_HIDPP_SHORT,
509 					  HIDPP_GET_REGISTER,
510 					  register_address,
511 					  NULL, 0, &response);
512 	if (ret)
513 		return ret;
514 
515 	memcpy(params, response.rap.params, 3);
516 
517 	params[byte] |= BIT(bit);
518 
519 	return hidpp_send_rap_command_sync(hidpp_dev,
520 					   REPORT_ID_HIDPP_SHORT,
521 					   HIDPP_SET_REGISTER,
522 					   register_address,
523 					   params, 3, &response);
524 }
525 
526 
527 #define HIDPP_REG_GENERAL				0x00
528 
529 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
530 {
531 	return hidpp10_set_register_bit(hidpp_dev, HIDPP_REG_GENERAL, 0, 4);
532 }
533 
534 #define HIDPP_REG_FEATURES				0x01
535 
536 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
537 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
538 {
539 	return hidpp10_set_register_bit(hidpp_dev, HIDPP_REG_FEATURES, 0, 6);
540 }
541 
542 #define HIDPP_REG_BATTERY_STATUS			0x07
543 
544 static int hidpp10_battery_status_map_level(u8 param)
545 {
546 	int level;
547 
548 	switch (param) {
549 	case 1 ... 2:
550 		level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
551 		break;
552 	case 3 ... 4:
553 		level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
554 		break;
555 	case 5 ... 6:
556 		level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
557 		break;
558 	case 7:
559 		level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
560 		break;
561 	default:
562 		level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
563 	}
564 
565 	return level;
566 }
567 
568 static int hidpp10_battery_status_map_status(u8 param)
569 {
570 	int status;
571 
572 	switch (param) {
573 	case 0x00:
574 		/* discharging (in use) */
575 		status = POWER_SUPPLY_STATUS_DISCHARGING;
576 		break;
577 	case 0x21: /* (standard) charging */
578 	case 0x24: /* fast charging */
579 	case 0x25: /* slow charging */
580 		status = POWER_SUPPLY_STATUS_CHARGING;
581 		break;
582 	case 0x26: /* topping charge */
583 	case 0x22: /* charge complete */
584 		status = POWER_SUPPLY_STATUS_FULL;
585 		break;
586 	case 0x20: /* unknown */
587 		status = POWER_SUPPLY_STATUS_UNKNOWN;
588 		break;
589 	/*
590 	 * 0x01...0x1F = reserved (not charging)
591 	 * 0x23 = charging error
592 	 * 0x27..0xff = reserved
593 	 */
594 	default:
595 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
596 		break;
597 	}
598 
599 	return status;
600 }
601 
602 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
603 {
604 	struct hidpp_report response;
605 	int ret, status;
606 
607 	ret = hidpp_send_rap_command_sync(hidpp,
608 					REPORT_ID_HIDPP_SHORT,
609 					HIDPP_GET_REGISTER,
610 					HIDPP_REG_BATTERY_STATUS,
611 					NULL, 0, &response);
612 	if (ret)
613 		return ret;
614 
615 	hidpp->battery.level =
616 		hidpp10_battery_status_map_level(response.rap.params[0]);
617 	status = hidpp10_battery_status_map_status(response.rap.params[1]);
618 	hidpp->battery.status = status;
619 	/* the capacity is only available when discharging or full */
620 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
621 				status == POWER_SUPPLY_STATUS_FULL;
622 
623 	return 0;
624 }
625 
626 #define HIDPP_REG_BATTERY_MILEAGE			0x0D
627 
628 static int hidpp10_battery_mileage_map_status(u8 param)
629 {
630 	int status;
631 
632 	switch (param >> 6) {
633 	case 0x00:
634 		/* discharging (in use) */
635 		status = POWER_SUPPLY_STATUS_DISCHARGING;
636 		break;
637 	case 0x01: /* charging */
638 		status = POWER_SUPPLY_STATUS_CHARGING;
639 		break;
640 	case 0x02: /* charge complete */
641 		status = POWER_SUPPLY_STATUS_FULL;
642 		break;
643 	/*
644 	 * 0x03 = charging error
645 	 */
646 	default:
647 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
648 		break;
649 	}
650 
651 	return status;
652 }
653 
654 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
655 {
656 	struct hidpp_report response;
657 	int ret, status;
658 
659 	ret = hidpp_send_rap_command_sync(hidpp,
660 					REPORT_ID_HIDPP_SHORT,
661 					HIDPP_GET_REGISTER,
662 					HIDPP_REG_BATTERY_MILEAGE,
663 					NULL, 0, &response);
664 	if (ret)
665 		return ret;
666 
667 	hidpp->battery.capacity = response.rap.params[0];
668 	status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
669 	hidpp->battery.status = status;
670 	/* the capacity is only available when discharging or full */
671 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
672 				status == POWER_SUPPLY_STATUS_FULL;
673 
674 	return 0;
675 }
676 
677 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
678 {
679 	struct hidpp_report *report = (struct hidpp_report *)data;
680 	int status, capacity, level;
681 	bool changed;
682 
683 	if (report->report_id != REPORT_ID_HIDPP_SHORT)
684 		return 0;
685 
686 	switch (report->rap.sub_id) {
687 	case HIDPP_REG_BATTERY_STATUS:
688 		capacity = hidpp->battery.capacity;
689 		level = hidpp10_battery_status_map_level(report->rawbytes[1]);
690 		status = hidpp10_battery_status_map_status(report->rawbytes[2]);
691 		break;
692 	case HIDPP_REG_BATTERY_MILEAGE:
693 		capacity = report->rap.params[0];
694 		level = hidpp->battery.level;
695 		status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
696 		break;
697 	default:
698 		return 0;
699 	}
700 
701 	changed = capacity != hidpp->battery.capacity ||
702 		  level != hidpp->battery.level ||
703 		  status != hidpp->battery.status;
704 
705 	/* the capacity is only available when discharging or full */
706 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
707 				status == POWER_SUPPLY_STATUS_FULL;
708 
709 	if (changed) {
710 		hidpp->battery.level = level;
711 		hidpp->battery.status = status;
712 		if (hidpp->battery.ps)
713 			power_supply_changed(hidpp->battery.ps);
714 	}
715 
716 	return 0;
717 }
718 
719 #define HIDPP_REG_PAIRING_INFORMATION			0xB5
720 #define HIDPP_EXTENDED_PAIRING				0x30
721 #define HIDPP_DEVICE_NAME				0x40
722 
723 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
724 {
725 	struct hidpp_report response;
726 	int ret;
727 	u8 params[1] = { HIDPP_DEVICE_NAME };
728 	char *name;
729 	int len;
730 
731 	ret = hidpp_send_rap_command_sync(hidpp_dev,
732 					REPORT_ID_HIDPP_SHORT,
733 					HIDPP_GET_LONG_REGISTER,
734 					HIDPP_REG_PAIRING_INFORMATION,
735 					params, 1, &response);
736 	if (ret)
737 		return NULL;
738 
739 	len = response.rap.params[1];
740 
741 	if (2 + len > sizeof(response.rap.params))
742 		return NULL;
743 
744 	name = kzalloc(len + 1, GFP_KERNEL);
745 	if (!name)
746 		return NULL;
747 
748 	memcpy(name, &response.rap.params[2], len);
749 
750 	/* include the terminating '\0' */
751 	hidpp_prefix_name(&name, len + 1);
752 
753 	return name;
754 }
755 
756 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
757 {
758 	struct hidpp_report response;
759 	int ret;
760 	u8 params[1] = { HIDPP_EXTENDED_PAIRING };
761 
762 	ret = hidpp_send_rap_command_sync(hidpp,
763 					REPORT_ID_HIDPP_SHORT,
764 					HIDPP_GET_LONG_REGISTER,
765 					HIDPP_REG_PAIRING_INFORMATION,
766 					params, 1, &response);
767 	if (ret)
768 		return ret;
769 
770 	/*
771 	 * We don't care about LE or BE, we will output it as a string
772 	 * with %4phD, so we need to keep the order.
773 	 */
774 	*serial = *((u32 *)&response.rap.params[1]);
775 	return 0;
776 }
777 
778 static int hidpp_unifying_init(struct hidpp_device *hidpp)
779 {
780 	struct hid_device *hdev = hidpp->hid_dev;
781 	const char *name;
782 	u32 serial;
783 	int ret;
784 
785 	ret = hidpp_unifying_get_serial(hidpp, &serial);
786 	if (ret)
787 		return ret;
788 
789 	snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
790 		 hdev->product, &serial);
791 	dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
792 
793 	name = hidpp_unifying_get_name(hidpp);
794 	if (!name)
795 		return -EIO;
796 
797 	snprintf(hdev->name, sizeof(hdev->name), "%s", name);
798 	dbg_hid("HID++ Unifying: Got name: %s\n", name);
799 
800 	kfree(name);
801 	return 0;
802 }
803 
804 /* -------------------------------------------------------------------------- */
805 /* 0x0000: Root                                                               */
806 /* -------------------------------------------------------------------------- */
807 
808 #define HIDPP_PAGE_ROOT					0x0000
809 #define HIDPP_PAGE_ROOT_IDX				0x00
810 
811 #define CMD_ROOT_GET_FEATURE				0x01
812 #define CMD_ROOT_GET_PROTOCOL_VERSION			0x11
813 
814 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
815 	u8 *feature_index, u8 *feature_type)
816 {
817 	struct hidpp_report response;
818 	int ret;
819 	u8 params[2] = { feature >> 8, feature & 0x00FF };
820 
821 	ret = hidpp_send_fap_command_sync(hidpp,
822 			HIDPP_PAGE_ROOT_IDX,
823 			CMD_ROOT_GET_FEATURE,
824 			params, 2, &response);
825 	if (ret)
826 		return ret;
827 
828 	if (response.fap.params[0] == 0)
829 		return -ENOENT;
830 
831 	*feature_index = response.fap.params[0];
832 	*feature_type = response.fap.params[1];
833 
834 	return ret;
835 }
836 
837 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
838 {
839 	struct hidpp_report response;
840 	int ret;
841 
842 	ret = hidpp_send_fap_command_sync(hidpp,
843 			HIDPP_PAGE_ROOT_IDX,
844 			CMD_ROOT_GET_PROTOCOL_VERSION,
845 			NULL, 0, &response);
846 
847 	if (ret == HIDPP_ERROR_INVALID_SUBID) {
848 		hidpp->protocol_major = 1;
849 		hidpp->protocol_minor = 0;
850 		return 0;
851 	}
852 
853 	/* the device might not be connected */
854 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
855 		return -EIO;
856 
857 	if (ret > 0) {
858 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
859 			__func__, ret);
860 		return -EPROTO;
861 	}
862 	if (ret)
863 		return ret;
864 
865 	hidpp->protocol_major = response.fap.params[0];
866 	hidpp->protocol_minor = response.fap.params[1];
867 
868 	return ret;
869 }
870 
871 static bool hidpp_is_connected(struct hidpp_device *hidpp)
872 {
873 	int ret;
874 
875 	ret = hidpp_root_get_protocol_version(hidpp);
876 	if (!ret)
877 		hid_dbg(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
878 			hidpp->protocol_major, hidpp->protocol_minor);
879 	return ret == 0;
880 }
881 
882 /* -------------------------------------------------------------------------- */
883 /* 0x0005: GetDeviceNameType                                                  */
884 /* -------------------------------------------------------------------------- */
885 
886 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE			0x0005
887 
888 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT		0x01
889 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME	0x11
890 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE		0x21
891 
892 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
893 	u8 feature_index, u8 *nameLength)
894 {
895 	struct hidpp_report response;
896 	int ret;
897 
898 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
899 		CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
900 
901 	if (ret > 0) {
902 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
903 			__func__, ret);
904 		return -EPROTO;
905 	}
906 	if (ret)
907 		return ret;
908 
909 	*nameLength = response.fap.params[0];
910 
911 	return ret;
912 }
913 
914 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
915 	u8 feature_index, u8 char_index, char *device_name, int len_buf)
916 {
917 	struct hidpp_report response;
918 	int ret, i;
919 	int count;
920 
921 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
922 		CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
923 		&response);
924 
925 	if (ret > 0) {
926 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
927 			__func__, ret);
928 		return -EPROTO;
929 	}
930 	if (ret)
931 		return ret;
932 
933 	switch (response.report_id) {
934 	case REPORT_ID_HIDPP_VERY_LONG:
935 		count = HIDPP_REPORT_VERY_LONG_LENGTH - 4;
936 		break;
937 	case REPORT_ID_HIDPP_LONG:
938 		count = HIDPP_REPORT_LONG_LENGTH - 4;
939 		break;
940 	case REPORT_ID_HIDPP_SHORT:
941 		count = HIDPP_REPORT_SHORT_LENGTH - 4;
942 		break;
943 	default:
944 		return -EPROTO;
945 	}
946 
947 	if (len_buf < count)
948 		count = len_buf;
949 
950 	for (i = 0; i < count; i++)
951 		device_name[i] = response.fap.params[i];
952 
953 	return count;
954 }
955 
956 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
957 {
958 	u8 feature_type;
959 	u8 feature_index;
960 	u8 __name_length;
961 	char *name;
962 	unsigned index = 0;
963 	int ret;
964 
965 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
966 		&feature_index, &feature_type);
967 	if (ret)
968 		return NULL;
969 
970 	ret = hidpp_devicenametype_get_count(hidpp, feature_index,
971 		&__name_length);
972 	if (ret)
973 		return NULL;
974 
975 	name = kzalloc(__name_length + 1, GFP_KERNEL);
976 	if (!name)
977 		return NULL;
978 
979 	while (index < __name_length) {
980 		ret = hidpp_devicenametype_get_device_name(hidpp,
981 			feature_index, index, name + index,
982 			__name_length - index);
983 		if (ret <= 0) {
984 			kfree(name);
985 			return NULL;
986 		}
987 		index += ret;
988 	}
989 
990 	/* include the terminating '\0' */
991 	hidpp_prefix_name(&name, __name_length + 1);
992 
993 	return name;
994 }
995 
996 /* -------------------------------------------------------------------------- */
997 /* 0x1000: Battery level status                                               */
998 /* -------------------------------------------------------------------------- */
999 
1000 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS				0x1000
1001 
1002 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS	0x00
1003 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY		0x10
1004 
1005 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST			0x00
1006 
1007 #define FLAG_BATTERY_LEVEL_DISABLE_OSD				BIT(0)
1008 #define FLAG_BATTERY_LEVEL_MILEAGE				BIT(1)
1009 #define FLAG_BATTERY_LEVEL_RECHARGEABLE				BIT(2)
1010 
1011 static int hidpp_map_battery_level(int capacity)
1012 {
1013 	if (capacity < 11)
1014 		return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1015 	else if (capacity < 31)
1016 		return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1017 	else if (capacity < 81)
1018 		return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1019 	return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1020 }
1021 
1022 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
1023 						    int *next_capacity,
1024 						    int *level)
1025 {
1026 	int status;
1027 
1028 	*capacity = data[0];
1029 	*next_capacity = data[1];
1030 	*level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1031 
1032 	/* When discharging, we can rely on the device reported capacity.
1033 	 * For all other states the device reports 0 (unknown).
1034 	 */
1035 	switch (data[2]) {
1036 		case 0: /* discharging (in use) */
1037 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1038 			*level = hidpp_map_battery_level(*capacity);
1039 			break;
1040 		case 1: /* recharging */
1041 			status = POWER_SUPPLY_STATUS_CHARGING;
1042 			break;
1043 		case 2: /* charge in final stage */
1044 			status = POWER_SUPPLY_STATUS_CHARGING;
1045 			break;
1046 		case 3: /* charge complete */
1047 			status = POWER_SUPPLY_STATUS_FULL;
1048 			*level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1049 			*capacity = 100;
1050 			break;
1051 		case 4: /* recharging below optimal speed */
1052 			status = POWER_SUPPLY_STATUS_CHARGING;
1053 			break;
1054 		/* 5 = invalid battery type
1055 		   6 = thermal error
1056 		   7 = other charging error */
1057 		default:
1058 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1059 			break;
1060 	}
1061 
1062 	return status;
1063 }
1064 
1065 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
1066 						     u8 feature_index,
1067 						     int *status,
1068 						     int *capacity,
1069 						     int *next_capacity,
1070 						     int *level)
1071 {
1072 	struct hidpp_report response;
1073 	int ret;
1074 	u8 *params = (u8 *)response.fap.params;
1075 
1076 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1077 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
1078 					  NULL, 0, &response);
1079 	if (ret > 0) {
1080 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1081 			__func__, ret);
1082 		return -EPROTO;
1083 	}
1084 	if (ret)
1085 		return ret;
1086 
1087 	*status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1088 							   next_capacity,
1089 							   level);
1090 
1091 	return 0;
1092 }
1093 
1094 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1095 						  u8 feature_index)
1096 {
1097 	struct hidpp_report response;
1098 	int ret;
1099 	u8 *params = (u8 *)response.fap.params;
1100 	unsigned int level_count, flags;
1101 
1102 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1103 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1104 					  NULL, 0, &response);
1105 	if (ret > 0) {
1106 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1107 			__func__, ret);
1108 		return -EPROTO;
1109 	}
1110 	if (ret)
1111 		return ret;
1112 
1113 	level_count = params[0];
1114 	flags = params[1];
1115 
1116 	if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1117 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1118 	else
1119 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1120 
1121 	return 0;
1122 }
1123 
1124 static int hidpp20_query_battery_info(struct hidpp_device *hidpp)
1125 {
1126 	u8 feature_type;
1127 	int ret;
1128 	int status, capacity, next_capacity, level;
1129 
1130 	if (hidpp->battery.feature_index == 0xff) {
1131 		ret = hidpp_root_get_feature(hidpp,
1132 					     HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1133 					     &hidpp->battery.feature_index,
1134 					     &feature_type);
1135 		if (ret)
1136 			return ret;
1137 	}
1138 
1139 	ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1140 						hidpp->battery.feature_index,
1141 						&status, &capacity,
1142 						&next_capacity, &level);
1143 	if (ret)
1144 		return ret;
1145 
1146 	ret = hidpp20_batterylevel_get_battery_info(hidpp,
1147 						hidpp->battery.feature_index);
1148 	if (ret)
1149 		return ret;
1150 
1151 	hidpp->battery.status = status;
1152 	hidpp->battery.capacity = capacity;
1153 	hidpp->battery.level = level;
1154 	/* the capacity is only available when discharging or full */
1155 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1156 				status == POWER_SUPPLY_STATUS_FULL;
1157 
1158 	return 0;
1159 }
1160 
1161 static int hidpp20_battery_event(struct hidpp_device *hidpp,
1162 				 u8 *data, int size)
1163 {
1164 	struct hidpp_report *report = (struct hidpp_report *)data;
1165 	int status, capacity, next_capacity, level;
1166 	bool changed;
1167 
1168 	if (report->fap.feature_index != hidpp->battery.feature_index ||
1169 	    report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1170 		return 0;
1171 
1172 	status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1173 							  &capacity,
1174 							  &next_capacity,
1175 							  &level);
1176 
1177 	/* the capacity is only available when discharging or full */
1178 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1179 				status == POWER_SUPPLY_STATUS_FULL;
1180 
1181 	changed = capacity != hidpp->battery.capacity ||
1182 		  level != hidpp->battery.level ||
1183 		  status != hidpp->battery.status;
1184 
1185 	if (changed) {
1186 		hidpp->battery.level = level;
1187 		hidpp->battery.capacity = capacity;
1188 		hidpp->battery.status = status;
1189 		if (hidpp->battery.ps)
1190 			power_supply_changed(hidpp->battery.ps);
1191 	}
1192 
1193 	return 0;
1194 }
1195 
1196 static enum power_supply_property hidpp_battery_props[] = {
1197 	POWER_SUPPLY_PROP_ONLINE,
1198 	POWER_SUPPLY_PROP_STATUS,
1199 	POWER_SUPPLY_PROP_SCOPE,
1200 	POWER_SUPPLY_PROP_MODEL_NAME,
1201 	POWER_SUPPLY_PROP_MANUFACTURER,
1202 	POWER_SUPPLY_PROP_SERIAL_NUMBER,
1203 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1204 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1205 };
1206 
1207 static int hidpp_battery_get_property(struct power_supply *psy,
1208 				      enum power_supply_property psp,
1209 				      union power_supply_propval *val)
1210 {
1211 	struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1212 	int ret = 0;
1213 
1214 	switch(psp) {
1215 		case POWER_SUPPLY_PROP_STATUS:
1216 			val->intval = hidpp->battery.status;
1217 			break;
1218 		case POWER_SUPPLY_PROP_CAPACITY:
1219 			val->intval = hidpp->battery.capacity;
1220 			break;
1221 		case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1222 			val->intval = hidpp->battery.level;
1223 			break;
1224 		case POWER_SUPPLY_PROP_SCOPE:
1225 			val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1226 			break;
1227 		case POWER_SUPPLY_PROP_ONLINE:
1228 			val->intval = hidpp->battery.online;
1229 			break;
1230 		case POWER_SUPPLY_PROP_MODEL_NAME:
1231 			if (!strncmp(hidpp->name, "Logitech ", 9))
1232 				val->strval = hidpp->name + 9;
1233 			else
1234 				val->strval = hidpp->name;
1235 			break;
1236 		case POWER_SUPPLY_PROP_MANUFACTURER:
1237 			val->strval = "Logitech";
1238 			break;
1239 		case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1240 			val->strval = hidpp->hid_dev->uniq;
1241 			break;
1242 		default:
1243 			ret = -EINVAL;
1244 			break;
1245 	}
1246 
1247 	return ret;
1248 }
1249 
1250 /* -------------------------------------------------------------------------- */
1251 /* 0x2120: Hi-resolution scrolling                                            */
1252 /* -------------------------------------------------------------------------- */
1253 
1254 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING			0x2120
1255 
1256 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE	0x10
1257 
1258 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1259 	bool enabled, u8 *multiplier)
1260 {
1261 	u8 feature_index;
1262 	u8 feature_type;
1263 	int ret;
1264 	u8 params[1];
1265 	struct hidpp_report response;
1266 
1267 	ret = hidpp_root_get_feature(hidpp,
1268 				     HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1269 				     &feature_index,
1270 				     &feature_type);
1271 	if (ret)
1272 		return ret;
1273 
1274 	params[0] = enabled ? BIT(0) : 0;
1275 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1276 					  CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1277 					  params, sizeof(params), &response);
1278 	if (ret)
1279 		return ret;
1280 	*multiplier = response.fap.params[1];
1281 	return 0;
1282 }
1283 
1284 /* -------------------------------------------------------------------------- */
1285 /* 0x2121: HiRes Wheel                                                        */
1286 /* -------------------------------------------------------------------------- */
1287 
1288 #define HIDPP_PAGE_HIRES_WHEEL		0x2121
1289 
1290 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY	0x00
1291 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE		0x20
1292 
1293 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1294 	u8 *multiplier)
1295 {
1296 	u8 feature_index;
1297 	u8 feature_type;
1298 	int ret;
1299 	struct hidpp_report response;
1300 
1301 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1302 				     &feature_index, &feature_type);
1303 	if (ret)
1304 		goto return_default;
1305 
1306 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1307 					  CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1308 					  NULL, 0, &response);
1309 	if (ret)
1310 		goto return_default;
1311 
1312 	*multiplier = response.fap.params[0];
1313 	return 0;
1314 return_default:
1315 	hid_warn(hidpp->hid_dev,
1316 		 "Couldn't get wheel multiplier (error %d)\n", ret);
1317 	return ret;
1318 }
1319 
1320 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1321 	bool high_resolution, bool use_hidpp)
1322 {
1323 	u8 feature_index;
1324 	u8 feature_type;
1325 	int ret;
1326 	u8 params[1];
1327 	struct hidpp_report response;
1328 
1329 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1330 				     &feature_index, &feature_type);
1331 	if (ret)
1332 		return ret;
1333 
1334 	params[0] = (invert          ? BIT(2) : 0) |
1335 		    (high_resolution ? BIT(1) : 0) |
1336 		    (use_hidpp       ? BIT(0) : 0);
1337 
1338 	return hidpp_send_fap_command_sync(hidpp, feature_index,
1339 					   CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1340 					   params, sizeof(params), &response);
1341 }
1342 
1343 /* -------------------------------------------------------------------------- */
1344 /* 0x4301: Solar Keyboard                                                     */
1345 /* -------------------------------------------------------------------------- */
1346 
1347 #define HIDPP_PAGE_SOLAR_KEYBOARD			0x4301
1348 
1349 #define CMD_SOLAR_SET_LIGHT_MEASURE			0x00
1350 
1351 #define EVENT_SOLAR_BATTERY_BROADCAST			0x00
1352 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE		0x10
1353 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON			0x20
1354 
1355 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1356 {
1357 	struct hidpp_report response;
1358 	u8 params[2] = { 1, 1 };
1359 	u8 feature_type;
1360 	int ret;
1361 
1362 	if (hidpp->battery.feature_index == 0xff) {
1363 		ret = hidpp_root_get_feature(hidpp,
1364 					     HIDPP_PAGE_SOLAR_KEYBOARD,
1365 					     &hidpp->battery.solar_feature_index,
1366 					     &feature_type);
1367 		if (ret)
1368 			return ret;
1369 	}
1370 
1371 	ret = hidpp_send_fap_command_sync(hidpp,
1372 					  hidpp->battery.solar_feature_index,
1373 					  CMD_SOLAR_SET_LIGHT_MEASURE,
1374 					  params, 2, &response);
1375 	if (ret > 0) {
1376 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1377 			__func__, ret);
1378 		return -EPROTO;
1379 	}
1380 	if (ret)
1381 		return ret;
1382 
1383 	hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1384 
1385 	return 0;
1386 }
1387 
1388 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1389 				     u8 *data, int size)
1390 {
1391 	struct hidpp_report *report = (struct hidpp_report *)data;
1392 	int capacity, lux, status;
1393 	u8 function;
1394 
1395 	function = report->fap.funcindex_clientid;
1396 
1397 
1398 	if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1399 	    !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1400 	      function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1401 	      function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1402 		return 0;
1403 
1404 	capacity = report->fap.params[0];
1405 
1406 	switch (function) {
1407 	case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1408 		lux = (report->fap.params[1] << 8) | report->fap.params[2];
1409 		if (lux > 200)
1410 			status = POWER_SUPPLY_STATUS_CHARGING;
1411 		else
1412 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1413 		break;
1414 	case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1415 	default:
1416 		if (capacity < hidpp->battery.capacity)
1417 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1418 		else
1419 			status = POWER_SUPPLY_STATUS_CHARGING;
1420 
1421 	}
1422 
1423 	if (capacity == 100)
1424 		status = POWER_SUPPLY_STATUS_FULL;
1425 
1426 	hidpp->battery.online = true;
1427 	if (capacity != hidpp->battery.capacity ||
1428 	    status != hidpp->battery.status) {
1429 		hidpp->battery.capacity = capacity;
1430 		hidpp->battery.status = status;
1431 		if (hidpp->battery.ps)
1432 			power_supply_changed(hidpp->battery.ps);
1433 	}
1434 
1435 	return 0;
1436 }
1437 
1438 /* -------------------------------------------------------------------------- */
1439 /* 0x6010: Touchpad FW items                                                  */
1440 /* -------------------------------------------------------------------------- */
1441 
1442 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS			0x6010
1443 
1444 #define CMD_TOUCHPAD_FW_ITEMS_SET			0x10
1445 
1446 struct hidpp_touchpad_fw_items {
1447 	uint8_t presence;
1448 	uint8_t desired_state;
1449 	uint8_t state;
1450 	uint8_t persistent;
1451 };
1452 
1453 /**
1454  * send a set state command to the device by reading the current items->state
1455  * field. items is then filled with the current state.
1456  */
1457 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1458 				       u8 feature_index,
1459 				       struct hidpp_touchpad_fw_items *items)
1460 {
1461 	struct hidpp_report response;
1462 	int ret;
1463 	u8 *params = (u8 *)response.fap.params;
1464 
1465 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1466 		CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1467 
1468 	if (ret > 0) {
1469 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1470 			__func__, ret);
1471 		return -EPROTO;
1472 	}
1473 	if (ret)
1474 		return ret;
1475 
1476 	items->presence = params[0];
1477 	items->desired_state = params[1];
1478 	items->state = params[2];
1479 	items->persistent = params[3];
1480 
1481 	return 0;
1482 }
1483 
1484 /* -------------------------------------------------------------------------- */
1485 /* 0x6100: TouchPadRawXY                                                      */
1486 /* -------------------------------------------------------------------------- */
1487 
1488 #define HIDPP_PAGE_TOUCHPAD_RAW_XY			0x6100
1489 
1490 #define CMD_TOUCHPAD_GET_RAW_INFO			0x01
1491 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE		0x21
1492 
1493 #define EVENT_TOUCHPAD_RAW_XY				0x00
1494 
1495 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT		0x01
1496 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT		0x03
1497 
1498 struct hidpp_touchpad_raw_info {
1499 	u16 x_size;
1500 	u16 y_size;
1501 	u8 z_range;
1502 	u8 area_range;
1503 	u8 timestamp_unit;
1504 	u8 maxcontacts;
1505 	u8 origin;
1506 	u16 res;
1507 };
1508 
1509 struct hidpp_touchpad_raw_xy_finger {
1510 	u8 contact_type;
1511 	u8 contact_status;
1512 	u16 x;
1513 	u16 y;
1514 	u8 z;
1515 	u8 area;
1516 	u8 finger_id;
1517 };
1518 
1519 struct hidpp_touchpad_raw_xy {
1520 	u16 timestamp;
1521 	struct hidpp_touchpad_raw_xy_finger fingers[2];
1522 	u8 spurious_flag;
1523 	u8 end_of_frame;
1524 	u8 finger_count;
1525 	u8 button;
1526 };
1527 
1528 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1529 	u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1530 {
1531 	struct hidpp_report response;
1532 	int ret;
1533 	u8 *params = (u8 *)response.fap.params;
1534 
1535 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1536 		CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1537 
1538 	if (ret > 0) {
1539 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1540 			__func__, ret);
1541 		return -EPROTO;
1542 	}
1543 	if (ret)
1544 		return ret;
1545 
1546 	raw_info->x_size = get_unaligned_be16(&params[0]);
1547 	raw_info->y_size = get_unaligned_be16(&params[2]);
1548 	raw_info->z_range = params[4];
1549 	raw_info->area_range = params[5];
1550 	raw_info->maxcontacts = params[7];
1551 	raw_info->origin = params[8];
1552 	/* res is given in unit per inch */
1553 	raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1554 
1555 	return ret;
1556 }
1557 
1558 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1559 		u8 feature_index, bool send_raw_reports,
1560 		bool sensor_enhanced_settings)
1561 {
1562 	struct hidpp_report response;
1563 
1564 	/*
1565 	 * Params:
1566 	 *   bit 0 - enable raw
1567 	 *   bit 1 - 16bit Z, no area
1568 	 *   bit 2 - enhanced sensitivity
1569 	 *   bit 3 - width, height (4 bits each) instead of area
1570 	 *   bit 4 - send raw + gestures (degrades smoothness)
1571 	 *   remaining bits - reserved
1572 	 */
1573 	u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
1574 
1575 	return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
1576 		CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
1577 }
1578 
1579 static void hidpp_touchpad_touch_event(u8 *data,
1580 	struct hidpp_touchpad_raw_xy_finger *finger)
1581 {
1582 	u8 x_m = data[0] << 2;
1583 	u8 y_m = data[2] << 2;
1584 
1585 	finger->x = x_m << 6 | data[1];
1586 	finger->y = y_m << 6 | data[3];
1587 
1588 	finger->contact_type = data[0] >> 6;
1589 	finger->contact_status = data[2] >> 6;
1590 
1591 	finger->z = data[4];
1592 	finger->area = data[5];
1593 	finger->finger_id = data[6] >> 4;
1594 }
1595 
1596 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
1597 		u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
1598 {
1599 	memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
1600 	raw_xy->end_of_frame = data[8] & 0x01;
1601 	raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
1602 	raw_xy->finger_count = data[15] & 0x0f;
1603 	raw_xy->button = (data[8] >> 2) & 0x01;
1604 
1605 	if (raw_xy->finger_count) {
1606 		hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
1607 		hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
1608 	}
1609 }
1610 
1611 /* -------------------------------------------------------------------------- */
1612 /* 0x8123: Force feedback support                                             */
1613 /* -------------------------------------------------------------------------- */
1614 
1615 #define HIDPP_FF_GET_INFO		0x01
1616 #define HIDPP_FF_RESET_ALL		0x11
1617 #define HIDPP_FF_DOWNLOAD_EFFECT	0x21
1618 #define HIDPP_FF_SET_EFFECT_STATE	0x31
1619 #define HIDPP_FF_DESTROY_EFFECT		0x41
1620 #define HIDPP_FF_GET_APERTURE		0x51
1621 #define HIDPP_FF_SET_APERTURE		0x61
1622 #define HIDPP_FF_GET_GLOBAL_GAINS	0x71
1623 #define HIDPP_FF_SET_GLOBAL_GAINS	0x81
1624 
1625 #define HIDPP_FF_EFFECT_STATE_GET	0x00
1626 #define HIDPP_FF_EFFECT_STATE_STOP	0x01
1627 #define HIDPP_FF_EFFECT_STATE_PLAY	0x02
1628 #define HIDPP_FF_EFFECT_STATE_PAUSE	0x03
1629 
1630 #define HIDPP_FF_EFFECT_CONSTANT	0x00
1631 #define HIDPP_FF_EFFECT_PERIODIC_SINE		0x01
1632 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE		0x02
1633 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE	0x03
1634 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP	0x04
1635 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN	0x05
1636 #define HIDPP_FF_EFFECT_SPRING		0x06
1637 #define HIDPP_FF_EFFECT_DAMPER		0x07
1638 #define HIDPP_FF_EFFECT_FRICTION	0x08
1639 #define HIDPP_FF_EFFECT_INERTIA		0x09
1640 #define HIDPP_FF_EFFECT_RAMP		0x0A
1641 
1642 #define HIDPP_FF_EFFECT_AUTOSTART	0x80
1643 
1644 #define HIDPP_FF_EFFECTID_NONE		-1
1645 #define HIDPP_FF_EFFECTID_AUTOCENTER	-2
1646 
1647 #define HIDPP_FF_MAX_PARAMS	20
1648 #define HIDPP_FF_RESERVED_SLOTS	1
1649 
1650 struct hidpp_ff_private_data {
1651 	struct hidpp_device *hidpp;
1652 	u8 feature_index;
1653 	u8 version;
1654 	u16 gain;
1655 	s16 range;
1656 	u8 slot_autocenter;
1657 	u8 num_effects;
1658 	int *effect_ids;
1659 	struct workqueue_struct *wq;
1660 	atomic_t workqueue_size;
1661 };
1662 
1663 struct hidpp_ff_work_data {
1664 	struct work_struct work;
1665 	struct hidpp_ff_private_data *data;
1666 	int effect_id;
1667 	u8 command;
1668 	u8 params[HIDPP_FF_MAX_PARAMS];
1669 	u8 size;
1670 };
1671 
1672 static const signed short hidpp_ff_effects[] = {
1673 	FF_CONSTANT,
1674 	FF_PERIODIC,
1675 	FF_SINE,
1676 	FF_SQUARE,
1677 	FF_SAW_UP,
1678 	FF_SAW_DOWN,
1679 	FF_TRIANGLE,
1680 	FF_SPRING,
1681 	FF_DAMPER,
1682 	FF_AUTOCENTER,
1683 	FF_GAIN,
1684 	-1
1685 };
1686 
1687 static const signed short hidpp_ff_effects_v2[] = {
1688 	FF_RAMP,
1689 	FF_FRICTION,
1690 	FF_INERTIA,
1691 	-1
1692 };
1693 
1694 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
1695 	HIDPP_FF_EFFECT_SPRING,
1696 	HIDPP_FF_EFFECT_FRICTION,
1697 	HIDPP_FF_EFFECT_DAMPER,
1698 	HIDPP_FF_EFFECT_INERTIA
1699 };
1700 
1701 static const char *HIDPP_FF_CONDITION_NAMES[] = {
1702 	"spring",
1703 	"friction",
1704 	"damper",
1705 	"inertia"
1706 };
1707 
1708 
1709 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
1710 {
1711 	int i;
1712 
1713 	for (i = 0; i < data->num_effects; i++)
1714 		if (data->effect_ids[i] == effect_id)
1715 			return i+1;
1716 
1717 	return 0;
1718 }
1719 
1720 static void hidpp_ff_work_handler(struct work_struct *w)
1721 {
1722 	struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
1723 	struct hidpp_ff_private_data *data = wd->data;
1724 	struct hidpp_report response;
1725 	u8 slot;
1726 	int ret;
1727 
1728 	/* add slot number if needed */
1729 	switch (wd->effect_id) {
1730 	case HIDPP_FF_EFFECTID_AUTOCENTER:
1731 		wd->params[0] = data->slot_autocenter;
1732 		break;
1733 	case HIDPP_FF_EFFECTID_NONE:
1734 		/* leave slot as zero */
1735 		break;
1736 	default:
1737 		/* find current slot for effect */
1738 		wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
1739 		break;
1740 	}
1741 
1742 	/* send command and wait for reply */
1743 	ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
1744 		wd->command, wd->params, wd->size, &response);
1745 
1746 	if (ret) {
1747 		hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
1748 		goto out;
1749 	}
1750 
1751 	/* parse return data */
1752 	switch (wd->command) {
1753 	case HIDPP_FF_DOWNLOAD_EFFECT:
1754 		slot = response.fap.params[0];
1755 		if (slot > 0 && slot <= data->num_effects) {
1756 			if (wd->effect_id >= 0)
1757 				/* regular effect uploaded */
1758 				data->effect_ids[slot-1] = wd->effect_id;
1759 			else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1760 				/* autocenter spring uploaded */
1761 				data->slot_autocenter = slot;
1762 		}
1763 		break;
1764 	case HIDPP_FF_DESTROY_EFFECT:
1765 		if (wd->effect_id >= 0)
1766 			/* regular effect destroyed */
1767 			data->effect_ids[wd->params[0]-1] = -1;
1768 		else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1769 			/* autocenter spring destoyed */
1770 			data->slot_autocenter = 0;
1771 		break;
1772 	case HIDPP_FF_SET_GLOBAL_GAINS:
1773 		data->gain = (wd->params[0] << 8) + wd->params[1];
1774 		break;
1775 	case HIDPP_FF_SET_APERTURE:
1776 		data->range = (wd->params[0] << 8) + wd->params[1];
1777 		break;
1778 	default:
1779 		/* no action needed */
1780 		break;
1781 	}
1782 
1783 out:
1784 	atomic_dec(&data->workqueue_size);
1785 	kfree(wd);
1786 }
1787 
1788 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
1789 {
1790 	struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
1791 	int s;
1792 
1793 	if (!wd)
1794 		return -ENOMEM;
1795 
1796 	INIT_WORK(&wd->work, hidpp_ff_work_handler);
1797 
1798 	wd->data = data;
1799 	wd->effect_id = effect_id;
1800 	wd->command = command;
1801 	wd->size = size;
1802 	memcpy(wd->params, params, size);
1803 
1804 	atomic_inc(&data->workqueue_size);
1805 	queue_work(data->wq, &wd->work);
1806 
1807 	/* warn about excessive queue size */
1808 	s = atomic_read(&data->workqueue_size);
1809 	if (s >= 20 && s % 20 == 0)
1810 		hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
1811 
1812 	return 0;
1813 }
1814 
1815 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
1816 {
1817 	struct hidpp_ff_private_data *data = dev->ff->private;
1818 	u8 params[20];
1819 	u8 size;
1820 	int force;
1821 
1822 	/* set common parameters */
1823 	params[2] = effect->replay.length >> 8;
1824 	params[3] = effect->replay.length & 255;
1825 	params[4] = effect->replay.delay >> 8;
1826 	params[5] = effect->replay.delay & 255;
1827 
1828 	switch (effect->type) {
1829 	case FF_CONSTANT:
1830 		force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1831 		params[1] = HIDPP_FF_EFFECT_CONSTANT;
1832 		params[6] = force >> 8;
1833 		params[7] = force & 255;
1834 		params[8] = effect->u.constant.envelope.attack_level >> 7;
1835 		params[9] = effect->u.constant.envelope.attack_length >> 8;
1836 		params[10] = effect->u.constant.envelope.attack_length & 255;
1837 		params[11] = effect->u.constant.envelope.fade_level >> 7;
1838 		params[12] = effect->u.constant.envelope.fade_length >> 8;
1839 		params[13] = effect->u.constant.envelope.fade_length & 255;
1840 		size = 14;
1841 		dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
1842 				effect->u.constant.level,
1843 				effect->direction, force);
1844 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1845 				effect->u.constant.envelope.attack_level,
1846 				effect->u.constant.envelope.attack_length,
1847 				effect->u.constant.envelope.fade_level,
1848 				effect->u.constant.envelope.fade_length);
1849 		break;
1850 	case FF_PERIODIC:
1851 	{
1852 		switch (effect->u.periodic.waveform) {
1853 		case FF_SINE:
1854 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
1855 			break;
1856 		case FF_SQUARE:
1857 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
1858 			break;
1859 		case FF_SAW_UP:
1860 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
1861 			break;
1862 		case FF_SAW_DOWN:
1863 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
1864 			break;
1865 		case FF_TRIANGLE:
1866 			params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
1867 			break;
1868 		default:
1869 			hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
1870 			return -EINVAL;
1871 		}
1872 		force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1873 		params[6] = effect->u.periodic.magnitude >> 8;
1874 		params[7] = effect->u.periodic.magnitude & 255;
1875 		params[8] = effect->u.periodic.offset >> 8;
1876 		params[9] = effect->u.periodic.offset & 255;
1877 		params[10] = effect->u.periodic.period >> 8;
1878 		params[11] = effect->u.periodic.period & 255;
1879 		params[12] = effect->u.periodic.phase >> 8;
1880 		params[13] = effect->u.periodic.phase & 255;
1881 		params[14] = effect->u.periodic.envelope.attack_level >> 7;
1882 		params[15] = effect->u.periodic.envelope.attack_length >> 8;
1883 		params[16] = effect->u.periodic.envelope.attack_length & 255;
1884 		params[17] = effect->u.periodic.envelope.fade_level >> 7;
1885 		params[18] = effect->u.periodic.envelope.fade_length >> 8;
1886 		params[19] = effect->u.periodic.envelope.fade_length & 255;
1887 		size = 20;
1888 		dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
1889 				effect->u.periodic.magnitude, effect->direction,
1890 				effect->u.periodic.offset,
1891 				effect->u.periodic.period,
1892 				effect->u.periodic.phase);
1893 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1894 				effect->u.periodic.envelope.attack_level,
1895 				effect->u.periodic.envelope.attack_length,
1896 				effect->u.periodic.envelope.fade_level,
1897 				effect->u.periodic.envelope.fade_length);
1898 		break;
1899 	}
1900 	case FF_RAMP:
1901 		params[1] = HIDPP_FF_EFFECT_RAMP;
1902 		force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1903 		params[6] = force >> 8;
1904 		params[7] = force & 255;
1905 		force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1906 		params[8] = force >> 8;
1907 		params[9] = force & 255;
1908 		params[10] = effect->u.ramp.envelope.attack_level >> 7;
1909 		params[11] = effect->u.ramp.envelope.attack_length >> 8;
1910 		params[12] = effect->u.ramp.envelope.attack_length & 255;
1911 		params[13] = effect->u.ramp.envelope.fade_level >> 7;
1912 		params[14] = effect->u.ramp.envelope.fade_length >> 8;
1913 		params[15] = effect->u.ramp.envelope.fade_length & 255;
1914 		size = 16;
1915 		dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
1916 				effect->u.ramp.start_level,
1917 				effect->u.ramp.end_level,
1918 				effect->direction, force);
1919 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1920 				effect->u.ramp.envelope.attack_level,
1921 				effect->u.ramp.envelope.attack_length,
1922 				effect->u.ramp.envelope.fade_level,
1923 				effect->u.ramp.envelope.fade_length);
1924 		break;
1925 	case FF_FRICTION:
1926 	case FF_INERTIA:
1927 	case FF_SPRING:
1928 	case FF_DAMPER:
1929 		params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
1930 		params[6] = effect->u.condition[0].left_saturation >> 9;
1931 		params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
1932 		params[8] = effect->u.condition[0].left_coeff >> 8;
1933 		params[9] = effect->u.condition[0].left_coeff & 255;
1934 		params[10] = effect->u.condition[0].deadband >> 9;
1935 		params[11] = (effect->u.condition[0].deadband >> 1) & 255;
1936 		params[12] = effect->u.condition[0].center >> 8;
1937 		params[13] = effect->u.condition[0].center & 255;
1938 		params[14] = effect->u.condition[0].right_coeff >> 8;
1939 		params[15] = effect->u.condition[0].right_coeff & 255;
1940 		params[16] = effect->u.condition[0].right_saturation >> 9;
1941 		params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
1942 		size = 18;
1943 		dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
1944 				HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
1945 				effect->u.condition[0].left_coeff,
1946 				effect->u.condition[0].left_saturation,
1947 				effect->u.condition[0].right_coeff,
1948 				effect->u.condition[0].right_saturation);
1949 		dbg_hid("          deadband=%d, center=%d\n",
1950 				effect->u.condition[0].deadband,
1951 				effect->u.condition[0].center);
1952 		break;
1953 	default:
1954 		hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
1955 		return -EINVAL;
1956 	}
1957 
1958 	return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
1959 }
1960 
1961 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
1962 {
1963 	struct hidpp_ff_private_data *data = dev->ff->private;
1964 	u8 params[2];
1965 
1966 	params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
1967 
1968 	dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
1969 
1970 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
1971 }
1972 
1973 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
1974 {
1975 	struct hidpp_ff_private_data *data = dev->ff->private;
1976 	u8 slot = 0;
1977 
1978 	dbg_hid("Erasing effect %d.\n", effect_id);
1979 
1980 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
1981 }
1982 
1983 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
1984 {
1985 	struct hidpp_ff_private_data *data = dev->ff->private;
1986 	u8 params[18];
1987 
1988 	dbg_hid("Setting autocenter to %d.\n", magnitude);
1989 
1990 	/* start a standard spring effect */
1991 	params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
1992 	/* zero delay and duration */
1993 	params[2] = params[3] = params[4] = params[5] = 0;
1994 	/* set coeff to 25% of saturation */
1995 	params[8] = params[14] = magnitude >> 11;
1996 	params[9] = params[15] = (magnitude >> 3) & 255;
1997 	params[6] = params[16] = magnitude >> 9;
1998 	params[7] = params[17] = (magnitude >> 1) & 255;
1999 	/* zero deadband and center */
2000 	params[10] = params[11] = params[12] = params[13] = 0;
2001 
2002 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
2003 }
2004 
2005 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
2006 {
2007 	struct hidpp_ff_private_data *data = dev->ff->private;
2008 	u8 params[4];
2009 
2010 	dbg_hid("Setting gain to %d.\n", gain);
2011 
2012 	params[0] = gain >> 8;
2013 	params[1] = gain & 255;
2014 	params[2] = 0; /* no boost */
2015 	params[3] = 0;
2016 
2017 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
2018 }
2019 
2020 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
2021 {
2022 	struct hid_device *hid = to_hid_device(dev);
2023 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2024 	struct input_dev *idev = hidinput->input;
2025 	struct hidpp_ff_private_data *data = idev->ff->private;
2026 
2027 	return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
2028 }
2029 
2030 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2031 {
2032 	struct hid_device *hid = to_hid_device(dev);
2033 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2034 	struct input_dev *idev = hidinput->input;
2035 	struct hidpp_ff_private_data *data = idev->ff->private;
2036 	u8 params[2];
2037 	int range = simple_strtoul(buf, NULL, 10);
2038 
2039 	range = clamp(range, 180, 900);
2040 
2041 	params[0] = range >> 8;
2042 	params[1] = range & 0x00FF;
2043 
2044 	hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
2045 
2046 	return count;
2047 }
2048 
2049 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
2050 
2051 static void hidpp_ff_destroy(struct ff_device *ff)
2052 {
2053 	struct hidpp_ff_private_data *data = ff->private;
2054 
2055 	kfree(data->effect_ids);
2056 }
2057 
2058 static int hidpp_ff_init(struct hidpp_device *hidpp, u8 feature_index)
2059 {
2060 	struct hid_device *hid = hidpp->hid_dev;
2061 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2062 	struct input_dev *dev = hidinput->input;
2063 	const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
2064 	const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
2065 	struct ff_device *ff;
2066 	struct hidpp_report response;
2067 	struct hidpp_ff_private_data *data;
2068 	int error, j, num_slots;
2069 	u8 version;
2070 
2071 	if (!dev) {
2072 		hid_err(hid, "Struct input_dev not set!\n");
2073 		return -EINVAL;
2074 	}
2075 
2076 	/* Get firmware release */
2077 	version = bcdDevice & 255;
2078 
2079 	/* Set supported force feedback capabilities */
2080 	for (j = 0; hidpp_ff_effects[j] >= 0; j++)
2081 		set_bit(hidpp_ff_effects[j], dev->ffbit);
2082 	if (version > 1)
2083 		for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++)
2084 			set_bit(hidpp_ff_effects_v2[j], dev->ffbit);
2085 
2086 	/* Read number of slots available in device */
2087 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
2088 		HIDPP_FF_GET_INFO, NULL, 0, &response);
2089 	if (error) {
2090 		if (error < 0)
2091 			return error;
2092 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
2093 			__func__, error);
2094 		return -EPROTO;
2095 	}
2096 
2097 	num_slots = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
2098 
2099 	error = input_ff_create(dev, num_slots);
2100 
2101 	if (error) {
2102 		hid_err(dev, "Failed to create FF device!\n");
2103 		return error;
2104 	}
2105 
2106 	data = kzalloc(sizeof(*data), GFP_KERNEL);
2107 	if (!data)
2108 		return -ENOMEM;
2109 	data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2110 	if (!data->effect_ids) {
2111 		kfree(data);
2112 		return -ENOMEM;
2113 	}
2114 	data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2115 	if (!data->wq) {
2116 		kfree(data->effect_ids);
2117 		kfree(data);
2118 		return -ENOMEM;
2119 	}
2120 
2121 	data->hidpp = hidpp;
2122 	data->feature_index = feature_index;
2123 	data->version = version;
2124 	data->slot_autocenter = 0;
2125 	data->num_effects = num_slots;
2126 	for (j = 0; j < num_slots; j++)
2127 		data->effect_ids[j] = -1;
2128 
2129 	ff = dev->ff;
2130 	ff->private = data;
2131 
2132 	ff->upload = hidpp_ff_upload_effect;
2133 	ff->erase = hidpp_ff_erase_effect;
2134 	ff->playback = hidpp_ff_playback;
2135 	ff->set_gain = hidpp_ff_set_gain;
2136 	ff->set_autocenter = hidpp_ff_set_autocenter;
2137 	ff->destroy = hidpp_ff_destroy;
2138 
2139 
2140 	/* reset all forces */
2141 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
2142 		HIDPP_FF_RESET_ALL, NULL, 0, &response);
2143 
2144 	/* Read current Range */
2145 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
2146 		HIDPP_FF_GET_APERTURE, NULL, 0, &response);
2147 	if (error)
2148 		hid_warn(hidpp->hid_dev, "Failed to read range from device!\n");
2149 	data->range = error ? 900 : get_unaligned_be16(&response.fap.params[0]);
2150 
2151 	/* Create sysfs interface */
2152 	error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2153 	if (error)
2154 		hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2155 
2156 	/* Read the current gain values */
2157 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
2158 		HIDPP_FF_GET_GLOBAL_GAINS, NULL, 0, &response);
2159 	if (error)
2160 		hid_warn(hidpp->hid_dev, "Failed to read gain values from device!\n");
2161 	data->gain = error ? 0xffff : get_unaligned_be16(&response.fap.params[0]);
2162 	/* ignore boost value at response.fap.params[2] */
2163 
2164 	/* init the hardware command queue */
2165 	atomic_set(&data->workqueue_size, 0);
2166 
2167 	/* initialize with zero autocenter to get wheel in usable state */
2168 	hidpp_ff_set_autocenter(dev, 0);
2169 
2170 	hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2171 		 version);
2172 
2173 	return 0;
2174 }
2175 
2176 static int hidpp_ff_deinit(struct hid_device *hid)
2177 {
2178 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2179 	struct input_dev *dev = hidinput->input;
2180 	struct hidpp_ff_private_data *data;
2181 
2182 	if (!dev) {
2183 		hid_err(hid, "Struct input_dev not found!\n");
2184 		return -EINVAL;
2185 	}
2186 
2187 	hid_info(hid, "Unloading HID++ force feedback.\n");
2188 	data = dev->ff->private;
2189 	if (!data) {
2190 		hid_err(hid, "Private data not found!\n");
2191 		return -EINVAL;
2192 	}
2193 
2194 	destroy_workqueue(data->wq);
2195 	device_remove_file(&hid->dev, &dev_attr_range);
2196 
2197 	return 0;
2198 }
2199 
2200 
2201 /* ************************************************************************** */
2202 /*                                                                            */
2203 /* Device Support                                                             */
2204 /*                                                                            */
2205 /* ************************************************************************** */
2206 
2207 /* -------------------------------------------------------------------------- */
2208 /* Touchpad HID++ devices                                                     */
2209 /* -------------------------------------------------------------------------- */
2210 
2211 #define WTP_MANUAL_RESOLUTION				39
2212 
2213 struct wtp_data {
2214 	struct input_dev *input;
2215 	u16 x_size, y_size;
2216 	u8 finger_count;
2217 	u8 mt_feature_index;
2218 	u8 button_feature_index;
2219 	u8 maxcontacts;
2220 	bool flip_y;
2221 	unsigned int resolution;
2222 };
2223 
2224 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2225 		struct hid_field *field, struct hid_usage *usage,
2226 		unsigned long **bit, int *max)
2227 {
2228 	return -1;
2229 }
2230 
2231 static void wtp_populate_input(struct hidpp_device *hidpp,
2232 		struct input_dev *input_dev, bool origin_is_hid_core)
2233 {
2234 	struct wtp_data *wd = hidpp->private_data;
2235 
2236 	__set_bit(EV_ABS, input_dev->evbit);
2237 	__set_bit(EV_KEY, input_dev->evbit);
2238 	__clear_bit(EV_REL, input_dev->evbit);
2239 	__clear_bit(EV_LED, input_dev->evbit);
2240 
2241 	input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2242 	input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2243 	input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2244 	input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2245 
2246 	/* Max pressure is not given by the devices, pick one */
2247 	input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2248 
2249 	input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2250 
2251 	if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2252 		input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2253 	else
2254 		__set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2255 
2256 	input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2257 		INPUT_MT_DROP_UNUSED);
2258 
2259 	wd->input = input_dev;
2260 }
2261 
2262 static void wtp_touch_event(struct wtp_data *wd,
2263 	struct hidpp_touchpad_raw_xy_finger *touch_report)
2264 {
2265 	int slot;
2266 
2267 	if (!touch_report->finger_id || touch_report->contact_type)
2268 		/* no actual data */
2269 		return;
2270 
2271 	slot = input_mt_get_slot_by_key(wd->input, touch_report->finger_id);
2272 
2273 	input_mt_slot(wd->input, slot);
2274 	input_mt_report_slot_state(wd->input, MT_TOOL_FINGER,
2275 					touch_report->contact_status);
2276 	if (touch_report->contact_status) {
2277 		input_event(wd->input, EV_ABS, ABS_MT_POSITION_X,
2278 				touch_report->x);
2279 		input_event(wd->input, EV_ABS, ABS_MT_POSITION_Y,
2280 				wd->flip_y ? wd->y_size - touch_report->y :
2281 					     touch_report->y);
2282 		input_event(wd->input, EV_ABS, ABS_MT_PRESSURE,
2283 				touch_report->area);
2284 	}
2285 }
2286 
2287 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2288 		struct hidpp_touchpad_raw_xy *raw)
2289 {
2290 	struct wtp_data *wd = hidpp->private_data;
2291 	int i;
2292 
2293 	for (i = 0; i < 2; i++)
2294 		wtp_touch_event(wd, &(raw->fingers[i]));
2295 
2296 	if (raw->end_of_frame &&
2297 	    !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2298 		input_event(wd->input, EV_KEY, BTN_LEFT, raw->button);
2299 
2300 	if (raw->end_of_frame || raw->finger_count <= 2) {
2301 		input_mt_sync_frame(wd->input);
2302 		input_sync(wd->input);
2303 	}
2304 }
2305 
2306 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2307 {
2308 	struct wtp_data *wd = hidpp->private_data;
2309 	u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2310 		      (data[7] >> 4) * (data[7] >> 4)) / 2;
2311 	u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2312 		      (data[13] >> 4) * (data[13] >> 4)) / 2;
2313 	struct hidpp_touchpad_raw_xy raw = {
2314 		.timestamp = data[1],
2315 		.fingers = {
2316 			{
2317 				.contact_type = 0,
2318 				.contact_status = !!data[7],
2319 				.x = get_unaligned_le16(&data[3]),
2320 				.y = get_unaligned_le16(&data[5]),
2321 				.z = c1_area,
2322 				.area = c1_area,
2323 				.finger_id = data[2],
2324 			}, {
2325 				.contact_type = 0,
2326 				.contact_status = !!data[13],
2327 				.x = get_unaligned_le16(&data[9]),
2328 				.y = get_unaligned_le16(&data[11]),
2329 				.z = c2_area,
2330 				.area = c2_area,
2331 				.finger_id = data[8],
2332 			}
2333 		},
2334 		.finger_count = wd->maxcontacts,
2335 		.spurious_flag = 0,
2336 		.end_of_frame = (data[0] >> 7) == 0,
2337 		.button = data[0] & 0x01,
2338 	};
2339 
2340 	wtp_send_raw_xy_event(hidpp, &raw);
2341 
2342 	return 1;
2343 }
2344 
2345 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2346 {
2347 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2348 	struct wtp_data *wd = hidpp->private_data;
2349 	struct hidpp_report *report = (struct hidpp_report *)data;
2350 	struct hidpp_touchpad_raw_xy raw;
2351 
2352 	if (!wd || !wd->input)
2353 		return 1;
2354 
2355 	switch (data[0]) {
2356 	case 0x02:
2357 		if (size < 2) {
2358 			hid_err(hdev, "Received HID report of bad size (%d)",
2359 				size);
2360 			return 1;
2361 		}
2362 		if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2363 			input_event(wd->input, EV_KEY, BTN_LEFT,
2364 					!!(data[1] & 0x01));
2365 			input_event(wd->input, EV_KEY, BTN_RIGHT,
2366 					!!(data[1] & 0x02));
2367 			input_sync(wd->input);
2368 			return 0;
2369 		} else {
2370 			if (size < 21)
2371 				return 1;
2372 			return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2373 		}
2374 	case REPORT_ID_HIDPP_LONG:
2375 		/* size is already checked in hidpp_raw_event. */
2376 		if ((report->fap.feature_index != wd->mt_feature_index) ||
2377 		    (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2378 			return 1;
2379 		hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2380 
2381 		wtp_send_raw_xy_event(hidpp, &raw);
2382 		return 0;
2383 	}
2384 
2385 	return 0;
2386 }
2387 
2388 static int wtp_get_config(struct hidpp_device *hidpp)
2389 {
2390 	struct wtp_data *wd = hidpp->private_data;
2391 	struct hidpp_touchpad_raw_info raw_info = {0};
2392 	u8 feature_type;
2393 	int ret;
2394 
2395 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2396 		&wd->mt_feature_index, &feature_type);
2397 	if (ret)
2398 		/* means that the device is not powered up */
2399 		return ret;
2400 
2401 	ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2402 		&raw_info);
2403 	if (ret)
2404 		return ret;
2405 
2406 	wd->x_size = raw_info.x_size;
2407 	wd->y_size = raw_info.y_size;
2408 	wd->maxcontacts = raw_info.maxcontacts;
2409 	wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2410 	wd->resolution = raw_info.res;
2411 	if (!wd->resolution)
2412 		wd->resolution = WTP_MANUAL_RESOLUTION;
2413 
2414 	return 0;
2415 }
2416 
2417 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2418 {
2419 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2420 	struct wtp_data *wd;
2421 
2422 	wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2423 			GFP_KERNEL);
2424 	if (!wd)
2425 		return -ENOMEM;
2426 
2427 	hidpp->private_data = wd;
2428 
2429 	return 0;
2430 };
2431 
2432 static int wtp_connect(struct hid_device *hdev, bool connected)
2433 {
2434 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2435 	struct wtp_data *wd = hidpp->private_data;
2436 	int ret;
2437 
2438 	if (!wd->x_size) {
2439 		ret = wtp_get_config(hidpp);
2440 		if (ret) {
2441 			hid_err(hdev, "Can not get wtp config: %d\n", ret);
2442 			return ret;
2443 		}
2444 	}
2445 
2446 	return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2447 			true, true);
2448 }
2449 
2450 /* ------------------------------------------------------------------------- */
2451 /* Logitech M560 devices                                                     */
2452 /* ------------------------------------------------------------------------- */
2453 
2454 /*
2455  * Logitech M560 protocol overview
2456  *
2457  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2458  * the sides buttons are pressed, it sends some keyboard keys events
2459  * instead of buttons ones.
2460  * To complicate things further, the middle button keys sequence
2461  * is different from the odd press and the even press.
2462  *
2463  * forward button -> Super_R
2464  * backward button -> Super_L+'d' (press only)
2465  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2466  *                  2nd time: left-click (press only)
2467  * NB: press-only means that when the button is pressed, the
2468  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2469  * together sequentially; instead when the button is released, no event is
2470  * generated !
2471  *
2472  * With the command
2473  *	10<xx>0a 3500af03 (where <xx> is the mouse id),
2474  * the mouse reacts differently:
2475  * - it never sends a keyboard key event
2476  * - for the three mouse button it sends:
2477  *	middle button               press   11<xx>0a 3500af00...
2478  *	side 1 button (forward)     press   11<xx>0a 3500b000...
2479  *	side 2 button (backward)    press   11<xx>0a 3500ae00...
2480  *	middle/side1/side2 button   release 11<xx>0a 35000000...
2481  */
2482 
2483 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2484 
2485 struct m560_private_data {
2486 	struct input_dev *input;
2487 };
2488 
2489 /* how buttons are mapped in the report */
2490 #define M560_MOUSE_BTN_LEFT		0x01
2491 #define M560_MOUSE_BTN_RIGHT		0x02
2492 #define M560_MOUSE_BTN_WHEEL_LEFT	0x08
2493 #define M560_MOUSE_BTN_WHEEL_RIGHT	0x10
2494 
2495 #define M560_SUB_ID			0x0a
2496 #define M560_BUTTON_MODE_REGISTER	0x35
2497 
2498 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2499 {
2500 	struct hidpp_report response;
2501 	struct hidpp_device *hidpp_dev;
2502 
2503 	hidpp_dev = hid_get_drvdata(hdev);
2504 
2505 	return hidpp_send_rap_command_sync(
2506 		hidpp_dev,
2507 		REPORT_ID_HIDPP_SHORT,
2508 		M560_SUB_ID,
2509 		M560_BUTTON_MODE_REGISTER,
2510 		(u8 *)m560_config_parameter,
2511 		sizeof(m560_config_parameter),
2512 		&response
2513 	);
2514 }
2515 
2516 static int m560_allocate(struct hid_device *hdev)
2517 {
2518 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2519 	struct m560_private_data *d;
2520 
2521 	d = devm_kzalloc(&hdev->dev, sizeof(struct m560_private_data),
2522 			GFP_KERNEL);
2523 	if (!d)
2524 		return -ENOMEM;
2525 
2526 	hidpp->private_data = d;
2527 
2528 	return 0;
2529 };
2530 
2531 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2532 {
2533 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2534 	struct m560_private_data *mydata = hidpp->private_data;
2535 
2536 	/* sanity check */
2537 	if (!mydata || !mydata->input) {
2538 		hid_err(hdev, "error in parameter\n");
2539 		return -EINVAL;
2540 	}
2541 
2542 	if (size < 7) {
2543 		hid_err(hdev, "error in report\n");
2544 		return 0;
2545 	}
2546 
2547 	if (data[0] == REPORT_ID_HIDPP_LONG &&
2548 	    data[2] == M560_SUB_ID && data[6] == 0x00) {
2549 		/*
2550 		 * m560 mouse report for middle, forward and backward button
2551 		 *
2552 		 * data[0] = 0x11
2553 		 * data[1] = device-id
2554 		 * data[2] = 0x0a
2555 		 * data[5] = 0xaf -> middle
2556 		 *	     0xb0 -> forward
2557 		 *	     0xae -> backward
2558 		 *	     0x00 -> release all
2559 		 * data[6] = 0x00
2560 		 */
2561 
2562 		switch (data[5]) {
2563 		case 0xaf:
2564 			input_report_key(mydata->input, BTN_MIDDLE, 1);
2565 			break;
2566 		case 0xb0:
2567 			input_report_key(mydata->input, BTN_FORWARD, 1);
2568 			break;
2569 		case 0xae:
2570 			input_report_key(mydata->input, BTN_BACK, 1);
2571 			break;
2572 		case 0x00:
2573 			input_report_key(mydata->input, BTN_BACK, 0);
2574 			input_report_key(mydata->input, BTN_FORWARD, 0);
2575 			input_report_key(mydata->input, BTN_MIDDLE, 0);
2576 			break;
2577 		default:
2578 			hid_err(hdev, "error in report\n");
2579 			return 0;
2580 		}
2581 		input_sync(mydata->input);
2582 
2583 	} else if (data[0] == 0x02) {
2584 		/*
2585 		 * Logitech M560 mouse report
2586 		 *
2587 		 * data[0] = type (0x02)
2588 		 * data[1..2] = buttons
2589 		 * data[3..5] = xy
2590 		 * data[6] = wheel
2591 		 */
2592 
2593 		int v;
2594 
2595 		input_report_key(mydata->input, BTN_LEFT,
2596 			!!(data[1] & M560_MOUSE_BTN_LEFT));
2597 		input_report_key(mydata->input, BTN_RIGHT,
2598 			!!(data[1] & M560_MOUSE_BTN_RIGHT));
2599 
2600 		if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) {
2601 			input_report_rel(mydata->input, REL_HWHEEL, -1);
2602 			input_report_rel(mydata->input, REL_HWHEEL_HI_RES,
2603 					 -120);
2604 		} else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) {
2605 			input_report_rel(mydata->input, REL_HWHEEL, 1);
2606 			input_report_rel(mydata->input, REL_HWHEEL_HI_RES,
2607 					 120);
2608 		}
2609 
2610 		v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2611 		input_report_rel(mydata->input, REL_X, v);
2612 
2613 		v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2614 		input_report_rel(mydata->input, REL_Y, v);
2615 
2616 		v = hid_snto32(data[6], 8);
2617 		if (v != 0)
2618 			hidpp_scroll_counter_handle_scroll(
2619 					&hidpp->vertical_wheel_counter, v);
2620 
2621 		input_sync(mydata->input);
2622 	}
2623 
2624 	return 1;
2625 }
2626 
2627 static void m560_populate_input(struct hidpp_device *hidpp,
2628 		struct input_dev *input_dev, bool origin_is_hid_core)
2629 {
2630 	struct m560_private_data *mydata = hidpp->private_data;
2631 
2632 	mydata->input = input_dev;
2633 
2634 	__set_bit(EV_KEY, mydata->input->evbit);
2635 	__set_bit(BTN_MIDDLE, mydata->input->keybit);
2636 	__set_bit(BTN_RIGHT, mydata->input->keybit);
2637 	__set_bit(BTN_LEFT, mydata->input->keybit);
2638 	__set_bit(BTN_BACK, mydata->input->keybit);
2639 	__set_bit(BTN_FORWARD, mydata->input->keybit);
2640 
2641 	__set_bit(EV_REL, mydata->input->evbit);
2642 	__set_bit(REL_X, mydata->input->relbit);
2643 	__set_bit(REL_Y, mydata->input->relbit);
2644 	__set_bit(REL_WHEEL, mydata->input->relbit);
2645 	__set_bit(REL_HWHEEL, mydata->input->relbit);
2646 	__set_bit(REL_WHEEL_HI_RES, mydata->input->relbit);
2647 	__set_bit(REL_HWHEEL_HI_RES, mydata->input->relbit);
2648 }
2649 
2650 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2651 		struct hid_field *field, struct hid_usage *usage,
2652 		unsigned long **bit, int *max)
2653 {
2654 	return -1;
2655 }
2656 
2657 /* ------------------------------------------------------------------------- */
2658 /* Logitech K400 devices                                                     */
2659 /* ------------------------------------------------------------------------- */
2660 
2661 /*
2662  * The Logitech K400 keyboard has an embedded touchpad which is seen
2663  * as a mouse from the OS point of view. There is a hardware shortcut to disable
2664  * tap-to-click but the setting is not remembered accross reset, annoying some
2665  * users.
2666  *
2667  * We can toggle this feature from the host by using the feature 0x6010:
2668  * Touchpad FW items
2669  */
2670 
2671 struct k400_private_data {
2672 	u8 feature_index;
2673 };
2674 
2675 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
2676 {
2677 	struct k400_private_data *k400 = hidpp->private_data;
2678 	struct hidpp_touchpad_fw_items items = {};
2679 	int ret;
2680 	u8 feature_type;
2681 
2682 	if (!k400->feature_index) {
2683 		ret = hidpp_root_get_feature(hidpp,
2684 			HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
2685 			&k400->feature_index, &feature_type);
2686 		if (ret)
2687 			/* means that the device is not powered up */
2688 			return ret;
2689 	}
2690 
2691 	ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
2692 	if (ret)
2693 		return ret;
2694 
2695 	return 0;
2696 }
2697 
2698 static int k400_allocate(struct hid_device *hdev)
2699 {
2700 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2701 	struct k400_private_data *k400;
2702 
2703 	k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
2704 			    GFP_KERNEL);
2705 	if (!k400)
2706 		return -ENOMEM;
2707 
2708 	hidpp->private_data = k400;
2709 
2710 	return 0;
2711 };
2712 
2713 static int k400_connect(struct hid_device *hdev, bool connected)
2714 {
2715 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2716 
2717 	if (!disable_tap_to_click)
2718 		return 0;
2719 
2720 	return k400_disable_tap_to_click(hidpp);
2721 }
2722 
2723 /* ------------------------------------------------------------------------- */
2724 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
2725 /* ------------------------------------------------------------------------- */
2726 
2727 #define HIDPP_PAGE_G920_FORCE_FEEDBACK			0x8123
2728 
2729 static int g920_get_config(struct hidpp_device *hidpp)
2730 {
2731 	u8 feature_type;
2732 	u8 feature_index;
2733 	int ret;
2734 
2735 	/* Find feature and store for later use */
2736 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
2737 		&feature_index, &feature_type);
2738 	if (ret)
2739 		return ret;
2740 
2741 	ret = hidpp_ff_init(hidpp, feature_index);
2742 	if (ret)
2743 		hid_warn(hidpp->hid_dev, "Unable to initialize force feedback support, errno %d\n",
2744 				ret);
2745 
2746 	return 0;
2747 }
2748 
2749 /* -------------------------------------------------------------------------- */
2750 /* High-resolution scroll wheels                                              */
2751 /* -------------------------------------------------------------------------- */
2752 
2753 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
2754 {
2755 	int ret;
2756 	u8 multiplier = 1;
2757 
2758 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
2759 		ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
2760 		if (ret == 0)
2761 			ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
2762 	} else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
2763 		ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
2764 							   &multiplier);
2765 	} else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ {
2766 		ret = hidpp10_enable_scrolling_acceleration(hidpp);
2767 		multiplier = 8;
2768 	}
2769 	if (ret)
2770 		return ret;
2771 
2772 	if (multiplier == 0)
2773 		multiplier = 1;
2774 
2775 	hidpp->vertical_wheel_counter.wheel_multiplier = multiplier;
2776 	hid_info(hidpp->hid_dev, "multiplier = %d\n", multiplier);
2777 	return 0;
2778 }
2779 
2780 /* -------------------------------------------------------------------------- */
2781 /* Generic HID++ devices                                                      */
2782 /* -------------------------------------------------------------------------- */
2783 
2784 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2785 		struct hid_field *field, struct hid_usage *usage,
2786 		unsigned long **bit, int *max)
2787 {
2788 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2789 
2790 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2791 		return wtp_input_mapping(hdev, hi, field, usage, bit, max);
2792 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
2793 			field->application != HID_GD_MOUSE)
2794 		return m560_input_mapping(hdev, hi, field, usage, bit, max);
2795 
2796 	return 0;
2797 }
2798 
2799 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
2800 		struct hid_field *field, struct hid_usage *usage,
2801 		unsigned long **bit, int *max)
2802 {
2803 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2804 
2805 	/* Ensure that Logitech G920 is not given a default fuzz/flat value */
2806 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
2807 		if (usage->type == EV_ABS && (usage->code == ABS_X ||
2808 				usage->code == ABS_Y || usage->code == ABS_Z ||
2809 				usage->code == ABS_RZ)) {
2810 			field->application = HID_GD_MULTIAXIS;
2811 		}
2812 	}
2813 
2814 	return 0;
2815 }
2816 
2817 
2818 static void hidpp_populate_input(struct hidpp_device *hidpp,
2819 		struct input_dev *input, bool origin_is_hid_core)
2820 {
2821 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2822 		wtp_populate_input(hidpp, input, origin_is_hid_core);
2823 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
2824 		m560_populate_input(hidpp, input, origin_is_hid_core);
2825 
2826 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
2827 		hidpp->vertical_wheel_counter.dev = input;
2828 }
2829 
2830 static int hidpp_input_configured(struct hid_device *hdev,
2831 				struct hid_input *hidinput)
2832 {
2833 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2834 	struct input_dev *input = hidinput->input;
2835 
2836 	hidpp_populate_input(hidpp, input, true);
2837 
2838 	return 0;
2839 }
2840 
2841 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
2842 		int size)
2843 {
2844 	struct hidpp_report *question = hidpp->send_receive_buf;
2845 	struct hidpp_report *answer = hidpp->send_receive_buf;
2846 	struct hidpp_report *report = (struct hidpp_report *)data;
2847 	int ret;
2848 
2849 	/*
2850 	 * If the mutex is locked then we have a pending answer from a
2851 	 * previously sent command.
2852 	 */
2853 	if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
2854 		/*
2855 		 * Check for a correct hidpp20 answer or the corresponding
2856 		 * error
2857 		 */
2858 		if (hidpp_match_answer(question, report) ||
2859 				hidpp_match_error(question, report)) {
2860 			*answer = *report;
2861 			hidpp->answer_available = true;
2862 			wake_up(&hidpp->wait);
2863 			/*
2864 			 * This was an answer to a command that this driver sent
2865 			 * We return 1 to hid-core to avoid forwarding the
2866 			 * command upstream as it has been treated by the driver
2867 			 */
2868 
2869 			return 1;
2870 		}
2871 	}
2872 
2873 	if (unlikely(hidpp_report_is_connect_event(report))) {
2874 		atomic_set(&hidpp->connected,
2875 				!(report->rap.params[0] & (1 << 6)));
2876 		if (schedule_work(&hidpp->work) == 0)
2877 			dbg_hid("%s: connect event already queued\n", __func__);
2878 		return 1;
2879 	}
2880 
2881 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
2882 		ret = hidpp20_battery_event(hidpp, data, size);
2883 		if (ret != 0)
2884 			return ret;
2885 		ret = hidpp_solar_battery_event(hidpp, data, size);
2886 		if (ret != 0)
2887 			return ret;
2888 	}
2889 
2890 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
2891 		ret = hidpp10_battery_event(hidpp, data, size);
2892 		if (ret != 0)
2893 			return ret;
2894 	}
2895 
2896 	return 0;
2897 }
2898 
2899 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
2900 		u8 *data, int size)
2901 {
2902 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2903 	int ret = 0;
2904 
2905 	/* Generic HID++ processing. */
2906 	switch (data[0]) {
2907 	case REPORT_ID_HIDPP_VERY_LONG:
2908 		if (size != HIDPP_REPORT_VERY_LONG_LENGTH) {
2909 			hid_err(hdev, "received hid++ report of bad size (%d)",
2910 				size);
2911 			return 1;
2912 		}
2913 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
2914 		break;
2915 	case REPORT_ID_HIDPP_LONG:
2916 		if (size != HIDPP_REPORT_LONG_LENGTH) {
2917 			hid_err(hdev, "received hid++ report of bad size (%d)",
2918 				size);
2919 			return 1;
2920 		}
2921 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
2922 		break;
2923 	case REPORT_ID_HIDPP_SHORT:
2924 		if (size != HIDPP_REPORT_SHORT_LENGTH) {
2925 			hid_err(hdev, "received hid++ report of bad size (%d)",
2926 				size);
2927 			return 1;
2928 		}
2929 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
2930 		break;
2931 	}
2932 
2933 	/* If no report is available for further processing, skip calling
2934 	 * raw_event of subclasses. */
2935 	if (ret != 0)
2936 		return ret;
2937 
2938 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2939 		return wtp_raw_event(hdev, data, size);
2940 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
2941 		return m560_raw_event(hdev, data, size);
2942 
2943 	return 0;
2944 }
2945 
2946 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
2947 	struct hid_usage *usage, __s32 value)
2948 {
2949 	/* This function will only be called for scroll events, due to the
2950 	 * restriction imposed in hidpp_usages.
2951 	 */
2952 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2953 	struct hidpp_scroll_counter *counter = &hidpp->vertical_wheel_counter;
2954 	/* A scroll event may occur before the multiplier has been retrieved or
2955 	 * the input device set, or high-res scroll enabling may fail. In such
2956 	 * cases we must return early (falling back to default behaviour) to
2957 	 * avoid a crash in hidpp_scroll_counter_handle_scroll.
2958 	 */
2959 	if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
2960 	    || counter->dev == NULL || counter->wheel_multiplier == 0)
2961 		return 0;
2962 
2963 	hidpp_scroll_counter_handle_scroll(counter, value);
2964 	return 1;
2965 }
2966 
2967 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
2968 {
2969 	static atomic_t battery_no = ATOMIC_INIT(0);
2970 	struct power_supply_config cfg = { .drv_data = hidpp };
2971 	struct power_supply_desc *desc = &hidpp->battery.desc;
2972 	enum power_supply_property *battery_props;
2973 	struct hidpp_battery *battery;
2974 	unsigned int num_battery_props;
2975 	unsigned long n;
2976 	int ret;
2977 
2978 	if (hidpp->battery.ps)
2979 		return 0;
2980 
2981 	hidpp->battery.feature_index = 0xff;
2982 	hidpp->battery.solar_feature_index = 0xff;
2983 
2984 	if (hidpp->protocol_major >= 2) {
2985 		if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
2986 			ret = hidpp_solar_request_battery_event(hidpp);
2987 		else
2988 			ret = hidpp20_query_battery_info(hidpp);
2989 
2990 		if (ret)
2991 			return ret;
2992 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
2993 	} else {
2994 		ret = hidpp10_query_battery_status(hidpp);
2995 		if (ret) {
2996 			ret = hidpp10_query_battery_mileage(hidpp);
2997 			if (ret)
2998 				return -ENOENT;
2999 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
3000 		} else {
3001 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
3002 		}
3003 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
3004 	}
3005 
3006 	battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
3007 				     hidpp_battery_props,
3008 				     sizeof(hidpp_battery_props),
3009 				     GFP_KERNEL);
3010 	if (!battery_props)
3011 		return -ENOMEM;
3012 
3013 	num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 2;
3014 
3015 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3016 		battery_props[num_battery_props++] =
3017 				POWER_SUPPLY_PROP_CAPACITY;
3018 
3019 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
3020 		battery_props[num_battery_props++] =
3021 				POWER_SUPPLY_PROP_CAPACITY_LEVEL;
3022 
3023 	battery = &hidpp->battery;
3024 
3025 	n = atomic_inc_return(&battery_no) - 1;
3026 	desc->properties = battery_props;
3027 	desc->num_properties = num_battery_props;
3028 	desc->get_property = hidpp_battery_get_property;
3029 	sprintf(battery->name, "hidpp_battery_%ld", n);
3030 	desc->name = battery->name;
3031 	desc->type = POWER_SUPPLY_TYPE_BATTERY;
3032 	desc->use_for_apm = 0;
3033 
3034 	battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
3035 						 &battery->desc,
3036 						 &cfg);
3037 	if (IS_ERR(battery->ps))
3038 		return PTR_ERR(battery->ps);
3039 
3040 	power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
3041 
3042 	return ret;
3043 }
3044 
3045 static void hidpp_overwrite_name(struct hid_device *hdev)
3046 {
3047 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3048 	char *name;
3049 
3050 	if (hidpp->protocol_major < 2)
3051 		return;
3052 
3053 	name = hidpp_get_device_name(hidpp);
3054 
3055 	if (!name) {
3056 		hid_err(hdev, "unable to retrieve the name of the device");
3057 	} else {
3058 		dbg_hid("HID++: Got name: %s\n", name);
3059 		snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3060 	}
3061 
3062 	kfree(name);
3063 }
3064 
3065 static int hidpp_input_open(struct input_dev *dev)
3066 {
3067 	struct hid_device *hid = input_get_drvdata(dev);
3068 
3069 	return hid_hw_open(hid);
3070 }
3071 
3072 static void hidpp_input_close(struct input_dev *dev)
3073 {
3074 	struct hid_device *hid = input_get_drvdata(dev);
3075 
3076 	hid_hw_close(hid);
3077 }
3078 
3079 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3080 {
3081 	struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3082 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3083 
3084 	if (!input_dev)
3085 		return NULL;
3086 
3087 	input_set_drvdata(input_dev, hdev);
3088 	input_dev->open = hidpp_input_open;
3089 	input_dev->close = hidpp_input_close;
3090 
3091 	input_dev->name = hidpp->name;
3092 	input_dev->phys = hdev->phys;
3093 	input_dev->uniq = hdev->uniq;
3094 	input_dev->id.bustype = hdev->bus;
3095 	input_dev->id.vendor  = hdev->vendor;
3096 	input_dev->id.product = hdev->product;
3097 	input_dev->id.version = hdev->version;
3098 	input_dev->dev.parent = &hdev->dev;
3099 
3100 	return input_dev;
3101 }
3102 
3103 static void hidpp_connect_event(struct hidpp_device *hidpp)
3104 {
3105 	struct hid_device *hdev = hidpp->hid_dev;
3106 	int ret = 0;
3107 	bool connected = atomic_read(&hidpp->connected);
3108 	struct input_dev *input;
3109 	char *name, *devm_name;
3110 
3111 	if (!connected) {
3112 		if (hidpp->battery.ps) {
3113 			hidpp->battery.online = false;
3114 			hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3115 			hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3116 			power_supply_changed(hidpp->battery.ps);
3117 		}
3118 		return;
3119 	}
3120 
3121 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3122 		ret = wtp_connect(hdev, connected);
3123 		if (ret)
3124 			return;
3125 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3126 		ret = m560_send_config_command(hdev, connected);
3127 		if (ret)
3128 			return;
3129 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3130 		ret = k400_connect(hdev, connected);
3131 		if (ret)
3132 			return;
3133 	}
3134 
3135 	/* the device is already connected, we can ask for its name and
3136 	 * protocol */
3137 	if (!hidpp->protocol_major) {
3138 		ret = !hidpp_is_connected(hidpp);
3139 		if (ret) {
3140 			hid_err(hdev, "Can not get the protocol version.\n");
3141 			return;
3142 		}
3143 		hid_info(hdev, "HID++ %u.%u device connected.\n",
3144 			 hidpp->protocol_major, hidpp->protocol_minor);
3145 	}
3146 
3147 	if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3148 		name = hidpp_get_device_name(hidpp);
3149 		if (!name) {
3150 			hid_err(hdev,
3151 				"unable to retrieve the name of the device");
3152 			return;
3153 		}
3154 
3155 		devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s", name);
3156 		kfree(name);
3157 		if (!devm_name)
3158 			return;
3159 
3160 		hidpp->name = devm_name;
3161 	}
3162 
3163 	hidpp_initialize_battery(hidpp);
3164 
3165 	/* forward current battery state */
3166 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3167 		hidpp10_enable_battery_reporting(hidpp);
3168 		if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3169 			hidpp10_query_battery_mileage(hidpp);
3170 		else
3171 			hidpp10_query_battery_status(hidpp);
3172 	} else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3173 		hidpp20_query_battery_info(hidpp);
3174 	}
3175 	if (hidpp->battery.ps)
3176 		power_supply_changed(hidpp->battery.ps);
3177 
3178 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3179 		hi_res_scroll_enable(hidpp);
3180 
3181 	if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3182 		/* if the input nodes are already created, we can stop now */
3183 		return;
3184 
3185 	input = hidpp_allocate_input(hdev);
3186 	if (!input) {
3187 		hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3188 		return;
3189 	}
3190 
3191 	hidpp_populate_input(hidpp, input, false);
3192 
3193 	ret = input_register_device(input);
3194 	if (ret)
3195 		input_free_device(input);
3196 
3197 	hidpp->delayed_input = input;
3198 }
3199 
3200 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3201 
3202 static struct attribute *sysfs_attrs[] = {
3203 	&dev_attr_builtin_power_supply.attr,
3204 	NULL
3205 };
3206 
3207 static const struct attribute_group ps_attribute_group = {
3208 	.attrs = sysfs_attrs
3209 };
3210 
3211 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
3212 {
3213 	struct hidpp_device *hidpp;
3214 	int ret;
3215 	bool connected;
3216 	unsigned int connect_mask = HID_CONNECT_DEFAULT;
3217 
3218 	hidpp = devm_kzalloc(&hdev->dev, sizeof(struct hidpp_device),
3219 			GFP_KERNEL);
3220 	if (!hidpp)
3221 		return -ENOMEM;
3222 
3223 	hidpp->hid_dev = hdev;
3224 	hidpp->name = hdev->name;
3225 	hid_set_drvdata(hdev, hidpp);
3226 
3227 	hidpp->quirks = id->driver_data;
3228 
3229 	if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
3230 		hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
3231 
3232 	if (disable_raw_mode) {
3233 		hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
3234 		hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
3235 	}
3236 
3237 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3238 		ret = wtp_allocate(hdev, id);
3239 		if (ret)
3240 			goto allocate_fail;
3241 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3242 		ret = m560_allocate(hdev);
3243 		if (ret)
3244 			goto allocate_fail;
3245 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3246 		ret = k400_allocate(hdev);
3247 		if (ret)
3248 			goto allocate_fail;
3249 	}
3250 
3251 	INIT_WORK(&hidpp->work, delayed_work_cb);
3252 	mutex_init(&hidpp->send_mutex);
3253 	init_waitqueue_head(&hidpp->wait);
3254 
3255 	/* indicates we are handling the battery properties in the kernel */
3256 	ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
3257 	if (ret)
3258 		hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
3259 			 hdev->name);
3260 
3261 	ret = hid_parse(hdev);
3262 	if (ret) {
3263 		hid_err(hdev, "%s:parse failed\n", __func__);
3264 		goto hid_parse_fail;
3265 	}
3266 
3267 	if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
3268 		connect_mask &= ~HID_CONNECT_HIDINPUT;
3269 
3270 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3271 		ret = hid_hw_start(hdev, connect_mask);
3272 		if (ret) {
3273 			hid_err(hdev, "hw start failed\n");
3274 			goto hid_hw_start_fail;
3275 		}
3276 		ret = hid_hw_open(hdev);
3277 		if (ret < 0) {
3278 			dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
3279 				__func__, ret);
3280 			hid_hw_stop(hdev);
3281 			goto hid_hw_start_fail;
3282 		}
3283 	}
3284 
3285 
3286 	/* Allow incoming packets */
3287 	hid_device_io_start(hdev);
3288 
3289 	if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
3290 		hidpp_unifying_init(hidpp);
3291 
3292 	connected = hidpp_is_connected(hidpp);
3293 	atomic_set(&hidpp->connected, connected);
3294 	if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
3295 		if (!connected) {
3296 			ret = -ENODEV;
3297 			hid_err(hdev, "Device not connected");
3298 			goto hid_hw_open_failed;
3299 		}
3300 
3301 		hid_info(hdev, "HID++ %u.%u device connected.\n",
3302 			 hidpp->protocol_major, hidpp->protocol_minor);
3303 
3304 		hidpp_overwrite_name(hdev);
3305 	}
3306 
3307 	if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
3308 		ret = wtp_get_config(hidpp);
3309 		if (ret)
3310 			goto hid_hw_open_failed;
3311 	} else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3312 		ret = g920_get_config(hidpp);
3313 		if (ret)
3314 			goto hid_hw_open_failed;
3315 	}
3316 
3317 	/* Block incoming packets */
3318 	hid_device_io_stop(hdev);
3319 
3320 	if (!(hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3321 		ret = hid_hw_start(hdev, connect_mask);
3322 		if (ret) {
3323 			hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
3324 			goto hid_hw_start_fail;
3325 		}
3326 	}
3327 
3328 	/* Allow incoming packets */
3329 	hid_device_io_start(hdev);
3330 
3331 	hidpp_connect_event(hidpp);
3332 
3333 	return ret;
3334 
3335 hid_hw_open_failed:
3336 	hid_device_io_stop(hdev);
3337 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3338 		hid_hw_close(hdev);
3339 		hid_hw_stop(hdev);
3340 	}
3341 hid_hw_start_fail:
3342 hid_parse_fail:
3343 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3344 	cancel_work_sync(&hidpp->work);
3345 	mutex_destroy(&hidpp->send_mutex);
3346 allocate_fail:
3347 	hid_set_drvdata(hdev, NULL);
3348 	return ret;
3349 }
3350 
3351 static void hidpp_remove(struct hid_device *hdev)
3352 {
3353 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3354 
3355 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3356 
3357 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3358 		hidpp_ff_deinit(hdev);
3359 		hid_hw_close(hdev);
3360 	}
3361 	hid_hw_stop(hdev);
3362 	cancel_work_sync(&hidpp->work);
3363 	mutex_destroy(&hidpp->send_mutex);
3364 }
3365 
3366 #define LDJ_DEVICE(product) \
3367 	HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
3368 		   USB_VENDOR_ID_LOGITECH, (product))
3369 
3370 static const struct hid_device_id hidpp_devices[] = {
3371 	{ /* wireless touchpad */
3372 	  LDJ_DEVICE(0x4011),
3373 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
3374 			 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
3375 	{ /* wireless touchpad T650 */
3376 	  LDJ_DEVICE(0x4101),
3377 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
3378 	{ /* wireless touchpad T651 */
3379 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
3380 		USB_DEVICE_ID_LOGITECH_T651),
3381 	  .driver_data = HIDPP_QUIRK_CLASS_WTP },
3382 	{ /* Mouse Logitech Anywhere MX */
3383 	  LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3384 	{ /* Mouse Logitech Cube */
3385 	  LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3386 	{ /* Mouse Logitech M335 */
3387 	  LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3388 	{ /* Mouse Logitech M515 */
3389 	  LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3390 	{ /* Mouse logitech M560 */
3391 	  LDJ_DEVICE(0x402d),
3392 	  .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
3393 		| HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3394 	{ /* Mouse Logitech M705 (firmware RQM17) */
3395 	  LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3396 	{ /* Mouse Logitech M705 (firmware RQM67) */
3397 	  LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3398 	{ /* Mouse Logitech M720 */
3399 	  LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3400 	{ /* Mouse Logitech MX Anywhere 2 */
3401 	  LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3402 	{ LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3403 	{ LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3404 	{ LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3405 	{ /* Mouse Logitech MX Anywhere 2S */
3406 	  LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3407 	{ /* Mouse Logitech MX Master */
3408 	  LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3409 	{ LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3410 	{ LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3411 	{ /* Mouse Logitech MX Master 2S */
3412 	  LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3413 	{ /* Mouse Logitech Performance MX */
3414 	  LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3415 	{ /* Keyboard logitech K400 */
3416 	  LDJ_DEVICE(0x4024),
3417 	  .driver_data = HIDPP_QUIRK_CLASS_K400 },
3418 	{ /* Solar Keyboard Logitech K750 */
3419 	  LDJ_DEVICE(0x4002),
3420 	  .driver_data = HIDPP_QUIRK_CLASS_K750 },
3421 
3422 	{ LDJ_DEVICE(HID_ANY_ID) },
3423 
3424 	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
3425 		.driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
3426 	{}
3427 };
3428 
3429 MODULE_DEVICE_TABLE(hid, hidpp_devices);
3430 
3431 static const struct hid_usage_id hidpp_usages[] = {
3432 	{ HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES },
3433 	{ HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
3434 };
3435 
3436 static struct hid_driver hidpp_driver = {
3437 	.name = "logitech-hidpp-device",
3438 	.id_table = hidpp_devices,
3439 	.probe = hidpp_probe,
3440 	.remove = hidpp_remove,
3441 	.raw_event = hidpp_raw_event,
3442 	.usage_table = hidpp_usages,
3443 	.event = hidpp_event,
3444 	.input_configured = hidpp_input_configured,
3445 	.input_mapping = hidpp_input_mapping,
3446 	.input_mapped = hidpp_input_mapped,
3447 };
3448 
3449 module_hid_driver(hidpp_driver);
3450