1 /* 2 * HIDPP protocol for Logitech Unifying receivers 3 * 4 * Copyright (c) 2011 Logitech (c) 5 * Copyright (c) 2012-2013 Google (c) 6 * Copyright (c) 2013-2014 Red Hat Inc. 7 */ 8 9 /* 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the Free 12 * Software Foundation; version 2 of the License. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/device.h> 18 #include <linux/input.h> 19 #include <linux/usb.h> 20 #include <linux/hid.h> 21 #include <linux/module.h> 22 #include <linux/slab.h> 23 #include <linux/sched.h> 24 #include <linux/sched/clock.h> 25 #include <linux/kfifo.h> 26 #include <linux/input/mt.h> 27 #include <linux/workqueue.h> 28 #include <linux/atomic.h> 29 #include <linux/fixp-arith.h> 30 #include <asm/unaligned.h> 31 #include "usbhid/usbhid.h" 32 #include "hid-ids.h" 33 34 MODULE_LICENSE("GPL"); 35 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>"); 36 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>"); 37 38 static bool disable_raw_mode; 39 module_param(disable_raw_mode, bool, 0644); 40 MODULE_PARM_DESC(disable_raw_mode, 41 "Disable Raw mode reporting for touchpads and keep firmware gestures."); 42 43 static bool disable_tap_to_click; 44 module_param(disable_tap_to_click, bool, 0644); 45 MODULE_PARM_DESC(disable_tap_to_click, 46 "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently)."); 47 48 #define REPORT_ID_HIDPP_SHORT 0x10 49 #define REPORT_ID_HIDPP_LONG 0x11 50 #define REPORT_ID_HIDPP_VERY_LONG 0x12 51 52 #define HIDPP_REPORT_SHORT_LENGTH 7 53 #define HIDPP_REPORT_LONG_LENGTH 20 54 #define HIDPP_REPORT_VERY_LONG_LENGTH 64 55 56 #define HIDPP_QUIRK_CLASS_WTP BIT(0) 57 #define HIDPP_QUIRK_CLASS_M560 BIT(1) 58 #define HIDPP_QUIRK_CLASS_K400 BIT(2) 59 #define HIDPP_QUIRK_CLASS_G920 BIT(3) 60 #define HIDPP_QUIRK_CLASS_K750 BIT(4) 61 62 /* bits 2..20 are reserved for classes */ 63 /* #define HIDPP_QUIRK_CONNECT_EVENTS BIT(21) disabled */ 64 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS BIT(22) 65 #define HIDPP_QUIRK_NO_HIDINPUT BIT(23) 66 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS BIT(24) 67 #define HIDPP_QUIRK_UNIFYING BIT(25) 68 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0 BIT(26) 69 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120 BIT(27) 70 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121 BIT(28) 71 72 /* Convenience constant to check for any high-res support. */ 73 #define HIDPP_QUIRK_HI_RES_SCROLL (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \ 74 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \ 75 HIDPP_QUIRK_HI_RES_SCROLL_X2121) 76 77 #define HIDPP_QUIRK_DELAYED_INIT HIDPP_QUIRK_NO_HIDINPUT 78 79 #define HIDPP_CAPABILITY_HIDPP10_BATTERY BIT(0) 80 #define HIDPP_CAPABILITY_HIDPP20_BATTERY BIT(1) 81 #define HIDPP_CAPABILITY_BATTERY_MILEAGE BIT(2) 82 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS BIT(3) 83 84 /* 85 * There are two hidpp protocols in use, the first version hidpp10 is known 86 * as register access protocol or RAP, the second version hidpp20 is known as 87 * feature access protocol or FAP 88 * 89 * Most older devices (including the Unifying usb receiver) use the RAP protocol 90 * where as most newer devices use the FAP protocol. Both protocols are 91 * compatible with the underlying transport, which could be usb, Unifiying, or 92 * bluetooth. The message lengths are defined by the hid vendor specific report 93 * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and 94 * the HIDPP_LONG report type (total message length 20 bytes) 95 * 96 * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG 97 * messages. The Unifying receiver itself responds to RAP messages (device index 98 * is 0xFF for the receiver), and all messages (short or long) with a device 99 * index between 1 and 6 are passed untouched to the corresponding paired 100 * Unifying device. 101 * 102 * The paired device can be RAP or FAP, it will receive the message untouched 103 * from the Unifiying receiver. 104 */ 105 106 struct fap { 107 u8 feature_index; 108 u8 funcindex_clientid; 109 u8 params[HIDPP_REPORT_VERY_LONG_LENGTH - 4U]; 110 }; 111 112 struct rap { 113 u8 sub_id; 114 u8 reg_address; 115 u8 params[HIDPP_REPORT_VERY_LONG_LENGTH - 4U]; 116 }; 117 118 struct hidpp_report { 119 u8 report_id; 120 u8 device_index; 121 union { 122 struct fap fap; 123 struct rap rap; 124 u8 rawbytes[sizeof(struct fap)]; 125 }; 126 } __packed; 127 128 struct hidpp_battery { 129 u8 feature_index; 130 u8 solar_feature_index; 131 struct power_supply_desc desc; 132 struct power_supply *ps; 133 char name[64]; 134 int status; 135 int capacity; 136 int level; 137 bool online; 138 }; 139 140 /** 141 * struct hidpp_scroll_counter - Utility class for processing high-resolution 142 * scroll events. 143 * @dev: the input device for which events should be reported. 144 * @wheel_multiplier: the scalar multiplier to be applied to each wheel event 145 * @remainder: counts the number of high-resolution units moved since the last 146 * low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should 147 * only be used by class methods. 148 * @direction: direction of last movement (1 or -1) 149 * @last_time: last event time, used to reset remainder after inactivity 150 */ 151 struct hidpp_scroll_counter { 152 struct input_dev *dev; 153 int wheel_multiplier; 154 int remainder; 155 int direction; 156 unsigned long long last_time; 157 }; 158 159 struct hidpp_device { 160 struct hid_device *hid_dev; 161 struct mutex send_mutex; 162 void *send_receive_buf; 163 char *name; /* will never be NULL and should not be freed */ 164 wait_queue_head_t wait; 165 bool answer_available; 166 u8 protocol_major; 167 u8 protocol_minor; 168 169 void *private_data; 170 171 struct work_struct work; 172 struct kfifo delayed_work_fifo; 173 atomic_t connected; 174 struct input_dev *delayed_input; 175 176 unsigned long quirks; 177 unsigned long capabilities; 178 179 struct hidpp_battery battery; 180 struct hidpp_scroll_counter vertical_wheel_counter; 181 }; 182 183 /* HID++ 1.0 error codes */ 184 #define HIDPP_ERROR 0x8f 185 #define HIDPP_ERROR_SUCCESS 0x00 186 #define HIDPP_ERROR_INVALID_SUBID 0x01 187 #define HIDPP_ERROR_INVALID_ADRESS 0x02 188 #define HIDPP_ERROR_INVALID_VALUE 0x03 189 #define HIDPP_ERROR_CONNECT_FAIL 0x04 190 #define HIDPP_ERROR_TOO_MANY_DEVICES 0x05 191 #define HIDPP_ERROR_ALREADY_EXISTS 0x06 192 #define HIDPP_ERROR_BUSY 0x07 193 #define HIDPP_ERROR_UNKNOWN_DEVICE 0x08 194 #define HIDPP_ERROR_RESOURCE_ERROR 0x09 195 #define HIDPP_ERROR_REQUEST_UNAVAILABLE 0x0a 196 #define HIDPP_ERROR_INVALID_PARAM_VALUE 0x0b 197 #define HIDPP_ERROR_WRONG_PIN_CODE 0x0c 198 /* HID++ 2.0 error codes */ 199 #define HIDPP20_ERROR 0xff 200 201 static void hidpp_connect_event(struct hidpp_device *hidpp_dev); 202 203 static int __hidpp_send_report(struct hid_device *hdev, 204 struct hidpp_report *hidpp_report) 205 { 206 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 207 int fields_count, ret; 208 209 hidpp = hid_get_drvdata(hdev); 210 211 switch (hidpp_report->report_id) { 212 case REPORT_ID_HIDPP_SHORT: 213 fields_count = HIDPP_REPORT_SHORT_LENGTH; 214 break; 215 case REPORT_ID_HIDPP_LONG: 216 fields_count = HIDPP_REPORT_LONG_LENGTH; 217 break; 218 case REPORT_ID_HIDPP_VERY_LONG: 219 fields_count = HIDPP_REPORT_VERY_LONG_LENGTH; 220 break; 221 default: 222 return -ENODEV; 223 } 224 225 /* 226 * set the device_index as the receiver, it will be overwritten by 227 * hid_hw_request if needed 228 */ 229 hidpp_report->device_index = 0xff; 230 231 if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) { 232 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count); 233 } else { 234 ret = hid_hw_raw_request(hdev, hidpp_report->report_id, 235 (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT, 236 HID_REQ_SET_REPORT); 237 } 238 239 return ret == fields_count ? 0 : -1; 240 } 241 242 /** 243 * hidpp_send_message_sync() returns 0 in case of success, and something else 244 * in case of a failure. 245 * - If ' something else' is positive, that means that an error has been raised 246 * by the protocol itself. 247 * - If ' something else' is negative, that means that we had a classic error 248 * (-ENOMEM, -EPIPE, etc...) 249 */ 250 static int hidpp_send_message_sync(struct hidpp_device *hidpp, 251 struct hidpp_report *message, 252 struct hidpp_report *response) 253 { 254 int ret; 255 256 mutex_lock(&hidpp->send_mutex); 257 258 hidpp->send_receive_buf = response; 259 hidpp->answer_available = false; 260 261 /* 262 * So that we can later validate the answer when it arrives 263 * in hidpp_raw_event 264 */ 265 *response = *message; 266 267 ret = __hidpp_send_report(hidpp->hid_dev, message); 268 269 if (ret) { 270 dbg_hid("__hidpp_send_report returned err: %d\n", ret); 271 memset(response, 0, sizeof(struct hidpp_report)); 272 goto exit; 273 } 274 275 if (!wait_event_timeout(hidpp->wait, hidpp->answer_available, 276 5*HZ)) { 277 dbg_hid("%s:timeout waiting for response\n", __func__); 278 memset(response, 0, sizeof(struct hidpp_report)); 279 ret = -ETIMEDOUT; 280 } 281 282 if (response->report_id == REPORT_ID_HIDPP_SHORT && 283 response->rap.sub_id == HIDPP_ERROR) { 284 ret = response->rap.params[1]; 285 dbg_hid("%s:got hidpp error %02X\n", __func__, ret); 286 goto exit; 287 } 288 289 if ((response->report_id == REPORT_ID_HIDPP_LONG || 290 response->report_id == REPORT_ID_HIDPP_VERY_LONG) && 291 response->fap.feature_index == HIDPP20_ERROR) { 292 ret = response->fap.params[1]; 293 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret); 294 goto exit; 295 } 296 297 exit: 298 mutex_unlock(&hidpp->send_mutex); 299 return ret; 300 301 } 302 303 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp, 304 u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count, 305 struct hidpp_report *response) 306 { 307 struct hidpp_report *message; 308 int ret; 309 310 if (param_count > sizeof(message->fap.params)) 311 return -EINVAL; 312 313 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 314 if (!message) 315 return -ENOMEM; 316 317 if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4)) 318 message->report_id = REPORT_ID_HIDPP_VERY_LONG; 319 else 320 message->report_id = REPORT_ID_HIDPP_LONG; 321 message->fap.feature_index = feat_index; 322 message->fap.funcindex_clientid = funcindex_clientid; 323 memcpy(&message->fap.params, params, param_count); 324 325 ret = hidpp_send_message_sync(hidpp, message, response); 326 kfree(message); 327 return ret; 328 } 329 330 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev, 331 u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count, 332 struct hidpp_report *response) 333 { 334 struct hidpp_report *message; 335 int ret, max_count; 336 337 switch (report_id) { 338 case REPORT_ID_HIDPP_SHORT: 339 max_count = HIDPP_REPORT_SHORT_LENGTH - 4; 340 break; 341 case REPORT_ID_HIDPP_LONG: 342 max_count = HIDPP_REPORT_LONG_LENGTH - 4; 343 break; 344 case REPORT_ID_HIDPP_VERY_LONG: 345 max_count = HIDPP_REPORT_VERY_LONG_LENGTH - 4; 346 break; 347 default: 348 return -EINVAL; 349 } 350 351 if (param_count > max_count) 352 return -EINVAL; 353 354 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 355 if (!message) 356 return -ENOMEM; 357 message->report_id = report_id; 358 message->rap.sub_id = sub_id; 359 message->rap.reg_address = reg_address; 360 memcpy(&message->rap.params, params, param_count); 361 362 ret = hidpp_send_message_sync(hidpp_dev, message, response); 363 kfree(message); 364 return ret; 365 } 366 367 static void delayed_work_cb(struct work_struct *work) 368 { 369 struct hidpp_device *hidpp = container_of(work, struct hidpp_device, 370 work); 371 hidpp_connect_event(hidpp); 372 } 373 374 static inline bool hidpp_match_answer(struct hidpp_report *question, 375 struct hidpp_report *answer) 376 { 377 return (answer->fap.feature_index == question->fap.feature_index) && 378 (answer->fap.funcindex_clientid == question->fap.funcindex_clientid); 379 } 380 381 static inline bool hidpp_match_error(struct hidpp_report *question, 382 struct hidpp_report *answer) 383 { 384 return ((answer->rap.sub_id == HIDPP_ERROR) || 385 (answer->fap.feature_index == HIDPP20_ERROR)) && 386 (answer->fap.funcindex_clientid == question->fap.feature_index) && 387 (answer->fap.params[0] == question->fap.funcindex_clientid); 388 } 389 390 static inline bool hidpp_report_is_connect_event(struct hidpp_report *report) 391 { 392 return (report->report_id == REPORT_ID_HIDPP_SHORT) && 393 (report->rap.sub_id == 0x41); 394 } 395 396 /** 397 * hidpp_prefix_name() prefixes the current given name with "Logitech ". 398 */ 399 static void hidpp_prefix_name(char **name, int name_length) 400 { 401 #define PREFIX_LENGTH 9 /* "Logitech " */ 402 403 int new_length; 404 char *new_name; 405 406 if (name_length > PREFIX_LENGTH && 407 strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0) 408 /* The prefix has is already in the name */ 409 return; 410 411 new_length = PREFIX_LENGTH + name_length; 412 new_name = kzalloc(new_length, GFP_KERNEL); 413 if (!new_name) 414 return; 415 416 snprintf(new_name, new_length, "Logitech %s", *name); 417 418 kfree(*name); 419 420 *name = new_name; 421 } 422 423 /** 424 * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll 425 * events given a high-resolution wheel 426 * movement. 427 * @counter: a hid_scroll_counter struct describing the wheel. 428 * @hi_res_value: the movement of the wheel, in the mouse's high-resolution 429 * units. 430 * 431 * Given a high-resolution movement, this function converts the movement into 432 * fractions of 120 and emits high-resolution scroll events for the input 433 * device. It also uses the multiplier from &struct hid_scroll_counter to 434 * emit low-resolution scroll events when appropriate for 435 * backwards-compatibility with userspace input libraries. 436 */ 437 static void hidpp_scroll_counter_handle_scroll(struct hidpp_scroll_counter *counter, 438 int hi_res_value) 439 { 440 int low_res_value, remainder, direction; 441 unsigned long long now, previous; 442 443 hi_res_value = hi_res_value * 120/counter->wheel_multiplier; 444 input_report_rel(counter->dev, REL_WHEEL_HI_RES, hi_res_value); 445 446 remainder = counter->remainder; 447 direction = hi_res_value > 0 ? 1 : -1; 448 449 now = sched_clock(); 450 previous = counter->last_time; 451 counter->last_time = now; 452 /* 453 * Reset the remainder after a period of inactivity or when the 454 * direction changes. This prevents the REL_WHEEL emulation point 455 * from sliding for devices that don't always provide the same 456 * number of movements per detent. 457 */ 458 if (now - previous > 1000000000 || direction != counter->direction) 459 remainder = 0; 460 461 counter->direction = direction; 462 remainder += hi_res_value; 463 464 /* Some wheels will rest 7/8ths of a detent from the previous detent 465 * after slow movement, so we want the threshold for low-res events to 466 * be in the middle between two detents (e.g. after 4/8ths) as 467 * opposed to on the detents themselves (8/8ths). 468 */ 469 if (abs(remainder) >= 60) { 470 /* Add (or subtract) 1 because we want to trigger when the wheel 471 * is half-way to the next detent (i.e. scroll 1 detent after a 472 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement, 473 * etc.). 474 */ 475 low_res_value = remainder / 120; 476 if (low_res_value == 0) 477 low_res_value = (hi_res_value > 0 ? 1 : -1); 478 input_report_rel(counter->dev, REL_WHEEL, low_res_value); 479 remainder -= low_res_value * 120; 480 } 481 counter->remainder = remainder; 482 } 483 484 /* -------------------------------------------------------------------------- */ 485 /* HIDP++ 1.0 commands */ 486 /* -------------------------------------------------------------------------- */ 487 488 #define HIDPP_SET_REGISTER 0x80 489 #define HIDPP_GET_REGISTER 0x81 490 #define HIDPP_SET_LONG_REGISTER 0x82 491 #define HIDPP_GET_LONG_REGISTER 0x83 492 493 /** 494 * hidpp10_set_register_bit() - Sets a single bit in a HID++ 1.0 register. 495 * @hidpp_dev: the device to set the register on. 496 * @register_address: the address of the register to modify. 497 * @byte: the byte of the register to modify. Should be less than 3. 498 * Return: 0 if successful, otherwise a negative error code. 499 */ 500 static int hidpp10_set_register_bit(struct hidpp_device *hidpp_dev, 501 u8 register_address, u8 byte, u8 bit) 502 { 503 struct hidpp_report response; 504 int ret; 505 u8 params[3] = { 0 }; 506 507 ret = hidpp_send_rap_command_sync(hidpp_dev, 508 REPORT_ID_HIDPP_SHORT, 509 HIDPP_GET_REGISTER, 510 register_address, 511 NULL, 0, &response); 512 if (ret) 513 return ret; 514 515 memcpy(params, response.rap.params, 3); 516 517 params[byte] |= BIT(bit); 518 519 return hidpp_send_rap_command_sync(hidpp_dev, 520 REPORT_ID_HIDPP_SHORT, 521 HIDPP_SET_REGISTER, 522 register_address, 523 params, 3, &response); 524 } 525 526 527 #define HIDPP_REG_GENERAL 0x00 528 529 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev) 530 { 531 return hidpp10_set_register_bit(hidpp_dev, HIDPP_REG_GENERAL, 0, 4); 532 } 533 534 #define HIDPP_REG_FEATURES 0x01 535 536 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */ 537 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev) 538 { 539 return hidpp10_set_register_bit(hidpp_dev, HIDPP_REG_FEATURES, 0, 6); 540 } 541 542 #define HIDPP_REG_BATTERY_STATUS 0x07 543 544 static int hidpp10_battery_status_map_level(u8 param) 545 { 546 int level; 547 548 switch (param) { 549 case 1 ... 2: 550 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 551 break; 552 case 3 ... 4: 553 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; 554 break; 555 case 5 ... 6: 556 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 557 break; 558 case 7: 559 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; 560 break; 561 default: 562 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 563 } 564 565 return level; 566 } 567 568 static int hidpp10_battery_status_map_status(u8 param) 569 { 570 int status; 571 572 switch (param) { 573 case 0x00: 574 /* discharging (in use) */ 575 status = POWER_SUPPLY_STATUS_DISCHARGING; 576 break; 577 case 0x21: /* (standard) charging */ 578 case 0x24: /* fast charging */ 579 case 0x25: /* slow charging */ 580 status = POWER_SUPPLY_STATUS_CHARGING; 581 break; 582 case 0x26: /* topping charge */ 583 case 0x22: /* charge complete */ 584 status = POWER_SUPPLY_STATUS_FULL; 585 break; 586 case 0x20: /* unknown */ 587 status = POWER_SUPPLY_STATUS_UNKNOWN; 588 break; 589 /* 590 * 0x01...0x1F = reserved (not charging) 591 * 0x23 = charging error 592 * 0x27..0xff = reserved 593 */ 594 default: 595 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 596 break; 597 } 598 599 return status; 600 } 601 602 static int hidpp10_query_battery_status(struct hidpp_device *hidpp) 603 { 604 struct hidpp_report response; 605 int ret, status; 606 607 ret = hidpp_send_rap_command_sync(hidpp, 608 REPORT_ID_HIDPP_SHORT, 609 HIDPP_GET_REGISTER, 610 HIDPP_REG_BATTERY_STATUS, 611 NULL, 0, &response); 612 if (ret) 613 return ret; 614 615 hidpp->battery.level = 616 hidpp10_battery_status_map_level(response.rap.params[0]); 617 status = hidpp10_battery_status_map_status(response.rap.params[1]); 618 hidpp->battery.status = status; 619 /* the capacity is only available when discharging or full */ 620 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 621 status == POWER_SUPPLY_STATUS_FULL; 622 623 return 0; 624 } 625 626 #define HIDPP_REG_BATTERY_MILEAGE 0x0D 627 628 static int hidpp10_battery_mileage_map_status(u8 param) 629 { 630 int status; 631 632 switch (param >> 6) { 633 case 0x00: 634 /* discharging (in use) */ 635 status = POWER_SUPPLY_STATUS_DISCHARGING; 636 break; 637 case 0x01: /* charging */ 638 status = POWER_SUPPLY_STATUS_CHARGING; 639 break; 640 case 0x02: /* charge complete */ 641 status = POWER_SUPPLY_STATUS_FULL; 642 break; 643 /* 644 * 0x03 = charging error 645 */ 646 default: 647 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 648 break; 649 } 650 651 return status; 652 } 653 654 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp) 655 { 656 struct hidpp_report response; 657 int ret, status; 658 659 ret = hidpp_send_rap_command_sync(hidpp, 660 REPORT_ID_HIDPP_SHORT, 661 HIDPP_GET_REGISTER, 662 HIDPP_REG_BATTERY_MILEAGE, 663 NULL, 0, &response); 664 if (ret) 665 return ret; 666 667 hidpp->battery.capacity = response.rap.params[0]; 668 status = hidpp10_battery_mileage_map_status(response.rap.params[2]); 669 hidpp->battery.status = status; 670 /* the capacity is only available when discharging or full */ 671 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 672 status == POWER_SUPPLY_STATUS_FULL; 673 674 return 0; 675 } 676 677 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size) 678 { 679 struct hidpp_report *report = (struct hidpp_report *)data; 680 int status, capacity, level; 681 bool changed; 682 683 if (report->report_id != REPORT_ID_HIDPP_SHORT) 684 return 0; 685 686 switch (report->rap.sub_id) { 687 case HIDPP_REG_BATTERY_STATUS: 688 capacity = hidpp->battery.capacity; 689 level = hidpp10_battery_status_map_level(report->rawbytes[1]); 690 status = hidpp10_battery_status_map_status(report->rawbytes[2]); 691 break; 692 case HIDPP_REG_BATTERY_MILEAGE: 693 capacity = report->rap.params[0]; 694 level = hidpp->battery.level; 695 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]); 696 break; 697 default: 698 return 0; 699 } 700 701 changed = capacity != hidpp->battery.capacity || 702 level != hidpp->battery.level || 703 status != hidpp->battery.status; 704 705 /* the capacity is only available when discharging or full */ 706 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 707 status == POWER_SUPPLY_STATUS_FULL; 708 709 if (changed) { 710 hidpp->battery.level = level; 711 hidpp->battery.status = status; 712 if (hidpp->battery.ps) 713 power_supply_changed(hidpp->battery.ps); 714 } 715 716 return 0; 717 } 718 719 #define HIDPP_REG_PAIRING_INFORMATION 0xB5 720 #define HIDPP_EXTENDED_PAIRING 0x30 721 #define HIDPP_DEVICE_NAME 0x40 722 723 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev) 724 { 725 struct hidpp_report response; 726 int ret; 727 u8 params[1] = { HIDPP_DEVICE_NAME }; 728 char *name; 729 int len; 730 731 ret = hidpp_send_rap_command_sync(hidpp_dev, 732 REPORT_ID_HIDPP_SHORT, 733 HIDPP_GET_LONG_REGISTER, 734 HIDPP_REG_PAIRING_INFORMATION, 735 params, 1, &response); 736 if (ret) 737 return NULL; 738 739 len = response.rap.params[1]; 740 741 if (2 + len > sizeof(response.rap.params)) 742 return NULL; 743 744 name = kzalloc(len + 1, GFP_KERNEL); 745 if (!name) 746 return NULL; 747 748 memcpy(name, &response.rap.params[2], len); 749 750 /* include the terminating '\0' */ 751 hidpp_prefix_name(&name, len + 1); 752 753 return name; 754 } 755 756 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial) 757 { 758 struct hidpp_report response; 759 int ret; 760 u8 params[1] = { HIDPP_EXTENDED_PAIRING }; 761 762 ret = hidpp_send_rap_command_sync(hidpp, 763 REPORT_ID_HIDPP_SHORT, 764 HIDPP_GET_LONG_REGISTER, 765 HIDPP_REG_PAIRING_INFORMATION, 766 params, 1, &response); 767 if (ret) 768 return ret; 769 770 /* 771 * We don't care about LE or BE, we will output it as a string 772 * with %4phD, so we need to keep the order. 773 */ 774 *serial = *((u32 *)&response.rap.params[1]); 775 return 0; 776 } 777 778 static int hidpp_unifying_init(struct hidpp_device *hidpp) 779 { 780 struct hid_device *hdev = hidpp->hid_dev; 781 const char *name; 782 u32 serial; 783 int ret; 784 785 ret = hidpp_unifying_get_serial(hidpp, &serial); 786 if (ret) 787 return ret; 788 789 snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD", 790 hdev->product, &serial); 791 dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq); 792 793 name = hidpp_unifying_get_name(hidpp); 794 if (!name) 795 return -EIO; 796 797 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 798 dbg_hid("HID++ Unifying: Got name: %s\n", name); 799 800 kfree(name); 801 return 0; 802 } 803 804 /* -------------------------------------------------------------------------- */ 805 /* 0x0000: Root */ 806 /* -------------------------------------------------------------------------- */ 807 808 #define HIDPP_PAGE_ROOT 0x0000 809 #define HIDPP_PAGE_ROOT_IDX 0x00 810 811 #define CMD_ROOT_GET_FEATURE 0x01 812 #define CMD_ROOT_GET_PROTOCOL_VERSION 0x11 813 814 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature, 815 u8 *feature_index, u8 *feature_type) 816 { 817 struct hidpp_report response; 818 int ret; 819 u8 params[2] = { feature >> 8, feature & 0x00FF }; 820 821 ret = hidpp_send_fap_command_sync(hidpp, 822 HIDPP_PAGE_ROOT_IDX, 823 CMD_ROOT_GET_FEATURE, 824 params, 2, &response); 825 if (ret) 826 return ret; 827 828 if (response.fap.params[0] == 0) 829 return -ENOENT; 830 831 *feature_index = response.fap.params[0]; 832 *feature_type = response.fap.params[1]; 833 834 return ret; 835 } 836 837 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp) 838 { 839 struct hidpp_report response; 840 int ret; 841 842 ret = hidpp_send_fap_command_sync(hidpp, 843 HIDPP_PAGE_ROOT_IDX, 844 CMD_ROOT_GET_PROTOCOL_VERSION, 845 NULL, 0, &response); 846 847 if (ret == HIDPP_ERROR_INVALID_SUBID) { 848 hidpp->protocol_major = 1; 849 hidpp->protocol_minor = 0; 850 return 0; 851 } 852 853 /* the device might not be connected */ 854 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 855 return -EIO; 856 857 if (ret > 0) { 858 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 859 __func__, ret); 860 return -EPROTO; 861 } 862 if (ret) 863 return ret; 864 865 hidpp->protocol_major = response.fap.params[0]; 866 hidpp->protocol_minor = response.fap.params[1]; 867 868 return ret; 869 } 870 871 static bool hidpp_is_connected(struct hidpp_device *hidpp) 872 { 873 int ret; 874 875 ret = hidpp_root_get_protocol_version(hidpp); 876 if (!ret) 877 hid_dbg(hidpp->hid_dev, "HID++ %u.%u device connected.\n", 878 hidpp->protocol_major, hidpp->protocol_minor); 879 return ret == 0; 880 } 881 882 /* -------------------------------------------------------------------------- */ 883 /* 0x0005: GetDeviceNameType */ 884 /* -------------------------------------------------------------------------- */ 885 886 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE 0x0005 887 888 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT 0x01 889 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME 0x11 890 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE 0x21 891 892 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp, 893 u8 feature_index, u8 *nameLength) 894 { 895 struct hidpp_report response; 896 int ret; 897 898 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 899 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response); 900 901 if (ret > 0) { 902 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 903 __func__, ret); 904 return -EPROTO; 905 } 906 if (ret) 907 return ret; 908 909 *nameLength = response.fap.params[0]; 910 911 return ret; 912 } 913 914 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp, 915 u8 feature_index, u8 char_index, char *device_name, int len_buf) 916 { 917 struct hidpp_report response; 918 int ret, i; 919 int count; 920 921 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 922 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1, 923 &response); 924 925 if (ret > 0) { 926 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 927 __func__, ret); 928 return -EPROTO; 929 } 930 if (ret) 931 return ret; 932 933 switch (response.report_id) { 934 case REPORT_ID_HIDPP_VERY_LONG: 935 count = HIDPP_REPORT_VERY_LONG_LENGTH - 4; 936 break; 937 case REPORT_ID_HIDPP_LONG: 938 count = HIDPP_REPORT_LONG_LENGTH - 4; 939 break; 940 case REPORT_ID_HIDPP_SHORT: 941 count = HIDPP_REPORT_SHORT_LENGTH - 4; 942 break; 943 default: 944 return -EPROTO; 945 } 946 947 if (len_buf < count) 948 count = len_buf; 949 950 for (i = 0; i < count; i++) 951 device_name[i] = response.fap.params[i]; 952 953 return count; 954 } 955 956 static char *hidpp_get_device_name(struct hidpp_device *hidpp) 957 { 958 u8 feature_type; 959 u8 feature_index; 960 u8 __name_length; 961 char *name; 962 unsigned index = 0; 963 int ret; 964 965 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE, 966 &feature_index, &feature_type); 967 if (ret) 968 return NULL; 969 970 ret = hidpp_devicenametype_get_count(hidpp, feature_index, 971 &__name_length); 972 if (ret) 973 return NULL; 974 975 name = kzalloc(__name_length + 1, GFP_KERNEL); 976 if (!name) 977 return NULL; 978 979 while (index < __name_length) { 980 ret = hidpp_devicenametype_get_device_name(hidpp, 981 feature_index, index, name + index, 982 __name_length - index); 983 if (ret <= 0) { 984 kfree(name); 985 return NULL; 986 } 987 index += ret; 988 } 989 990 /* include the terminating '\0' */ 991 hidpp_prefix_name(&name, __name_length + 1); 992 993 return name; 994 } 995 996 /* -------------------------------------------------------------------------- */ 997 /* 0x1000: Battery level status */ 998 /* -------------------------------------------------------------------------- */ 999 1000 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS 0x1000 1001 1002 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS 0x00 1003 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY 0x10 1004 1005 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST 0x00 1006 1007 #define FLAG_BATTERY_LEVEL_DISABLE_OSD BIT(0) 1008 #define FLAG_BATTERY_LEVEL_MILEAGE BIT(1) 1009 #define FLAG_BATTERY_LEVEL_RECHARGEABLE BIT(2) 1010 1011 static int hidpp_map_battery_level(int capacity) 1012 { 1013 if (capacity < 11) 1014 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1015 else if (capacity < 31) 1016 return POWER_SUPPLY_CAPACITY_LEVEL_LOW; 1017 else if (capacity < 81) 1018 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 1019 return POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1020 } 1021 1022 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity, 1023 int *next_capacity, 1024 int *level) 1025 { 1026 int status; 1027 1028 *capacity = data[0]; 1029 *next_capacity = data[1]; 1030 *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 1031 1032 /* When discharging, we can rely on the device reported capacity. 1033 * For all other states the device reports 0 (unknown). 1034 */ 1035 switch (data[2]) { 1036 case 0: /* discharging (in use) */ 1037 status = POWER_SUPPLY_STATUS_DISCHARGING; 1038 *level = hidpp_map_battery_level(*capacity); 1039 break; 1040 case 1: /* recharging */ 1041 status = POWER_SUPPLY_STATUS_CHARGING; 1042 break; 1043 case 2: /* charge in final stage */ 1044 status = POWER_SUPPLY_STATUS_CHARGING; 1045 break; 1046 case 3: /* charge complete */ 1047 status = POWER_SUPPLY_STATUS_FULL; 1048 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1049 *capacity = 100; 1050 break; 1051 case 4: /* recharging below optimal speed */ 1052 status = POWER_SUPPLY_STATUS_CHARGING; 1053 break; 1054 /* 5 = invalid battery type 1055 6 = thermal error 1056 7 = other charging error */ 1057 default: 1058 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1059 break; 1060 } 1061 1062 return status; 1063 } 1064 1065 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp, 1066 u8 feature_index, 1067 int *status, 1068 int *capacity, 1069 int *next_capacity, 1070 int *level) 1071 { 1072 struct hidpp_report response; 1073 int ret; 1074 u8 *params = (u8 *)response.fap.params; 1075 1076 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1077 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS, 1078 NULL, 0, &response); 1079 if (ret > 0) { 1080 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1081 __func__, ret); 1082 return -EPROTO; 1083 } 1084 if (ret) 1085 return ret; 1086 1087 *status = hidpp20_batterylevel_map_status_capacity(params, capacity, 1088 next_capacity, 1089 level); 1090 1091 return 0; 1092 } 1093 1094 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp, 1095 u8 feature_index) 1096 { 1097 struct hidpp_report response; 1098 int ret; 1099 u8 *params = (u8 *)response.fap.params; 1100 unsigned int level_count, flags; 1101 1102 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1103 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY, 1104 NULL, 0, &response); 1105 if (ret > 0) { 1106 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1107 __func__, ret); 1108 return -EPROTO; 1109 } 1110 if (ret) 1111 return ret; 1112 1113 level_count = params[0]; 1114 flags = params[1]; 1115 1116 if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE)) 1117 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 1118 else 1119 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1120 1121 return 0; 1122 } 1123 1124 static int hidpp20_query_battery_info(struct hidpp_device *hidpp) 1125 { 1126 u8 feature_type; 1127 int ret; 1128 int status, capacity, next_capacity, level; 1129 1130 if (hidpp->battery.feature_index == 0xff) { 1131 ret = hidpp_root_get_feature(hidpp, 1132 HIDPP_PAGE_BATTERY_LEVEL_STATUS, 1133 &hidpp->battery.feature_index, 1134 &feature_type); 1135 if (ret) 1136 return ret; 1137 } 1138 1139 ret = hidpp20_batterylevel_get_battery_capacity(hidpp, 1140 hidpp->battery.feature_index, 1141 &status, &capacity, 1142 &next_capacity, &level); 1143 if (ret) 1144 return ret; 1145 1146 ret = hidpp20_batterylevel_get_battery_info(hidpp, 1147 hidpp->battery.feature_index); 1148 if (ret) 1149 return ret; 1150 1151 hidpp->battery.status = status; 1152 hidpp->battery.capacity = capacity; 1153 hidpp->battery.level = level; 1154 /* the capacity is only available when discharging or full */ 1155 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1156 status == POWER_SUPPLY_STATUS_FULL; 1157 1158 return 0; 1159 } 1160 1161 static int hidpp20_battery_event(struct hidpp_device *hidpp, 1162 u8 *data, int size) 1163 { 1164 struct hidpp_report *report = (struct hidpp_report *)data; 1165 int status, capacity, next_capacity, level; 1166 bool changed; 1167 1168 if (report->fap.feature_index != hidpp->battery.feature_index || 1169 report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST) 1170 return 0; 1171 1172 status = hidpp20_batterylevel_map_status_capacity(report->fap.params, 1173 &capacity, 1174 &next_capacity, 1175 &level); 1176 1177 /* the capacity is only available when discharging or full */ 1178 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1179 status == POWER_SUPPLY_STATUS_FULL; 1180 1181 changed = capacity != hidpp->battery.capacity || 1182 level != hidpp->battery.level || 1183 status != hidpp->battery.status; 1184 1185 if (changed) { 1186 hidpp->battery.level = level; 1187 hidpp->battery.capacity = capacity; 1188 hidpp->battery.status = status; 1189 if (hidpp->battery.ps) 1190 power_supply_changed(hidpp->battery.ps); 1191 } 1192 1193 return 0; 1194 } 1195 1196 static enum power_supply_property hidpp_battery_props[] = { 1197 POWER_SUPPLY_PROP_ONLINE, 1198 POWER_SUPPLY_PROP_STATUS, 1199 POWER_SUPPLY_PROP_SCOPE, 1200 POWER_SUPPLY_PROP_MODEL_NAME, 1201 POWER_SUPPLY_PROP_MANUFACTURER, 1202 POWER_SUPPLY_PROP_SERIAL_NUMBER, 1203 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */ 1204 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */ 1205 }; 1206 1207 static int hidpp_battery_get_property(struct power_supply *psy, 1208 enum power_supply_property psp, 1209 union power_supply_propval *val) 1210 { 1211 struct hidpp_device *hidpp = power_supply_get_drvdata(psy); 1212 int ret = 0; 1213 1214 switch(psp) { 1215 case POWER_SUPPLY_PROP_STATUS: 1216 val->intval = hidpp->battery.status; 1217 break; 1218 case POWER_SUPPLY_PROP_CAPACITY: 1219 val->intval = hidpp->battery.capacity; 1220 break; 1221 case POWER_SUPPLY_PROP_CAPACITY_LEVEL: 1222 val->intval = hidpp->battery.level; 1223 break; 1224 case POWER_SUPPLY_PROP_SCOPE: 1225 val->intval = POWER_SUPPLY_SCOPE_DEVICE; 1226 break; 1227 case POWER_SUPPLY_PROP_ONLINE: 1228 val->intval = hidpp->battery.online; 1229 break; 1230 case POWER_SUPPLY_PROP_MODEL_NAME: 1231 if (!strncmp(hidpp->name, "Logitech ", 9)) 1232 val->strval = hidpp->name + 9; 1233 else 1234 val->strval = hidpp->name; 1235 break; 1236 case POWER_SUPPLY_PROP_MANUFACTURER: 1237 val->strval = "Logitech"; 1238 break; 1239 case POWER_SUPPLY_PROP_SERIAL_NUMBER: 1240 val->strval = hidpp->hid_dev->uniq; 1241 break; 1242 default: 1243 ret = -EINVAL; 1244 break; 1245 } 1246 1247 return ret; 1248 } 1249 1250 /* -------------------------------------------------------------------------- */ 1251 /* 0x2120: Hi-resolution scrolling */ 1252 /* -------------------------------------------------------------------------- */ 1253 1254 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING 0x2120 1255 1256 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE 0x10 1257 1258 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp, 1259 bool enabled, u8 *multiplier) 1260 { 1261 u8 feature_index; 1262 u8 feature_type; 1263 int ret; 1264 u8 params[1]; 1265 struct hidpp_report response; 1266 1267 ret = hidpp_root_get_feature(hidpp, 1268 HIDPP_PAGE_HI_RESOLUTION_SCROLLING, 1269 &feature_index, 1270 &feature_type); 1271 if (ret) 1272 return ret; 1273 1274 params[0] = enabled ? BIT(0) : 0; 1275 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1276 CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE, 1277 params, sizeof(params), &response); 1278 if (ret) 1279 return ret; 1280 *multiplier = response.fap.params[1]; 1281 return 0; 1282 } 1283 1284 /* -------------------------------------------------------------------------- */ 1285 /* 0x2121: HiRes Wheel */ 1286 /* -------------------------------------------------------------------------- */ 1287 1288 #define HIDPP_PAGE_HIRES_WHEEL 0x2121 1289 1290 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY 0x00 1291 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE 0x20 1292 1293 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp, 1294 u8 *multiplier) 1295 { 1296 u8 feature_index; 1297 u8 feature_type; 1298 int ret; 1299 struct hidpp_report response; 1300 1301 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1302 &feature_index, &feature_type); 1303 if (ret) 1304 goto return_default; 1305 1306 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1307 CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY, 1308 NULL, 0, &response); 1309 if (ret) 1310 goto return_default; 1311 1312 *multiplier = response.fap.params[0]; 1313 return 0; 1314 return_default: 1315 hid_warn(hidpp->hid_dev, 1316 "Couldn't get wheel multiplier (error %d)\n", ret); 1317 return ret; 1318 } 1319 1320 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert, 1321 bool high_resolution, bool use_hidpp) 1322 { 1323 u8 feature_index; 1324 u8 feature_type; 1325 int ret; 1326 u8 params[1]; 1327 struct hidpp_report response; 1328 1329 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1330 &feature_index, &feature_type); 1331 if (ret) 1332 return ret; 1333 1334 params[0] = (invert ? BIT(2) : 0) | 1335 (high_resolution ? BIT(1) : 0) | 1336 (use_hidpp ? BIT(0) : 0); 1337 1338 return hidpp_send_fap_command_sync(hidpp, feature_index, 1339 CMD_HIRES_WHEEL_SET_WHEEL_MODE, 1340 params, sizeof(params), &response); 1341 } 1342 1343 /* -------------------------------------------------------------------------- */ 1344 /* 0x4301: Solar Keyboard */ 1345 /* -------------------------------------------------------------------------- */ 1346 1347 #define HIDPP_PAGE_SOLAR_KEYBOARD 0x4301 1348 1349 #define CMD_SOLAR_SET_LIGHT_MEASURE 0x00 1350 1351 #define EVENT_SOLAR_BATTERY_BROADCAST 0x00 1352 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE 0x10 1353 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON 0x20 1354 1355 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp) 1356 { 1357 struct hidpp_report response; 1358 u8 params[2] = { 1, 1 }; 1359 u8 feature_type; 1360 int ret; 1361 1362 if (hidpp->battery.feature_index == 0xff) { 1363 ret = hidpp_root_get_feature(hidpp, 1364 HIDPP_PAGE_SOLAR_KEYBOARD, 1365 &hidpp->battery.solar_feature_index, 1366 &feature_type); 1367 if (ret) 1368 return ret; 1369 } 1370 1371 ret = hidpp_send_fap_command_sync(hidpp, 1372 hidpp->battery.solar_feature_index, 1373 CMD_SOLAR_SET_LIGHT_MEASURE, 1374 params, 2, &response); 1375 if (ret > 0) { 1376 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1377 __func__, ret); 1378 return -EPROTO; 1379 } 1380 if (ret) 1381 return ret; 1382 1383 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1384 1385 return 0; 1386 } 1387 1388 static int hidpp_solar_battery_event(struct hidpp_device *hidpp, 1389 u8 *data, int size) 1390 { 1391 struct hidpp_report *report = (struct hidpp_report *)data; 1392 int capacity, lux, status; 1393 u8 function; 1394 1395 function = report->fap.funcindex_clientid; 1396 1397 1398 if (report->fap.feature_index != hidpp->battery.solar_feature_index || 1399 !(function == EVENT_SOLAR_BATTERY_BROADCAST || 1400 function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE || 1401 function == EVENT_SOLAR_CHECK_LIGHT_BUTTON)) 1402 return 0; 1403 1404 capacity = report->fap.params[0]; 1405 1406 switch (function) { 1407 case EVENT_SOLAR_BATTERY_LIGHT_MEASURE: 1408 lux = (report->fap.params[1] << 8) | report->fap.params[2]; 1409 if (lux > 200) 1410 status = POWER_SUPPLY_STATUS_CHARGING; 1411 else 1412 status = POWER_SUPPLY_STATUS_DISCHARGING; 1413 break; 1414 case EVENT_SOLAR_CHECK_LIGHT_BUTTON: 1415 default: 1416 if (capacity < hidpp->battery.capacity) 1417 status = POWER_SUPPLY_STATUS_DISCHARGING; 1418 else 1419 status = POWER_SUPPLY_STATUS_CHARGING; 1420 1421 } 1422 1423 if (capacity == 100) 1424 status = POWER_SUPPLY_STATUS_FULL; 1425 1426 hidpp->battery.online = true; 1427 if (capacity != hidpp->battery.capacity || 1428 status != hidpp->battery.status) { 1429 hidpp->battery.capacity = capacity; 1430 hidpp->battery.status = status; 1431 if (hidpp->battery.ps) 1432 power_supply_changed(hidpp->battery.ps); 1433 } 1434 1435 return 0; 1436 } 1437 1438 /* -------------------------------------------------------------------------- */ 1439 /* 0x6010: Touchpad FW items */ 1440 /* -------------------------------------------------------------------------- */ 1441 1442 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS 0x6010 1443 1444 #define CMD_TOUCHPAD_FW_ITEMS_SET 0x10 1445 1446 struct hidpp_touchpad_fw_items { 1447 uint8_t presence; 1448 uint8_t desired_state; 1449 uint8_t state; 1450 uint8_t persistent; 1451 }; 1452 1453 /** 1454 * send a set state command to the device by reading the current items->state 1455 * field. items is then filled with the current state. 1456 */ 1457 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp, 1458 u8 feature_index, 1459 struct hidpp_touchpad_fw_items *items) 1460 { 1461 struct hidpp_report response; 1462 int ret; 1463 u8 *params = (u8 *)response.fap.params; 1464 1465 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1466 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response); 1467 1468 if (ret > 0) { 1469 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1470 __func__, ret); 1471 return -EPROTO; 1472 } 1473 if (ret) 1474 return ret; 1475 1476 items->presence = params[0]; 1477 items->desired_state = params[1]; 1478 items->state = params[2]; 1479 items->persistent = params[3]; 1480 1481 return 0; 1482 } 1483 1484 /* -------------------------------------------------------------------------- */ 1485 /* 0x6100: TouchPadRawXY */ 1486 /* -------------------------------------------------------------------------- */ 1487 1488 #define HIDPP_PAGE_TOUCHPAD_RAW_XY 0x6100 1489 1490 #define CMD_TOUCHPAD_GET_RAW_INFO 0x01 1491 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE 0x21 1492 1493 #define EVENT_TOUCHPAD_RAW_XY 0x00 1494 1495 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT 0x01 1496 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT 0x03 1497 1498 struct hidpp_touchpad_raw_info { 1499 u16 x_size; 1500 u16 y_size; 1501 u8 z_range; 1502 u8 area_range; 1503 u8 timestamp_unit; 1504 u8 maxcontacts; 1505 u8 origin; 1506 u16 res; 1507 }; 1508 1509 struct hidpp_touchpad_raw_xy_finger { 1510 u8 contact_type; 1511 u8 contact_status; 1512 u16 x; 1513 u16 y; 1514 u8 z; 1515 u8 area; 1516 u8 finger_id; 1517 }; 1518 1519 struct hidpp_touchpad_raw_xy { 1520 u16 timestamp; 1521 struct hidpp_touchpad_raw_xy_finger fingers[2]; 1522 u8 spurious_flag; 1523 u8 end_of_frame; 1524 u8 finger_count; 1525 u8 button; 1526 }; 1527 1528 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp, 1529 u8 feature_index, struct hidpp_touchpad_raw_info *raw_info) 1530 { 1531 struct hidpp_report response; 1532 int ret; 1533 u8 *params = (u8 *)response.fap.params; 1534 1535 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1536 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response); 1537 1538 if (ret > 0) { 1539 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1540 __func__, ret); 1541 return -EPROTO; 1542 } 1543 if (ret) 1544 return ret; 1545 1546 raw_info->x_size = get_unaligned_be16(¶ms[0]); 1547 raw_info->y_size = get_unaligned_be16(¶ms[2]); 1548 raw_info->z_range = params[4]; 1549 raw_info->area_range = params[5]; 1550 raw_info->maxcontacts = params[7]; 1551 raw_info->origin = params[8]; 1552 /* res is given in unit per inch */ 1553 raw_info->res = get_unaligned_be16(¶ms[13]) * 2 / 51; 1554 1555 return ret; 1556 } 1557 1558 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev, 1559 u8 feature_index, bool send_raw_reports, 1560 bool sensor_enhanced_settings) 1561 { 1562 struct hidpp_report response; 1563 1564 /* 1565 * Params: 1566 * bit 0 - enable raw 1567 * bit 1 - 16bit Z, no area 1568 * bit 2 - enhanced sensitivity 1569 * bit 3 - width, height (4 bits each) instead of area 1570 * bit 4 - send raw + gestures (degrades smoothness) 1571 * remaining bits - reserved 1572 */ 1573 u8 params = send_raw_reports | (sensor_enhanced_settings << 2); 1574 1575 return hidpp_send_fap_command_sync(hidpp_dev, feature_index, 1576 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, ¶ms, 1, &response); 1577 } 1578 1579 static void hidpp_touchpad_touch_event(u8 *data, 1580 struct hidpp_touchpad_raw_xy_finger *finger) 1581 { 1582 u8 x_m = data[0] << 2; 1583 u8 y_m = data[2] << 2; 1584 1585 finger->x = x_m << 6 | data[1]; 1586 finger->y = y_m << 6 | data[3]; 1587 1588 finger->contact_type = data[0] >> 6; 1589 finger->contact_status = data[2] >> 6; 1590 1591 finger->z = data[4]; 1592 finger->area = data[5]; 1593 finger->finger_id = data[6] >> 4; 1594 } 1595 1596 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev, 1597 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy) 1598 { 1599 memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy)); 1600 raw_xy->end_of_frame = data[8] & 0x01; 1601 raw_xy->spurious_flag = (data[8] >> 1) & 0x01; 1602 raw_xy->finger_count = data[15] & 0x0f; 1603 raw_xy->button = (data[8] >> 2) & 0x01; 1604 1605 if (raw_xy->finger_count) { 1606 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]); 1607 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]); 1608 } 1609 } 1610 1611 /* -------------------------------------------------------------------------- */ 1612 /* 0x8123: Force feedback support */ 1613 /* -------------------------------------------------------------------------- */ 1614 1615 #define HIDPP_FF_GET_INFO 0x01 1616 #define HIDPP_FF_RESET_ALL 0x11 1617 #define HIDPP_FF_DOWNLOAD_EFFECT 0x21 1618 #define HIDPP_FF_SET_EFFECT_STATE 0x31 1619 #define HIDPP_FF_DESTROY_EFFECT 0x41 1620 #define HIDPP_FF_GET_APERTURE 0x51 1621 #define HIDPP_FF_SET_APERTURE 0x61 1622 #define HIDPP_FF_GET_GLOBAL_GAINS 0x71 1623 #define HIDPP_FF_SET_GLOBAL_GAINS 0x81 1624 1625 #define HIDPP_FF_EFFECT_STATE_GET 0x00 1626 #define HIDPP_FF_EFFECT_STATE_STOP 0x01 1627 #define HIDPP_FF_EFFECT_STATE_PLAY 0x02 1628 #define HIDPP_FF_EFFECT_STATE_PAUSE 0x03 1629 1630 #define HIDPP_FF_EFFECT_CONSTANT 0x00 1631 #define HIDPP_FF_EFFECT_PERIODIC_SINE 0x01 1632 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE 0x02 1633 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE 0x03 1634 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP 0x04 1635 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN 0x05 1636 #define HIDPP_FF_EFFECT_SPRING 0x06 1637 #define HIDPP_FF_EFFECT_DAMPER 0x07 1638 #define HIDPP_FF_EFFECT_FRICTION 0x08 1639 #define HIDPP_FF_EFFECT_INERTIA 0x09 1640 #define HIDPP_FF_EFFECT_RAMP 0x0A 1641 1642 #define HIDPP_FF_EFFECT_AUTOSTART 0x80 1643 1644 #define HIDPP_FF_EFFECTID_NONE -1 1645 #define HIDPP_FF_EFFECTID_AUTOCENTER -2 1646 1647 #define HIDPP_FF_MAX_PARAMS 20 1648 #define HIDPP_FF_RESERVED_SLOTS 1 1649 1650 struct hidpp_ff_private_data { 1651 struct hidpp_device *hidpp; 1652 u8 feature_index; 1653 u8 version; 1654 u16 gain; 1655 s16 range; 1656 u8 slot_autocenter; 1657 u8 num_effects; 1658 int *effect_ids; 1659 struct workqueue_struct *wq; 1660 atomic_t workqueue_size; 1661 }; 1662 1663 struct hidpp_ff_work_data { 1664 struct work_struct work; 1665 struct hidpp_ff_private_data *data; 1666 int effect_id; 1667 u8 command; 1668 u8 params[HIDPP_FF_MAX_PARAMS]; 1669 u8 size; 1670 }; 1671 1672 static const signed short hidpp_ff_effects[] = { 1673 FF_CONSTANT, 1674 FF_PERIODIC, 1675 FF_SINE, 1676 FF_SQUARE, 1677 FF_SAW_UP, 1678 FF_SAW_DOWN, 1679 FF_TRIANGLE, 1680 FF_SPRING, 1681 FF_DAMPER, 1682 FF_AUTOCENTER, 1683 FF_GAIN, 1684 -1 1685 }; 1686 1687 static const signed short hidpp_ff_effects_v2[] = { 1688 FF_RAMP, 1689 FF_FRICTION, 1690 FF_INERTIA, 1691 -1 1692 }; 1693 1694 static const u8 HIDPP_FF_CONDITION_CMDS[] = { 1695 HIDPP_FF_EFFECT_SPRING, 1696 HIDPP_FF_EFFECT_FRICTION, 1697 HIDPP_FF_EFFECT_DAMPER, 1698 HIDPP_FF_EFFECT_INERTIA 1699 }; 1700 1701 static const char *HIDPP_FF_CONDITION_NAMES[] = { 1702 "spring", 1703 "friction", 1704 "damper", 1705 "inertia" 1706 }; 1707 1708 1709 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id) 1710 { 1711 int i; 1712 1713 for (i = 0; i < data->num_effects; i++) 1714 if (data->effect_ids[i] == effect_id) 1715 return i+1; 1716 1717 return 0; 1718 } 1719 1720 static void hidpp_ff_work_handler(struct work_struct *w) 1721 { 1722 struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work); 1723 struct hidpp_ff_private_data *data = wd->data; 1724 struct hidpp_report response; 1725 u8 slot; 1726 int ret; 1727 1728 /* add slot number if needed */ 1729 switch (wd->effect_id) { 1730 case HIDPP_FF_EFFECTID_AUTOCENTER: 1731 wd->params[0] = data->slot_autocenter; 1732 break; 1733 case HIDPP_FF_EFFECTID_NONE: 1734 /* leave slot as zero */ 1735 break; 1736 default: 1737 /* find current slot for effect */ 1738 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id); 1739 break; 1740 } 1741 1742 /* send command and wait for reply */ 1743 ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index, 1744 wd->command, wd->params, wd->size, &response); 1745 1746 if (ret) { 1747 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n"); 1748 goto out; 1749 } 1750 1751 /* parse return data */ 1752 switch (wd->command) { 1753 case HIDPP_FF_DOWNLOAD_EFFECT: 1754 slot = response.fap.params[0]; 1755 if (slot > 0 && slot <= data->num_effects) { 1756 if (wd->effect_id >= 0) 1757 /* regular effect uploaded */ 1758 data->effect_ids[slot-1] = wd->effect_id; 1759 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 1760 /* autocenter spring uploaded */ 1761 data->slot_autocenter = slot; 1762 } 1763 break; 1764 case HIDPP_FF_DESTROY_EFFECT: 1765 if (wd->effect_id >= 0) 1766 /* regular effect destroyed */ 1767 data->effect_ids[wd->params[0]-1] = -1; 1768 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 1769 /* autocenter spring destoyed */ 1770 data->slot_autocenter = 0; 1771 break; 1772 case HIDPP_FF_SET_GLOBAL_GAINS: 1773 data->gain = (wd->params[0] << 8) + wd->params[1]; 1774 break; 1775 case HIDPP_FF_SET_APERTURE: 1776 data->range = (wd->params[0] << 8) + wd->params[1]; 1777 break; 1778 default: 1779 /* no action needed */ 1780 break; 1781 } 1782 1783 out: 1784 atomic_dec(&data->workqueue_size); 1785 kfree(wd); 1786 } 1787 1788 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size) 1789 { 1790 struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL); 1791 int s; 1792 1793 if (!wd) 1794 return -ENOMEM; 1795 1796 INIT_WORK(&wd->work, hidpp_ff_work_handler); 1797 1798 wd->data = data; 1799 wd->effect_id = effect_id; 1800 wd->command = command; 1801 wd->size = size; 1802 memcpy(wd->params, params, size); 1803 1804 atomic_inc(&data->workqueue_size); 1805 queue_work(data->wq, &wd->work); 1806 1807 /* warn about excessive queue size */ 1808 s = atomic_read(&data->workqueue_size); 1809 if (s >= 20 && s % 20 == 0) 1810 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s); 1811 1812 return 0; 1813 } 1814 1815 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old) 1816 { 1817 struct hidpp_ff_private_data *data = dev->ff->private; 1818 u8 params[20]; 1819 u8 size; 1820 int force; 1821 1822 /* set common parameters */ 1823 params[2] = effect->replay.length >> 8; 1824 params[3] = effect->replay.length & 255; 1825 params[4] = effect->replay.delay >> 8; 1826 params[5] = effect->replay.delay & 255; 1827 1828 switch (effect->type) { 1829 case FF_CONSTANT: 1830 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1831 params[1] = HIDPP_FF_EFFECT_CONSTANT; 1832 params[6] = force >> 8; 1833 params[7] = force & 255; 1834 params[8] = effect->u.constant.envelope.attack_level >> 7; 1835 params[9] = effect->u.constant.envelope.attack_length >> 8; 1836 params[10] = effect->u.constant.envelope.attack_length & 255; 1837 params[11] = effect->u.constant.envelope.fade_level >> 7; 1838 params[12] = effect->u.constant.envelope.fade_length >> 8; 1839 params[13] = effect->u.constant.envelope.fade_length & 255; 1840 size = 14; 1841 dbg_hid("Uploading constant force level=%d in dir %d = %d\n", 1842 effect->u.constant.level, 1843 effect->direction, force); 1844 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 1845 effect->u.constant.envelope.attack_level, 1846 effect->u.constant.envelope.attack_length, 1847 effect->u.constant.envelope.fade_level, 1848 effect->u.constant.envelope.fade_length); 1849 break; 1850 case FF_PERIODIC: 1851 { 1852 switch (effect->u.periodic.waveform) { 1853 case FF_SINE: 1854 params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE; 1855 break; 1856 case FF_SQUARE: 1857 params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE; 1858 break; 1859 case FF_SAW_UP: 1860 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP; 1861 break; 1862 case FF_SAW_DOWN: 1863 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN; 1864 break; 1865 case FF_TRIANGLE: 1866 params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE; 1867 break; 1868 default: 1869 hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform); 1870 return -EINVAL; 1871 } 1872 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1873 params[6] = effect->u.periodic.magnitude >> 8; 1874 params[7] = effect->u.periodic.magnitude & 255; 1875 params[8] = effect->u.periodic.offset >> 8; 1876 params[9] = effect->u.periodic.offset & 255; 1877 params[10] = effect->u.periodic.period >> 8; 1878 params[11] = effect->u.periodic.period & 255; 1879 params[12] = effect->u.periodic.phase >> 8; 1880 params[13] = effect->u.periodic.phase & 255; 1881 params[14] = effect->u.periodic.envelope.attack_level >> 7; 1882 params[15] = effect->u.periodic.envelope.attack_length >> 8; 1883 params[16] = effect->u.periodic.envelope.attack_length & 255; 1884 params[17] = effect->u.periodic.envelope.fade_level >> 7; 1885 params[18] = effect->u.periodic.envelope.fade_length >> 8; 1886 params[19] = effect->u.periodic.envelope.fade_length & 255; 1887 size = 20; 1888 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n", 1889 effect->u.periodic.magnitude, effect->direction, 1890 effect->u.periodic.offset, 1891 effect->u.periodic.period, 1892 effect->u.periodic.phase); 1893 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 1894 effect->u.periodic.envelope.attack_level, 1895 effect->u.periodic.envelope.attack_length, 1896 effect->u.periodic.envelope.fade_level, 1897 effect->u.periodic.envelope.fade_length); 1898 break; 1899 } 1900 case FF_RAMP: 1901 params[1] = HIDPP_FF_EFFECT_RAMP; 1902 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1903 params[6] = force >> 8; 1904 params[7] = force & 255; 1905 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1906 params[8] = force >> 8; 1907 params[9] = force & 255; 1908 params[10] = effect->u.ramp.envelope.attack_level >> 7; 1909 params[11] = effect->u.ramp.envelope.attack_length >> 8; 1910 params[12] = effect->u.ramp.envelope.attack_length & 255; 1911 params[13] = effect->u.ramp.envelope.fade_level >> 7; 1912 params[14] = effect->u.ramp.envelope.fade_length >> 8; 1913 params[15] = effect->u.ramp.envelope.fade_length & 255; 1914 size = 16; 1915 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n", 1916 effect->u.ramp.start_level, 1917 effect->u.ramp.end_level, 1918 effect->direction, force); 1919 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 1920 effect->u.ramp.envelope.attack_level, 1921 effect->u.ramp.envelope.attack_length, 1922 effect->u.ramp.envelope.fade_level, 1923 effect->u.ramp.envelope.fade_length); 1924 break; 1925 case FF_FRICTION: 1926 case FF_INERTIA: 1927 case FF_SPRING: 1928 case FF_DAMPER: 1929 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING]; 1930 params[6] = effect->u.condition[0].left_saturation >> 9; 1931 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255; 1932 params[8] = effect->u.condition[0].left_coeff >> 8; 1933 params[9] = effect->u.condition[0].left_coeff & 255; 1934 params[10] = effect->u.condition[0].deadband >> 9; 1935 params[11] = (effect->u.condition[0].deadband >> 1) & 255; 1936 params[12] = effect->u.condition[0].center >> 8; 1937 params[13] = effect->u.condition[0].center & 255; 1938 params[14] = effect->u.condition[0].right_coeff >> 8; 1939 params[15] = effect->u.condition[0].right_coeff & 255; 1940 params[16] = effect->u.condition[0].right_saturation >> 9; 1941 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255; 1942 size = 18; 1943 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n", 1944 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING], 1945 effect->u.condition[0].left_coeff, 1946 effect->u.condition[0].left_saturation, 1947 effect->u.condition[0].right_coeff, 1948 effect->u.condition[0].right_saturation); 1949 dbg_hid(" deadband=%d, center=%d\n", 1950 effect->u.condition[0].deadband, 1951 effect->u.condition[0].center); 1952 break; 1953 default: 1954 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type); 1955 return -EINVAL; 1956 } 1957 1958 return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size); 1959 } 1960 1961 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value) 1962 { 1963 struct hidpp_ff_private_data *data = dev->ff->private; 1964 u8 params[2]; 1965 1966 params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP; 1967 1968 dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id); 1969 1970 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params)); 1971 } 1972 1973 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id) 1974 { 1975 struct hidpp_ff_private_data *data = dev->ff->private; 1976 u8 slot = 0; 1977 1978 dbg_hid("Erasing effect %d.\n", effect_id); 1979 1980 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1); 1981 } 1982 1983 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude) 1984 { 1985 struct hidpp_ff_private_data *data = dev->ff->private; 1986 u8 params[18]; 1987 1988 dbg_hid("Setting autocenter to %d.\n", magnitude); 1989 1990 /* start a standard spring effect */ 1991 params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART; 1992 /* zero delay and duration */ 1993 params[2] = params[3] = params[4] = params[5] = 0; 1994 /* set coeff to 25% of saturation */ 1995 params[8] = params[14] = magnitude >> 11; 1996 params[9] = params[15] = (magnitude >> 3) & 255; 1997 params[6] = params[16] = magnitude >> 9; 1998 params[7] = params[17] = (magnitude >> 1) & 255; 1999 /* zero deadband and center */ 2000 params[10] = params[11] = params[12] = params[13] = 0; 2001 2002 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params)); 2003 } 2004 2005 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain) 2006 { 2007 struct hidpp_ff_private_data *data = dev->ff->private; 2008 u8 params[4]; 2009 2010 dbg_hid("Setting gain to %d.\n", gain); 2011 2012 params[0] = gain >> 8; 2013 params[1] = gain & 255; 2014 params[2] = 0; /* no boost */ 2015 params[3] = 0; 2016 2017 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params)); 2018 } 2019 2020 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf) 2021 { 2022 struct hid_device *hid = to_hid_device(dev); 2023 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2024 struct input_dev *idev = hidinput->input; 2025 struct hidpp_ff_private_data *data = idev->ff->private; 2026 2027 return scnprintf(buf, PAGE_SIZE, "%u\n", data->range); 2028 } 2029 2030 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) 2031 { 2032 struct hid_device *hid = to_hid_device(dev); 2033 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2034 struct input_dev *idev = hidinput->input; 2035 struct hidpp_ff_private_data *data = idev->ff->private; 2036 u8 params[2]; 2037 int range = simple_strtoul(buf, NULL, 10); 2038 2039 range = clamp(range, 180, 900); 2040 2041 params[0] = range >> 8; 2042 params[1] = range & 0x00FF; 2043 2044 hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params)); 2045 2046 return count; 2047 } 2048 2049 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store); 2050 2051 static void hidpp_ff_destroy(struct ff_device *ff) 2052 { 2053 struct hidpp_ff_private_data *data = ff->private; 2054 2055 kfree(data->effect_ids); 2056 } 2057 2058 static int hidpp_ff_init(struct hidpp_device *hidpp, u8 feature_index) 2059 { 2060 struct hid_device *hid = hidpp->hid_dev; 2061 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2062 struct input_dev *dev = hidinput->input; 2063 const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor); 2064 const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice); 2065 struct ff_device *ff; 2066 struct hidpp_report response; 2067 struct hidpp_ff_private_data *data; 2068 int error, j, num_slots; 2069 u8 version; 2070 2071 if (!dev) { 2072 hid_err(hid, "Struct input_dev not set!\n"); 2073 return -EINVAL; 2074 } 2075 2076 /* Get firmware release */ 2077 version = bcdDevice & 255; 2078 2079 /* Set supported force feedback capabilities */ 2080 for (j = 0; hidpp_ff_effects[j] >= 0; j++) 2081 set_bit(hidpp_ff_effects[j], dev->ffbit); 2082 if (version > 1) 2083 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++) 2084 set_bit(hidpp_ff_effects_v2[j], dev->ffbit); 2085 2086 /* Read number of slots available in device */ 2087 error = hidpp_send_fap_command_sync(hidpp, feature_index, 2088 HIDPP_FF_GET_INFO, NULL, 0, &response); 2089 if (error) { 2090 if (error < 0) 2091 return error; 2092 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 2093 __func__, error); 2094 return -EPROTO; 2095 } 2096 2097 num_slots = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS; 2098 2099 error = input_ff_create(dev, num_slots); 2100 2101 if (error) { 2102 hid_err(dev, "Failed to create FF device!\n"); 2103 return error; 2104 } 2105 2106 data = kzalloc(sizeof(*data), GFP_KERNEL); 2107 if (!data) 2108 return -ENOMEM; 2109 data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL); 2110 if (!data->effect_ids) { 2111 kfree(data); 2112 return -ENOMEM; 2113 } 2114 data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue"); 2115 if (!data->wq) { 2116 kfree(data->effect_ids); 2117 kfree(data); 2118 return -ENOMEM; 2119 } 2120 2121 data->hidpp = hidpp; 2122 data->feature_index = feature_index; 2123 data->version = version; 2124 data->slot_autocenter = 0; 2125 data->num_effects = num_slots; 2126 for (j = 0; j < num_slots; j++) 2127 data->effect_ids[j] = -1; 2128 2129 ff = dev->ff; 2130 ff->private = data; 2131 2132 ff->upload = hidpp_ff_upload_effect; 2133 ff->erase = hidpp_ff_erase_effect; 2134 ff->playback = hidpp_ff_playback; 2135 ff->set_gain = hidpp_ff_set_gain; 2136 ff->set_autocenter = hidpp_ff_set_autocenter; 2137 ff->destroy = hidpp_ff_destroy; 2138 2139 2140 /* reset all forces */ 2141 error = hidpp_send_fap_command_sync(hidpp, feature_index, 2142 HIDPP_FF_RESET_ALL, NULL, 0, &response); 2143 2144 /* Read current Range */ 2145 error = hidpp_send_fap_command_sync(hidpp, feature_index, 2146 HIDPP_FF_GET_APERTURE, NULL, 0, &response); 2147 if (error) 2148 hid_warn(hidpp->hid_dev, "Failed to read range from device!\n"); 2149 data->range = error ? 900 : get_unaligned_be16(&response.fap.params[0]); 2150 2151 /* Create sysfs interface */ 2152 error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range); 2153 if (error) 2154 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error); 2155 2156 /* Read the current gain values */ 2157 error = hidpp_send_fap_command_sync(hidpp, feature_index, 2158 HIDPP_FF_GET_GLOBAL_GAINS, NULL, 0, &response); 2159 if (error) 2160 hid_warn(hidpp->hid_dev, "Failed to read gain values from device!\n"); 2161 data->gain = error ? 0xffff : get_unaligned_be16(&response.fap.params[0]); 2162 /* ignore boost value at response.fap.params[2] */ 2163 2164 /* init the hardware command queue */ 2165 atomic_set(&data->workqueue_size, 0); 2166 2167 /* initialize with zero autocenter to get wheel in usable state */ 2168 hidpp_ff_set_autocenter(dev, 0); 2169 2170 hid_info(hid, "Force feedback support loaded (firmware release %d).\n", 2171 version); 2172 2173 return 0; 2174 } 2175 2176 static int hidpp_ff_deinit(struct hid_device *hid) 2177 { 2178 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2179 struct input_dev *dev = hidinput->input; 2180 struct hidpp_ff_private_data *data; 2181 2182 if (!dev) { 2183 hid_err(hid, "Struct input_dev not found!\n"); 2184 return -EINVAL; 2185 } 2186 2187 hid_info(hid, "Unloading HID++ force feedback.\n"); 2188 data = dev->ff->private; 2189 if (!data) { 2190 hid_err(hid, "Private data not found!\n"); 2191 return -EINVAL; 2192 } 2193 2194 destroy_workqueue(data->wq); 2195 device_remove_file(&hid->dev, &dev_attr_range); 2196 2197 return 0; 2198 } 2199 2200 2201 /* ************************************************************************** */ 2202 /* */ 2203 /* Device Support */ 2204 /* */ 2205 /* ************************************************************************** */ 2206 2207 /* -------------------------------------------------------------------------- */ 2208 /* Touchpad HID++ devices */ 2209 /* -------------------------------------------------------------------------- */ 2210 2211 #define WTP_MANUAL_RESOLUTION 39 2212 2213 struct wtp_data { 2214 struct input_dev *input; 2215 u16 x_size, y_size; 2216 u8 finger_count; 2217 u8 mt_feature_index; 2218 u8 button_feature_index; 2219 u8 maxcontacts; 2220 bool flip_y; 2221 unsigned int resolution; 2222 }; 2223 2224 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2225 struct hid_field *field, struct hid_usage *usage, 2226 unsigned long **bit, int *max) 2227 { 2228 return -1; 2229 } 2230 2231 static void wtp_populate_input(struct hidpp_device *hidpp, 2232 struct input_dev *input_dev, bool origin_is_hid_core) 2233 { 2234 struct wtp_data *wd = hidpp->private_data; 2235 2236 __set_bit(EV_ABS, input_dev->evbit); 2237 __set_bit(EV_KEY, input_dev->evbit); 2238 __clear_bit(EV_REL, input_dev->evbit); 2239 __clear_bit(EV_LED, input_dev->evbit); 2240 2241 input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0); 2242 input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution); 2243 input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0); 2244 input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution); 2245 2246 /* Max pressure is not given by the devices, pick one */ 2247 input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0); 2248 2249 input_set_capability(input_dev, EV_KEY, BTN_LEFT); 2250 2251 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) 2252 input_set_capability(input_dev, EV_KEY, BTN_RIGHT); 2253 else 2254 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit); 2255 2256 input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER | 2257 INPUT_MT_DROP_UNUSED); 2258 2259 wd->input = input_dev; 2260 } 2261 2262 static void wtp_touch_event(struct wtp_data *wd, 2263 struct hidpp_touchpad_raw_xy_finger *touch_report) 2264 { 2265 int slot; 2266 2267 if (!touch_report->finger_id || touch_report->contact_type) 2268 /* no actual data */ 2269 return; 2270 2271 slot = input_mt_get_slot_by_key(wd->input, touch_report->finger_id); 2272 2273 input_mt_slot(wd->input, slot); 2274 input_mt_report_slot_state(wd->input, MT_TOOL_FINGER, 2275 touch_report->contact_status); 2276 if (touch_report->contact_status) { 2277 input_event(wd->input, EV_ABS, ABS_MT_POSITION_X, 2278 touch_report->x); 2279 input_event(wd->input, EV_ABS, ABS_MT_POSITION_Y, 2280 wd->flip_y ? wd->y_size - touch_report->y : 2281 touch_report->y); 2282 input_event(wd->input, EV_ABS, ABS_MT_PRESSURE, 2283 touch_report->area); 2284 } 2285 } 2286 2287 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp, 2288 struct hidpp_touchpad_raw_xy *raw) 2289 { 2290 struct wtp_data *wd = hidpp->private_data; 2291 int i; 2292 2293 for (i = 0; i < 2; i++) 2294 wtp_touch_event(wd, &(raw->fingers[i])); 2295 2296 if (raw->end_of_frame && 2297 !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)) 2298 input_event(wd->input, EV_KEY, BTN_LEFT, raw->button); 2299 2300 if (raw->end_of_frame || raw->finger_count <= 2) { 2301 input_mt_sync_frame(wd->input); 2302 input_sync(wd->input); 2303 } 2304 } 2305 2306 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data) 2307 { 2308 struct wtp_data *wd = hidpp->private_data; 2309 u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) + 2310 (data[7] >> 4) * (data[7] >> 4)) / 2; 2311 u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) + 2312 (data[13] >> 4) * (data[13] >> 4)) / 2; 2313 struct hidpp_touchpad_raw_xy raw = { 2314 .timestamp = data[1], 2315 .fingers = { 2316 { 2317 .contact_type = 0, 2318 .contact_status = !!data[7], 2319 .x = get_unaligned_le16(&data[3]), 2320 .y = get_unaligned_le16(&data[5]), 2321 .z = c1_area, 2322 .area = c1_area, 2323 .finger_id = data[2], 2324 }, { 2325 .contact_type = 0, 2326 .contact_status = !!data[13], 2327 .x = get_unaligned_le16(&data[9]), 2328 .y = get_unaligned_le16(&data[11]), 2329 .z = c2_area, 2330 .area = c2_area, 2331 .finger_id = data[8], 2332 } 2333 }, 2334 .finger_count = wd->maxcontacts, 2335 .spurious_flag = 0, 2336 .end_of_frame = (data[0] >> 7) == 0, 2337 .button = data[0] & 0x01, 2338 }; 2339 2340 wtp_send_raw_xy_event(hidpp, &raw); 2341 2342 return 1; 2343 } 2344 2345 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size) 2346 { 2347 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2348 struct wtp_data *wd = hidpp->private_data; 2349 struct hidpp_report *report = (struct hidpp_report *)data; 2350 struct hidpp_touchpad_raw_xy raw; 2351 2352 if (!wd || !wd->input) 2353 return 1; 2354 2355 switch (data[0]) { 2356 case 0x02: 2357 if (size < 2) { 2358 hid_err(hdev, "Received HID report of bad size (%d)", 2359 size); 2360 return 1; 2361 } 2362 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) { 2363 input_event(wd->input, EV_KEY, BTN_LEFT, 2364 !!(data[1] & 0x01)); 2365 input_event(wd->input, EV_KEY, BTN_RIGHT, 2366 !!(data[1] & 0x02)); 2367 input_sync(wd->input); 2368 return 0; 2369 } else { 2370 if (size < 21) 2371 return 1; 2372 return wtp_mouse_raw_xy_event(hidpp, &data[7]); 2373 } 2374 case REPORT_ID_HIDPP_LONG: 2375 /* size is already checked in hidpp_raw_event. */ 2376 if ((report->fap.feature_index != wd->mt_feature_index) || 2377 (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY)) 2378 return 1; 2379 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw); 2380 2381 wtp_send_raw_xy_event(hidpp, &raw); 2382 return 0; 2383 } 2384 2385 return 0; 2386 } 2387 2388 static int wtp_get_config(struct hidpp_device *hidpp) 2389 { 2390 struct wtp_data *wd = hidpp->private_data; 2391 struct hidpp_touchpad_raw_info raw_info = {0}; 2392 u8 feature_type; 2393 int ret; 2394 2395 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY, 2396 &wd->mt_feature_index, &feature_type); 2397 if (ret) 2398 /* means that the device is not powered up */ 2399 return ret; 2400 2401 ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index, 2402 &raw_info); 2403 if (ret) 2404 return ret; 2405 2406 wd->x_size = raw_info.x_size; 2407 wd->y_size = raw_info.y_size; 2408 wd->maxcontacts = raw_info.maxcontacts; 2409 wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT; 2410 wd->resolution = raw_info.res; 2411 if (!wd->resolution) 2412 wd->resolution = WTP_MANUAL_RESOLUTION; 2413 2414 return 0; 2415 } 2416 2417 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id) 2418 { 2419 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2420 struct wtp_data *wd; 2421 2422 wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data), 2423 GFP_KERNEL); 2424 if (!wd) 2425 return -ENOMEM; 2426 2427 hidpp->private_data = wd; 2428 2429 return 0; 2430 }; 2431 2432 static int wtp_connect(struct hid_device *hdev, bool connected) 2433 { 2434 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2435 struct wtp_data *wd = hidpp->private_data; 2436 int ret; 2437 2438 if (!wd->x_size) { 2439 ret = wtp_get_config(hidpp); 2440 if (ret) { 2441 hid_err(hdev, "Can not get wtp config: %d\n", ret); 2442 return ret; 2443 } 2444 } 2445 2446 return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index, 2447 true, true); 2448 } 2449 2450 /* ------------------------------------------------------------------------- */ 2451 /* Logitech M560 devices */ 2452 /* ------------------------------------------------------------------------- */ 2453 2454 /* 2455 * Logitech M560 protocol overview 2456 * 2457 * The Logitech M560 mouse, is designed for windows 8. When the middle and/or 2458 * the sides buttons are pressed, it sends some keyboard keys events 2459 * instead of buttons ones. 2460 * To complicate things further, the middle button keys sequence 2461 * is different from the odd press and the even press. 2462 * 2463 * forward button -> Super_R 2464 * backward button -> Super_L+'d' (press only) 2465 * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only) 2466 * 2nd time: left-click (press only) 2467 * NB: press-only means that when the button is pressed, the 2468 * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated 2469 * together sequentially; instead when the button is released, no event is 2470 * generated ! 2471 * 2472 * With the command 2473 * 10<xx>0a 3500af03 (where <xx> is the mouse id), 2474 * the mouse reacts differently: 2475 * - it never sends a keyboard key event 2476 * - for the three mouse button it sends: 2477 * middle button press 11<xx>0a 3500af00... 2478 * side 1 button (forward) press 11<xx>0a 3500b000... 2479 * side 2 button (backward) press 11<xx>0a 3500ae00... 2480 * middle/side1/side2 button release 11<xx>0a 35000000... 2481 */ 2482 2483 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03}; 2484 2485 struct m560_private_data { 2486 struct input_dev *input; 2487 }; 2488 2489 /* how buttons are mapped in the report */ 2490 #define M560_MOUSE_BTN_LEFT 0x01 2491 #define M560_MOUSE_BTN_RIGHT 0x02 2492 #define M560_MOUSE_BTN_WHEEL_LEFT 0x08 2493 #define M560_MOUSE_BTN_WHEEL_RIGHT 0x10 2494 2495 #define M560_SUB_ID 0x0a 2496 #define M560_BUTTON_MODE_REGISTER 0x35 2497 2498 static int m560_send_config_command(struct hid_device *hdev, bool connected) 2499 { 2500 struct hidpp_report response; 2501 struct hidpp_device *hidpp_dev; 2502 2503 hidpp_dev = hid_get_drvdata(hdev); 2504 2505 return hidpp_send_rap_command_sync( 2506 hidpp_dev, 2507 REPORT_ID_HIDPP_SHORT, 2508 M560_SUB_ID, 2509 M560_BUTTON_MODE_REGISTER, 2510 (u8 *)m560_config_parameter, 2511 sizeof(m560_config_parameter), 2512 &response 2513 ); 2514 } 2515 2516 static int m560_allocate(struct hid_device *hdev) 2517 { 2518 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2519 struct m560_private_data *d; 2520 2521 d = devm_kzalloc(&hdev->dev, sizeof(struct m560_private_data), 2522 GFP_KERNEL); 2523 if (!d) 2524 return -ENOMEM; 2525 2526 hidpp->private_data = d; 2527 2528 return 0; 2529 }; 2530 2531 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size) 2532 { 2533 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2534 struct m560_private_data *mydata = hidpp->private_data; 2535 2536 /* sanity check */ 2537 if (!mydata || !mydata->input) { 2538 hid_err(hdev, "error in parameter\n"); 2539 return -EINVAL; 2540 } 2541 2542 if (size < 7) { 2543 hid_err(hdev, "error in report\n"); 2544 return 0; 2545 } 2546 2547 if (data[0] == REPORT_ID_HIDPP_LONG && 2548 data[2] == M560_SUB_ID && data[6] == 0x00) { 2549 /* 2550 * m560 mouse report for middle, forward and backward button 2551 * 2552 * data[0] = 0x11 2553 * data[1] = device-id 2554 * data[2] = 0x0a 2555 * data[5] = 0xaf -> middle 2556 * 0xb0 -> forward 2557 * 0xae -> backward 2558 * 0x00 -> release all 2559 * data[6] = 0x00 2560 */ 2561 2562 switch (data[5]) { 2563 case 0xaf: 2564 input_report_key(mydata->input, BTN_MIDDLE, 1); 2565 break; 2566 case 0xb0: 2567 input_report_key(mydata->input, BTN_FORWARD, 1); 2568 break; 2569 case 0xae: 2570 input_report_key(mydata->input, BTN_BACK, 1); 2571 break; 2572 case 0x00: 2573 input_report_key(mydata->input, BTN_BACK, 0); 2574 input_report_key(mydata->input, BTN_FORWARD, 0); 2575 input_report_key(mydata->input, BTN_MIDDLE, 0); 2576 break; 2577 default: 2578 hid_err(hdev, "error in report\n"); 2579 return 0; 2580 } 2581 input_sync(mydata->input); 2582 2583 } else if (data[0] == 0x02) { 2584 /* 2585 * Logitech M560 mouse report 2586 * 2587 * data[0] = type (0x02) 2588 * data[1..2] = buttons 2589 * data[3..5] = xy 2590 * data[6] = wheel 2591 */ 2592 2593 int v; 2594 2595 input_report_key(mydata->input, BTN_LEFT, 2596 !!(data[1] & M560_MOUSE_BTN_LEFT)); 2597 input_report_key(mydata->input, BTN_RIGHT, 2598 !!(data[1] & M560_MOUSE_BTN_RIGHT)); 2599 2600 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) { 2601 input_report_rel(mydata->input, REL_HWHEEL, -1); 2602 input_report_rel(mydata->input, REL_HWHEEL_HI_RES, 2603 -120); 2604 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) { 2605 input_report_rel(mydata->input, REL_HWHEEL, 1); 2606 input_report_rel(mydata->input, REL_HWHEEL_HI_RES, 2607 120); 2608 } 2609 2610 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12); 2611 input_report_rel(mydata->input, REL_X, v); 2612 2613 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12); 2614 input_report_rel(mydata->input, REL_Y, v); 2615 2616 v = hid_snto32(data[6], 8); 2617 if (v != 0) 2618 hidpp_scroll_counter_handle_scroll( 2619 &hidpp->vertical_wheel_counter, v); 2620 2621 input_sync(mydata->input); 2622 } 2623 2624 return 1; 2625 } 2626 2627 static void m560_populate_input(struct hidpp_device *hidpp, 2628 struct input_dev *input_dev, bool origin_is_hid_core) 2629 { 2630 struct m560_private_data *mydata = hidpp->private_data; 2631 2632 mydata->input = input_dev; 2633 2634 __set_bit(EV_KEY, mydata->input->evbit); 2635 __set_bit(BTN_MIDDLE, mydata->input->keybit); 2636 __set_bit(BTN_RIGHT, mydata->input->keybit); 2637 __set_bit(BTN_LEFT, mydata->input->keybit); 2638 __set_bit(BTN_BACK, mydata->input->keybit); 2639 __set_bit(BTN_FORWARD, mydata->input->keybit); 2640 2641 __set_bit(EV_REL, mydata->input->evbit); 2642 __set_bit(REL_X, mydata->input->relbit); 2643 __set_bit(REL_Y, mydata->input->relbit); 2644 __set_bit(REL_WHEEL, mydata->input->relbit); 2645 __set_bit(REL_HWHEEL, mydata->input->relbit); 2646 __set_bit(REL_WHEEL_HI_RES, mydata->input->relbit); 2647 __set_bit(REL_HWHEEL_HI_RES, mydata->input->relbit); 2648 } 2649 2650 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2651 struct hid_field *field, struct hid_usage *usage, 2652 unsigned long **bit, int *max) 2653 { 2654 return -1; 2655 } 2656 2657 /* ------------------------------------------------------------------------- */ 2658 /* Logitech K400 devices */ 2659 /* ------------------------------------------------------------------------- */ 2660 2661 /* 2662 * The Logitech K400 keyboard has an embedded touchpad which is seen 2663 * as a mouse from the OS point of view. There is a hardware shortcut to disable 2664 * tap-to-click but the setting is not remembered accross reset, annoying some 2665 * users. 2666 * 2667 * We can toggle this feature from the host by using the feature 0x6010: 2668 * Touchpad FW items 2669 */ 2670 2671 struct k400_private_data { 2672 u8 feature_index; 2673 }; 2674 2675 static int k400_disable_tap_to_click(struct hidpp_device *hidpp) 2676 { 2677 struct k400_private_data *k400 = hidpp->private_data; 2678 struct hidpp_touchpad_fw_items items = {}; 2679 int ret; 2680 u8 feature_type; 2681 2682 if (!k400->feature_index) { 2683 ret = hidpp_root_get_feature(hidpp, 2684 HIDPP_PAGE_TOUCHPAD_FW_ITEMS, 2685 &k400->feature_index, &feature_type); 2686 if (ret) 2687 /* means that the device is not powered up */ 2688 return ret; 2689 } 2690 2691 ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items); 2692 if (ret) 2693 return ret; 2694 2695 return 0; 2696 } 2697 2698 static int k400_allocate(struct hid_device *hdev) 2699 { 2700 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2701 struct k400_private_data *k400; 2702 2703 k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data), 2704 GFP_KERNEL); 2705 if (!k400) 2706 return -ENOMEM; 2707 2708 hidpp->private_data = k400; 2709 2710 return 0; 2711 }; 2712 2713 static int k400_connect(struct hid_device *hdev, bool connected) 2714 { 2715 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2716 2717 if (!disable_tap_to_click) 2718 return 0; 2719 2720 return k400_disable_tap_to_click(hidpp); 2721 } 2722 2723 /* ------------------------------------------------------------------------- */ 2724 /* Logitech G920 Driving Force Racing Wheel for Xbox One */ 2725 /* ------------------------------------------------------------------------- */ 2726 2727 #define HIDPP_PAGE_G920_FORCE_FEEDBACK 0x8123 2728 2729 static int g920_get_config(struct hidpp_device *hidpp) 2730 { 2731 u8 feature_type; 2732 u8 feature_index; 2733 int ret; 2734 2735 /* Find feature and store for later use */ 2736 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK, 2737 &feature_index, &feature_type); 2738 if (ret) 2739 return ret; 2740 2741 ret = hidpp_ff_init(hidpp, feature_index); 2742 if (ret) 2743 hid_warn(hidpp->hid_dev, "Unable to initialize force feedback support, errno %d\n", 2744 ret); 2745 2746 return 0; 2747 } 2748 2749 /* -------------------------------------------------------------------------- */ 2750 /* High-resolution scroll wheels */ 2751 /* -------------------------------------------------------------------------- */ 2752 2753 static int hi_res_scroll_enable(struct hidpp_device *hidpp) 2754 { 2755 int ret; 2756 u8 multiplier = 1; 2757 2758 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) { 2759 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false); 2760 if (ret == 0) 2761 ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier); 2762 } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) { 2763 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true, 2764 &multiplier); 2765 } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ { 2766 ret = hidpp10_enable_scrolling_acceleration(hidpp); 2767 multiplier = 8; 2768 } 2769 if (ret) 2770 return ret; 2771 2772 if (multiplier == 0) 2773 multiplier = 1; 2774 2775 hidpp->vertical_wheel_counter.wheel_multiplier = multiplier; 2776 hid_info(hidpp->hid_dev, "multiplier = %d\n", multiplier); 2777 return 0; 2778 } 2779 2780 /* -------------------------------------------------------------------------- */ 2781 /* Generic HID++ devices */ 2782 /* -------------------------------------------------------------------------- */ 2783 2784 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2785 struct hid_field *field, struct hid_usage *usage, 2786 unsigned long **bit, int *max) 2787 { 2788 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2789 2790 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 2791 return wtp_input_mapping(hdev, hi, field, usage, bit, max); 2792 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 && 2793 field->application != HID_GD_MOUSE) 2794 return m560_input_mapping(hdev, hi, field, usage, bit, max); 2795 2796 return 0; 2797 } 2798 2799 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi, 2800 struct hid_field *field, struct hid_usage *usage, 2801 unsigned long **bit, int *max) 2802 { 2803 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2804 2805 /* Ensure that Logitech G920 is not given a default fuzz/flat value */ 2806 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 2807 if (usage->type == EV_ABS && (usage->code == ABS_X || 2808 usage->code == ABS_Y || usage->code == ABS_Z || 2809 usage->code == ABS_RZ)) { 2810 field->application = HID_GD_MULTIAXIS; 2811 } 2812 } 2813 2814 return 0; 2815 } 2816 2817 2818 static void hidpp_populate_input(struct hidpp_device *hidpp, 2819 struct input_dev *input, bool origin_is_hid_core) 2820 { 2821 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 2822 wtp_populate_input(hidpp, input, origin_is_hid_core); 2823 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 2824 m560_populate_input(hidpp, input, origin_is_hid_core); 2825 2826 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) 2827 hidpp->vertical_wheel_counter.dev = input; 2828 } 2829 2830 static int hidpp_input_configured(struct hid_device *hdev, 2831 struct hid_input *hidinput) 2832 { 2833 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2834 struct input_dev *input = hidinput->input; 2835 2836 hidpp_populate_input(hidpp, input, true); 2837 2838 return 0; 2839 } 2840 2841 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data, 2842 int size) 2843 { 2844 struct hidpp_report *question = hidpp->send_receive_buf; 2845 struct hidpp_report *answer = hidpp->send_receive_buf; 2846 struct hidpp_report *report = (struct hidpp_report *)data; 2847 int ret; 2848 2849 /* 2850 * If the mutex is locked then we have a pending answer from a 2851 * previously sent command. 2852 */ 2853 if (unlikely(mutex_is_locked(&hidpp->send_mutex))) { 2854 /* 2855 * Check for a correct hidpp20 answer or the corresponding 2856 * error 2857 */ 2858 if (hidpp_match_answer(question, report) || 2859 hidpp_match_error(question, report)) { 2860 *answer = *report; 2861 hidpp->answer_available = true; 2862 wake_up(&hidpp->wait); 2863 /* 2864 * This was an answer to a command that this driver sent 2865 * We return 1 to hid-core to avoid forwarding the 2866 * command upstream as it has been treated by the driver 2867 */ 2868 2869 return 1; 2870 } 2871 } 2872 2873 if (unlikely(hidpp_report_is_connect_event(report))) { 2874 atomic_set(&hidpp->connected, 2875 !(report->rap.params[0] & (1 << 6))); 2876 if (schedule_work(&hidpp->work) == 0) 2877 dbg_hid("%s: connect event already queued\n", __func__); 2878 return 1; 2879 } 2880 2881 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 2882 ret = hidpp20_battery_event(hidpp, data, size); 2883 if (ret != 0) 2884 return ret; 2885 ret = hidpp_solar_battery_event(hidpp, data, size); 2886 if (ret != 0) 2887 return ret; 2888 } 2889 2890 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 2891 ret = hidpp10_battery_event(hidpp, data, size); 2892 if (ret != 0) 2893 return ret; 2894 } 2895 2896 return 0; 2897 } 2898 2899 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report, 2900 u8 *data, int size) 2901 { 2902 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2903 int ret = 0; 2904 2905 /* Generic HID++ processing. */ 2906 switch (data[0]) { 2907 case REPORT_ID_HIDPP_VERY_LONG: 2908 if (size != HIDPP_REPORT_VERY_LONG_LENGTH) { 2909 hid_err(hdev, "received hid++ report of bad size (%d)", 2910 size); 2911 return 1; 2912 } 2913 ret = hidpp_raw_hidpp_event(hidpp, data, size); 2914 break; 2915 case REPORT_ID_HIDPP_LONG: 2916 if (size != HIDPP_REPORT_LONG_LENGTH) { 2917 hid_err(hdev, "received hid++ report of bad size (%d)", 2918 size); 2919 return 1; 2920 } 2921 ret = hidpp_raw_hidpp_event(hidpp, data, size); 2922 break; 2923 case REPORT_ID_HIDPP_SHORT: 2924 if (size != HIDPP_REPORT_SHORT_LENGTH) { 2925 hid_err(hdev, "received hid++ report of bad size (%d)", 2926 size); 2927 return 1; 2928 } 2929 ret = hidpp_raw_hidpp_event(hidpp, data, size); 2930 break; 2931 } 2932 2933 /* If no report is available for further processing, skip calling 2934 * raw_event of subclasses. */ 2935 if (ret != 0) 2936 return ret; 2937 2938 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 2939 return wtp_raw_event(hdev, data, size); 2940 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 2941 return m560_raw_event(hdev, data, size); 2942 2943 return 0; 2944 } 2945 2946 static int hidpp_event(struct hid_device *hdev, struct hid_field *field, 2947 struct hid_usage *usage, __s32 value) 2948 { 2949 /* This function will only be called for scroll events, due to the 2950 * restriction imposed in hidpp_usages. 2951 */ 2952 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2953 struct hidpp_scroll_counter *counter = &hidpp->vertical_wheel_counter; 2954 /* A scroll event may occur before the multiplier has been retrieved or 2955 * the input device set, or high-res scroll enabling may fail. In such 2956 * cases we must return early (falling back to default behaviour) to 2957 * avoid a crash in hidpp_scroll_counter_handle_scroll. 2958 */ 2959 if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0 2960 || counter->dev == NULL || counter->wheel_multiplier == 0) 2961 return 0; 2962 2963 hidpp_scroll_counter_handle_scroll(counter, value); 2964 return 1; 2965 } 2966 2967 static int hidpp_initialize_battery(struct hidpp_device *hidpp) 2968 { 2969 static atomic_t battery_no = ATOMIC_INIT(0); 2970 struct power_supply_config cfg = { .drv_data = hidpp }; 2971 struct power_supply_desc *desc = &hidpp->battery.desc; 2972 enum power_supply_property *battery_props; 2973 struct hidpp_battery *battery; 2974 unsigned int num_battery_props; 2975 unsigned long n; 2976 int ret; 2977 2978 if (hidpp->battery.ps) 2979 return 0; 2980 2981 hidpp->battery.feature_index = 0xff; 2982 hidpp->battery.solar_feature_index = 0xff; 2983 2984 if (hidpp->protocol_major >= 2) { 2985 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750) 2986 ret = hidpp_solar_request_battery_event(hidpp); 2987 else 2988 ret = hidpp20_query_battery_info(hidpp); 2989 2990 if (ret) 2991 return ret; 2992 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY; 2993 } else { 2994 ret = hidpp10_query_battery_status(hidpp); 2995 if (ret) { 2996 ret = hidpp10_query_battery_mileage(hidpp); 2997 if (ret) 2998 return -ENOENT; 2999 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 3000 } else { 3001 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 3002 } 3003 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY; 3004 } 3005 3006 battery_props = devm_kmemdup(&hidpp->hid_dev->dev, 3007 hidpp_battery_props, 3008 sizeof(hidpp_battery_props), 3009 GFP_KERNEL); 3010 if (!battery_props) 3011 return -ENOMEM; 3012 3013 num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 2; 3014 3015 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 3016 battery_props[num_battery_props++] = 3017 POWER_SUPPLY_PROP_CAPACITY; 3018 3019 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS) 3020 battery_props[num_battery_props++] = 3021 POWER_SUPPLY_PROP_CAPACITY_LEVEL; 3022 3023 battery = &hidpp->battery; 3024 3025 n = atomic_inc_return(&battery_no) - 1; 3026 desc->properties = battery_props; 3027 desc->num_properties = num_battery_props; 3028 desc->get_property = hidpp_battery_get_property; 3029 sprintf(battery->name, "hidpp_battery_%ld", n); 3030 desc->name = battery->name; 3031 desc->type = POWER_SUPPLY_TYPE_BATTERY; 3032 desc->use_for_apm = 0; 3033 3034 battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev, 3035 &battery->desc, 3036 &cfg); 3037 if (IS_ERR(battery->ps)) 3038 return PTR_ERR(battery->ps); 3039 3040 power_supply_powers(battery->ps, &hidpp->hid_dev->dev); 3041 3042 return ret; 3043 } 3044 3045 static void hidpp_overwrite_name(struct hid_device *hdev) 3046 { 3047 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3048 char *name; 3049 3050 if (hidpp->protocol_major < 2) 3051 return; 3052 3053 name = hidpp_get_device_name(hidpp); 3054 3055 if (!name) { 3056 hid_err(hdev, "unable to retrieve the name of the device"); 3057 } else { 3058 dbg_hid("HID++: Got name: %s\n", name); 3059 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 3060 } 3061 3062 kfree(name); 3063 } 3064 3065 static int hidpp_input_open(struct input_dev *dev) 3066 { 3067 struct hid_device *hid = input_get_drvdata(dev); 3068 3069 return hid_hw_open(hid); 3070 } 3071 3072 static void hidpp_input_close(struct input_dev *dev) 3073 { 3074 struct hid_device *hid = input_get_drvdata(dev); 3075 3076 hid_hw_close(hid); 3077 } 3078 3079 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev) 3080 { 3081 struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev); 3082 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3083 3084 if (!input_dev) 3085 return NULL; 3086 3087 input_set_drvdata(input_dev, hdev); 3088 input_dev->open = hidpp_input_open; 3089 input_dev->close = hidpp_input_close; 3090 3091 input_dev->name = hidpp->name; 3092 input_dev->phys = hdev->phys; 3093 input_dev->uniq = hdev->uniq; 3094 input_dev->id.bustype = hdev->bus; 3095 input_dev->id.vendor = hdev->vendor; 3096 input_dev->id.product = hdev->product; 3097 input_dev->id.version = hdev->version; 3098 input_dev->dev.parent = &hdev->dev; 3099 3100 return input_dev; 3101 } 3102 3103 static void hidpp_connect_event(struct hidpp_device *hidpp) 3104 { 3105 struct hid_device *hdev = hidpp->hid_dev; 3106 int ret = 0; 3107 bool connected = atomic_read(&hidpp->connected); 3108 struct input_dev *input; 3109 char *name, *devm_name; 3110 3111 if (!connected) { 3112 if (hidpp->battery.ps) { 3113 hidpp->battery.online = false; 3114 hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN; 3115 hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 3116 power_supply_changed(hidpp->battery.ps); 3117 } 3118 return; 3119 } 3120 3121 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 3122 ret = wtp_connect(hdev, connected); 3123 if (ret) 3124 return; 3125 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) { 3126 ret = m560_send_config_command(hdev, connected); 3127 if (ret) 3128 return; 3129 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 3130 ret = k400_connect(hdev, connected); 3131 if (ret) 3132 return; 3133 } 3134 3135 /* the device is already connected, we can ask for its name and 3136 * protocol */ 3137 if (!hidpp->protocol_major) { 3138 ret = !hidpp_is_connected(hidpp); 3139 if (ret) { 3140 hid_err(hdev, "Can not get the protocol version.\n"); 3141 return; 3142 } 3143 hid_info(hdev, "HID++ %u.%u device connected.\n", 3144 hidpp->protocol_major, hidpp->protocol_minor); 3145 } 3146 3147 if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) { 3148 name = hidpp_get_device_name(hidpp); 3149 if (!name) { 3150 hid_err(hdev, 3151 "unable to retrieve the name of the device"); 3152 return; 3153 } 3154 3155 devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s", name); 3156 kfree(name); 3157 if (!devm_name) 3158 return; 3159 3160 hidpp->name = devm_name; 3161 } 3162 3163 hidpp_initialize_battery(hidpp); 3164 3165 /* forward current battery state */ 3166 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3167 hidpp10_enable_battery_reporting(hidpp); 3168 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 3169 hidpp10_query_battery_mileage(hidpp); 3170 else 3171 hidpp10_query_battery_status(hidpp); 3172 } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3173 hidpp20_query_battery_info(hidpp); 3174 } 3175 if (hidpp->battery.ps) 3176 power_supply_changed(hidpp->battery.ps); 3177 3178 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) 3179 hi_res_scroll_enable(hidpp); 3180 3181 if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input) 3182 /* if the input nodes are already created, we can stop now */ 3183 return; 3184 3185 input = hidpp_allocate_input(hdev); 3186 if (!input) { 3187 hid_err(hdev, "cannot allocate new input device: %d\n", ret); 3188 return; 3189 } 3190 3191 hidpp_populate_input(hidpp, input, false); 3192 3193 ret = input_register_device(input); 3194 if (ret) 3195 input_free_device(input); 3196 3197 hidpp->delayed_input = input; 3198 } 3199 3200 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL); 3201 3202 static struct attribute *sysfs_attrs[] = { 3203 &dev_attr_builtin_power_supply.attr, 3204 NULL 3205 }; 3206 3207 static const struct attribute_group ps_attribute_group = { 3208 .attrs = sysfs_attrs 3209 }; 3210 3211 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id) 3212 { 3213 struct hidpp_device *hidpp; 3214 int ret; 3215 bool connected; 3216 unsigned int connect_mask = HID_CONNECT_DEFAULT; 3217 3218 hidpp = devm_kzalloc(&hdev->dev, sizeof(struct hidpp_device), 3219 GFP_KERNEL); 3220 if (!hidpp) 3221 return -ENOMEM; 3222 3223 hidpp->hid_dev = hdev; 3224 hidpp->name = hdev->name; 3225 hid_set_drvdata(hdev, hidpp); 3226 3227 hidpp->quirks = id->driver_data; 3228 3229 if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE) 3230 hidpp->quirks |= HIDPP_QUIRK_UNIFYING; 3231 3232 if (disable_raw_mode) { 3233 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP; 3234 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT; 3235 } 3236 3237 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 3238 ret = wtp_allocate(hdev, id); 3239 if (ret) 3240 goto allocate_fail; 3241 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) { 3242 ret = m560_allocate(hdev); 3243 if (ret) 3244 goto allocate_fail; 3245 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 3246 ret = k400_allocate(hdev); 3247 if (ret) 3248 goto allocate_fail; 3249 } 3250 3251 INIT_WORK(&hidpp->work, delayed_work_cb); 3252 mutex_init(&hidpp->send_mutex); 3253 init_waitqueue_head(&hidpp->wait); 3254 3255 /* indicates we are handling the battery properties in the kernel */ 3256 ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group); 3257 if (ret) 3258 hid_warn(hdev, "Cannot allocate sysfs group for %s\n", 3259 hdev->name); 3260 3261 ret = hid_parse(hdev); 3262 if (ret) { 3263 hid_err(hdev, "%s:parse failed\n", __func__); 3264 goto hid_parse_fail; 3265 } 3266 3267 if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) 3268 connect_mask &= ~HID_CONNECT_HIDINPUT; 3269 3270 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3271 ret = hid_hw_start(hdev, connect_mask); 3272 if (ret) { 3273 hid_err(hdev, "hw start failed\n"); 3274 goto hid_hw_start_fail; 3275 } 3276 ret = hid_hw_open(hdev); 3277 if (ret < 0) { 3278 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n", 3279 __func__, ret); 3280 hid_hw_stop(hdev); 3281 goto hid_hw_start_fail; 3282 } 3283 } 3284 3285 3286 /* Allow incoming packets */ 3287 hid_device_io_start(hdev); 3288 3289 if (hidpp->quirks & HIDPP_QUIRK_UNIFYING) 3290 hidpp_unifying_init(hidpp); 3291 3292 connected = hidpp_is_connected(hidpp); 3293 atomic_set(&hidpp->connected, connected); 3294 if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) { 3295 if (!connected) { 3296 ret = -ENODEV; 3297 hid_err(hdev, "Device not connected"); 3298 goto hid_hw_open_failed; 3299 } 3300 3301 hid_info(hdev, "HID++ %u.%u device connected.\n", 3302 hidpp->protocol_major, hidpp->protocol_minor); 3303 3304 hidpp_overwrite_name(hdev); 3305 } 3306 3307 if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) { 3308 ret = wtp_get_config(hidpp); 3309 if (ret) 3310 goto hid_hw_open_failed; 3311 } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) { 3312 ret = g920_get_config(hidpp); 3313 if (ret) 3314 goto hid_hw_open_failed; 3315 } 3316 3317 /* Block incoming packets */ 3318 hid_device_io_stop(hdev); 3319 3320 if (!(hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) { 3321 ret = hid_hw_start(hdev, connect_mask); 3322 if (ret) { 3323 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__); 3324 goto hid_hw_start_fail; 3325 } 3326 } 3327 3328 /* Allow incoming packets */ 3329 hid_device_io_start(hdev); 3330 3331 hidpp_connect_event(hidpp); 3332 3333 return ret; 3334 3335 hid_hw_open_failed: 3336 hid_device_io_stop(hdev); 3337 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3338 hid_hw_close(hdev); 3339 hid_hw_stop(hdev); 3340 } 3341 hid_hw_start_fail: 3342 hid_parse_fail: 3343 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 3344 cancel_work_sync(&hidpp->work); 3345 mutex_destroy(&hidpp->send_mutex); 3346 allocate_fail: 3347 hid_set_drvdata(hdev, NULL); 3348 return ret; 3349 } 3350 3351 static void hidpp_remove(struct hid_device *hdev) 3352 { 3353 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3354 3355 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 3356 3357 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3358 hidpp_ff_deinit(hdev); 3359 hid_hw_close(hdev); 3360 } 3361 hid_hw_stop(hdev); 3362 cancel_work_sync(&hidpp->work); 3363 mutex_destroy(&hidpp->send_mutex); 3364 } 3365 3366 #define LDJ_DEVICE(product) \ 3367 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \ 3368 USB_VENDOR_ID_LOGITECH, (product)) 3369 3370 static const struct hid_device_id hidpp_devices[] = { 3371 { /* wireless touchpad */ 3372 LDJ_DEVICE(0x4011), 3373 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT | 3374 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS }, 3375 { /* wireless touchpad T650 */ 3376 LDJ_DEVICE(0x4101), 3377 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT }, 3378 { /* wireless touchpad T651 */ 3379 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 3380 USB_DEVICE_ID_LOGITECH_T651), 3381 .driver_data = HIDPP_QUIRK_CLASS_WTP }, 3382 { /* Mouse Logitech Anywhere MX */ 3383 LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3384 { /* Mouse Logitech Cube */ 3385 LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3386 { /* Mouse Logitech M335 */ 3387 LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3388 { /* Mouse Logitech M515 */ 3389 LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3390 { /* Mouse logitech M560 */ 3391 LDJ_DEVICE(0x402d), 3392 .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560 3393 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3394 { /* Mouse Logitech M705 (firmware RQM17) */ 3395 LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3396 { /* Mouse Logitech M705 (firmware RQM67) */ 3397 LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3398 { /* Mouse Logitech M720 */ 3399 LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3400 { /* Mouse Logitech MX Anywhere 2 */ 3401 LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3402 { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3403 { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3404 { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3405 { /* Mouse Logitech MX Anywhere 2S */ 3406 LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3407 { /* Mouse Logitech MX Master */ 3408 LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3409 { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3410 { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3411 { /* Mouse Logitech MX Master 2S */ 3412 LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3413 { /* Mouse Logitech Performance MX */ 3414 LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3415 { /* Keyboard logitech K400 */ 3416 LDJ_DEVICE(0x4024), 3417 .driver_data = HIDPP_QUIRK_CLASS_K400 }, 3418 { /* Solar Keyboard Logitech K750 */ 3419 LDJ_DEVICE(0x4002), 3420 .driver_data = HIDPP_QUIRK_CLASS_K750 }, 3421 3422 { LDJ_DEVICE(HID_ANY_ID) }, 3423 3424 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL), 3425 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS}, 3426 {} 3427 }; 3428 3429 MODULE_DEVICE_TABLE(hid, hidpp_devices); 3430 3431 static const struct hid_usage_id hidpp_usages[] = { 3432 { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES }, 3433 { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1} 3434 }; 3435 3436 static struct hid_driver hidpp_driver = { 3437 .name = "logitech-hidpp-device", 3438 .id_table = hidpp_devices, 3439 .probe = hidpp_probe, 3440 .remove = hidpp_remove, 3441 .raw_event = hidpp_raw_event, 3442 .usage_table = hidpp_usages, 3443 .event = hidpp_event, 3444 .input_configured = hidpp_input_configured, 3445 .input_mapping = hidpp_input_mapping, 3446 .input_mapped = hidpp_input_mapped, 3447 }; 3448 3449 module_hid_driver(hidpp_driver); 3450