1 /*
2  *  HIDPP protocol for Logitech Unifying receivers
3  *
4  *  Copyright (c) 2011 Logitech (c)
5  *  Copyright (c) 2012-2013 Google (c)
6  *  Copyright (c) 2013-2014 Red Hat Inc.
7  */
8 
9 /*
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the Free
12  * Software Foundation; version 2 of the License.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/device.h>
18 #include <linux/input.h>
19 #include <linux/usb.h>
20 #include <linux/hid.h>
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/sched.h>
24 #include <linux/sched/clock.h>
25 #include <linux/kfifo.h>
26 #include <linux/input/mt.h>
27 #include <linux/workqueue.h>
28 #include <linux/atomic.h>
29 #include <linux/fixp-arith.h>
30 #include <asm/unaligned.h>
31 #include "usbhid/usbhid.h"
32 #include "hid-ids.h"
33 
34 MODULE_LICENSE("GPL");
35 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
36 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
37 
38 static bool disable_raw_mode;
39 module_param(disable_raw_mode, bool, 0644);
40 MODULE_PARM_DESC(disable_raw_mode,
41 	"Disable Raw mode reporting for touchpads and keep firmware gestures.");
42 
43 static bool disable_tap_to_click;
44 module_param(disable_tap_to_click, bool, 0644);
45 MODULE_PARM_DESC(disable_tap_to_click,
46 	"Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
47 
48 #define REPORT_ID_HIDPP_SHORT			0x10
49 #define REPORT_ID_HIDPP_LONG			0x11
50 #define REPORT_ID_HIDPP_VERY_LONG		0x12
51 
52 #define HIDPP_REPORT_SHORT_LENGTH		7
53 #define HIDPP_REPORT_LONG_LENGTH		20
54 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH	64
55 
56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS	0x03
57 #define HIDPP_SUB_ID_ROLLER			0x05
58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS		0x06
59 
60 #define HIDPP_QUIRK_CLASS_WTP			BIT(0)
61 #define HIDPP_QUIRK_CLASS_M560			BIT(1)
62 #define HIDPP_QUIRK_CLASS_K400			BIT(2)
63 #define HIDPP_QUIRK_CLASS_G920			BIT(3)
64 #define HIDPP_QUIRK_CLASS_K750			BIT(4)
65 
66 /* bits 2..20 are reserved for classes */
67 /* #define HIDPP_QUIRK_CONNECT_EVENTS		BIT(21) disabled */
68 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS	BIT(22)
69 #define HIDPP_QUIRK_NO_HIDINPUT			BIT(23)
70 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS	BIT(24)
71 #define HIDPP_QUIRK_UNIFYING			BIT(25)
72 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0		BIT(26)
73 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120		BIT(27)
74 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121		BIT(28)
75 #define HIDPP_QUIRK_HIDPP_WHEELS		BIT(29)
76 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS	BIT(30)
77 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS	BIT(31)
78 
79 /* These are just aliases for now */
80 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS
81 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL   HIDPP_QUIRK_HIDPP_WHEELS
82 
83 /* Convenience constant to check for any high-res support. */
84 #define HIDPP_QUIRK_HI_RES_SCROLL	(HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
85 					 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
86 					 HIDPP_QUIRK_HI_RES_SCROLL_X2121)
87 
88 #define HIDPP_QUIRK_DELAYED_INIT		HIDPP_QUIRK_NO_HIDINPUT
89 
90 #define HIDPP_CAPABILITY_HIDPP10_BATTERY	BIT(0)
91 #define HIDPP_CAPABILITY_HIDPP20_BATTERY	BIT(1)
92 #define HIDPP_CAPABILITY_BATTERY_MILEAGE	BIT(2)
93 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS	BIT(3)
94 
95 /*
96  * There are two hidpp protocols in use, the first version hidpp10 is known
97  * as register access protocol or RAP, the second version hidpp20 is known as
98  * feature access protocol or FAP
99  *
100  * Most older devices (including the Unifying usb receiver) use the RAP protocol
101  * where as most newer devices use the FAP protocol. Both protocols are
102  * compatible with the underlying transport, which could be usb, Unifiying, or
103  * bluetooth. The message lengths are defined by the hid vendor specific report
104  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
105  * the HIDPP_LONG report type (total message length 20 bytes)
106  *
107  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
108  * messages. The Unifying receiver itself responds to RAP messages (device index
109  * is 0xFF for the receiver), and all messages (short or long) with a device
110  * index between 1 and 6 are passed untouched to the corresponding paired
111  * Unifying device.
112  *
113  * The paired device can be RAP or FAP, it will receive the message untouched
114  * from the Unifiying receiver.
115  */
116 
117 struct fap {
118 	u8 feature_index;
119 	u8 funcindex_clientid;
120 	u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
121 };
122 
123 struct rap {
124 	u8 sub_id;
125 	u8 reg_address;
126 	u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
127 };
128 
129 struct hidpp_report {
130 	u8 report_id;
131 	u8 device_index;
132 	union {
133 		struct fap fap;
134 		struct rap rap;
135 		u8 rawbytes[sizeof(struct fap)];
136 	};
137 } __packed;
138 
139 struct hidpp_battery {
140 	u8 feature_index;
141 	u8 solar_feature_index;
142 	struct power_supply_desc desc;
143 	struct power_supply *ps;
144 	char name[64];
145 	int status;
146 	int capacity;
147 	int level;
148 	bool online;
149 };
150 
151 /**
152  * struct hidpp_scroll_counter - Utility class for processing high-resolution
153  *                             scroll events.
154  * @dev: the input device for which events should be reported.
155  * @wheel_multiplier: the scalar multiplier to be applied to each wheel event
156  * @remainder: counts the number of high-resolution units moved since the last
157  *             low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should
158  *             only be used by class methods.
159  * @direction: direction of last movement (1 or -1)
160  * @last_time: last event time, used to reset remainder after inactivity
161  */
162 struct hidpp_scroll_counter {
163 	int wheel_multiplier;
164 	int remainder;
165 	int direction;
166 	unsigned long long last_time;
167 };
168 
169 struct hidpp_device {
170 	struct hid_device *hid_dev;
171 	struct input_dev *input;
172 	struct mutex send_mutex;
173 	void *send_receive_buf;
174 	char *name;		/* will never be NULL and should not be freed */
175 	wait_queue_head_t wait;
176 	int very_long_report_length;
177 	bool answer_available;
178 	u8 protocol_major;
179 	u8 protocol_minor;
180 
181 	void *private_data;
182 
183 	struct work_struct work;
184 	struct kfifo delayed_work_fifo;
185 	atomic_t connected;
186 	struct input_dev *delayed_input;
187 
188 	unsigned long quirks;
189 	unsigned long capabilities;
190 
191 	struct hidpp_battery battery;
192 	struct hidpp_scroll_counter vertical_wheel_counter;
193 };
194 
195 /* HID++ 1.0 error codes */
196 #define HIDPP_ERROR				0x8f
197 #define HIDPP_ERROR_SUCCESS			0x00
198 #define HIDPP_ERROR_INVALID_SUBID		0x01
199 #define HIDPP_ERROR_INVALID_ADRESS		0x02
200 #define HIDPP_ERROR_INVALID_VALUE		0x03
201 #define HIDPP_ERROR_CONNECT_FAIL		0x04
202 #define HIDPP_ERROR_TOO_MANY_DEVICES		0x05
203 #define HIDPP_ERROR_ALREADY_EXISTS		0x06
204 #define HIDPP_ERROR_BUSY			0x07
205 #define HIDPP_ERROR_UNKNOWN_DEVICE		0x08
206 #define HIDPP_ERROR_RESOURCE_ERROR		0x09
207 #define HIDPP_ERROR_REQUEST_UNAVAILABLE		0x0a
208 #define HIDPP_ERROR_INVALID_PARAM_VALUE		0x0b
209 #define HIDPP_ERROR_WRONG_PIN_CODE		0x0c
210 /* HID++ 2.0 error codes */
211 #define HIDPP20_ERROR				0xff
212 
213 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
214 
215 static int __hidpp_send_report(struct hid_device *hdev,
216 				struct hidpp_report *hidpp_report)
217 {
218 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
219 	int fields_count, ret;
220 
221 	switch (hidpp_report->report_id) {
222 	case REPORT_ID_HIDPP_SHORT:
223 		fields_count = HIDPP_REPORT_SHORT_LENGTH;
224 		break;
225 	case REPORT_ID_HIDPP_LONG:
226 		fields_count = HIDPP_REPORT_LONG_LENGTH;
227 		break;
228 	case REPORT_ID_HIDPP_VERY_LONG:
229 		fields_count = hidpp->very_long_report_length;
230 		break;
231 	default:
232 		return -ENODEV;
233 	}
234 
235 	/*
236 	 * set the device_index as the receiver, it will be overwritten by
237 	 * hid_hw_request if needed
238 	 */
239 	hidpp_report->device_index = 0xff;
240 
241 	if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
242 		ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
243 	} else {
244 		ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
245 			(u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
246 			HID_REQ_SET_REPORT);
247 	}
248 
249 	return ret == fields_count ? 0 : -1;
250 }
251 
252 /**
253  * hidpp_send_message_sync() returns 0 in case of success, and something else
254  * in case of a failure.
255  * - If ' something else' is positive, that means that an error has been raised
256  *   by the protocol itself.
257  * - If ' something else' is negative, that means that we had a classic error
258  *   (-ENOMEM, -EPIPE, etc...)
259  */
260 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
261 	struct hidpp_report *message,
262 	struct hidpp_report *response)
263 {
264 	int ret;
265 
266 	mutex_lock(&hidpp->send_mutex);
267 
268 	hidpp->send_receive_buf = response;
269 	hidpp->answer_available = false;
270 
271 	/*
272 	 * So that we can later validate the answer when it arrives
273 	 * in hidpp_raw_event
274 	 */
275 	*response = *message;
276 
277 	ret = __hidpp_send_report(hidpp->hid_dev, message);
278 
279 	if (ret) {
280 		dbg_hid("__hidpp_send_report returned err: %d\n", ret);
281 		memset(response, 0, sizeof(struct hidpp_report));
282 		goto exit;
283 	}
284 
285 	if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
286 				5*HZ)) {
287 		dbg_hid("%s:timeout waiting for response\n", __func__);
288 		memset(response, 0, sizeof(struct hidpp_report));
289 		ret = -ETIMEDOUT;
290 	}
291 
292 	if (response->report_id == REPORT_ID_HIDPP_SHORT &&
293 	    response->rap.sub_id == HIDPP_ERROR) {
294 		ret = response->rap.params[1];
295 		dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
296 		goto exit;
297 	}
298 
299 	if ((response->report_id == REPORT_ID_HIDPP_LONG ||
300 			response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
301 			response->fap.feature_index == HIDPP20_ERROR) {
302 		ret = response->fap.params[1];
303 		dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
304 		goto exit;
305 	}
306 
307 exit:
308 	mutex_unlock(&hidpp->send_mutex);
309 	return ret;
310 
311 }
312 
313 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
314 	u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
315 	struct hidpp_report *response)
316 {
317 	struct hidpp_report *message;
318 	int ret;
319 
320 	if (param_count > sizeof(message->fap.params))
321 		return -EINVAL;
322 
323 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
324 	if (!message)
325 		return -ENOMEM;
326 
327 	if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
328 		message->report_id = REPORT_ID_HIDPP_VERY_LONG;
329 	else
330 		message->report_id = REPORT_ID_HIDPP_LONG;
331 	message->fap.feature_index = feat_index;
332 	message->fap.funcindex_clientid = funcindex_clientid;
333 	memcpy(&message->fap.params, params, param_count);
334 
335 	ret = hidpp_send_message_sync(hidpp, message, response);
336 	kfree(message);
337 	return ret;
338 }
339 
340 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
341 	u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
342 	struct hidpp_report *response)
343 {
344 	struct hidpp_report *message;
345 	int ret, max_count;
346 
347 	switch (report_id) {
348 	case REPORT_ID_HIDPP_SHORT:
349 		max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
350 		break;
351 	case REPORT_ID_HIDPP_LONG:
352 		max_count = HIDPP_REPORT_LONG_LENGTH - 4;
353 		break;
354 	case REPORT_ID_HIDPP_VERY_LONG:
355 		max_count = hidpp_dev->very_long_report_length - 4;
356 		break;
357 	default:
358 		return -EINVAL;
359 	}
360 
361 	if (param_count > max_count)
362 		return -EINVAL;
363 
364 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
365 	if (!message)
366 		return -ENOMEM;
367 	message->report_id = report_id;
368 	message->rap.sub_id = sub_id;
369 	message->rap.reg_address = reg_address;
370 	memcpy(&message->rap.params, params, param_count);
371 
372 	ret = hidpp_send_message_sync(hidpp_dev, message, response);
373 	kfree(message);
374 	return ret;
375 }
376 
377 static void delayed_work_cb(struct work_struct *work)
378 {
379 	struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
380 							work);
381 	hidpp_connect_event(hidpp);
382 }
383 
384 static inline bool hidpp_match_answer(struct hidpp_report *question,
385 		struct hidpp_report *answer)
386 {
387 	return (answer->fap.feature_index == question->fap.feature_index) &&
388 	   (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
389 }
390 
391 static inline bool hidpp_match_error(struct hidpp_report *question,
392 		struct hidpp_report *answer)
393 {
394 	return ((answer->rap.sub_id == HIDPP_ERROR) ||
395 	    (answer->fap.feature_index == HIDPP20_ERROR)) &&
396 	    (answer->fap.funcindex_clientid == question->fap.feature_index) &&
397 	    (answer->fap.params[0] == question->fap.funcindex_clientid);
398 }
399 
400 static inline bool hidpp_report_is_connect_event(struct hidpp_report *report)
401 {
402 	return (report->report_id == REPORT_ID_HIDPP_SHORT) &&
403 		(report->rap.sub_id == 0x41);
404 }
405 
406 /**
407  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
408  */
409 static void hidpp_prefix_name(char **name, int name_length)
410 {
411 #define PREFIX_LENGTH 9 /* "Logitech " */
412 
413 	int new_length;
414 	char *new_name;
415 
416 	if (name_length > PREFIX_LENGTH &&
417 	    strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
418 		/* The prefix has is already in the name */
419 		return;
420 
421 	new_length = PREFIX_LENGTH + name_length;
422 	new_name = kzalloc(new_length, GFP_KERNEL);
423 	if (!new_name)
424 		return;
425 
426 	snprintf(new_name, new_length, "Logitech %s", *name);
427 
428 	kfree(*name);
429 
430 	*name = new_name;
431 }
432 
433 /**
434  * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll
435  *                                        events given a high-resolution wheel
436  *                                        movement.
437  * @counter: a hid_scroll_counter struct describing the wheel.
438  * @hi_res_value: the movement of the wheel, in the mouse's high-resolution
439  *                units.
440  *
441  * Given a high-resolution movement, this function converts the movement into
442  * fractions of 120 and emits high-resolution scroll events for the input
443  * device. It also uses the multiplier from &struct hid_scroll_counter to
444  * emit low-resolution scroll events when appropriate for
445  * backwards-compatibility with userspace input libraries.
446  */
447 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev,
448 					       struct hidpp_scroll_counter *counter,
449 					       int hi_res_value)
450 {
451 	int low_res_value, remainder, direction;
452 	unsigned long long now, previous;
453 
454 	hi_res_value = hi_res_value * 120/counter->wheel_multiplier;
455 	input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value);
456 
457 	remainder = counter->remainder;
458 	direction = hi_res_value > 0 ? 1 : -1;
459 
460 	now = sched_clock();
461 	previous = counter->last_time;
462 	counter->last_time = now;
463 	/*
464 	 * Reset the remainder after a period of inactivity or when the
465 	 * direction changes. This prevents the REL_WHEEL emulation point
466 	 * from sliding for devices that don't always provide the same
467 	 * number of movements per detent.
468 	 */
469 	if (now - previous > 1000000000 || direction != counter->direction)
470 		remainder = 0;
471 
472 	counter->direction = direction;
473 	remainder += hi_res_value;
474 
475 	/* Some wheels will rest 7/8ths of a detent from the previous detent
476 	 * after slow movement, so we want the threshold for low-res events to
477 	 * be in the middle between two detents (e.g. after 4/8ths) as
478 	 * opposed to on the detents themselves (8/8ths).
479 	 */
480 	if (abs(remainder) >= 60) {
481 		/* Add (or subtract) 1 because we want to trigger when the wheel
482 		 * is half-way to the next detent (i.e. scroll 1 detent after a
483 		 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement,
484 		 * etc.).
485 		 */
486 		low_res_value = remainder / 120;
487 		if (low_res_value == 0)
488 			low_res_value = (hi_res_value > 0 ? 1 : -1);
489 		input_report_rel(input_dev, REL_WHEEL, low_res_value);
490 		remainder -= low_res_value * 120;
491 	}
492 	counter->remainder = remainder;
493 }
494 
495 /* -------------------------------------------------------------------------- */
496 /* HIDP++ 1.0 commands                                                        */
497 /* -------------------------------------------------------------------------- */
498 
499 #define HIDPP_SET_REGISTER				0x80
500 #define HIDPP_GET_REGISTER				0x81
501 #define HIDPP_SET_LONG_REGISTER				0x82
502 #define HIDPP_GET_LONG_REGISTER				0x83
503 
504 /**
505  * hidpp10_set_register - Modify a HID++ 1.0 register.
506  * @hidpp_dev: the device to set the register on.
507  * @register_address: the address of the register to modify.
508  * @byte: the byte of the register to modify. Should be less than 3.
509  * @mask: mask of the bits to modify
510  * @value: new values for the bits in mask
511  * Return: 0 if successful, otherwise a negative error code.
512  */
513 static int hidpp10_set_register(struct hidpp_device *hidpp_dev,
514 	u8 register_address, u8 byte, u8 mask, u8 value)
515 {
516 	struct hidpp_report response;
517 	int ret;
518 	u8 params[3] = { 0 };
519 
520 	ret = hidpp_send_rap_command_sync(hidpp_dev,
521 					  REPORT_ID_HIDPP_SHORT,
522 					  HIDPP_GET_REGISTER,
523 					  register_address,
524 					  NULL, 0, &response);
525 	if (ret)
526 		return ret;
527 
528 	memcpy(params, response.rap.params, 3);
529 
530 	params[byte] &= ~mask;
531 	params[byte] |= value & mask;
532 
533 	return hidpp_send_rap_command_sync(hidpp_dev,
534 					   REPORT_ID_HIDPP_SHORT,
535 					   HIDPP_SET_REGISTER,
536 					   register_address,
537 					   params, 3, &response);
538 }
539 
540 #define HIDPP_REG_ENABLE_REPORTS			0x00
541 #define HIDPP_ENABLE_CONSUMER_REPORT			BIT(0)
542 #define HIDPP_ENABLE_WHEEL_REPORT			BIT(2)
543 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT		BIT(3)
544 #define HIDPP_ENABLE_BAT_REPORT				BIT(4)
545 #define HIDPP_ENABLE_HWHEEL_REPORT			BIT(5)
546 
547 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
548 {
549 	return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0,
550 			  HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT);
551 }
552 
553 #define HIDPP_REG_FEATURES				0x01
554 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC		BIT(1)
555 #define HIDPP_ENABLE_FAST_SCROLL			BIT(6)
556 
557 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
558 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
559 {
560 	return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0,
561 			  HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL);
562 }
563 
564 #define HIDPP_REG_BATTERY_STATUS			0x07
565 
566 static int hidpp10_battery_status_map_level(u8 param)
567 {
568 	int level;
569 
570 	switch (param) {
571 	case 1 ... 2:
572 		level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
573 		break;
574 	case 3 ... 4:
575 		level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
576 		break;
577 	case 5 ... 6:
578 		level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
579 		break;
580 	case 7:
581 		level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
582 		break;
583 	default:
584 		level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
585 	}
586 
587 	return level;
588 }
589 
590 static int hidpp10_battery_status_map_status(u8 param)
591 {
592 	int status;
593 
594 	switch (param) {
595 	case 0x00:
596 		/* discharging (in use) */
597 		status = POWER_SUPPLY_STATUS_DISCHARGING;
598 		break;
599 	case 0x21: /* (standard) charging */
600 	case 0x24: /* fast charging */
601 	case 0x25: /* slow charging */
602 		status = POWER_SUPPLY_STATUS_CHARGING;
603 		break;
604 	case 0x26: /* topping charge */
605 	case 0x22: /* charge complete */
606 		status = POWER_SUPPLY_STATUS_FULL;
607 		break;
608 	case 0x20: /* unknown */
609 		status = POWER_SUPPLY_STATUS_UNKNOWN;
610 		break;
611 	/*
612 	 * 0x01...0x1F = reserved (not charging)
613 	 * 0x23 = charging error
614 	 * 0x27..0xff = reserved
615 	 */
616 	default:
617 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
618 		break;
619 	}
620 
621 	return status;
622 }
623 
624 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
625 {
626 	struct hidpp_report response;
627 	int ret, status;
628 
629 	ret = hidpp_send_rap_command_sync(hidpp,
630 					REPORT_ID_HIDPP_SHORT,
631 					HIDPP_GET_REGISTER,
632 					HIDPP_REG_BATTERY_STATUS,
633 					NULL, 0, &response);
634 	if (ret)
635 		return ret;
636 
637 	hidpp->battery.level =
638 		hidpp10_battery_status_map_level(response.rap.params[0]);
639 	status = hidpp10_battery_status_map_status(response.rap.params[1]);
640 	hidpp->battery.status = status;
641 	/* the capacity is only available when discharging or full */
642 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
643 				status == POWER_SUPPLY_STATUS_FULL;
644 
645 	return 0;
646 }
647 
648 #define HIDPP_REG_BATTERY_MILEAGE			0x0D
649 
650 static int hidpp10_battery_mileage_map_status(u8 param)
651 {
652 	int status;
653 
654 	switch (param >> 6) {
655 	case 0x00:
656 		/* discharging (in use) */
657 		status = POWER_SUPPLY_STATUS_DISCHARGING;
658 		break;
659 	case 0x01: /* charging */
660 		status = POWER_SUPPLY_STATUS_CHARGING;
661 		break;
662 	case 0x02: /* charge complete */
663 		status = POWER_SUPPLY_STATUS_FULL;
664 		break;
665 	/*
666 	 * 0x03 = charging error
667 	 */
668 	default:
669 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
670 		break;
671 	}
672 
673 	return status;
674 }
675 
676 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
677 {
678 	struct hidpp_report response;
679 	int ret, status;
680 
681 	ret = hidpp_send_rap_command_sync(hidpp,
682 					REPORT_ID_HIDPP_SHORT,
683 					HIDPP_GET_REGISTER,
684 					HIDPP_REG_BATTERY_MILEAGE,
685 					NULL, 0, &response);
686 	if (ret)
687 		return ret;
688 
689 	hidpp->battery.capacity = response.rap.params[0];
690 	status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
691 	hidpp->battery.status = status;
692 	/* the capacity is only available when discharging or full */
693 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
694 				status == POWER_SUPPLY_STATUS_FULL;
695 
696 	return 0;
697 }
698 
699 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
700 {
701 	struct hidpp_report *report = (struct hidpp_report *)data;
702 	int status, capacity, level;
703 	bool changed;
704 
705 	if (report->report_id != REPORT_ID_HIDPP_SHORT)
706 		return 0;
707 
708 	switch (report->rap.sub_id) {
709 	case HIDPP_REG_BATTERY_STATUS:
710 		capacity = hidpp->battery.capacity;
711 		level = hidpp10_battery_status_map_level(report->rawbytes[1]);
712 		status = hidpp10_battery_status_map_status(report->rawbytes[2]);
713 		break;
714 	case HIDPP_REG_BATTERY_MILEAGE:
715 		capacity = report->rap.params[0];
716 		level = hidpp->battery.level;
717 		status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
718 		break;
719 	default:
720 		return 0;
721 	}
722 
723 	changed = capacity != hidpp->battery.capacity ||
724 		  level != hidpp->battery.level ||
725 		  status != hidpp->battery.status;
726 
727 	/* the capacity is only available when discharging or full */
728 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
729 				status == POWER_SUPPLY_STATUS_FULL;
730 
731 	if (changed) {
732 		hidpp->battery.level = level;
733 		hidpp->battery.status = status;
734 		if (hidpp->battery.ps)
735 			power_supply_changed(hidpp->battery.ps);
736 	}
737 
738 	return 0;
739 }
740 
741 #define HIDPP_REG_PAIRING_INFORMATION			0xB5
742 #define HIDPP_EXTENDED_PAIRING				0x30
743 #define HIDPP_DEVICE_NAME				0x40
744 
745 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
746 {
747 	struct hidpp_report response;
748 	int ret;
749 	u8 params[1] = { HIDPP_DEVICE_NAME };
750 	char *name;
751 	int len;
752 
753 	ret = hidpp_send_rap_command_sync(hidpp_dev,
754 					REPORT_ID_HIDPP_SHORT,
755 					HIDPP_GET_LONG_REGISTER,
756 					HIDPP_REG_PAIRING_INFORMATION,
757 					params, 1, &response);
758 	if (ret)
759 		return NULL;
760 
761 	len = response.rap.params[1];
762 
763 	if (2 + len > sizeof(response.rap.params))
764 		return NULL;
765 
766 	if (len < 4) /* logitech devices are usually at least Xddd */
767 		return NULL;
768 
769 	name = kzalloc(len + 1, GFP_KERNEL);
770 	if (!name)
771 		return NULL;
772 
773 	memcpy(name, &response.rap.params[2], len);
774 
775 	/* include the terminating '\0' */
776 	hidpp_prefix_name(&name, len + 1);
777 
778 	return name;
779 }
780 
781 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
782 {
783 	struct hidpp_report response;
784 	int ret;
785 	u8 params[1] = { HIDPP_EXTENDED_PAIRING };
786 
787 	ret = hidpp_send_rap_command_sync(hidpp,
788 					REPORT_ID_HIDPP_SHORT,
789 					HIDPP_GET_LONG_REGISTER,
790 					HIDPP_REG_PAIRING_INFORMATION,
791 					params, 1, &response);
792 	if (ret)
793 		return ret;
794 
795 	/*
796 	 * We don't care about LE or BE, we will output it as a string
797 	 * with %4phD, so we need to keep the order.
798 	 */
799 	*serial = *((u32 *)&response.rap.params[1]);
800 	return 0;
801 }
802 
803 static int hidpp_unifying_init(struct hidpp_device *hidpp)
804 {
805 	struct hid_device *hdev = hidpp->hid_dev;
806 	const char *name;
807 	u32 serial;
808 	int ret;
809 
810 	ret = hidpp_unifying_get_serial(hidpp, &serial);
811 	if (ret)
812 		return ret;
813 
814 	snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
815 		 hdev->product, &serial);
816 	dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
817 
818 	name = hidpp_unifying_get_name(hidpp);
819 	if (!name)
820 		return -EIO;
821 
822 	snprintf(hdev->name, sizeof(hdev->name), "%s", name);
823 	dbg_hid("HID++ Unifying: Got name: %s\n", name);
824 
825 	kfree(name);
826 	return 0;
827 }
828 
829 /* -------------------------------------------------------------------------- */
830 /* 0x0000: Root                                                               */
831 /* -------------------------------------------------------------------------- */
832 
833 #define HIDPP_PAGE_ROOT					0x0000
834 #define HIDPP_PAGE_ROOT_IDX				0x00
835 
836 #define CMD_ROOT_GET_FEATURE				0x01
837 #define CMD_ROOT_GET_PROTOCOL_VERSION			0x11
838 
839 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
840 	u8 *feature_index, u8 *feature_type)
841 {
842 	struct hidpp_report response;
843 	int ret;
844 	u8 params[2] = { feature >> 8, feature & 0x00FF };
845 
846 	ret = hidpp_send_fap_command_sync(hidpp,
847 			HIDPP_PAGE_ROOT_IDX,
848 			CMD_ROOT_GET_FEATURE,
849 			params, 2, &response);
850 	if (ret)
851 		return ret;
852 
853 	if (response.fap.params[0] == 0)
854 		return -ENOENT;
855 
856 	*feature_index = response.fap.params[0];
857 	*feature_type = response.fap.params[1];
858 
859 	return ret;
860 }
861 
862 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
863 {
864 	const u8 ping_byte = 0x5a;
865 	u8 ping_data[3] = { 0, 0, ping_byte };
866 	struct hidpp_report response;
867 	int ret;
868 
869 	ret = hidpp_send_rap_command_sync(hidpp,
870 			REPORT_ID_HIDPP_SHORT,
871 			HIDPP_PAGE_ROOT_IDX,
872 			CMD_ROOT_GET_PROTOCOL_VERSION,
873 			ping_data, sizeof(ping_data), &response);
874 
875 	if (ret == HIDPP_ERROR_INVALID_SUBID) {
876 		hidpp->protocol_major = 1;
877 		hidpp->protocol_minor = 0;
878 		goto print_version;
879 	}
880 
881 	/* the device might not be connected */
882 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
883 		return -EIO;
884 
885 	if (ret > 0) {
886 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
887 			__func__, ret);
888 		return -EPROTO;
889 	}
890 	if (ret)
891 		return ret;
892 
893 	if (response.rap.params[2] != ping_byte) {
894 		hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n",
895 			__func__, response.rap.params[2], ping_byte);
896 		return -EPROTO;
897 	}
898 
899 	hidpp->protocol_major = response.rap.params[0];
900 	hidpp->protocol_minor = response.rap.params[1];
901 
902 print_version:
903 	hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
904 		 hidpp->protocol_major, hidpp->protocol_minor);
905 	return 0;
906 }
907 
908 /* -------------------------------------------------------------------------- */
909 /* 0x0005: GetDeviceNameType                                                  */
910 /* -------------------------------------------------------------------------- */
911 
912 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE			0x0005
913 
914 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT		0x01
915 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME	0x11
916 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE		0x21
917 
918 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
919 	u8 feature_index, u8 *nameLength)
920 {
921 	struct hidpp_report response;
922 	int ret;
923 
924 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
925 		CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
926 
927 	if (ret > 0) {
928 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
929 			__func__, ret);
930 		return -EPROTO;
931 	}
932 	if (ret)
933 		return ret;
934 
935 	*nameLength = response.fap.params[0];
936 
937 	return ret;
938 }
939 
940 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
941 	u8 feature_index, u8 char_index, char *device_name, int len_buf)
942 {
943 	struct hidpp_report response;
944 	int ret, i;
945 	int count;
946 
947 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
948 		CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
949 		&response);
950 
951 	if (ret > 0) {
952 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
953 			__func__, ret);
954 		return -EPROTO;
955 	}
956 	if (ret)
957 		return ret;
958 
959 	switch (response.report_id) {
960 	case REPORT_ID_HIDPP_VERY_LONG:
961 		count = hidpp->very_long_report_length - 4;
962 		break;
963 	case REPORT_ID_HIDPP_LONG:
964 		count = HIDPP_REPORT_LONG_LENGTH - 4;
965 		break;
966 	case REPORT_ID_HIDPP_SHORT:
967 		count = HIDPP_REPORT_SHORT_LENGTH - 4;
968 		break;
969 	default:
970 		return -EPROTO;
971 	}
972 
973 	if (len_buf < count)
974 		count = len_buf;
975 
976 	for (i = 0; i < count; i++)
977 		device_name[i] = response.fap.params[i];
978 
979 	return count;
980 }
981 
982 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
983 {
984 	u8 feature_type;
985 	u8 feature_index;
986 	u8 __name_length;
987 	char *name;
988 	unsigned index = 0;
989 	int ret;
990 
991 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
992 		&feature_index, &feature_type);
993 	if (ret)
994 		return NULL;
995 
996 	ret = hidpp_devicenametype_get_count(hidpp, feature_index,
997 		&__name_length);
998 	if (ret)
999 		return NULL;
1000 
1001 	name = kzalloc(__name_length + 1, GFP_KERNEL);
1002 	if (!name)
1003 		return NULL;
1004 
1005 	while (index < __name_length) {
1006 		ret = hidpp_devicenametype_get_device_name(hidpp,
1007 			feature_index, index, name + index,
1008 			__name_length - index);
1009 		if (ret <= 0) {
1010 			kfree(name);
1011 			return NULL;
1012 		}
1013 		index += ret;
1014 	}
1015 
1016 	/* include the terminating '\0' */
1017 	hidpp_prefix_name(&name, __name_length + 1);
1018 
1019 	return name;
1020 }
1021 
1022 /* -------------------------------------------------------------------------- */
1023 /* 0x1000: Battery level status                                               */
1024 /* -------------------------------------------------------------------------- */
1025 
1026 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS				0x1000
1027 
1028 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS	0x00
1029 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY		0x10
1030 
1031 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST			0x00
1032 
1033 #define FLAG_BATTERY_LEVEL_DISABLE_OSD				BIT(0)
1034 #define FLAG_BATTERY_LEVEL_MILEAGE				BIT(1)
1035 #define FLAG_BATTERY_LEVEL_RECHARGEABLE				BIT(2)
1036 
1037 static int hidpp_map_battery_level(int capacity)
1038 {
1039 	if (capacity < 11)
1040 		return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1041 	/*
1042 	 * The spec says this should be < 31 but some devices report 30
1043 	 * with brand new batteries and Windows reports 30 as "Good".
1044 	 */
1045 	else if (capacity < 30)
1046 		return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1047 	else if (capacity < 81)
1048 		return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1049 	return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1050 }
1051 
1052 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
1053 						    int *next_capacity,
1054 						    int *level)
1055 {
1056 	int status;
1057 
1058 	*capacity = data[0];
1059 	*next_capacity = data[1];
1060 	*level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1061 
1062 	/* When discharging, we can rely on the device reported capacity.
1063 	 * For all other states the device reports 0 (unknown).
1064 	 */
1065 	switch (data[2]) {
1066 		case 0: /* discharging (in use) */
1067 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1068 			*level = hidpp_map_battery_level(*capacity);
1069 			break;
1070 		case 1: /* recharging */
1071 			status = POWER_SUPPLY_STATUS_CHARGING;
1072 			break;
1073 		case 2: /* charge in final stage */
1074 			status = POWER_SUPPLY_STATUS_CHARGING;
1075 			break;
1076 		case 3: /* charge complete */
1077 			status = POWER_SUPPLY_STATUS_FULL;
1078 			*level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1079 			*capacity = 100;
1080 			break;
1081 		case 4: /* recharging below optimal speed */
1082 			status = POWER_SUPPLY_STATUS_CHARGING;
1083 			break;
1084 		/* 5 = invalid battery type
1085 		   6 = thermal error
1086 		   7 = other charging error */
1087 		default:
1088 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1089 			break;
1090 	}
1091 
1092 	return status;
1093 }
1094 
1095 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
1096 						     u8 feature_index,
1097 						     int *status,
1098 						     int *capacity,
1099 						     int *next_capacity,
1100 						     int *level)
1101 {
1102 	struct hidpp_report response;
1103 	int ret;
1104 	u8 *params = (u8 *)response.fap.params;
1105 
1106 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1107 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
1108 					  NULL, 0, &response);
1109 	if (ret > 0) {
1110 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1111 			__func__, ret);
1112 		return -EPROTO;
1113 	}
1114 	if (ret)
1115 		return ret;
1116 
1117 	*status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1118 							   next_capacity,
1119 							   level);
1120 
1121 	return 0;
1122 }
1123 
1124 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1125 						  u8 feature_index)
1126 {
1127 	struct hidpp_report response;
1128 	int ret;
1129 	u8 *params = (u8 *)response.fap.params;
1130 	unsigned int level_count, flags;
1131 
1132 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1133 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1134 					  NULL, 0, &response);
1135 	if (ret > 0) {
1136 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1137 			__func__, ret);
1138 		return -EPROTO;
1139 	}
1140 	if (ret)
1141 		return ret;
1142 
1143 	level_count = params[0];
1144 	flags = params[1];
1145 
1146 	if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1147 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1148 	else
1149 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1150 
1151 	return 0;
1152 }
1153 
1154 static int hidpp20_query_battery_info(struct hidpp_device *hidpp)
1155 {
1156 	u8 feature_type;
1157 	int ret;
1158 	int status, capacity, next_capacity, level;
1159 
1160 	if (hidpp->battery.feature_index == 0xff) {
1161 		ret = hidpp_root_get_feature(hidpp,
1162 					     HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1163 					     &hidpp->battery.feature_index,
1164 					     &feature_type);
1165 		if (ret)
1166 			return ret;
1167 	}
1168 
1169 	ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1170 						hidpp->battery.feature_index,
1171 						&status, &capacity,
1172 						&next_capacity, &level);
1173 	if (ret)
1174 		return ret;
1175 
1176 	ret = hidpp20_batterylevel_get_battery_info(hidpp,
1177 						hidpp->battery.feature_index);
1178 	if (ret)
1179 		return ret;
1180 
1181 	hidpp->battery.status = status;
1182 	hidpp->battery.capacity = capacity;
1183 	hidpp->battery.level = level;
1184 	/* the capacity is only available when discharging or full */
1185 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1186 				status == POWER_SUPPLY_STATUS_FULL;
1187 
1188 	return 0;
1189 }
1190 
1191 static int hidpp20_battery_event(struct hidpp_device *hidpp,
1192 				 u8 *data, int size)
1193 {
1194 	struct hidpp_report *report = (struct hidpp_report *)data;
1195 	int status, capacity, next_capacity, level;
1196 	bool changed;
1197 
1198 	if (report->fap.feature_index != hidpp->battery.feature_index ||
1199 	    report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1200 		return 0;
1201 
1202 	status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1203 							  &capacity,
1204 							  &next_capacity,
1205 							  &level);
1206 
1207 	/* the capacity is only available when discharging or full */
1208 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1209 				status == POWER_SUPPLY_STATUS_FULL;
1210 
1211 	changed = capacity != hidpp->battery.capacity ||
1212 		  level != hidpp->battery.level ||
1213 		  status != hidpp->battery.status;
1214 
1215 	if (changed) {
1216 		hidpp->battery.level = level;
1217 		hidpp->battery.capacity = capacity;
1218 		hidpp->battery.status = status;
1219 		if (hidpp->battery.ps)
1220 			power_supply_changed(hidpp->battery.ps);
1221 	}
1222 
1223 	return 0;
1224 }
1225 
1226 static enum power_supply_property hidpp_battery_props[] = {
1227 	POWER_SUPPLY_PROP_ONLINE,
1228 	POWER_SUPPLY_PROP_STATUS,
1229 	POWER_SUPPLY_PROP_SCOPE,
1230 	POWER_SUPPLY_PROP_MODEL_NAME,
1231 	POWER_SUPPLY_PROP_MANUFACTURER,
1232 	POWER_SUPPLY_PROP_SERIAL_NUMBER,
1233 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1234 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1235 };
1236 
1237 static int hidpp_battery_get_property(struct power_supply *psy,
1238 				      enum power_supply_property psp,
1239 				      union power_supply_propval *val)
1240 {
1241 	struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1242 	int ret = 0;
1243 
1244 	switch(psp) {
1245 		case POWER_SUPPLY_PROP_STATUS:
1246 			val->intval = hidpp->battery.status;
1247 			break;
1248 		case POWER_SUPPLY_PROP_CAPACITY:
1249 			val->intval = hidpp->battery.capacity;
1250 			break;
1251 		case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1252 			val->intval = hidpp->battery.level;
1253 			break;
1254 		case POWER_SUPPLY_PROP_SCOPE:
1255 			val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1256 			break;
1257 		case POWER_SUPPLY_PROP_ONLINE:
1258 			val->intval = hidpp->battery.online;
1259 			break;
1260 		case POWER_SUPPLY_PROP_MODEL_NAME:
1261 			if (!strncmp(hidpp->name, "Logitech ", 9))
1262 				val->strval = hidpp->name + 9;
1263 			else
1264 				val->strval = hidpp->name;
1265 			break;
1266 		case POWER_SUPPLY_PROP_MANUFACTURER:
1267 			val->strval = "Logitech";
1268 			break;
1269 		case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1270 			val->strval = hidpp->hid_dev->uniq;
1271 			break;
1272 		default:
1273 			ret = -EINVAL;
1274 			break;
1275 	}
1276 
1277 	return ret;
1278 }
1279 
1280 /* -------------------------------------------------------------------------- */
1281 /* 0x2120: Hi-resolution scrolling                                            */
1282 /* -------------------------------------------------------------------------- */
1283 
1284 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING			0x2120
1285 
1286 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE	0x10
1287 
1288 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1289 	bool enabled, u8 *multiplier)
1290 {
1291 	u8 feature_index;
1292 	u8 feature_type;
1293 	int ret;
1294 	u8 params[1];
1295 	struct hidpp_report response;
1296 
1297 	ret = hidpp_root_get_feature(hidpp,
1298 				     HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1299 				     &feature_index,
1300 				     &feature_type);
1301 	if (ret)
1302 		return ret;
1303 
1304 	params[0] = enabled ? BIT(0) : 0;
1305 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1306 					  CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1307 					  params, sizeof(params), &response);
1308 	if (ret)
1309 		return ret;
1310 	*multiplier = response.fap.params[1];
1311 	return 0;
1312 }
1313 
1314 /* -------------------------------------------------------------------------- */
1315 /* 0x2121: HiRes Wheel                                                        */
1316 /* -------------------------------------------------------------------------- */
1317 
1318 #define HIDPP_PAGE_HIRES_WHEEL		0x2121
1319 
1320 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY	0x00
1321 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE		0x20
1322 
1323 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1324 	u8 *multiplier)
1325 {
1326 	u8 feature_index;
1327 	u8 feature_type;
1328 	int ret;
1329 	struct hidpp_report response;
1330 
1331 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1332 				     &feature_index, &feature_type);
1333 	if (ret)
1334 		goto return_default;
1335 
1336 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1337 					  CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1338 					  NULL, 0, &response);
1339 	if (ret)
1340 		goto return_default;
1341 
1342 	*multiplier = response.fap.params[0];
1343 	return 0;
1344 return_default:
1345 	hid_warn(hidpp->hid_dev,
1346 		 "Couldn't get wheel multiplier (error %d)\n", ret);
1347 	return ret;
1348 }
1349 
1350 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1351 	bool high_resolution, bool use_hidpp)
1352 {
1353 	u8 feature_index;
1354 	u8 feature_type;
1355 	int ret;
1356 	u8 params[1];
1357 	struct hidpp_report response;
1358 
1359 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1360 				     &feature_index, &feature_type);
1361 	if (ret)
1362 		return ret;
1363 
1364 	params[0] = (invert          ? BIT(2) : 0) |
1365 		    (high_resolution ? BIT(1) : 0) |
1366 		    (use_hidpp       ? BIT(0) : 0);
1367 
1368 	return hidpp_send_fap_command_sync(hidpp, feature_index,
1369 					   CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1370 					   params, sizeof(params), &response);
1371 }
1372 
1373 /* -------------------------------------------------------------------------- */
1374 /* 0x4301: Solar Keyboard                                                     */
1375 /* -------------------------------------------------------------------------- */
1376 
1377 #define HIDPP_PAGE_SOLAR_KEYBOARD			0x4301
1378 
1379 #define CMD_SOLAR_SET_LIGHT_MEASURE			0x00
1380 
1381 #define EVENT_SOLAR_BATTERY_BROADCAST			0x00
1382 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE		0x10
1383 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON			0x20
1384 
1385 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1386 {
1387 	struct hidpp_report response;
1388 	u8 params[2] = { 1, 1 };
1389 	u8 feature_type;
1390 	int ret;
1391 
1392 	if (hidpp->battery.feature_index == 0xff) {
1393 		ret = hidpp_root_get_feature(hidpp,
1394 					     HIDPP_PAGE_SOLAR_KEYBOARD,
1395 					     &hidpp->battery.solar_feature_index,
1396 					     &feature_type);
1397 		if (ret)
1398 			return ret;
1399 	}
1400 
1401 	ret = hidpp_send_fap_command_sync(hidpp,
1402 					  hidpp->battery.solar_feature_index,
1403 					  CMD_SOLAR_SET_LIGHT_MEASURE,
1404 					  params, 2, &response);
1405 	if (ret > 0) {
1406 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1407 			__func__, ret);
1408 		return -EPROTO;
1409 	}
1410 	if (ret)
1411 		return ret;
1412 
1413 	hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1414 
1415 	return 0;
1416 }
1417 
1418 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1419 				     u8 *data, int size)
1420 {
1421 	struct hidpp_report *report = (struct hidpp_report *)data;
1422 	int capacity, lux, status;
1423 	u8 function;
1424 
1425 	function = report->fap.funcindex_clientid;
1426 
1427 
1428 	if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1429 	    !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1430 	      function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1431 	      function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1432 		return 0;
1433 
1434 	capacity = report->fap.params[0];
1435 
1436 	switch (function) {
1437 	case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1438 		lux = (report->fap.params[1] << 8) | report->fap.params[2];
1439 		if (lux > 200)
1440 			status = POWER_SUPPLY_STATUS_CHARGING;
1441 		else
1442 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1443 		break;
1444 	case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1445 	default:
1446 		if (capacity < hidpp->battery.capacity)
1447 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1448 		else
1449 			status = POWER_SUPPLY_STATUS_CHARGING;
1450 
1451 	}
1452 
1453 	if (capacity == 100)
1454 		status = POWER_SUPPLY_STATUS_FULL;
1455 
1456 	hidpp->battery.online = true;
1457 	if (capacity != hidpp->battery.capacity ||
1458 	    status != hidpp->battery.status) {
1459 		hidpp->battery.capacity = capacity;
1460 		hidpp->battery.status = status;
1461 		if (hidpp->battery.ps)
1462 			power_supply_changed(hidpp->battery.ps);
1463 	}
1464 
1465 	return 0;
1466 }
1467 
1468 /* -------------------------------------------------------------------------- */
1469 /* 0x6010: Touchpad FW items                                                  */
1470 /* -------------------------------------------------------------------------- */
1471 
1472 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS			0x6010
1473 
1474 #define CMD_TOUCHPAD_FW_ITEMS_SET			0x10
1475 
1476 struct hidpp_touchpad_fw_items {
1477 	uint8_t presence;
1478 	uint8_t desired_state;
1479 	uint8_t state;
1480 	uint8_t persistent;
1481 };
1482 
1483 /**
1484  * send a set state command to the device by reading the current items->state
1485  * field. items is then filled with the current state.
1486  */
1487 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1488 				       u8 feature_index,
1489 				       struct hidpp_touchpad_fw_items *items)
1490 {
1491 	struct hidpp_report response;
1492 	int ret;
1493 	u8 *params = (u8 *)response.fap.params;
1494 
1495 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1496 		CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1497 
1498 	if (ret > 0) {
1499 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1500 			__func__, ret);
1501 		return -EPROTO;
1502 	}
1503 	if (ret)
1504 		return ret;
1505 
1506 	items->presence = params[0];
1507 	items->desired_state = params[1];
1508 	items->state = params[2];
1509 	items->persistent = params[3];
1510 
1511 	return 0;
1512 }
1513 
1514 /* -------------------------------------------------------------------------- */
1515 /* 0x6100: TouchPadRawXY                                                      */
1516 /* -------------------------------------------------------------------------- */
1517 
1518 #define HIDPP_PAGE_TOUCHPAD_RAW_XY			0x6100
1519 
1520 #define CMD_TOUCHPAD_GET_RAW_INFO			0x01
1521 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE		0x21
1522 
1523 #define EVENT_TOUCHPAD_RAW_XY				0x00
1524 
1525 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT		0x01
1526 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT		0x03
1527 
1528 struct hidpp_touchpad_raw_info {
1529 	u16 x_size;
1530 	u16 y_size;
1531 	u8 z_range;
1532 	u8 area_range;
1533 	u8 timestamp_unit;
1534 	u8 maxcontacts;
1535 	u8 origin;
1536 	u16 res;
1537 };
1538 
1539 struct hidpp_touchpad_raw_xy_finger {
1540 	u8 contact_type;
1541 	u8 contact_status;
1542 	u16 x;
1543 	u16 y;
1544 	u8 z;
1545 	u8 area;
1546 	u8 finger_id;
1547 };
1548 
1549 struct hidpp_touchpad_raw_xy {
1550 	u16 timestamp;
1551 	struct hidpp_touchpad_raw_xy_finger fingers[2];
1552 	u8 spurious_flag;
1553 	u8 end_of_frame;
1554 	u8 finger_count;
1555 	u8 button;
1556 };
1557 
1558 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1559 	u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1560 {
1561 	struct hidpp_report response;
1562 	int ret;
1563 	u8 *params = (u8 *)response.fap.params;
1564 
1565 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1566 		CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1567 
1568 	if (ret > 0) {
1569 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1570 			__func__, ret);
1571 		return -EPROTO;
1572 	}
1573 	if (ret)
1574 		return ret;
1575 
1576 	raw_info->x_size = get_unaligned_be16(&params[0]);
1577 	raw_info->y_size = get_unaligned_be16(&params[2]);
1578 	raw_info->z_range = params[4];
1579 	raw_info->area_range = params[5];
1580 	raw_info->maxcontacts = params[7];
1581 	raw_info->origin = params[8];
1582 	/* res is given in unit per inch */
1583 	raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1584 
1585 	return ret;
1586 }
1587 
1588 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1589 		u8 feature_index, bool send_raw_reports,
1590 		bool sensor_enhanced_settings)
1591 {
1592 	struct hidpp_report response;
1593 
1594 	/*
1595 	 * Params:
1596 	 *   bit 0 - enable raw
1597 	 *   bit 1 - 16bit Z, no area
1598 	 *   bit 2 - enhanced sensitivity
1599 	 *   bit 3 - width, height (4 bits each) instead of area
1600 	 *   bit 4 - send raw + gestures (degrades smoothness)
1601 	 *   remaining bits - reserved
1602 	 */
1603 	u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
1604 
1605 	return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
1606 		CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
1607 }
1608 
1609 static void hidpp_touchpad_touch_event(u8 *data,
1610 	struct hidpp_touchpad_raw_xy_finger *finger)
1611 {
1612 	u8 x_m = data[0] << 2;
1613 	u8 y_m = data[2] << 2;
1614 
1615 	finger->x = x_m << 6 | data[1];
1616 	finger->y = y_m << 6 | data[3];
1617 
1618 	finger->contact_type = data[0] >> 6;
1619 	finger->contact_status = data[2] >> 6;
1620 
1621 	finger->z = data[4];
1622 	finger->area = data[5];
1623 	finger->finger_id = data[6] >> 4;
1624 }
1625 
1626 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
1627 		u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
1628 {
1629 	memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
1630 	raw_xy->end_of_frame = data[8] & 0x01;
1631 	raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
1632 	raw_xy->finger_count = data[15] & 0x0f;
1633 	raw_xy->button = (data[8] >> 2) & 0x01;
1634 
1635 	if (raw_xy->finger_count) {
1636 		hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
1637 		hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
1638 	}
1639 }
1640 
1641 /* -------------------------------------------------------------------------- */
1642 /* 0x8123: Force feedback support                                             */
1643 /* -------------------------------------------------------------------------- */
1644 
1645 #define HIDPP_FF_GET_INFO		0x01
1646 #define HIDPP_FF_RESET_ALL		0x11
1647 #define HIDPP_FF_DOWNLOAD_EFFECT	0x21
1648 #define HIDPP_FF_SET_EFFECT_STATE	0x31
1649 #define HIDPP_FF_DESTROY_EFFECT		0x41
1650 #define HIDPP_FF_GET_APERTURE		0x51
1651 #define HIDPP_FF_SET_APERTURE		0x61
1652 #define HIDPP_FF_GET_GLOBAL_GAINS	0x71
1653 #define HIDPP_FF_SET_GLOBAL_GAINS	0x81
1654 
1655 #define HIDPP_FF_EFFECT_STATE_GET	0x00
1656 #define HIDPP_FF_EFFECT_STATE_STOP	0x01
1657 #define HIDPP_FF_EFFECT_STATE_PLAY	0x02
1658 #define HIDPP_FF_EFFECT_STATE_PAUSE	0x03
1659 
1660 #define HIDPP_FF_EFFECT_CONSTANT	0x00
1661 #define HIDPP_FF_EFFECT_PERIODIC_SINE		0x01
1662 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE		0x02
1663 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE	0x03
1664 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP	0x04
1665 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN	0x05
1666 #define HIDPP_FF_EFFECT_SPRING		0x06
1667 #define HIDPP_FF_EFFECT_DAMPER		0x07
1668 #define HIDPP_FF_EFFECT_FRICTION	0x08
1669 #define HIDPP_FF_EFFECT_INERTIA		0x09
1670 #define HIDPP_FF_EFFECT_RAMP		0x0A
1671 
1672 #define HIDPP_FF_EFFECT_AUTOSTART	0x80
1673 
1674 #define HIDPP_FF_EFFECTID_NONE		-1
1675 #define HIDPP_FF_EFFECTID_AUTOCENTER	-2
1676 
1677 #define HIDPP_FF_MAX_PARAMS	20
1678 #define HIDPP_FF_RESERVED_SLOTS	1
1679 
1680 struct hidpp_ff_private_data {
1681 	struct hidpp_device *hidpp;
1682 	u8 feature_index;
1683 	u8 version;
1684 	u16 gain;
1685 	s16 range;
1686 	u8 slot_autocenter;
1687 	u8 num_effects;
1688 	int *effect_ids;
1689 	struct workqueue_struct *wq;
1690 	atomic_t workqueue_size;
1691 };
1692 
1693 struct hidpp_ff_work_data {
1694 	struct work_struct work;
1695 	struct hidpp_ff_private_data *data;
1696 	int effect_id;
1697 	u8 command;
1698 	u8 params[HIDPP_FF_MAX_PARAMS];
1699 	u8 size;
1700 };
1701 
1702 static const signed short hidpp_ff_effects[] = {
1703 	FF_CONSTANT,
1704 	FF_PERIODIC,
1705 	FF_SINE,
1706 	FF_SQUARE,
1707 	FF_SAW_UP,
1708 	FF_SAW_DOWN,
1709 	FF_TRIANGLE,
1710 	FF_SPRING,
1711 	FF_DAMPER,
1712 	FF_AUTOCENTER,
1713 	FF_GAIN,
1714 	-1
1715 };
1716 
1717 static const signed short hidpp_ff_effects_v2[] = {
1718 	FF_RAMP,
1719 	FF_FRICTION,
1720 	FF_INERTIA,
1721 	-1
1722 };
1723 
1724 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
1725 	HIDPP_FF_EFFECT_SPRING,
1726 	HIDPP_FF_EFFECT_FRICTION,
1727 	HIDPP_FF_EFFECT_DAMPER,
1728 	HIDPP_FF_EFFECT_INERTIA
1729 };
1730 
1731 static const char *HIDPP_FF_CONDITION_NAMES[] = {
1732 	"spring",
1733 	"friction",
1734 	"damper",
1735 	"inertia"
1736 };
1737 
1738 
1739 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
1740 {
1741 	int i;
1742 
1743 	for (i = 0; i < data->num_effects; i++)
1744 		if (data->effect_ids[i] == effect_id)
1745 			return i+1;
1746 
1747 	return 0;
1748 }
1749 
1750 static void hidpp_ff_work_handler(struct work_struct *w)
1751 {
1752 	struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
1753 	struct hidpp_ff_private_data *data = wd->data;
1754 	struct hidpp_report response;
1755 	u8 slot;
1756 	int ret;
1757 
1758 	/* add slot number if needed */
1759 	switch (wd->effect_id) {
1760 	case HIDPP_FF_EFFECTID_AUTOCENTER:
1761 		wd->params[0] = data->slot_autocenter;
1762 		break;
1763 	case HIDPP_FF_EFFECTID_NONE:
1764 		/* leave slot as zero */
1765 		break;
1766 	default:
1767 		/* find current slot for effect */
1768 		wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
1769 		break;
1770 	}
1771 
1772 	/* send command and wait for reply */
1773 	ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
1774 		wd->command, wd->params, wd->size, &response);
1775 
1776 	if (ret) {
1777 		hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
1778 		goto out;
1779 	}
1780 
1781 	/* parse return data */
1782 	switch (wd->command) {
1783 	case HIDPP_FF_DOWNLOAD_EFFECT:
1784 		slot = response.fap.params[0];
1785 		if (slot > 0 && slot <= data->num_effects) {
1786 			if (wd->effect_id >= 0)
1787 				/* regular effect uploaded */
1788 				data->effect_ids[slot-1] = wd->effect_id;
1789 			else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1790 				/* autocenter spring uploaded */
1791 				data->slot_autocenter = slot;
1792 		}
1793 		break;
1794 	case HIDPP_FF_DESTROY_EFFECT:
1795 		if (wd->effect_id >= 0)
1796 			/* regular effect destroyed */
1797 			data->effect_ids[wd->params[0]-1] = -1;
1798 		else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1799 			/* autocenter spring destoyed */
1800 			data->slot_autocenter = 0;
1801 		break;
1802 	case HIDPP_FF_SET_GLOBAL_GAINS:
1803 		data->gain = (wd->params[0] << 8) + wd->params[1];
1804 		break;
1805 	case HIDPP_FF_SET_APERTURE:
1806 		data->range = (wd->params[0] << 8) + wd->params[1];
1807 		break;
1808 	default:
1809 		/* no action needed */
1810 		break;
1811 	}
1812 
1813 out:
1814 	atomic_dec(&data->workqueue_size);
1815 	kfree(wd);
1816 }
1817 
1818 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
1819 {
1820 	struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
1821 	int s;
1822 
1823 	if (!wd)
1824 		return -ENOMEM;
1825 
1826 	INIT_WORK(&wd->work, hidpp_ff_work_handler);
1827 
1828 	wd->data = data;
1829 	wd->effect_id = effect_id;
1830 	wd->command = command;
1831 	wd->size = size;
1832 	memcpy(wd->params, params, size);
1833 
1834 	atomic_inc(&data->workqueue_size);
1835 	queue_work(data->wq, &wd->work);
1836 
1837 	/* warn about excessive queue size */
1838 	s = atomic_read(&data->workqueue_size);
1839 	if (s >= 20 && s % 20 == 0)
1840 		hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
1841 
1842 	return 0;
1843 }
1844 
1845 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
1846 {
1847 	struct hidpp_ff_private_data *data = dev->ff->private;
1848 	u8 params[20];
1849 	u8 size;
1850 	int force;
1851 
1852 	/* set common parameters */
1853 	params[2] = effect->replay.length >> 8;
1854 	params[3] = effect->replay.length & 255;
1855 	params[4] = effect->replay.delay >> 8;
1856 	params[5] = effect->replay.delay & 255;
1857 
1858 	switch (effect->type) {
1859 	case FF_CONSTANT:
1860 		force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1861 		params[1] = HIDPP_FF_EFFECT_CONSTANT;
1862 		params[6] = force >> 8;
1863 		params[7] = force & 255;
1864 		params[8] = effect->u.constant.envelope.attack_level >> 7;
1865 		params[9] = effect->u.constant.envelope.attack_length >> 8;
1866 		params[10] = effect->u.constant.envelope.attack_length & 255;
1867 		params[11] = effect->u.constant.envelope.fade_level >> 7;
1868 		params[12] = effect->u.constant.envelope.fade_length >> 8;
1869 		params[13] = effect->u.constant.envelope.fade_length & 255;
1870 		size = 14;
1871 		dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
1872 				effect->u.constant.level,
1873 				effect->direction, force);
1874 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1875 				effect->u.constant.envelope.attack_level,
1876 				effect->u.constant.envelope.attack_length,
1877 				effect->u.constant.envelope.fade_level,
1878 				effect->u.constant.envelope.fade_length);
1879 		break;
1880 	case FF_PERIODIC:
1881 	{
1882 		switch (effect->u.periodic.waveform) {
1883 		case FF_SINE:
1884 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
1885 			break;
1886 		case FF_SQUARE:
1887 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
1888 			break;
1889 		case FF_SAW_UP:
1890 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
1891 			break;
1892 		case FF_SAW_DOWN:
1893 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
1894 			break;
1895 		case FF_TRIANGLE:
1896 			params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
1897 			break;
1898 		default:
1899 			hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
1900 			return -EINVAL;
1901 		}
1902 		force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1903 		params[6] = effect->u.periodic.magnitude >> 8;
1904 		params[7] = effect->u.periodic.magnitude & 255;
1905 		params[8] = effect->u.periodic.offset >> 8;
1906 		params[9] = effect->u.periodic.offset & 255;
1907 		params[10] = effect->u.periodic.period >> 8;
1908 		params[11] = effect->u.periodic.period & 255;
1909 		params[12] = effect->u.periodic.phase >> 8;
1910 		params[13] = effect->u.periodic.phase & 255;
1911 		params[14] = effect->u.periodic.envelope.attack_level >> 7;
1912 		params[15] = effect->u.periodic.envelope.attack_length >> 8;
1913 		params[16] = effect->u.periodic.envelope.attack_length & 255;
1914 		params[17] = effect->u.periodic.envelope.fade_level >> 7;
1915 		params[18] = effect->u.periodic.envelope.fade_length >> 8;
1916 		params[19] = effect->u.periodic.envelope.fade_length & 255;
1917 		size = 20;
1918 		dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
1919 				effect->u.periodic.magnitude, effect->direction,
1920 				effect->u.periodic.offset,
1921 				effect->u.periodic.period,
1922 				effect->u.periodic.phase);
1923 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1924 				effect->u.periodic.envelope.attack_level,
1925 				effect->u.periodic.envelope.attack_length,
1926 				effect->u.periodic.envelope.fade_level,
1927 				effect->u.periodic.envelope.fade_length);
1928 		break;
1929 	}
1930 	case FF_RAMP:
1931 		params[1] = HIDPP_FF_EFFECT_RAMP;
1932 		force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1933 		params[6] = force >> 8;
1934 		params[7] = force & 255;
1935 		force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1936 		params[8] = force >> 8;
1937 		params[9] = force & 255;
1938 		params[10] = effect->u.ramp.envelope.attack_level >> 7;
1939 		params[11] = effect->u.ramp.envelope.attack_length >> 8;
1940 		params[12] = effect->u.ramp.envelope.attack_length & 255;
1941 		params[13] = effect->u.ramp.envelope.fade_level >> 7;
1942 		params[14] = effect->u.ramp.envelope.fade_length >> 8;
1943 		params[15] = effect->u.ramp.envelope.fade_length & 255;
1944 		size = 16;
1945 		dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
1946 				effect->u.ramp.start_level,
1947 				effect->u.ramp.end_level,
1948 				effect->direction, force);
1949 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1950 				effect->u.ramp.envelope.attack_level,
1951 				effect->u.ramp.envelope.attack_length,
1952 				effect->u.ramp.envelope.fade_level,
1953 				effect->u.ramp.envelope.fade_length);
1954 		break;
1955 	case FF_FRICTION:
1956 	case FF_INERTIA:
1957 	case FF_SPRING:
1958 	case FF_DAMPER:
1959 		params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
1960 		params[6] = effect->u.condition[0].left_saturation >> 9;
1961 		params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
1962 		params[8] = effect->u.condition[0].left_coeff >> 8;
1963 		params[9] = effect->u.condition[0].left_coeff & 255;
1964 		params[10] = effect->u.condition[0].deadband >> 9;
1965 		params[11] = (effect->u.condition[0].deadband >> 1) & 255;
1966 		params[12] = effect->u.condition[0].center >> 8;
1967 		params[13] = effect->u.condition[0].center & 255;
1968 		params[14] = effect->u.condition[0].right_coeff >> 8;
1969 		params[15] = effect->u.condition[0].right_coeff & 255;
1970 		params[16] = effect->u.condition[0].right_saturation >> 9;
1971 		params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
1972 		size = 18;
1973 		dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
1974 				HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
1975 				effect->u.condition[0].left_coeff,
1976 				effect->u.condition[0].left_saturation,
1977 				effect->u.condition[0].right_coeff,
1978 				effect->u.condition[0].right_saturation);
1979 		dbg_hid("          deadband=%d, center=%d\n",
1980 				effect->u.condition[0].deadband,
1981 				effect->u.condition[0].center);
1982 		break;
1983 	default:
1984 		hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
1985 		return -EINVAL;
1986 	}
1987 
1988 	return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
1989 }
1990 
1991 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
1992 {
1993 	struct hidpp_ff_private_data *data = dev->ff->private;
1994 	u8 params[2];
1995 
1996 	params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
1997 
1998 	dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
1999 
2000 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
2001 }
2002 
2003 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
2004 {
2005 	struct hidpp_ff_private_data *data = dev->ff->private;
2006 	u8 slot = 0;
2007 
2008 	dbg_hid("Erasing effect %d.\n", effect_id);
2009 
2010 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
2011 }
2012 
2013 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
2014 {
2015 	struct hidpp_ff_private_data *data = dev->ff->private;
2016 	u8 params[18];
2017 
2018 	dbg_hid("Setting autocenter to %d.\n", magnitude);
2019 
2020 	/* start a standard spring effect */
2021 	params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
2022 	/* zero delay and duration */
2023 	params[2] = params[3] = params[4] = params[5] = 0;
2024 	/* set coeff to 25% of saturation */
2025 	params[8] = params[14] = magnitude >> 11;
2026 	params[9] = params[15] = (magnitude >> 3) & 255;
2027 	params[6] = params[16] = magnitude >> 9;
2028 	params[7] = params[17] = (magnitude >> 1) & 255;
2029 	/* zero deadband and center */
2030 	params[10] = params[11] = params[12] = params[13] = 0;
2031 
2032 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
2033 }
2034 
2035 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
2036 {
2037 	struct hidpp_ff_private_data *data = dev->ff->private;
2038 	u8 params[4];
2039 
2040 	dbg_hid("Setting gain to %d.\n", gain);
2041 
2042 	params[0] = gain >> 8;
2043 	params[1] = gain & 255;
2044 	params[2] = 0; /* no boost */
2045 	params[3] = 0;
2046 
2047 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
2048 }
2049 
2050 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
2051 {
2052 	struct hid_device *hid = to_hid_device(dev);
2053 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2054 	struct input_dev *idev = hidinput->input;
2055 	struct hidpp_ff_private_data *data = idev->ff->private;
2056 
2057 	return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
2058 }
2059 
2060 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2061 {
2062 	struct hid_device *hid = to_hid_device(dev);
2063 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2064 	struct input_dev *idev = hidinput->input;
2065 	struct hidpp_ff_private_data *data = idev->ff->private;
2066 	u8 params[2];
2067 	int range = simple_strtoul(buf, NULL, 10);
2068 
2069 	range = clamp(range, 180, 900);
2070 
2071 	params[0] = range >> 8;
2072 	params[1] = range & 0x00FF;
2073 
2074 	hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
2075 
2076 	return count;
2077 }
2078 
2079 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
2080 
2081 static void hidpp_ff_destroy(struct ff_device *ff)
2082 {
2083 	struct hidpp_ff_private_data *data = ff->private;
2084 
2085 	kfree(data->effect_ids);
2086 }
2087 
2088 static int hidpp_ff_init(struct hidpp_device *hidpp, u8 feature_index)
2089 {
2090 	struct hid_device *hid = hidpp->hid_dev;
2091 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2092 	struct input_dev *dev = hidinput->input;
2093 	const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
2094 	const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
2095 	struct ff_device *ff;
2096 	struct hidpp_report response;
2097 	struct hidpp_ff_private_data *data;
2098 	int error, j, num_slots;
2099 	u8 version;
2100 
2101 	if (!dev) {
2102 		hid_err(hid, "Struct input_dev not set!\n");
2103 		return -EINVAL;
2104 	}
2105 
2106 	/* Get firmware release */
2107 	version = bcdDevice & 255;
2108 
2109 	/* Set supported force feedback capabilities */
2110 	for (j = 0; hidpp_ff_effects[j] >= 0; j++)
2111 		set_bit(hidpp_ff_effects[j], dev->ffbit);
2112 	if (version > 1)
2113 		for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++)
2114 			set_bit(hidpp_ff_effects_v2[j], dev->ffbit);
2115 
2116 	/* Read number of slots available in device */
2117 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
2118 		HIDPP_FF_GET_INFO, NULL, 0, &response);
2119 	if (error) {
2120 		if (error < 0)
2121 			return error;
2122 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
2123 			__func__, error);
2124 		return -EPROTO;
2125 	}
2126 
2127 	num_slots = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
2128 
2129 	error = input_ff_create(dev, num_slots);
2130 
2131 	if (error) {
2132 		hid_err(dev, "Failed to create FF device!\n");
2133 		return error;
2134 	}
2135 
2136 	data = kzalloc(sizeof(*data), GFP_KERNEL);
2137 	if (!data)
2138 		return -ENOMEM;
2139 	data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2140 	if (!data->effect_ids) {
2141 		kfree(data);
2142 		return -ENOMEM;
2143 	}
2144 	data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2145 	if (!data->wq) {
2146 		kfree(data->effect_ids);
2147 		kfree(data);
2148 		return -ENOMEM;
2149 	}
2150 
2151 	data->hidpp = hidpp;
2152 	data->feature_index = feature_index;
2153 	data->version = version;
2154 	data->slot_autocenter = 0;
2155 	data->num_effects = num_slots;
2156 	for (j = 0; j < num_slots; j++)
2157 		data->effect_ids[j] = -1;
2158 
2159 	ff = dev->ff;
2160 	ff->private = data;
2161 
2162 	ff->upload = hidpp_ff_upload_effect;
2163 	ff->erase = hidpp_ff_erase_effect;
2164 	ff->playback = hidpp_ff_playback;
2165 	ff->set_gain = hidpp_ff_set_gain;
2166 	ff->set_autocenter = hidpp_ff_set_autocenter;
2167 	ff->destroy = hidpp_ff_destroy;
2168 
2169 
2170 	/* reset all forces */
2171 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
2172 		HIDPP_FF_RESET_ALL, NULL, 0, &response);
2173 
2174 	/* Read current Range */
2175 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
2176 		HIDPP_FF_GET_APERTURE, NULL, 0, &response);
2177 	if (error)
2178 		hid_warn(hidpp->hid_dev, "Failed to read range from device!\n");
2179 	data->range = error ? 900 : get_unaligned_be16(&response.fap.params[0]);
2180 
2181 	/* Create sysfs interface */
2182 	error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2183 	if (error)
2184 		hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2185 
2186 	/* Read the current gain values */
2187 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
2188 		HIDPP_FF_GET_GLOBAL_GAINS, NULL, 0, &response);
2189 	if (error)
2190 		hid_warn(hidpp->hid_dev, "Failed to read gain values from device!\n");
2191 	data->gain = error ? 0xffff : get_unaligned_be16(&response.fap.params[0]);
2192 	/* ignore boost value at response.fap.params[2] */
2193 
2194 	/* init the hardware command queue */
2195 	atomic_set(&data->workqueue_size, 0);
2196 
2197 	/* initialize with zero autocenter to get wheel in usable state */
2198 	hidpp_ff_set_autocenter(dev, 0);
2199 
2200 	hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2201 		 version);
2202 
2203 	return 0;
2204 }
2205 
2206 static int hidpp_ff_deinit(struct hid_device *hid)
2207 {
2208 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2209 	struct input_dev *dev = hidinput->input;
2210 	struct hidpp_ff_private_data *data;
2211 
2212 	if (!dev) {
2213 		hid_err(hid, "Struct input_dev not found!\n");
2214 		return -EINVAL;
2215 	}
2216 
2217 	hid_info(hid, "Unloading HID++ force feedback.\n");
2218 	data = dev->ff->private;
2219 	if (!data) {
2220 		hid_err(hid, "Private data not found!\n");
2221 		return -EINVAL;
2222 	}
2223 
2224 	destroy_workqueue(data->wq);
2225 	device_remove_file(&hid->dev, &dev_attr_range);
2226 
2227 	return 0;
2228 }
2229 
2230 
2231 /* ************************************************************************** */
2232 /*                                                                            */
2233 /* Device Support                                                             */
2234 /*                                                                            */
2235 /* ************************************************************************** */
2236 
2237 /* -------------------------------------------------------------------------- */
2238 /* Touchpad HID++ devices                                                     */
2239 /* -------------------------------------------------------------------------- */
2240 
2241 #define WTP_MANUAL_RESOLUTION				39
2242 
2243 struct wtp_data {
2244 	u16 x_size, y_size;
2245 	u8 finger_count;
2246 	u8 mt_feature_index;
2247 	u8 button_feature_index;
2248 	u8 maxcontacts;
2249 	bool flip_y;
2250 	unsigned int resolution;
2251 };
2252 
2253 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2254 		struct hid_field *field, struct hid_usage *usage,
2255 		unsigned long **bit, int *max)
2256 {
2257 	return -1;
2258 }
2259 
2260 static void wtp_populate_input(struct hidpp_device *hidpp,
2261 			       struct input_dev *input_dev)
2262 {
2263 	struct wtp_data *wd = hidpp->private_data;
2264 
2265 	__set_bit(EV_ABS, input_dev->evbit);
2266 	__set_bit(EV_KEY, input_dev->evbit);
2267 	__clear_bit(EV_REL, input_dev->evbit);
2268 	__clear_bit(EV_LED, input_dev->evbit);
2269 
2270 	input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2271 	input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2272 	input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2273 	input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2274 
2275 	/* Max pressure is not given by the devices, pick one */
2276 	input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2277 
2278 	input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2279 
2280 	if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2281 		input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2282 	else
2283 		__set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2284 
2285 	input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2286 		INPUT_MT_DROP_UNUSED);
2287 }
2288 
2289 static void wtp_touch_event(struct hidpp_device *hidpp,
2290 	struct hidpp_touchpad_raw_xy_finger *touch_report)
2291 {
2292 	struct wtp_data *wd = hidpp->private_data;
2293 	int slot;
2294 
2295 	if (!touch_report->finger_id || touch_report->contact_type)
2296 		/* no actual data */
2297 		return;
2298 
2299 	slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id);
2300 
2301 	input_mt_slot(hidpp->input, slot);
2302 	input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER,
2303 					touch_report->contact_status);
2304 	if (touch_report->contact_status) {
2305 		input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X,
2306 				touch_report->x);
2307 		input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y,
2308 				wd->flip_y ? wd->y_size - touch_report->y :
2309 					     touch_report->y);
2310 		input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE,
2311 				touch_report->area);
2312 	}
2313 }
2314 
2315 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2316 		struct hidpp_touchpad_raw_xy *raw)
2317 {
2318 	int i;
2319 
2320 	for (i = 0; i < 2; i++)
2321 		wtp_touch_event(hidpp, &(raw->fingers[i]));
2322 
2323 	if (raw->end_of_frame &&
2324 	    !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2325 		input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button);
2326 
2327 	if (raw->end_of_frame || raw->finger_count <= 2) {
2328 		input_mt_sync_frame(hidpp->input);
2329 		input_sync(hidpp->input);
2330 	}
2331 }
2332 
2333 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2334 {
2335 	struct wtp_data *wd = hidpp->private_data;
2336 	u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2337 		      (data[7] >> 4) * (data[7] >> 4)) / 2;
2338 	u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2339 		      (data[13] >> 4) * (data[13] >> 4)) / 2;
2340 	struct hidpp_touchpad_raw_xy raw = {
2341 		.timestamp = data[1],
2342 		.fingers = {
2343 			{
2344 				.contact_type = 0,
2345 				.contact_status = !!data[7],
2346 				.x = get_unaligned_le16(&data[3]),
2347 				.y = get_unaligned_le16(&data[5]),
2348 				.z = c1_area,
2349 				.area = c1_area,
2350 				.finger_id = data[2],
2351 			}, {
2352 				.contact_type = 0,
2353 				.contact_status = !!data[13],
2354 				.x = get_unaligned_le16(&data[9]),
2355 				.y = get_unaligned_le16(&data[11]),
2356 				.z = c2_area,
2357 				.area = c2_area,
2358 				.finger_id = data[8],
2359 			}
2360 		},
2361 		.finger_count = wd->maxcontacts,
2362 		.spurious_flag = 0,
2363 		.end_of_frame = (data[0] >> 7) == 0,
2364 		.button = data[0] & 0x01,
2365 	};
2366 
2367 	wtp_send_raw_xy_event(hidpp, &raw);
2368 
2369 	return 1;
2370 }
2371 
2372 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2373 {
2374 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2375 	struct wtp_data *wd = hidpp->private_data;
2376 	struct hidpp_report *report = (struct hidpp_report *)data;
2377 	struct hidpp_touchpad_raw_xy raw;
2378 
2379 	if (!wd || !hidpp->input)
2380 		return 1;
2381 
2382 	switch (data[0]) {
2383 	case 0x02:
2384 		if (size < 2) {
2385 			hid_err(hdev, "Received HID report of bad size (%d)",
2386 				size);
2387 			return 1;
2388 		}
2389 		if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2390 			input_event(hidpp->input, EV_KEY, BTN_LEFT,
2391 					!!(data[1] & 0x01));
2392 			input_event(hidpp->input, EV_KEY, BTN_RIGHT,
2393 					!!(data[1] & 0x02));
2394 			input_sync(hidpp->input);
2395 			return 0;
2396 		} else {
2397 			if (size < 21)
2398 				return 1;
2399 			return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2400 		}
2401 	case REPORT_ID_HIDPP_LONG:
2402 		/* size is already checked in hidpp_raw_event. */
2403 		if ((report->fap.feature_index != wd->mt_feature_index) ||
2404 		    (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2405 			return 1;
2406 		hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2407 
2408 		wtp_send_raw_xy_event(hidpp, &raw);
2409 		return 0;
2410 	}
2411 
2412 	return 0;
2413 }
2414 
2415 static int wtp_get_config(struct hidpp_device *hidpp)
2416 {
2417 	struct wtp_data *wd = hidpp->private_data;
2418 	struct hidpp_touchpad_raw_info raw_info = {0};
2419 	u8 feature_type;
2420 	int ret;
2421 
2422 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2423 		&wd->mt_feature_index, &feature_type);
2424 	if (ret)
2425 		/* means that the device is not powered up */
2426 		return ret;
2427 
2428 	ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2429 		&raw_info);
2430 	if (ret)
2431 		return ret;
2432 
2433 	wd->x_size = raw_info.x_size;
2434 	wd->y_size = raw_info.y_size;
2435 	wd->maxcontacts = raw_info.maxcontacts;
2436 	wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2437 	wd->resolution = raw_info.res;
2438 	if (!wd->resolution)
2439 		wd->resolution = WTP_MANUAL_RESOLUTION;
2440 
2441 	return 0;
2442 }
2443 
2444 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2445 {
2446 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2447 	struct wtp_data *wd;
2448 
2449 	wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2450 			GFP_KERNEL);
2451 	if (!wd)
2452 		return -ENOMEM;
2453 
2454 	hidpp->private_data = wd;
2455 
2456 	return 0;
2457 };
2458 
2459 static int wtp_connect(struct hid_device *hdev, bool connected)
2460 {
2461 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2462 	struct wtp_data *wd = hidpp->private_data;
2463 	int ret;
2464 
2465 	if (!wd->x_size) {
2466 		ret = wtp_get_config(hidpp);
2467 		if (ret) {
2468 			hid_err(hdev, "Can not get wtp config: %d\n", ret);
2469 			return ret;
2470 		}
2471 	}
2472 
2473 	return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2474 			true, true);
2475 }
2476 
2477 /* ------------------------------------------------------------------------- */
2478 /* Logitech M560 devices                                                     */
2479 /* ------------------------------------------------------------------------- */
2480 
2481 /*
2482  * Logitech M560 protocol overview
2483  *
2484  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2485  * the sides buttons are pressed, it sends some keyboard keys events
2486  * instead of buttons ones.
2487  * To complicate things further, the middle button keys sequence
2488  * is different from the odd press and the even press.
2489  *
2490  * forward button -> Super_R
2491  * backward button -> Super_L+'d' (press only)
2492  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2493  *                  2nd time: left-click (press only)
2494  * NB: press-only means that when the button is pressed, the
2495  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2496  * together sequentially; instead when the button is released, no event is
2497  * generated !
2498  *
2499  * With the command
2500  *	10<xx>0a 3500af03 (where <xx> is the mouse id),
2501  * the mouse reacts differently:
2502  * - it never sends a keyboard key event
2503  * - for the three mouse button it sends:
2504  *	middle button               press   11<xx>0a 3500af00...
2505  *	side 1 button (forward)     press   11<xx>0a 3500b000...
2506  *	side 2 button (backward)    press   11<xx>0a 3500ae00...
2507  *	middle/side1/side2 button   release 11<xx>0a 35000000...
2508  */
2509 
2510 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2511 
2512 /* how buttons are mapped in the report */
2513 #define M560_MOUSE_BTN_LEFT		0x01
2514 #define M560_MOUSE_BTN_RIGHT		0x02
2515 #define M560_MOUSE_BTN_WHEEL_LEFT	0x08
2516 #define M560_MOUSE_BTN_WHEEL_RIGHT	0x10
2517 
2518 #define M560_SUB_ID			0x0a
2519 #define M560_BUTTON_MODE_REGISTER	0x35
2520 
2521 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2522 {
2523 	struct hidpp_report response;
2524 	struct hidpp_device *hidpp_dev;
2525 
2526 	hidpp_dev = hid_get_drvdata(hdev);
2527 
2528 	return hidpp_send_rap_command_sync(
2529 		hidpp_dev,
2530 		REPORT_ID_HIDPP_SHORT,
2531 		M560_SUB_ID,
2532 		M560_BUTTON_MODE_REGISTER,
2533 		(u8 *)m560_config_parameter,
2534 		sizeof(m560_config_parameter),
2535 		&response
2536 	);
2537 }
2538 
2539 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2540 {
2541 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2542 
2543 	/* sanity check */
2544 	if (!hidpp->input) {
2545 		hid_err(hdev, "error in parameter\n");
2546 		return -EINVAL;
2547 	}
2548 
2549 	if (size < 7) {
2550 		hid_err(hdev, "error in report\n");
2551 		return 0;
2552 	}
2553 
2554 	if (data[0] == REPORT_ID_HIDPP_LONG &&
2555 	    data[2] == M560_SUB_ID && data[6] == 0x00) {
2556 		/*
2557 		 * m560 mouse report for middle, forward and backward button
2558 		 *
2559 		 * data[0] = 0x11
2560 		 * data[1] = device-id
2561 		 * data[2] = 0x0a
2562 		 * data[5] = 0xaf -> middle
2563 		 *	     0xb0 -> forward
2564 		 *	     0xae -> backward
2565 		 *	     0x00 -> release all
2566 		 * data[6] = 0x00
2567 		 */
2568 
2569 		switch (data[5]) {
2570 		case 0xaf:
2571 			input_report_key(hidpp->input, BTN_MIDDLE, 1);
2572 			break;
2573 		case 0xb0:
2574 			input_report_key(hidpp->input, BTN_FORWARD, 1);
2575 			break;
2576 		case 0xae:
2577 			input_report_key(hidpp->input, BTN_BACK, 1);
2578 			break;
2579 		case 0x00:
2580 			input_report_key(hidpp->input, BTN_BACK, 0);
2581 			input_report_key(hidpp->input, BTN_FORWARD, 0);
2582 			input_report_key(hidpp->input, BTN_MIDDLE, 0);
2583 			break;
2584 		default:
2585 			hid_err(hdev, "error in report\n");
2586 			return 0;
2587 		}
2588 		input_sync(hidpp->input);
2589 
2590 	} else if (data[0] == 0x02) {
2591 		/*
2592 		 * Logitech M560 mouse report
2593 		 *
2594 		 * data[0] = type (0x02)
2595 		 * data[1..2] = buttons
2596 		 * data[3..5] = xy
2597 		 * data[6] = wheel
2598 		 */
2599 
2600 		int v;
2601 
2602 		input_report_key(hidpp->input, BTN_LEFT,
2603 			!!(data[1] & M560_MOUSE_BTN_LEFT));
2604 		input_report_key(hidpp->input, BTN_RIGHT,
2605 			!!(data[1] & M560_MOUSE_BTN_RIGHT));
2606 
2607 		if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) {
2608 			input_report_rel(hidpp->input, REL_HWHEEL, -1);
2609 			input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2610 					 -120);
2611 		} else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) {
2612 			input_report_rel(hidpp->input, REL_HWHEEL, 1);
2613 			input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2614 					 120);
2615 		}
2616 
2617 		v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2618 		input_report_rel(hidpp->input, REL_X, v);
2619 
2620 		v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2621 		input_report_rel(hidpp->input, REL_Y, v);
2622 
2623 		v = hid_snto32(data[6], 8);
2624 		if (v != 0)
2625 			hidpp_scroll_counter_handle_scroll(hidpp->input,
2626 					&hidpp->vertical_wheel_counter, v);
2627 
2628 		input_sync(hidpp->input);
2629 	}
2630 
2631 	return 1;
2632 }
2633 
2634 static void m560_populate_input(struct hidpp_device *hidpp,
2635 				struct input_dev *input_dev)
2636 {
2637 	__set_bit(EV_KEY, input_dev->evbit);
2638 	__set_bit(BTN_MIDDLE, input_dev->keybit);
2639 	__set_bit(BTN_RIGHT, input_dev->keybit);
2640 	__set_bit(BTN_LEFT, input_dev->keybit);
2641 	__set_bit(BTN_BACK, input_dev->keybit);
2642 	__set_bit(BTN_FORWARD, input_dev->keybit);
2643 
2644 	__set_bit(EV_REL, input_dev->evbit);
2645 	__set_bit(REL_X, input_dev->relbit);
2646 	__set_bit(REL_Y, input_dev->relbit);
2647 	__set_bit(REL_WHEEL, input_dev->relbit);
2648 	__set_bit(REL_HWHEEL, input_dev->relbit);
2649 	__set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
2650 	__set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
2651 }
2652 
2653 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2654 		struct hid_field *field, struct hid_usage *usage,
2655 		unsigned long **bit, int *max)
2656 {
2657 	return -1;
2658 }
2659 
2660 /* ------------------------------------------------------------------------- */
2661 /* Logitech K400 devices                                                     */
2662 /* ------------------------------------------------------------------------- */
2663 
2664 /*
2665  * The Logitech K400 keyboard has an embedded touchpad which is seen
2666  * as a mouse from the OS point of view. There is a hardware shortcut to disable
2667  * tap-to-click but the setting is not remembered accross reset, annoying some
2668  * users.
2669  *
2670  * We can toggle this feature from the host by using the feature 0x6010:
2671  * Touchpad FW items
2672  */
2673 
2674 struct k400_private_data {
2675 	u8 feature_index;
2676 };
2677 
2678 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
2679 {
2680 	struct k400_private_data *k400 = hidpp->private_data;
2681 	struct hidpp_touchpad_fw_items items = {};
2682 	int ret;
2683 	u8 feature_type;
2684 
2685 	if (!k400->feature_index) {
2686 		ret = hidpp_root_get_feature(hidpp,
2687 			HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
2688 			&k400->feature_index, &feature_type);
2689 		if (ret)
2690 			/* means that the device is not powered up */
2691 			return ret;
2692 	}
2693 
2694 	ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
2695 	if (ret)
2696 		return ret;
2697 
2698 	return 0;
2699 }
2700 
2701 static int k400_allocate(struct hid_device *hdev)
2702 {
2703 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2704 	struct k400_private_data *k400;
2705 
2706 	k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
2707 			    GFP_KERNEL);
2708 	if (!k400)
2709 		return -ENOMEM;
2710 
2711 	hidpp->private_data = k400;
2712 
2713 	return 0;
2714 };
2715 
2716 static int k400_connect(struct hid_device *hdev, bool connected)
2717 {
2718 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2719 
2720 	if (!disable_tap_to_click)
2721 		return 0;
2722 
2723 	return k400_disable_tap_to_click(hidpp);
2724 }
2725 
2726 /* ------------------------------------------------------------------------- */
2727 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
2728 /* ------------------------------------------------------------------------- */
2729 
2730 #define HIDPP_PAGE_G920_FORCE_FEEDBACK			0x8123
2731 
2732 static int g920_get_config(struct hidpp_device *hidpp)
2733 {
2734 	u8 feature_type;
2735 	u8 feature_index;
2736 	int ret;
2737 
2738 	/* Find feature and store for later use */
2739 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
2740 		&feature_index, &feature_type);
2741 	if (ret)
2742 		return ret;
2743 
2744 	ret = hidpp_ff_init(hidpp, feature_index);
2745 	if (ret)
2746 		hid_warn(hidpp->hid_dev, "Unable to initialize force feedback support, errno %d\n",
2747 				ret);
2748 
2749 	return 0;
2750 }
2751 
2752 /* -------------------------------------------------------------------------- */
2753 /* HID++1.0 devices which use HID++ reports for their wheels                  */
2754 /* -------------------------------------------------------------------------- */
2755 static int hidpp10_wheel_connect(struct hidpp_device *hidpp)
2756 {
2757 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
2758 			HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT,
2759 			HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT);
2760 }
2761 
2762 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp,
2763 				   u8 *data, int size)
2764 {
2765 	s8 value, hvalue;
2766 
2767 	if (!hidpp->input)
2768 		return -EINVAL;
2769 
2770 	if (size < 7)
2771 		return 0;
2772 
2773 	if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER)
2774 		return 0;
2775 
2776 	value = data[3];
2777 	hvalue = data[4];
2778 
2779 	input_report_rel(hidpp->input, REL_WHEEL, value);
2780 	input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120);
2781 	input_report_rel(hidpp->input, REL_HWHEEL, hvalue);
2782 	input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120);
2783 	input_sync(hidpp->input);
2784 
2785 	return 1;
2786 }
2787 
2788 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp,
2789 					 struct input_dev *input_dev)
2790 {
2791 	__set_bit(EV_REL, input_dev->evbit);
2792 	__set_bit(REL_WHEEL, input_dev->relbit);
2793 	__set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
2794 	__set_bit(REL_HWHEEL, input_dev->relbit);
2795 	__set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
2796 }
2797 
2798 /* -------------------------------------------------------------------------- */
2799 /* HID++1.0 mice which use HID++ reports for extra mouse buttons              */
2800 /* -------------------------------------------------------------------------- */
2801 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp)
2802 {
2803 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
2804 				    HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT,
2805 				    HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT);
2806 }
2807 
2808 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp,
2809 				    u8 *data, int size)
2810 {
2811 	int i;
2812 
2813 	if (!hidpp->input)
2814 		return -EINVAL;
2815 
2816 	if (size < 7)
2817 		return 0;
2818 
2819 	if (data[0] != REPORT_ID_HIDPP_SHORT ||
2820 	    data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS)
2821 		return 0;
2822 
2823 	/*
2824 	 * Buttons are either delivered through the regular mouse report *or*
2825 	 * through the extra buttons report. At least for button 6 how it is
2826 	 * delivered differs per receiver firmware version. Even receivers with
2827 	 * the same usb-id show different behavior, so we handle both cases.
2828 	 */
2829 	for (i = 0; i < 8; i++)
2830 		input_report_key(hidpp->input, BTN_MOUSE + i,
2831 				 (data[3] & (1 << i)));
2832 
2833 	/* Some mice report events on button 9+, use BTN_MISC */
2834 	for (i = 0; i < 8; i++)
2835 		input_report_key(hidpp->input, BTN_MISC + i,
2836 				 (data[4] & (1 << i)));
2837 
2838 	input_sync(hidpp->input);
2839 	return 1;
2840 }
2841 
2842 static void hidpp10_extra_mouse_buttons_populate_input(
2843 			struct hidpp_device *hidpp, struct input_dev *input_dev)
2844 {
2845 	/* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */
2846 	__set_bit(BTN_0, input_dev->keybit);
2847 	__set_bit(BTN_1, input_dev->keybit);
2848 	__set_bit(BTN_2, input_dev->keybit);
2849 	__set_bit(BTN_3, input_dev->keybit);
2850 	__set_bit(BTN_4, input_dev->keybit);
2851 	__set_bit(BTN_5, input_dev->keybit);
2852 	__set_bit(BTN_6, input_dev->keybit);
2853 	__set_bit(BTN_7, input_dev->keybit);
2854 }
2855 
2856 /* -------------------------------------------------------------------------- */
2857 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */
2858 /* -------------------------------------------------------------------------- */
2859 
2860 /* Find the consumer-page input report desc and change Maximums to 0x107f */
2861 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp,
2862 					      u8 *_rdesc, unsigned int *rsize)
2863 {
2864 	/* Note 0 terminated so we can use strnstr to search for this. */
2865 	const char consumer_rdesc_start[] = {
2866 		0x05, 0x0C,	/* USAGE_PAGE (Consumer Devices)       */
2867 		0x09, 0x01,	/* USAGE (Consumer Control)            */
2868 		0xA1, 0x01,	/* COLLECTION (Application)            */
2869 		0x85, 0x03,	/* REPORT_ID = 3                       */
2870 		0x75, 0x10,	/* REPORT_SIZE (16)                    */
2871 		0x95, 0x02,	/* REPORT_COUNT (2)                    */
2872 		0x15, 0x01,	/* LOGICAL_MIN (1)                     */
2873 		0x26, 0x00	/* LOGICAL_MAX (...                    */
2874 	};
2875 	char *consumer_rdesc, *rdesc = (char *)_rdesc;
2876 	unsigned int size;
2877 
2878 	consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize);
2879 	size = *rsize - (consumer_rdesc - rdesc);
2880 	if (consumer_rdesc && size >= 25) {
2881 		consumer_rdesc[15] = 0x7f;
2882 		consumer_rdesc[16] = 0x10;
2883 		consumer_rdesc[20] = 0x7f;
2884 		consumer_rdesc[21] = 0x10;
2885 	}
2886 	return _rdesc;
2887 }
2888 
2889 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp)
2890 {
2891 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
2892 				    HIDPP_ENABLE_CONSUMER_REPORT,
2893 				    HIDPP_ENABLE_CONSUMER_REPORT);
2894 }
2895 
2896 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp,
2897 					   u8 *data, int size)
2898 {
2899 	u8 consumer_report[5];
2900 
2901 	if (size < 7)
2902 		return 0;
2903 
2904 	if (data[0] != REPORT_ID_HIDPP_SHORT ||
2905 	    data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS)
2906 		return 0;
2907 
2908 	/*
2909 	 * Build a normal consumer report (3) out of the data, this detour
2910 	 * is necessary to get some keyboards to report their 0x10xx usages.
2911 	 */
2912 	consumer_report[0] = 0x03;
2913 	memcpy(&consumer_report[1], &data[3], 4);
2914 	/* We are called from atomic context */
2915 	hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT,
2916 			     consumer_report, 5, 1);
2917 
2918 	return 1;
2919 }
2920 
2921 /* -------------------------------------------------------------------------- */
2922 /* High-resolution scroll wheels                                              */
2923 /* -------------------------------------------------------------------------- */
2924 
2925 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
2926 {
2927 	int ret;
2928 	u8 multiplier = 1;
2929 
2930 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
2931 		ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
2932 		if (ret == 0)
2933 			ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
2934 	} else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
2935 		ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
2936 							   &multiplier);
2937 	} else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ {
2938 		ret = hidpp10_enable_scrolling_acceleration(hidpp);
2939 		multiplier = 8;
2940 	}
2941 	if (ret)
2942 		return ret;
2943 
2944 	if (multiplier == 0)
2945 		multiplier = 1;
2946 
2947 	hidpp->vertical_wheel_counter.wheel_multiplier = multiplier;
2948 	hid_info(hidpp->hid_dev, "multiplier = %d\n", multiplier);
2949 	return 0;
2950 }
2951 
2952 /* -------------------------------------------------------------------------- */
2953 /* Generic HID++ devices                                                      */
2954 /* -------------------------------------------------------------------------- */
2955 
2956 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc,
2957 			      unsigned int *rsize)
2958 {
2959 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2960 
2961 	if (!hidpp)
2962 		return rdesc;
2963 
2964 	/* For 27 MHz keyboards the quirk gets set after hid_parse. */
2965 	if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE ||
2966 	    (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS))
2967 		rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize);
2968 
2969 	return rdesc;
2970 }
2971 
2972 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2973 		struct hid_field *field, struct hid_usage *usage,
2974 		unsigned long **bit, int *max)
2975 {
2976 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2977 
2978 	if (!hidpp)
2979 		return 0;
2980 
2981 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2982 		return wtp_input_mapping(hdev, hi, field, usage, bit, max);
2983 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
2984 			field->application != HID_GD_MOUSE)
2985 		return m560_input_mapping(hdev, hi, field, usage, bit, max);
2986 
2987 	return 0;
2988 }
2989 
2990 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
2991 		struct hid_field *field, struct hid_usage *usage,
2992 		unsigned long **bit, int *max)
2993 {
2994 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2995 
2996 	if (!hidpp)
2997 		return 0;
2998 
2999 	/* Ensure that Logitech G920 is not given a default fuzz/flat value */
3000 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3001 		if (usage->type == EV_ABS && (usage->code == ABS_X ||
3002 				usage->code == ABS_Y || usage->code == ABS_Z ||
3003 				usage->code == ABS_RZ)) {
3004 			field->application = HID_GD_MULTIAXIS;
3005 		}
3006 	}
3007 
3008 	return 0;
3009 }
3010 
3011 
3012 static void hidpp_populate_input(struct hidpp_device *hidpp,
3013 				 struct input_dev *input)
3014 {
3015 	hidpp->input = input;
3016 
3017 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3018 		wtp_populate_input(hidpp, input);
3019 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3020 		m560_populate_input(hidpp, input);
3021 
3022 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS)
3023 		hidpp10_wheel_populate_input(hidpp, input);
3024 
3025 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS)
3026 		hidpp10_extra_mouse_buttons_populate_input(hidpp, input);
3027 }
3028 
3029 static int hidpp_input_configured(struct hid_device *hdev,
3030 				struct hid_input *hidinput)
3031 {
3032 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3033 	struct input_dev *input = hidinput->input;
3034 
3035 	if (!hidpp)
3036 		return 0;
3037 
3038 	hidpp_populate_input(hidpp, input);
3039 
3040 	return 0;
3041 }
3042 
3043 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
3044 		int size)
3045 {
3046 	struct hidpp_report *question = hidpp->send_receive_buf;
3047 	struct hidpp_report *answer = hidpp->send_receive_buf;
3048 	struct hidpp_report *report = (struct hidpp_report *)data;
3049 	int ret;
3050 
3051 	/*
3052 	 * If the mutex is locked then we have a pending answer from a
3053 	 * previously sent command.
3054 	 */
3055 	if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
3056 		/*
3057 		 * Check for a correct hidpp20 answer or the corresponding
3058 		 * error
3059 		 */
3060 		if (hidpp_match_answer(question, report) ||
3061 				hidpp_match_error(question, report)) {
3062 			*answer = *report;
3063 			hidpp->answer_available = true;
3064 			wake_up(&hidpp->wait);
3065 			/*
3066 			 * This was an answer to a command that this driver sent
3067 			 * We return 1 to hid-core to avoid forwarding the
3068 			 * command upstream as it has been treated by the driver
3069 			 */
3070 
3071 			return 1;
3072 		}
3073 	}
3074 
3075 	if (unlikely(hidpp_report_is_connect_event(report))) {
3076 		atomic_set(&hidpp->connected,
3077 				!(report->rap.params[0] & (1 << 6)));
3078 		if (schedule_work(&hidpp->work) == 0)
3079 			dbg_hid("%s: connect event already queued\n", __func__);
3080 		return 1;
3081 	}
3082 
3083 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3084 		ret = hidpp20_battery_event(hidpp, data, size);
3085 		if (ret != 0)
3086 			return ret;
3087 		ret = hidpp_solar_battery_event(hidpp, data, size);
3088 		if (ret != 0)
3089 			return ret;
3090 	}
3091 
3092 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3093 		ret = hidpp10_battery_event(hidpp, data, size);
3094 		if (ret != 0)
3095 			return ret;
3096 	}
3097 
3098 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3099 		ret = hidpp10_wheel_raw_event(hidpp, data, size);
3100 		if (ret != 0)
3101 			return ret;
3102 	}
3103 
3104 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3105 		ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size);
3106 		if (ret != 0)
3107 			return ret;
3108 	}
3109 
3110 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3111 		ret = hidpp10_consumer_keys_raw_event(hidpp, data, size);
3112 		if (ret != 0)
3113 			return ret;
3114 	}
3115 
3116 	return 0;
3117 }
3118 
3119 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
3120 		u8 *data, int size)
3121 {
3122 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3123 	int ret = 0;
3124 
3125 	if (!hidpp)
3126 		return 0;
3127 
3128 	/* Generic HID++ processing. */
3129 	switch (data[0]) {
3130 	case REPORT_ID_HIDPP_VERY_LONG:
3131 		if (size != hidpp->very_long_report_length) {
3132 			hid_err(hdev, "received hid++ report of bad size (%d)",
3133 				size);
3134 			return 1;
3135 		}
3136 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3137 		break;
3138 	case REPORT_ID_HIDPP_LONG:
3139 		if (size != HIDPP_REPORT_LONG_LENGTH) {
3140 			hid_err(hdev, "received hid++ report of bad size (%d)",
3141 				size);
3142 			return 1;
3143 		}
3144 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3145 		break;
3146 	case REPORT_ID_HIDPP_SHORT:
3147 		if (size != HIDPP_REPORT_SHORT_LENGTH) {
3148 			hid_err(hdev, "received hid++ report of bad size (%d)",
3149 				size);
3150 			return 1;
3151 		}
3152 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3153 		break;
3154 	}
3155 
3156 	/* If no report is available for further processing, skip calling
3157 	 * raw_event of subclasses. */
3158 	if (ret != 0)
3159 		return ret;
3160 
3161 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3162 		return wtp_raw_event(hdev, data, size);
3163 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3164 		return m560_raw_event(hdev, data, size);
3165 
3166 	return 0;
3167 }
3168 
3169 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
3170 	struct hid_usage *usage, __s32 value)
3171 {
3172 	/* This function will only be called for scroll events, due to the
3173 	 * restriction imposed in hidpp_usages.
3174 	 */
3175 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3176 	struct hidpp_scroll_counter *counter;
3177 
3178 	if (!hidpp)
3179 		return 0;
3180 
3181 	counter = &hidpp->vertical_wheel_counter;
3182 	/* A scroll event may occur before the multiplier has been retrieved or
3183 	 * the input device set, or high-res scroll enabling may fail. In such
3184 	 * cases we must return early (falling back to default behaviour) to
3185 	 * avoid a crash in hidpp_scroll_counter_handle_scroll.
3186 	 */
3187 	if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
3188 	    || hidpp->input == NULL || counter->wheel_multiplier == 0)
3189 		return 0;
3190 
3191 	hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value);
3192 	return 1;
3193 }
3194 
3195 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
3196 {
3197 	static atomic_t battery_no = ATOMIC_INIT(0);
3198 	struct power_supply_config cfg = { .drv_data = hidpp };
3199 	struct power_supply_desc *desc = &hidpp->battery.desc;
3200 	enum power_supply_property *battery_props;
3201 	struct hidpp_battery *battery;
3202 	unsigned int num_battery_props;
3203 	unsigned long n;
3204 	int ret;
3205 
3206 	if (hidpp->battery.ps)
3207 		return 0;
3208 
3209 	hidpp->battery.feature_index = 0xff;
3210 	hidpp->battery.solar_feature_index = 0xff;
3211 
3212 	if (hidpp->protocol_major >= 2) {
3213 		if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
3214 			ret = hidpp_solar_request_battery_event(hidpp);
3215 		else
3216 			ret = hidpp20_query_battery_info(hidpp);
3217 
3218 		if (ret)
3219 			return ret;
3220 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
3221 	} else {
3222 		ret = hidpp10_query_battery_status(hidpp);
3223 		if (ret) {
3224 			ret = hidpp10_query_battery_mileage(hidpp);
3225 			if (ret)
3226 				return -ENOENT;
3227 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
3228 		} else {
3229 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
3230 		}
3231 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
3232 	}
3233 
3234 	battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
3235 				     hidpp_battery_props,
3236 				     sizeof(hidpp_battery_props),
3237 				     GFP_KERNEL);
3238 	if (!battery_props)
3239 		return -ENOMEM;
3240 
3241 	num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 2;
3242 
3243 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3244 		battery_props[num_battery_props++] =
3245 				POWER_SUPPLY_PROP_CAPACITY;
3246 
3247 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
3248 		battery_props[num_battery_props++] =
3249 				POWER_SUPPLY_PROP_CAPACITY_LEVEL;
3250 
3251 	battery = &hidpp->battery;
3252 
3253 	n = atomic_inc_return(&battery_no) - 1;
3254 	desc->properties = battery_props;
3255 	desc->num_properties = num_battery_props;
3256 	desc->get_property = hidpp_battery_get_property;
3257 	sprintf(battery->name, "hidpp_battery_%ld", n);
3258 	desc->name = battery->name;
3259 	desc->type = POWER_SUPPLY_TYPE_BATTERY;
3260 	desc->use_for_apm = 0;
3261 
3262 	battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
3263 						 &battery->desc,
3264 						 &cfg);
3265 	if (IS_ERR(battery->ps))
3266 		return PTR_ERR(battery->ps);
3267 
3268 	power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
3269 
3270 	return ret;
3271 }
3272 
3273 static void hidpp_overwrite_name(struct hid_device *hdev)
3274 {
3275 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3276 	char *name;
3277 
3278 	if (hidpp->protocol_major < 2)
3279 		return;
3280 
3281 	name = hidpp_get_device_name(hidpp);
3282 
3283 	if (!name) {
3284 		hid_err(hdev, "unable to retrieve the name of the device");
3285 	} else {
3286 		dbg_hid("HID++: Got name: %s\n", name);
3287 		snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3288 	}
3289 
3290 	kfree(name);
3291 }
3292 
3293 static int hidpp_input_open(struct input_dev *dev)
3294 {
3295 	struct hid_device *hid = input_get_drvdata(dev);
3296 
3297 	return hid_hw_open(hid);
3298 }
3299 
3300 static void hidpp_input_close(struct input_dev *dev)
3301 {
3302 	struct hid_device *hid = input_get_drvdata(dev);
3303 
3304 	hid_hw_close(hid);
3305 }
3306 
3307 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3308 {
3309 	struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3310 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3311 
3312 	if (!input_dev)
3313 		return NULL;
3314 
3315 	input_set_drvdata(input_dev, hdev);
3316 	input_dev->open = hidpp_input_open;
3317 	input_dev->close = hidpp_input_close;
3318 
3319 	input_dev->name = hidpp->name;
3320 	input_dev->phys = hdev->phys;
3321 	input_dev->uniq = hdev->uniq;
3322 	input_dev->id.bustype = hdev->bus;
3323 	input_dev->id.vendor  = hdev->vendor;
3324 	input_dev->id.product = hdev->product;
3325 	input_dev->id.version = hdev->version;
3326 	input_dev->dev.parent = &hdev->dev;
3327 
3328 	return input_dev;
3329 }
3330 
3331 static void hidpp_connect_event(struct hidpp_device *hidpp)
3332 {
3333 	struct hid_device *hdev = hidpp->hid_dev;
3334 	int ret = 0;
3335 	bool connected = atomic_read(&hidpp->connected);
3336 	struct input_dev *input;
3337 	char *name, *devm_name;
3338 
3339 	if (!connected) {
3340 		if (hidpp->battery.ps) {
3341 			hidpp->battery.online = false;
3342 			hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3343 			hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3344 			power_supply_changed(hidpp->battery.ps);
3345 		}
3346 		return;
3347 	}
3348 
3349 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3350 		ret = wtp_connect(hdev, connected);
3351 		if (ret)
3352 			return;
3353 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3354 		ret = m560_send_config_command(hdev, connected);
3355 		if (ret)
3356 			return;
3357 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3358 		ret = k400_connect(hdev, connected);
3359 		if (ret)
3360 			return;
3361 	}
3362 
3363 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3364 		ret = hidpp10_wheel_connect(hidpp);
3365 		if (ret)
3366 			return;
3367 	}
3368 
3369 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3370 		ret = hidpp10_extra_mouse_buttons_connect(hidpp);
3371 		if (ret)
3372 			return;
3373 	}
3374 
3375 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3376 		ret = hidpp10_consumer_keys_connect(hidpp);
3377 		if (ret)
3378 			return;
3379 	}
3380 
3381 	/* the device is already connected, we can ask for its name and
3382 	 * protocol */
3383 	if (!hidpp->protocol_major) {
3384 		ret = hidpp_root_get_protocol_version(hidpp);
3385 		if (ret) {
3386 			hid_err(hdev, "Can not get the protocol version.\n");
3387 			return;
3388 		}
3389 	}
3390 
3391 	if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3392 		name = hidpp_get_device_name(hidpp);
3393 		if (name) {
3394 			devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL,
3395 						   "%s", name);
3396 			kfree(name);
3397 			if (!devm_name)
3398 				return;
3399 
3400 			hidpp->name = devm_name;
3401 		}
3402 	}
3403 
3404 	hidpp_initialize_battery(hidpp);
3405 
3406 	/* forward current battery state */
3407 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3408 		hidpp10_enable_battery_reporting(hidpp);
3409 		if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3410 			hidpp10_query_battery_mileage(hidpp);
3411 		else
3412 			hidpp10_query_battery_status(hidpp);
3413 	} else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3414 		hidpp20_query_battery_info(hidpp);
3415 	}
3416 	if (hidpp->battery.ps)
3417 		power_supply_changed(hidpp->battery.ps);
3418 
3419 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3420 		hi_res_scroll_enable(hidpp);
3421 
3422 	if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3423 		/* if the input nodes are already created, we can stop now */
3424 		return;
3425 
3426 	input = hidpp_allocate_input(hdev);
3427 	if (!input) {
3428 		hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3429 		return;
3430 	}
3431 
3432 	hidpp_populate_input(hidpp, input);
3433 
3434 	ret = input_register_device(input);
3435 	if (ret)
3436 		input_free_device(input);
3437 
3438 	hidpp->delayed_input = input;
3439 }
3440 
3441 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3442 
3443 static struct attribute *sysfs_attrs[] = {
3444 	&dev_attr_builtin_power_supply.attr,
3445 	NULL
3446 };
3447 
3448 static const struct attribute_group ps_attribute_group = {
3449 	.attrs = sysfs_attrs
3450 };
3451 
3452 static int hidpp_get_report_length(struct hid_device *hdev, int id)
3453 {
3454 	struct hid_report_enum *re;
3455 	struct hid_report *report;
3456 
3457 	re = &(hdev->report_enum[HID_OUTPUT_REPORT]);
3458 	report = re->report_id_hash[id];
3459 	if (!report)
3460 		return 0;
3461 
3462 	return report->field[0]->report_count + 1;
3463 }
3464 
3465 static bool hidpp_validate_report(struct hid_device *hdev, int id,
3466 				  int expected_length, bool optional)
3467 {
3468 	int report_length;
3469 
3470 	if (id >= HID_MAX_IDS || id < 0) {
3471 		hid_err(hdev, "invalid HID report id %u\n", id);
3472 		return false;
3473 	}
3474 
3475 	report_length = hidpp_get_report_length(hdev, id);
3476 	if (!report_length)
3477 		return optional;
3478 
3479 	if (report_length < expected_length) {
3480 		hid_warn(hdev, "not enough values in hidpp report %d\n", id);
3481 		return false;
3482 	}
3483 
3484 	return true;
3485 }
3486 
3487 static bool hidpp_validate_device(struct hid_device *hdev)
3488 {
3489 	return hidpp_validate_report(hdev, REPORT_ID_HIDPP_SHORT,
3490 				     HIDPP_REPORT_SHORT_LENGTH, false) &&
3491 	       hidpp_validate_report(hdev, REPORT_ID_HIDPP_LONG,
3492 				     HIDPP_REPORT_LONG_LENGTH, true);
3493 }
3494 
3495 static bool hidpp_application_equals(struct hid_device *hdev,
3496 				     unsigned int application)
3497 {
3498 	struct list_head *report_list;
3499 	struct hid_report *report;
3500 
3501 	report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list;
3502 	report = list_first_entry_or_null(report_list, struct hid_report, list);
3503 	return report && report->application == application;
3504 }
3505 
3506 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
3507 {
3508 	struct hidpp_device *hidpp;
3509 	int ret;
3510 	bool connected;
3511 	unsigned int connect_mask = HID_CONNECT_DEFAULT;
3512 
3513 	/* report_fixup needs drvdata to be set before we call hid_parse */
3514 	hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL);
3515 	if (!hidpp)
3516 		return -ENOMEM;
3517 
3518 	hidpp->hid_dev = hdev;
3519 	hidpp->name = hdev->name;
3520 	hidpp->quirks = id->driver_data;
3521 	hid_set_drvdata(hdev, hidpp);
3522 
3523 	ret = hid_parse(hdev);
3524 	if (ret) {
3525 		hid_err(hdev, "%s:parse failed\n", __func__);
3526 		return ret;
3527 	}
3528 
3529 	/*
3530 	 * Make sure the device is HID++ capable, otherwise treat as generic HID
3531 	 */
3532 	if (!hidpp_validate_device(hdev)) {
3533 		hid_set_drvdata(hdev, NULL);
3534 		devm_kfree(&hdev->dev, hidpp);
3535 		return hid_hw_start(hdev, HID_CONNECT_DEFAULT);
3536 	}
3537 
3538 	hidpp->very_long_report_length =
3539 		hidpp_get_report_length(hdev, REPORT_ID_HIDPP_VERY_LONG);
3540 	if (hidpp->very_long_report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH)
3541 		hidpp->very_long_report_length = HIDPP_REPORT_VERY_LONG_MAX_LENGTH;
3542 
3543 	if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
3544 		hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
3545 
3546 	if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3547 	    hidpp_application_equals(hdev, HID_GD_MOUSE))
3548 		hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS |
3549 				 HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS;
3550 
3551 	if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3552 	    hidpp_application_equals(hdev, HID_GD_KEYBOARD))
3553 		hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS;
3554 
3555 	if (disable_raw_mode) {
3556 		hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
3557 		hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
3558 	}
3559 
3560 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3561 		ret = wtp_allocate(hdev, id);
3562 		if (ret)
3563 			return ret;
3564 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3565 		ret = k400_allocate(hdev);
3566 		if (ret)
3567 			return ret;
3568 	}
3569 
3570 	INIT_WORK(&hidpp->work, delayed_work_cb);
3571 	mutex_init(&hidpp->send_mutex);
3572 	init_waitqueue_head(&hidpp->wait);
3573 
3574 	/* indicates we are handling the battery properties in the kernel */
3575 	ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
3576 	if (ret)
3577 		hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
3578 			 hdev->name);
3579 
3580 	/*
3581 	 * Plain USB connections need to actually call start and open
3582 	 * on the transport driver to allow incoming data.
3583 	 */
3584 	ret = hid_hw_start(hdev, 0);
3585 	if (ret) {
3586 		hid_err(hdev, "hw start failed\n");
3587 		goto hid_hw_start_fail;
3588 	}
3589 
3590 	ret = hid_hw_open(hdev);
3591 	if (ret < 0) {
3592 		dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
3593 			__func__, ret);
3594 		hid_hw_stop(hdev);
3595 		goto hid_hw_open_fail;
3596 	}
3597 
3598 	/* Allow incoming packets */
3599 	hid_device_io_start(hdev);
3600 
3601 	if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
3602 		hidpp_unifying_init(hidpp);
3603 
3604 	connected = hidpp_root_get_protocol_version(hidpp) == 0;
3605 	atomic_set(&hidpp->connected, connected);
3606 	if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
3607 		if (!connected) {
3608 			ret = -ENODEV;
3609 			hid_err(hdev, "Device not connected");
3610 			goto hid_hw_init_fail;
3611 		}
3612 
3613 		hidpp_overwrite_name(hdev);
3614 	}
3615 
3616 	if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
3617 		ret = wtp_get_config(hidpp);
3618 		if (ret)
3619 			goto hid_hw_init_fail;
3620 	} else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3621 		ret = g920_get_config(hidpp);
3622 		if (ret)
3623 			goto hid_hw_init_fail;
3624 	}
3625 
3626 	hidpp_connect_event(hidpp);
3627 
3628 	/* Reset the HID node state */
3629 	hid_device_io_stop(hdev);
3630 	hid_hw_close(hdev);
3631 	hid_hw_stop(hdev);
3632 
3633 	if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
3634 		connect_mask &= ~HID_CONNECT_HIDINPUT;
3635 
3636 	/* Now export the actual inputs and hidraw nodes to the world */
3637 	ret = hid_hw_start(hdev, connect_mask);
3638 	if (ret) {
3639 		hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
3640 		goto hid_hw_start_fail;
3641 	}
3642 
3643 	return ret;
3644 
3645 hid_hw_init_fail:
3646 	hid_hw_close(hdev);
3647 hid_hw_open_fail:
3648 	hid_hw_stop(hdev);
3649 hid_hw_start_fail:
3650 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3651 	cancel_work_sync(&hidpp->work);
3652 	mutex_destroy(&hidpp->send_mutex);
3653 	return ret;
3654 }
3655 
3656 static void hidpp_remove(struct hid_device *hdev)
3657 {
3658 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3659 
3660 	if (!hidpp)
3661 		return hid_hw_stop(hdev);
3662 
3663 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3664 
3665 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)
3666 		hidpp_ff_deinit(hdev);
3667 
3668 	hid_hw_stop(hdev);
3669 	cancel_work_sync(&hidpp->work);
3670 	mutex_destroy(&hidpp->send_mutex);
3671 }
3672 
3673 #define LDJ_DEVICE(product) \
3674 	HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
3675 		   USB_VENDOR_ID_LOGITECH, (product))
3676 
3677 #define L27MHZ_DEVICE(product) \
3678 	HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \
3679 		   USB_VENDOR_ID_LOGITECH, (product))
3680 
3681 static const struct hid_device_id hidpp_devices[] = {
3682 	{ /* wireless touchpad */
3683 	  LDJ_DEVICE(0x4011),
3684 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
3685 			 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
3686 	{ /* wireless touchpad T650 */
3687 	  LDJ_DEVICE(0x4101),
3688 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
3689 	{ /* wireless touchpad T651 */
3690 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
3691 		USB_DEVICE_ID_LOGITECH_T651),
3692 	  .driver_data = HIDPP_QUIRK_CLASS_WTP },
3693 	{ /* Mouse Logitech Anywhere MX */
3694 	  LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3695 	{ /* Mouse Logitech Cube */
3696 	  LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3697 	{ /* Mouse Logitech M335 */
3698 	  LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3699 	{ /* Mouse Logitech M515 */
3700 	  LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3701 	{ /* Mouse logitech M560 */
3702 	  LDJ_DEVICE(0x402d),
3703 	  .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
3704 		| HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3705 	{ /* Mouse Logitech M705 (firmware RQM17) */
3706 	  LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3707 	{ /* Mouse Logitech M705 (firmware RQM67) */
3708 	  LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3709 	{ /* Mouse Logitech M720 */
3710 	  LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3711 	{ /* Mouse Logitech MX Anywhere 2 */
3712 	  LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3713 	{ LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3714 	{ LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3715 	{ LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3716 	{ /* Mouse Logitech MX Anywhere 2S */
3717 	  LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3718 	{ /* Mouse Logitech MX Master */
3719 	  LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3720 	{ LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3721 	{ LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3722 	{ /* Mouse Logitech MX Master 2S */
3723 	  LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3724 	{ /* Mouse Logitech Performance MX */
3725 	  LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3726 	{ /* Keyboard logitech K400 */
3727 	  LDJ_DEVICE(0x4024),
3728 	  .driver_data = HIDPP_QUIRK_CLASS_K400 },
3729 	{ /* Solar Keyboard Logitech K750 */
3730 	  LDJ_DEVICE(0x4002),
3731 	  .driver_data = HIDPP_QUIRK_CLASS_K750 },
3732 	{ /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */
3733 	  LDJ_DEVICE(0xb305),
3734 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
3735 
3736 	{ LDJ_DEVICE(HID_ANY_ID) },
3737 
3738 	{ /* Keyboard LX501 (Y-RR53) */
3739 	  L27MHZ_DEVICE(0x0049),
3740 	  .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
3741 	{ /* Keyboard MX3000 (Y-RAM74) */
3742 	  L27MHZ_DEVICE(0x0057),
3743 	  .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
3744 	{ /* Keyboard MX3200 (Y-RAV80) */
3745 	  L27MHZ_DEVICE(0x005c),
3746 	  .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
3747 
3748 	{ L27MHZ_DEVICE(HID_ANY_ID) },
3749 
3750 	{ /* Logitech G403 Gaming Mouse over USB */
3751 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) },
3752 	{ /* Logitech G700 Gaming Mouse over USB */
3753 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC06B) },
3754 	{ /* Logitech G900 Gaming Mouse over USB */
3755 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) },
3756 	{ /* Logitech G920 Wheel over USB */
3757 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
3758 		.driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
3759 
3760 	{ /* MX5000 keyboard over Bluetooth */
3761 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305),
3762 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
3763 	{}
3764 };
3765 
3766 MODULE_DEVICE_TABLE(hid, hidpp_devices);
3767 
3768 static const struct hid_usage_id hidpp_usages[] = {
3769 	{ HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES },
3770 	{ HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
3771 };
3772 
3773 static struct hid_driver hidpp_driver = {
3774 	.name = "logitech-hidpp-device",
3775 	.id_table = hidpp_devices,
3776 	.report_fixup = hidpp_report_fixup,
3777 	.probe = hidpp_probe,
3778 	.remove = hidpp_remove,
3779 	.raw_event = hidpp_raw_event,
3780 	.usage_table = hidpp_usages,
3781 	.event = hidpp_event,
3782 	.input_configured = hidpp_input_configured,
3783 	.input_mapping = hidpp_input_mapping,
3784 	.input_mapped = hidpp_input_mapped,
3785 };
3786 
3787 module_hid_driver(hidpp_driver);
3788