1 /*
2  *  HIDPP protocol for Logitech Unifying receivers
3  *
4  *  Copyright (c) 2011 Logitech (c)
5  *  Copyright (c) 2012-2013 Google (c)
6  *  Copyright (c) 2013-2014 Red Hat Inc.
7  */
8 
9 /*
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the Free
12  * Software Foundation; version 2 of the License.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/device.h>
18 #include <linux/input.h>
19 #include <linux/usb.h>
20 #include <linux/hid.h>
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/sched.h>
24 #include <linux/kfifo.h>
25 #include <linux/input/mt.h>
26 #include <linux/workqueue.h>
27 #include <linux/atomic.h>
28 #include <linux/fixp-arith.h>
29 #include <asm/unaligned.h>
30 #include "usbhid/usbhid.h"
31 #include "hid-ids.h"
32 
33 MODULE_LICENSE("GPL");
34 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
35 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
36 
37 static bool disable_raw_mode;
38 module_param(disable_raw_mode, bool, 0644);
39 MODULE_PARM_DESC(disable_raw_mode,
40 	"Disable Raw mode reporting for touchpads and keep firmware gestures.");
41 
42 static bool disable_tap_to_click;
43 module_param(disable_tap_to_click, bool, 0644);
44 MODULE_PARM_DESC(disable_tap_to_click,
45 	"Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
46 
47 #define REPORT_ID_HIDPP_SHORT			0x10
48 #define REPORT_ID_HIDPP_LONG			0x11
49 #define REPORT_ID_HIDPP_VERY_LONG		0x12
50 
51 #define HIDPP_REPORT_SHORT_LENGTH		7
52 #define HIDPP_REPORT_LONG_LENGTH		20
53 #define HIDPP_REPORT_VERY_LONG_LENGTH		64
54 
55 #define HIDPP_QUIRK_CLASS_WTP			BIT(0)
56 #define HIDPP_QUIRK_CLASS_M560			BIT(1)
57 #define HIDPP_QUIRK_CLASS_K400			BIT(2)
58 #define HIDPP_QUIRK_CLASS_G920			BIT(3)
59 #define HIDPP_QUIRK_CLASS_K750			BIT(4)
60 
61 /* bits 2..20 are reserved for classes */
62 /* #define HIDPP_QUIRK_CONNECT_EVENTS		BIT(21) disabled */
63 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS	BIT(22)
64 #define HIDPP_QUIRK_NO_HIDINPUT			BIT(23)
65 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS	BIT(24)
66 #define HIDPP_QUIRK_UNIFYING			BIT(25)
67 
68 #define HIDPP_QUIRK_DELAYED_INIT		HIDPP_QUIRK_NO_HIDINPUT
69 
70 #define HIDPP_CAPABILITY_HIDPP10_BATTERY	BIT(0)
71 #define HIDPP_CAPABILITY_HIDPP20_BATTERY	BIT(1)
72 #define HIDPP_CAPABILITY_BATTERY_MILEAGE	BIT(2)
73 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS	BIT(3)
74 
75 /*
76  * There are two hidpp protocols in use, the first version hidpp10 is known
77  * as register access protocol or RAP, the second version hidpp20 is known as
78  * feature access protocol or FAP
79  *
80  * Most older devices (including the Unifying usb receiver) use the RAP protocol
81  * where as most newer devices use the FAP protocol. Both protocols are
82  * compatible with the underlying transport, which could be usb, Unifiying, or
83  * bluetooth. The message lengths are defined by the hid vendor specific report
84  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
85  * the HIDPP_LONG report type (total message length 20 bytes)
86  *
87  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
88  * messages. The Unifying receiver itself responds to RAP messages (device index
89  * is 0xFF for the receiver), and all messages (short or long) with a device
90  * index between 1 and 6 are passed untouched to the corresponding paired
91  * Unifying device.
92  *
93  * The paired device can be RAP or FAP, it will receive the message untouched
94  * from the Unifiying receiver.
95  */
96 
97 struct fap {
98 	u8 feature_index;
99 	u8 funcindex_clientid;
100 	u8 params[HIDPP_REPORT_VERY_LONG_LENGTH - 4U];
101 };
102 
103 struct rap {
104 	u8 sub_id;
105 	u8 reg_address;
106 	u8 params[HIDPP_REPORT_VERY_LONG_LENGTH - 4U];
107 };
108 
109 struct hidpp_report {
110 	u8 report_id;
111 	u8 device_index;
112 	union {
113 		struct fap fap;
114 		struct rap rap;
115 		u8 rawbytes[sizeof(struct fap)];
116 	};
117 } __packed;
118 
119 struct hidpp_battery {
120 	u8 feature_index;
121 	u8 solar_feature_index;
122 	struct power_supply_desc desc;
123 	struct power_supply *ps;
124 	char name[64];
125 	int status;
126 	int capacity;
127 	int level;
128 	bool online;
129 };
130 
131 struct hidpp_device {
132 	struct hid_device *hid_dev;
133 	struct mutex send_mutex;
134 	void *send_receive_buf;
135 	char *name;		/* will never be NULL and should not be freed */
136 	wait_queue_head_t wait;
137 	bool answer_available;
138 	u8 protocol_major;
139 	u8 protocol_minor;
140 
141 	void *private_data;
142 
143 	struct work_struct work;
144 	struct kfifo delayed_work_fifo;
145 	atomic_t connected;
146 	struct input_dev *delayed_input;
147 
148 	unsigned long quirks;
149 	unsigned long capabilities;
150 
151 	struct hidpp_battery battery;
152 };
153 
154 /* HID++ 1.0 error codes */
155 #define HIDPP_ERROR				0x8f
156 #define HIDPP_ERROR_SUCCESS			0x00
157 #define HIDPP_ERROR_INVALID_SUBID		0x01
158 #define HIDPP_ERROR_INVALID_ADRESS		0x02
159 #define HIDPP_ERROR_INVALID_VALUE		0x03
160 #define HIDPP_ERROR_CONNECT_FAIL		0x04
161 #define HIDPP_ERROR_TOO_MANY_DEVICES		0x05
162 #define HIDPP_ERROR_ALREADY_EXISTS		0x06
163 #define HIDPP_ERROR_BUSY			0x07
164 #define HIDPP_ERROR_UNKNOWN_DEVICE		0x08
165 #define HIDPP_ERROR_RESOURCE_ERROR		0x09
166 #define HIDPP_ERROR_REQUEST_UNAVAILABLE		0x0a
167 #define HIDPP_ERROR_INVALID_PARAM_VALUE		0x0b
168 #define HIDPP_ERROR_WRONG_PIN_CODE		0x0c
169 /* HID++ 2.0 error codes */
170 #define HIDPP20_ERROR				0xff
171 
172 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
173 
174 static int __hidpp_send_report(struct hid_device *hdev,
175 				struct hidpp_report *hidpp_report)
176 {
177 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
178 	int fields_count, ret;
179 
180 	hidpp = hid_get_drvdata(hdev);
181 
182 	switch (hidpp_report->report_id) {
183 	case REPORT_ID_HIDPP_SHORT:
184 		fields_count = HIDPP_REPORT_SHORT_LENGTH;
185 		break;
186 	case REPORT_ID_HIDPP_LONG:
187 		fields_count = HIDPP_REPORT_LONG_LENGTH;
188 		break;
189 	case REPORT_ID_HIDPP_VERY_LONG:
190 		fields_count = HIDPP_REPORT_VERY_LONG_LENGTH;
191 		break;
192 	default:
193 		return -ENODEV;
194 	}
195 
196 	/*
197 	 * set the device_index as the receiver, it will be overwritten by
198 	 * hid_hw_request if needed
199 	 */
200 	hidpp_report->device_index = 0xff;
201 
202 	if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
203 		ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
204 	} else {
205 		ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
206 			(u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
207 			HID_REQ_SET_REPORT);
208 	}
209 
210 	return ret == fields_count ? 0 : -1;
211 }
212 
213 /**
214  * hidpp_send_message_sync() returns 0 in case of success, and something else
215  * in case of a failure.
216  * - If ' something else' is positive, that means that an error has been raised
217  *   by the protocol itself.
218  * - If ' something else' is negative, that means that we had a classic error
219  *   (-ENOMEM, -EPIPE, etc...)
220  */
221 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
222 	struct hidpp_report *message,
223 	struct hidpp_report *response)
224 {
225 	int ret;
226 
227 	mutex_lock(&hidpp->send_mutex);
228 
229 	hidpp->send_receive_buf = response;
230 	hidpp->answer_available = false;
231 
232 	/*
233 	 * So that we can later validate the answer when it arrives
234 	 * in hidpp_raw_event
235 	 */
236 	*response = *message;
237 
238 	ret = __hidpp_send_report(hidpp->hid_dev, message);
239 
240 	if (ret) {
241 		dbg_hid("__hidpp_send_report returned err: %d\n", ret);
242 		memset(response, 0, sizeof(struct hidpp_report));
243 		goto exit;
244 	}
245 
246 	if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
247 				5*HZ)) {
248 		dbg_hid("%s:timeout waiting for response\n", __func__);
249 		memset(response, 0, sizeof(struct hidpp_report));
250 		ret = -ETIMEDOUT;
251 	}
252 
253 	if (response->report_id == REPORT_ID_HIDPP_SHORT &&
254 	    response->rap.sub_id == HIDPP_ERROR) {
255 		ret = response->rap.params[1];
256 		dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
257 		goto exit;
258 	}
259 
260 	if ((response->report_id == REPORT_ID_HIDPP_LONG ||
261 			response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
262 			response->fap.feature_index == HIDPP20_ERROR) {
263 		ret = response->fap.params[1];
264 		dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
265 		goto exit;
266 	}
267 
268 exit:
269 	mutex_unlock(&hidpp->send_mutex);
270 	return ret;
271 
272 }
273 
274 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
275 	u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
276 	struct hidpp_report *response)
277 {
278 	struct hidpp_report *message;
279 	int ret;
280 
281 	if (param_count > sizeof(message->fap.params))
282 		return -EINVAL;
283 
284 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
285 	if (!message)
286 		return -ENOMEM;
287 
288 	if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
289 		message->report_id = REPORT_ID_HIDPP_VERY_LONG;
290 	else
291 		message->report_id = REPORT_ID_HIDPP_LONG;
292 	message->fap.feature_index = feat_index;
293 	message->fap.funcindex_clientid = funcindex_clientid;
294 	memcpy(&message->fap.params, params, param_count);
295 
296 	ret = hidpp_send_message_sync(hidpp, message, response);
297 	kfree(message);
298 	return ret;
299 }
300 
301 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
302 	u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
303 	struct hidpp_report *response)
304 {
305 	struct hidpp_report *message;
306 	int ret, max_count;
307 
308 	switch (report_id) {
309 	case REPORT_ID_HIDPP_SHORT:
310 		max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
311 		break;
312 	case REPORT_ID_HIDPP_LONG:
313 		max_count = HIDPP_REPORT_LONG_LENGTH - 4;
314 		break;
315 	case REPORT_ID_HIDPP_VERY_LONG:
316 		max_count = HIDPP_REPORT_VERY_LONG_LENGTH - 4;
317 		break;
318 	default:
319 		return -EINVAL;
320 	}
321 
322 	if (param_count > max_count)
323 		return -EINVAL;
324 
325 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
326 	if (!message)
327 		return -ENOMEM;
328 	message->report_id = report_id;
329 	message->rap.sub_id = sub_id;
330 	message->rap.reg_address = reg_address;
331 	memcpy(&message->rap.params, params, param_count);
332 
333 	ret = hidpp_send_message_sync(hidpp_dev, message, response);
334 	kfree(message);
335 	return ret;
336 }
337 
338 static void delayed_work_cb(struct work_struct *work)
339 {
340 	struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
341 							work);
342 	hidpp_connect_event(hidpp);
343 }
344 
345 static inline bool hidpp_match_answer(struct hidpp_report *question,
346 		struct hidpp_report *answer)
347 {
348 	return (answer->fap.feature_index == question->fap.feature_index) &&
349 	   (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
350 }
351 
352 static inline bool hidpp_match_error(struct hidpp_report *question,
353 		struct hidpp_report *answer)
354 {
355 	return ((answer->rap.sub_id == HIDPP_ERROR) ||
356 	    (answer->fap.feature_index == HIDPP20_ERROR)) &&
357 	    (answer->fap.funcindex_clientid == question->fap.feature_index) &&
358 	    (answer->fap.params[0] == question->fap.funcindex_clientid);
359 }
360 
361 static inline bool hidpp_report_is_connect_event(struct hidpp_report *report)
362 {
363 	return (report->report_id == REPORT_ID_HIDPP_SHORT) &&
364 		(report->rap.sub_id == 0x41);
365 }
366 
367 /**
368  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
369  */
370 static void hidpp_prefix_name(char **name, int name_length)
371 {
372 #define PREFIX_LENGTH 9 /* "Logitech " */
373 
374 	int new_length;
375 	char *new_name;
376 
377 	if (name_length > PREFIX_LENGTH &&
378 	    strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
379 		/* The prefix has is already in the name */
380 		return;
381 
382 	new_length = PREFIX_LENGTH + name_length;
383 	new_name = kzalloc(new_length, GFP_KERNEL);
384 	if (!new_name)
385 		return;
386 
387 	snprintf(new_name, new_length, "Logitech %s", *name);
388 
389 	kfree(*name);
390 
391 	*name = new_name;
392 }
393 
394 /* -------------------------------------------------------------------------- */
395 /* HIDP++ 1.0 commands                                                        */
396 /* -------------------------------------------------------------------------- */
397 
398 #define HIDPP_SET_REGISTER				0x80
399 #define HIDPP_GET_REGISTER				0x81
400 #define HIDPP_SET_LONG_REGISTER				0x82
401 #define HIDPP_GET_LONG_REGISTER				0x83
402 
403 #define HIDPP_REG_GENERAL				0x00
404 
405 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
406 {
407 	struct hidpp_report response;
408 	int ret;
409 	u8 params[3] = { 0 };
410 
411 	ret = hidpp_send_rap_command_sync(hidpp_dev,
412 					REPORT_ID_HIDPP_SHORT,
413 					HIDPP_GET_REGISTER,
414 					HIDPP_REG_GENERAL,
415 					NULL, 0, &response);
416 	if (ret)
417 		return ret;
418 
419 	memcpy(params, response.rap.params, 3);
420 
421 	/* Set the battery bit */
422 	params[0] |= BIT(4);
423 
424 	return hidpp_send_rap_command_sync(hidpp_dev,
425 					REPORT_ID_HIDPP_SHORT,
426 					HIDPP_SET_REGISTER,
427 					HIDPP_REG_GENERAL,
428 					params, 3, &response);
429 }
430 
431 #define HIDPP_REG_BATTERY_STATUS			0x07
432 
433 static int hidpp10_battery_status_map_level(u8 param)
434 {
435 	int level;
436 
437 	switch (param) {
438 	case 1 ... 2:
439 		level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
440 		break;
441 	case 3 ... 4:
442 		level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
443 		break;
444 	case 5 ... 6:
445 		level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
446 		break;
447 	case 7:
448 		level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
449 		break;
450 	default:
451 		level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
452 	}
453 
454 	return level;
455 }
456 
457 static int hidpp10_battery_status_map_status(u8 param)
458 {
459 	int status;
460 
461 	switch (param) {
462 	case 0x00:
463 		/* discharging (in use) */
464 		status = POWER_SUPPLY_STATUS_DISCHARGING;
465 		break;
466 	case 0x21: /* (standard) charging */
467 	case 0x24: /* fast charging */
468 	case 0x25: /* slow charging */
469 		status = POWER_SUPPLY_STATUS_CHARGING;
470 		break;
471 	case 0x26: /* topping charge */
472 	case 0x22: /* charge complete */
473 		status = POWER_SUPPLY_STATUS_FULL;
474 		break;
475 	case 0x20: /* unknown */
476 		status = POWER_SUPPLY_STATUS_UNKNOWN;
477 		break;
478 	/*
479 	 * 0x01...0x1F = reserved (not charging)
480 	 * 0x23 = charging error
481 	 * 0x27..0xff = reserved
482 	 */
483 	default:
484 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
485 		break;
486 	}
487 
488 	return status;
489 }
490 
491 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
492 {
493 	struct hidpp_report response;
494 	int ret, status;
495 
496 	ret = hidpp_send_rap_command_sync(hidpp,
497 					REPORT_ID_HIDPP_SHORT,
498 					HIDPP_GET_REGISTER,
499 					HIDPP_REG_BATTERY_STATUS,
500 					NULL, 0, &response);
501 	if (ret)
502 		return ret;
503 
504 	hidpp->battery.level =
505 		hidpp10_battery_status_map_level(response.rap.params[0]);
506 	status = hidpp10_battery_status_map_status(response.rap.params[1]);
507 	hidpp->battery.status = status;
508 	/* the capacity is only available when discharging or full */
509 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
510 				status == POWER_SUPPLY_STATUS_FULL;
511 
512 	return 0;
513 }
514 
515 #define HIDPP_REG_BATTERY_MILEAGE			0x0D
516 
517 static int hidpp10_battery_mileage_map_status(u8 param)
518 {
519 	int status;
520 
521 	switch (param >> 6) {
522 	case 0x00:
523 		/* discharging (in use) */
524 		status = POWER_SUPPLY_STATUS_DISCHARGING;
525 		break;
526 	case 0x01: /* charging */
527 		status = POWER_SUPPLY_STATUS_CHARGING;
528 		break;
529 	case 0x02: /* charge complete */
530 		status = POWER_SUPPLY_STATUS_FULL;
531 		break;
532 	/*
533 	 * 0x03 = charging error
534 	 */
535 	default:
536 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
537 		break;
538 	}
539 
540 	return status;
541 }
542 
543 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
544 {
545 	struct hidpp_report response;
546 	int ret, status;
547 
548 	ret = hidpp_send_rap_command_sync(hidpp,
549 					REPORT_ID_HIDPP_SHORT,
550 					HIDPP_GET_REGISTER,
551 					HIDPP_REG_BATTERY_MILEAGE,
552 					NULL, 0, &response);
553 	if (ret)
554 		return ret;
555 
556 	hidpp->battery.capacity = response.rap.params[0];
557 	status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
558 	hidpp->battery.status = status;
559 	/* the capacity is only available when discharging or full */
560 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
561 				status == POWER_SUPPLY_STATUS_FULL;
562 
563 	return 0;
564 }
565 
566 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
567 {
568 	struct hidpp_report *report = (struct hidpp_report *)data;
569 	int status, capacity, level;
570 	bool changed;
571 
572 	if (report->report_id != REPORT_ID_HIDPP_SHORT)
573 		return 0;
574 
575 	switch (report->rap.sub_id) {
576 	case HIDPP_REG_BATTERY_STATUS:
577 		capacity = hidpp->battery.capacity;
578 		level = hidpp10_battery_status_map_level(report->rawbytes[1]);
579 		status = hidpp10_battery_status_map_status(report->rawbytes[2]);
580 		break;
581 	case HIDPP_REG_BATTERY_MILEAGE:
582 		capacity = report->rap.params[0];
583 		level = hidpp->battery.level;
584 		status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
585 		break;
586 	default:
587 		return 0;
588 	}
589 
590 	changed = capacity != hidpp->battery.capacity ||
591 		  level != hidpp->battery.level ||
592 		  status != hidpp->battery.status;
593 
594 	/* the capacity is only available when discharging or full */
595 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
596 				status == POWER_SUPPLY_STATUS_FULL;
597 
598 	if (changed) {
599 		hidpp->battery.level = level;
600 		hidpp->battery.status = status;
601 		if (hidpp->battery.ps)
602 			power_supply_changed(hidpp->battery.ps);
603 	}
604 
605 	return 0;
606 }
607 
608 #define HIDPP_REG_PAIRING_INFORMATION			0xB5
609 #define HIDPP_EXTENDED_PAIRING				0x30
610 #define HIDPP_DEVICE_NAME				0x40
611 
612 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
613 {
614 	struct hidpp_report response;
615 	int ret;
616 	u8 params[1] = { HIDPP_DEVICE_NAME };
617 	char *name;
618 	int len;
619 
620 	ret = hidpp_send_rap_command_sync(hidpp_dev,
621 					REPORT_ID_HIDPP_SHORT,
622 					HIDPP_GET_LONG_REGISTER,
623 					HIDPP_REG_PAIRING_INFORMATION,
624 					params, 1, &response);
625 	if (ret)
626 		return NULL;
627 
628 	len = response.rap.params[1];
629 
630 	if (2 + len > sizeof(response.rap.params))
631 		return NULL;
632 
633 	name = kzalloc(len + 1, GFP_KERNEL);
634 	if (!name)
635 		return NULL;
636 
637 	memcpy(name, &response.rap.params[2], len);
638 
639 	/* include the terminating '\0' */
640 	hidpp_prefix_name(&name, len + 1);
641 
642 	return name;
643 }
644 
645 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
646 {
647 	struct hidpp_report response;
648 	int ret;
649 	u8 params[1] = { HIDPP_EXTENDED_PAIRING };
650 
651 	ret = hidpp_send_rap_command_sync(hidpp,
652 					REPORT_ID_HIDPP_SHORT,
653 					HIDPP_GET_LONG_REGISTER,
654 					HIDPP_REG_PAIRING_INFORMATION,
655 					params, 1, &response);
656 	if (ret)
657 		return ret;
658 
659 	/*
660 	 * We don't care about LE or BE, we will output it as a string
661 	 * with %4phD, so we need to keep the order.
662 	 */
663 	*serial = *((u32 *)&response.rap.params[1]);
664 	return 0;
665 }
666 
667 static int hidpp_unifying_init(struct hidpp_device *hidpp)
668 {
669 	struct hid_device *hdev = hidpp->hid_dev;
670 	const char *name;
671 	u32 serial;
672 	int ret;
673 
674 	ret = hidpp_unifying_get_serial(hidpp, &serial);
675 	if (ret)
676 		return ret;
677 
678 	snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
679 		 hdev->product, &serial);
680 	dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
681 
682 	name = hidpp_unifying_get_name(hidpp);
683 	if (!name)
684 		return -EIO;
685 
686 	snprintf(hdev->name, sizeof(hdev->name), "%s", name);
687 	dbg_hid("HID++ Unifying: Got name: %s\n", name);
688 
689 	kfree(name);
690 	return 0;
691 }
692 
693 /* -------------------------------------------------------------------------- */
694 /* 0x0000: Root                                                               */
695 /* -------------------------------------------------------------------------- */
696 
697 #define HIDPP_PAGE_ROOT					0x0000
698 #define HIDPP_PAGE_ROOT_IDX				0x00
699 
700 #define CMD_ROOT_GET_FEATURE				0x01
701 #define CMD_ROOT_GET_PROTOCOL_VERSION			0x11
702 
703 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
704 	u8 *feature_index, u8 *feature_type)
705 {
706 	struct hidpp_report response;
707 	int ret;
708 	u8 params[2] = { feature >> 8, feature & 0x00FF };
709 
710 	ret = hidpp_send_fap_command_sync(hidpp,
711 			HIDPP_PAGE_ROOT_IDX,
712 			CMD_ROOT_GET_FEATURE,
713 			params, 2, &response);
714 	if (ret)
715 		return ret;
716 
717 	if (response.fap.params[0] == 0)
718 		return -ENOENT;
719 
720 	*feature_index = response.fap.params[0];
721 	*feature_type = response.fap.params[1];
722 
723 	return ret;
724 }
725 
726 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
727 {
728 	struct hidpp_report response;
729 	int ret;
730 
731 	ret = hidpp_send_fap_command_sync(hidpp,
732 			HIDPP_PAGE_ROOT_IDX,
733 			CMD_ROOT_GET_PROTOCOL_VERSION,
734 			NULL, 0, &response);
735 
736 	if (ret == HIDPP_ERROR_INVALID_SUBID) {
737 		hidpp->protocol_major = 1;
738 		hidpp->protocol_minor = 0;
739 		return 0;
740 	}
741 
742 	/* the device might not be connected */
743 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
744 		return -EIO;
745 
746 	if (ret > 0) {
747 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
748 			__func__, ret);
749 		return -EPROTO;
750 	}
751 	if (ret)
752 		return ret;
753 
754 	hidpp->protocol_major = response.fap.params[0];
755 	hidpp->protocol_minor = response.fap.params[1];
756 
757 	return ret;
758 }
759 
760 static bool hidpp_is_connected(struct hidpp_device *hidpp)
761 {
762 	int ret;
763 
764 	ret = hidpp_root_get_protocol_version(hidpp);
765 	if (!ret)
766 		hid_dbg(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
767 			hidpp->protocol_major, hidpp->protocol_minor);
768 	return ret == 0;
769 }
770 
771 /* -------------------------------------------------------------------------- */
772 /* 0x0005: GetDeviceNameType                                                  */
773 /* -------------------------------------------------------------------------- */
774 
775 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE			0x0005
776 
777 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT		0x01
778 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME	0x11
779 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE		0x21
780 
781 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
782 	u8 feature_index, u8 *nameLength)
783 {
784 	struct hidpp_report response;
785 	int ret;
786 
787 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
788 		CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
789 
790 	if (ret > 0) {
791 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
792 			__func__, ret);
793 		return -EPROTO;
794 	}
795 	if (ret)
796 		return ret;
797 
798 	*nameLength = response.fap.params[0];
799 
800 	return ret;
801 }
802 
803 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
804 	u8 feature_index, u8 char_index, char *device_name, int len_buf)
805 {
806 	struct hidpp_report response;
807 	int ret, i;
808 	int count;
809 
810 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
811 		CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
812 		&response);
813 
814 	if (ret > 0) {
815 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
816 			__func__, ret);
817 		return -EPROTO;
818 	}
819 	if (ret)
820 		return ret;
821 
822 	switch (response.report_id) {
823 	case REPORT_ID_HIDPP_VERY_LONG:
824 		count = HIDPP_REPORT_VERY_LONG_LENGTH - 4;
825 		break;
826 	case REPORT_ID_HIDPP_LONG:
827 		count = HIDPP_REPORT_LONG_LENGTH - 4;
828 		break;
829 	case REPORT_ID_HIDPP_SHORT:
830 		count = HIDPP_REPORT_SHORT_LENGTH - 4;
831 		break;
832 	default:
833 		return -EPROTO;
834 	}
835 
836 	if (len_buf < count)
837 		count = len_buf;
838 
839 	for (i = 0; i < count; i++)
840 		device_name[i] = response.fap.params[i];
841 
842 	return count;
843 }
844 
845 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
846 {
847 	u8 feature_type;
848 	u8 feature_index;
849 	u8 __name_length;
850 	char *name;
851 	unsigned index = 0;
852 	int ret;
853 
854 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
855 		&feature_index, &feature_type);
856 	if (ret)
857 		return NULL;
858 
859 	ret = hidpp_devicenametype_get_count(hidpp, feature_index,
860 		&__name_length);
861 	if (ret)
862 		return NULL;
863 
864 	name = kzalloc(__name_length + 1, GFP_KERNEL);
865 	if (!name)
866 		return NULL;
867 
868 	while (index < __name_length) {
869 		ret = hidpp_devicenametype_get_device_name(hidpp,
870 			feature_index, index, name + index,
871 			__name_length - index);
872 		if (ret <= 0) {
873 			kfree(name);
874 			return NULL;
875 		}
876 		index += ret;
877 	}
878 
879 	/* include the terminating '\0' */
880 	hidpp_prefix_name(&name, __name_length + 1);
881 
882 	return name;
883 }
884 
885 /* -------------------------------------------------------------------------- */
886 /* 0x1000: Battery level status                                               */
887 /* -------------------------------------------------------------------------- */
888 
889 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS				0x1000
890 
891 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS	0x00
892 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY		0x10
893 
894 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST			0x00
895 
896 #define FLAG_BATTERY_LEVEL_DISABLE_OSD				BIT(0)
897 #define FLAG_BATTERY_LEVEL_MILEAGE				BIT(1)
898 #define FLAG_BATTERY_LEVEL_RECHARGEABLE				BIT(2)
899 
900 static int hidpp_map_battery_level(int capacity)
901 {
902 	if (capacity < 11)
903 		return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
904 	else if (capacity < 31)
905 		return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
906 	else if (capacity < 81)
907 		return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
908 	return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
909 }
910 
911 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
912 						    int *next_capacity,
913 						    int *level)
914 {
915 	int status;
916 
917 	*capacity = data[0];
918 	*next_capacity = data[1];
919 	*level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
920 
921 	/* When discharging, we can rely on the device reported capacity.
922 	 * For all other states the device reports 0 (unknown).
923 	 */
924 	switch (data[2]) {
925 		case 0: /* discharging (in use) */
926 			status = POWER_SUPPLY_STATUS_DISCHARGING;
927 			*level = hidpp_map_battery_level(*capacity);
928 			break;
929 		case 1: /* recharging */
930 			status = POWER_SUPPLY_STATUS_CHARGING;
931 			break;
932 		case 2: /* charge in final stage */
933 			status = POWER_SUPPLY_STATUS_CHARGING;
934 			break;
935 		case 3: /* charge complete */
936 			status = POWER_SUPPLY_STATUS_FULL;
937 			*level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
938 			*capacity = 100;
939 			break;
940 		case 4: /* recharging below optimal speed */
941 			status = POWER_SUPPLY_STATUS_CHARGING;
942 			break;
943 		/* 5 = invalid battery type
944 		   6 = thermal error
945 		   7 = other charging error */
946 		default:
947 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
948 			break;
949 	}
950 
951 	return status;
952 }
953 
954 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
955 						     u8 feature_index,
956 						     int *status,
957 						     int *capacity,
958 						     int *next_capacity,
959 						     int *level)
960 {
961 	struct hidpp_report response;
962 	int ret;
963 	u8 *params = (u8 *)response.fap.params;
964 
965 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
966 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
967 					  NULL, 0, &response);
968 	if (ret > 0) {
969 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
970 			__func__, ret);
971 		return -EPROTO;
972 	}
973 	if (ret)
974 		return ret;
975 
976 	*status = hidpp20_batterylevel_map_status_capacity(params, capacity,
977 							   next_capacity,
978 							   level);
979 
980 	return 0;
981 }
982 
983 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
984 						  u8 feature_index)
985 {
986 	struct hidpp_report response;
987 	int ret;
988 	u8 *params = (u8 *)response.fap.params;
989 	unsigned int level_count, flags;
990 
991 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
992 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
993 					  NULL, 0, &response);
994 	if (ret > 0) {
995 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
996 			__func__, ret);
997 		return -EPROTO;
998 	}
999 	if (ret)
1000 		return ret;
1001 
1002 	level_count = params[0];
1003 	flags = params[1];
1004 
1005 	if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1006 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1007 	else
1008 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1009 
1010 	return 0;
1011 }
1012 
1013 static int hidpp20_query_battery_info(struct hidpp_device *hidpp)
1014 {
1015 	u8 feature_type;
1016 	int ret;
1017 	int status, capacity, next_capacity, level;
1018 
1019 	if (hidpp->battery.feature_index == 0xff) {
1020 		ret = hidpp_root_get_feature(hidpp,
1021 					     HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1022 					     &hidpp->battery.feature_index,
1023 					     &feature_type);
1024 		if (ret)
1025 			return ret;
1026 	}
1027 
1028 	ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1029 						hidpp->battery.feature_index,
1030 						&status, &capacity,
1031 						&next_capacity, &level);
1032 	if (ret)
1033 		return ret;
1034 
1035 	ret = hidpp20_batterylevel_get_battery_info(hidpp,
1036 						hidpp->battery.feature_index);
1037 	if (ret)
1038 		return ret;
1039 
1040 	hidpp->battery.status = status;
1041 	hidpp->battery.capacity = capacity;
1042 	hidpp->battery.level = level;
1043 	/* the capacity is only available when discharging or full */
1044 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1045 				status == POWER_SUPPLY_STATUS_FULL;
1046 
1047 	return 0;
1048 }
1049 
1050 static int hidpp20_battery_event(struct hidpp_device *hidpp,
1051 				 u8 *data, int size)
1052 {
1053 	struct hidpp_report *report = (struct hidpp_report *)data;
1054 	int status, capacity, next_capacity, level;
1055 	bool changed;
1056 
1057 	if (report->fap.feature_index != hidpp->battery.feature_index ||
1058 	    report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1059 		return 0;
1060 
1061 	status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1062 							  &capacity,
1063 							  &next_capacity,
1064 							  &level);
1065 
1066 	/* the capacity is only available when discharging or full */
1067 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1068 				status == POWER_SUPPLY_STATUS_FULL;
1069 
1070 	changed = capacity != hidpp->battery.capacity ||
1071 		  level != hidpp->battery.level ||
1072 		  status != hidpp->battery.status;
1073 
1074 	if (changed) {
1075 		hidpp->battery.level = level;
1076 		hidpp->battery.capacity = capacity;
1077 		hidpp->battery.status = status;
1078 		if (hidpp->battery.ps)
1079 			power_supply_changed(hidpp->battery.ps);
1080 	}
1081 
1082 	return 0;
1083 }
1084 
1085 static enum power_supply_property hidpp_battery_props[] = {
1086 	POWER_SUPPLY_PROP_ONLINE,
1087 	POWER_SUPPLY_PROP_STATUS,
1088 	POWER_SUPPLY_PROP_SCOPE,
1089 	POWER_SUPPLY_PROP_MODEL_NAME,
1090 	POWER_SUPPLY_PROP_MANUFACTURER,
1091 	POWER_SUPPLY_PROP_SERIAL_NUMBER,
1092 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1093 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1094 };
1095 
1096 static int hidpp_battery_get_property(struct power_supply *psy,
1097 				      enum power_supply_property psp,
1098 				      union power_supply_propval *val)
1099 {
1100 	struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1101 	int ret = 0;
1102 
1103 	switch(psp) {
1104 		case POWER_SUPPLY_PROP_STATUS:
1105 			val->intval = hidpp->battery.status;
1106 			break;
1107 		case POWER_SUPPLY_PROP_CAPACITY:
1108 			val->intval = hidpp->battery.capacity;
1109 			break;
1110 		case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1111 			val->intval = hidpp->battery.level;
1112 			break;
1113 		case POWER_SUPPLY_PROP_SCOPE:
1114 			val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1115 			break;
1116 		case POWER_SUPPLY_PROP_ONLINE:
1117 			val->intval = hidpp->battery.online;
1118 			break;
1119 		case POWER_SUPPLY_PROP_MODEL_NAME:
1120 			if (!strncmp(hidpp->name, "Logitech ", 9))
1121 				val->strval = hidpp->name + 9;
1122 			else
1123 				val->strval = hidpp->name;
1124 			break;
1125 		case POWER_SUPPLY_PROP_MANUFACTURER:
1126 			val->strval = "Logitech";
1127 			break;
1128 		case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1129 			val->strval = hidpp->hid_dev->uniq;
1130 			break;
1131 		default:
1132 			ret = -EINVAL;
1133 			break;
1134 	}
1135 
1136 	return ret;
1137 }
1138 
1139 /* -------------------------------------------------------------------------- */
1140 /* 0x4301: Solar Keyboard                                                     */
1141 /* -------------------------------------------------------------------------- */
1142 
1143 #define HIDPP_PAGE_SOLAR_KEYBOARD			0x4301
1144 
1145 #define CMD_SOLAR_SET_LIGHT_MEASURE			0x00
1146 
1147 #define EVENT_SOLAR_BATTERY_BROADCAST			0x00
1148 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE		0x10
1149 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON			0x20
1150 
1151 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1152 {
1153 	struct hidpp_report response;
1154 	u8 params[2] = { 1, 1 };
1155 	u8 feature_type;
1156 	int ret;
1157 
1158 	if (hidpp->battery.feature_index == 0xff) {
1159 		ret = hidpp_root_get_feature(hidpp,
1160 					     HIDPP_PAGE_SOLAR_KEYBOARD,
1161 					     &hidpp->battery.solar_feature_index,
1162 					     &feature_type);
1163 		if (ret)
1164 			return ret;
1165 	}
1166 
1167 	ret = hidpp_send_fap_command_sync(hidpp,
1168 					  hidpp->battery.solar_feature_index,
1169 					  CMD_SOLAR_SET_LIGHT_MEASURE,
1170 					  params, 2, &response);
1171 	if (ret > 0) {
1172 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1173 			__func__, ret);
1174 		return -EPROTO;
1175 	}
1176 	if (ret)
1177 		return ret;
1178 
1179 	hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1180 
1181 	return 0;
1182 }
1183 
1184 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1185 				     u8 *data, int size)
1186 {
1187 	struct hidpp_report *report = (struct hidpp_report *)data;
1188 	int capacity, lux, status;
1189 	u8 function;
1190 
1191 	function = report->fap.funcindex_clientid;
1192 
1193 
1194 	if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1195 	    !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1196 	      function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1197 	      function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1198 		return 0;
1199 
1200 	capacity = report->fap.params[0];
1201 
1202 	switch (function) {
1203 	case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1204 		lux = (report->fap.params[1] << 8) | report->fap.params[2];
1205 		if (lux > 200)
1206 			status = POWER_SUPPLY_STATUS_CHARGING;
1207 		else
1208 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1209 		break;
1210 	case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1211 	default:
1212 		if (capacity < hidpp->battery.capacity)
1213 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1214 		else
1215 			status = POWER_SUPPLY_STATUS_CHARGING;
1216 
1217 	}
1218 
1219 	if (capacity == 100)
1220 		status = POWER_SUPPLY_STATUS_FULL;
1221 
1222 	hidpp->battery.online = true;
1223 	if (capacity != hidpp->battery.capacity ||
1224 	    status != hidpp->battery.status) {
1225 		hidpp->battery.capacity = capacity;
1226 		hidpp->battery.status = status;
1227 		if (hidpp->battery.ps)
1228 			power_supply_changed(hidpp->battery.ps);
1229 	}
1230 
1231 	return 0;
1232 }
1233 
1234 /* -------------------------------------------------------------------------- */
1235 /* 0x6010: Touchpad FW items                                                  */
1236 /* -------------------------------------------------------------------------- */
1237 
1238 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS			0x6010
1239 
1240 #define CMD_TOUCHPAD_FW_ITEMS_SET			0x10
1241 
1242 struct hidpp_touchpad_fw_items {
1243 	uint8_t presence;
1244 	uint8_t desired_state;
1245 	uint8_t state;
1246 	uint8_t persistent;
1247 };
1248 
1249 /**
1250  * send a set state command to the device by reading the current items->state
1251  * field. items is then filled with the current state.
1252  */
1253 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1254 				       u8 feature_index,
1255 				       struct hidpp_touchpad_fw_items *items)
1256 {
1257 	struct hidpp_report response;
1258 	int ret;
1259 	u8 *params = (u8 *)response.fap.params;
1260 
1261 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1262 		CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1263 
1264 	if (ret > 0) {
1265 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1266 			__func__, ret);
1267 		return -EPROTO;
1268 	}
1269 	if (ret)
1270 		return ret;
1271 
1272 	items->presence = params[0];
1273 	items->desired_state = params[1];
1274 	items->state = params[2];
1275 	items->persistent = params[3];
1276 
1277 	return 0;
1278 }
1279 
1280 /* -------------------------------------------------------------------------- */
1281 /* 0x6100: TouchPadRawXY                                                      */
1282 /* -------------------------------------------------------------------------- */
1283 
1284 #define HIDPP_PAGE_TOUCHPAD_RAW_XY			0x6100
1285 
1286 #define CMD_TOUCHPAD_GET_RAW_INFO			0x01
1287 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE		0x21
1288 
1289 #define EVENT_TOUCHPAD_RAW_XY				0x00
1290 
1291 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT		0x01
1292 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT		0x03
1293 
1294 struct hidpp_touchpad_raw_info {
1295 	u16 x_size;
1296 	u16 y_size;
1297 	u8 z_range;
1298 	u8 area_range;
1299 	u8 timestamp_unit;
1300 	u8 maxcontacts;
1301 	u8 origin;
1302 	u16 res;
1303 };
1304 
1305 struct hidpp_touchpad_raw_xy_finger {
1306 	u8 contact_type;
1307 	u8 contact_status;
1308 	u16 x;
1309 	u16 y;
1310 	u8 z;
1311 	u8 area;
1312 	u8 finger_id;
1313 };
1314 
1315 struct hidpp_touchpad_raw_xy {
1316 	u16 timestamp;
1317 	struct hidpp_touchpad_raw_xy_finger fingers[2];
1318 	u8 spurious_flag;
1319 	u8 end_of_frame;
1320 	u8 finger_count;
1321 	u8 button;
1322 };
1323 
1324 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1325 	u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1326 {
1327 	struct hidpp_report response;
1328 	int ret;
1329 	u8 *params = (u8 *)response.fap.params;
1330 
1331 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1332 		CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1333 
1334 	if (ret > 0) {
1335 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1336 			__func__, ret);
1337 		return -EPROTO;
1338 	}
1339 	if (ret)
1340 		return ret;
1341 
1342 	raw_info->x_size = get_unaligned_be16(&params[0]);
1343 	raw_info->y_size = get_unaligned_be16(&params[2]);
1344 	raw_info->z_range = params[4];
1345 	raw_info->area_range = params[5];
1346 	raw_info->maxcontacts = params[7];
1347 	raw_info->origin = params[8];
1348 	/* res is given in unit per inch */
1349 	raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1350 
1351 	return ret;
1352 }
1353 
1354 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1355 		u8 feature_index, bool send_raw_reports,
1356 		bool sensor_enhanced_settings)
1357 {
1358 	struct hidpp_report response;
1359 
1360 	/*
1361 	 * Params:
1362 	 *   bit 0 - enable raw
1363 	 *   bit 1 - 16bit Z, no area
1364 	 *   bit 2 - enhanced sensitivity
1365 	 *   bit 3 - width, height (4 bits each) instead of area
1366 	 *   bit 4 - send raw + gestures (degrades smoothness)
1367 	 *   remaining bits - reserved
1368 	 */
1369 	u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
1370 
1371 	return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
1372 		CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
1373 }
1374 
1375 static void hidpp_touchpad_touch_event(u8 *data,
1376 	struct hidpp_touchpad_raw_xy_finger *finger)
1377 {
1378 	u8 x_m = data[0] << 2;
1379 	u8 y_m = data[2] << 2;
1380 
1381 	finger->x = x_m << 6 | data[1];
1382 	finger->y = y_m << 6 | data[3];
1383 
1384 	finger->contact_type = data[0] >> 6;
1385 	finger->contact_status = data[2] >> 6;
1386 
1387 	finger->z = data[4];
1388 	finger->area = data[5];
1389 	finger->finger_id = data[6] >> 4;
1390 }
1391 
1392 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
1393 		u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
1394 {
1395 	memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
1396 	raw_xy->end_of_frame = data[8] & 0x01;
1397 	raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
1398 	raw_xy->finger_count = data[15] & 0x0f;
1399 	raw_xy->button = (data[8] >> 2) & 0x01;
1400 
1401 	if (raw_xy->finger_count) {
1402 		hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
1403 		hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
1404 	}
1405 }
1406 
1407 /* -------------------------------------------------------------------------- */
1408 /* 0x8123: Force feedback support                                             */
1409 /* -------------------------------------------------------------------------- */
1410 
1411 #define HIDPP_FF_GET_INFO		0x01
1412 #define HIDPP_FF_RESET_ALL		0x11
1413 #define HIDPP_FF_DOWNLOAD_EFFECT	0x21
1414 #define HIDPP_FF_SET_EFFECT_STATE	0x31
1415 #define HIDPP_FF_DESTROY_EFFECT		0x41
1416 #define HIDPP_FF_GET_APERTURE		0x51
1417 #define HIDPP_FF_SET_APERTURE		0x61
1418 #define HIDPP_FF_GET_GLOBAL_GAINS	0x71
1419 #define HIDPP_FF_SET_GLOBAL_GAINS	0x81
1420 
1421 #define HIDPP_FF_EFFECT_STATE_GET	0x00
1422 #define HIDPP_FF_EFFECT_STATE_STOP	0x01
1423 #define HIDPP_FF_EFFECT_STATE_PLAY	0x02
1424 #define HIDPP_FF_EFFECT_STATE_PAUSE	0x03
1425 
1426 #define HIDPP_FF_EFFECT_CONSTANT	0x00
1427 #define HIDPP_FF_EFFECT_PERIODIC_SINE		0x01
1428 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE		0x02
1429 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE	0x03
1430 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP	0x04
1431 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN	0x05
1432 #define HIDPP_FF_EFFECT_SPRING		0x06
1433 #define HIDPP_FF_EFFECT_DAMPER		0x07
1434 #define HIDPP_FF_EFFECT_FRICTION	0x08
1435 #define HIDPP_FF_EFFECT_INERTIA		0x09
1436 #define HIDPP_FF_EFFECT_RAMP		0x0A
1437 
1438 #define HIDPP_FF_EFFECT_AUTOSTART	0x80
1439 
1440 #define HIDPP_FF_EFFECTID_NONE		-1
1441 #define HIDPP_FF_EFFECTID_AUTOCENTER	-2
1442 
1443 #define HIDPP_FF_MAX_PARAMS	20
1444 #define HIDPP_FF_RESERVED_SLOTS	1
1445 
1446 struct hidpp_ff_private_data {
1447 	struct hidpp_device *hidpp;
1448 	u8 feature_index;
1449 	u8 version;
1450 	u16 gain;
1451 	s16 range;
1452 	u8 slot_autocenter;
1453 	u8 num_effects;
1454 	int *effect_ids;
1455 	struct workqueue_struct *wq;
1456 	atomic_t workqueue_size;
1457 };
1458 
1459 struct hidpp_ff_work_data {
1460 	struct work_struct work;
1461 	struct hidpp_ff_private_data *data;
1462 	int effect_id;
1463 	u8 command;
1464 	u8 params[HIDPP_FF_MAX_PARAMS];
1465 	u8 size;
1466 };
1467 
1468 static const signed short hiddpp_ff_effects[] = {
1469 	FF_CONSTANT,
1470 	FF_PERIODIC,
1471 	FF_SINE,
1472 	FF_SQUARE,
1473 	FF_SAW_UP,
1474 	FF_SAW_DOWN,
1475 	FF_TRIANGLE,
1476 	FF_SPRING,
1477 	FF_DAMPER,
1478 	FF_AUTOCENTER,
1479 	FF_GAIN,
1480 	-1
1481 };
1482 
1483 static const signed short hiddpp_ff_effects_v2[] = {
1484 	FF_RAMP,
1485 	FF_FRICTION,
1486 	FF_INERTIA,
1487 	-1
1488 };
1489 
1490 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
1491 	HIDPP_FF_EFFECT_SPRING,
1492 	HIDPP_FF_EFFECT_FRICTION,
1493 	HIDPP_FF_EFFECT_DAMPER,
1494 	HIDPP_FF_EFFECT_INERTIA
1495 };
1496 
1497 static const char *HIDPP_FF_CONDITION_NAMES[] = {
1498 	"spring",
1499 	"friction",
1500 	"damper",
1501 	"inertia"
1502 };
1503 
1504 
1505 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
1506 {
1507 	int i;
1508 
1509 	for (i = 0; i < data->num_effects; i++)
1510 		if (data->effect_ids[i] == effect_id)
1511 			return i+1;
1512 
1513 	return 0;
1514 }
1515 
1516 static void hidpp_ff_work_handler(struct work_struct *w)
1517 {
1518 	struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
1519 	struct hidpp_ff_private_data *data = wd->data;
1520 	struct hidpp_report response;
1521 	u8 slot;
1522 	int ret;
1523 
1524 	/* add slot number if needed */
1525 	switch (wd->effect_id) {
1526 	case HIDPP_FF_EFFECTID_AUTOCENTER:
1527 		wd->params[0] = data->slot_autocenter;
1528 		break;
1529 	case HIDPP_FF_EFFECTID_NONE:
1530 		/* leave slot as zero */
1531 		break;
1532 	default:
1533 		/* find current slot for effect */
1534 		wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
1535 		break;
1536 	}
1537 
1538 	/* send command and wait for reply */
1539 	ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
1540 		wd->command, wd->params, wd->size, &response);
1541 
1542 	if (ret) {
1543 		hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
1544 		goto out;
1545 	}
1546 
1547 	/* parse return data */
1548 	switch (wd->command) {
1549 	case HIDPP_FF_DOWNLOAD_EFFECT:
1550 		slot = response.fap.params[0];
1551 		if (slot > 0 && slot <= data->num_effects) {
1552 			if (wd->effect_id >= 0)
1553 				/* regular effect uploaded */
1554 				data->effect_ids[slot-1] = wd->effect_id;
1555 			else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1556 				/* autocenter spring uploaded */
1557 				data->slot_autocenter = slot;
1558 		}
1559 		break;
1560 	case HIDPP_FF_DESTROY_EFFECT:
1561 		if (wd->effect_id >= 0)
1562 			/* regular effect destroyed */
1563 			data->effect_ids[wd->params[0]-1] = -1;
1564 		else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1565 			/* autocenter spring destoyed */
1566 			data->slot_autocenter = 0;
1567 		break;
1568 	case HIDPP_FF_SET_GLOBAL_GAINS:
1569 		data->gain = (wd->params[0] << 8) + wd->params[1];
1570 		break;
1571 	case HIDPP_FF_SET_APERTURE:
1572 		data->range = (wd->params[0] << 8) + wd->params[1];
1573 		break;
1574 	default:
1575 		/* no action needed */
1576 		break;
1577 	}
1578 
1579 out:
1580 	atomic_dec(&data->workqueue_size);
1581 	kfree(wd);
1582 }
1583 
1584 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
1585 {
1586 	struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
1587 	int s;
1588 
1589 	if (!wd)
1590 		return -ENOMEM;
1591 
1592 	INIT_WORK(&wd->work, hidpp_ff_work_handler);
1593 
1594 	wd->data = data;
1595 	wd->effect_id = effect_id;
1596 	wd->command = command;
1597 	wd->size = size;
1598 	memcpy(wd->params, params, size);
1599 
1600 	atomic_inc(&data->workqueue_size);
1601 	queue_work(data->wq, &wd->work);
1602 
1603 	/* warn about excessive queue size */
1604 	s = atomic_read(&data->workqueue_size);
1605 	if (s >= 20 && s % 20 == 0)
1606 		hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
1607 
1608 	return 0;
1609 }
1610 
1611 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
1612 {
1613 	struct hidpp_ff_private_data *data = dev->ff->private;
1614 	u8 params[20];
1615 	u8 size;
1616 	int force;
1617 
1618 	/* set common parameters */
1619 	params[2] = effect->replay.length >> 8;
1620 	params[3] = effect->replay.length & 255;
1621 	params[4] = effect->replay.delay >> 8;
1622 	params[5] = effect->replay.delay & 255;
1623 
1624 	switch (effect->type) {
1625 	case FF_CONSTANT:
1626 		force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1627 		params[1] = HIDPP_FF_EFFECT_CONSTANT;
1628 		params[6] = force >> 8;
1629 		params[7] = force & 255;
1630 		params[8] = effect->u.constant.envelope.attack_level >> 7;
1631 		params[9] = effect->u.constant.envelope.attack_length >> 8;
1632 		params[10] = effect->u.constant.envelope.attack_length & 255;
1633 		params[11] = effect->u.constant.envelope.fade_level >> 7;
1634 		params[12] = effect->u.constant.envelope.fade_length >> 8;
1635 		params[13] = effect->u.constant.envelope.fade_length & 255;
1636 		size = 14;
1637 		dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
1638 				effect->u.constant.level,
1639 				effect->direction, force);
1640 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1641 				effect->u.constant.envelope.attack_level,
1642 				effect->u.constant.envelope.attack_length,
1643 				effect->u.constant.envelope.fade_level,
1644 				effect->u.constant.envelope.fade_length);
1645 		break;
1646 	case FF_PERIODIC:
1647 	{
1648 		switch (effect->u.periodic.waveform) {
1649 		case FF_SINE:
1650 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
1651 			break;
1652 		case FF_SQUARE:
1653 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
1654 			break;
1655 		case FF_SAW_UP:
1656 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
1657 			break;
1658 		case FF_SAW_DOWN:
1659 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
1660 			break;
1661 		case FF_TRIANGLE:
1662 			params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
1663 			break;
1664 		default:
1665 			hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
1666 			return -EINVAL;
1667 		}
1668 		force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1669 		params[6] = effect->u.periodic.magnitude >> 8;
1670 		params[7] = effect->u.periodic.magnitude & 255;
1671 		params[8] = effect->u.periodic.offset >> 8;
1672 		params[9] = effect->u.periodic.offset & 255;
1673 		params[10] = effect->u.periodic.period >> 8;
1674 		params[11] = effect->u.periodic.period & 255;
1675 		params[12] = effect->u.periodic.phase >> 8;
1676 		params[13] = effect->u.periodic.phase & 255;
1677 		params[14] = effect->u.periodic.envelope.attack_level >> 7;
1678 		params[15] = effect->u.periodic.envelope.attack_length >> 8;
1679 		params[16] = effect->u.periodic.envelope.attack_length & 255;
1680 		params[17] = effect->u.periodic.envelope.fade_level >> 7;
1681 		params[18] = effect->u.periodic.envelope.fade_length >> 8;
1682 		params[19] = effect->u.periodic.envelope.fade_length & 255;
1683 		size = 20;
1684 		dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
1685 				effect->u.periodic.magnitude, effect->direction,
1686 				effect->u.periodic.offset,
1687 				effect->u.periodic.period,
1688 				effect->u.periodic.phase);
1689 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1690 				effect->u.periodic.envelope.attack_level,
1691 				effect->u.periodic.envelope.attack_length,
1692 				effect->u.periodic.envelope.fade_level,
1693 				effect->u.periodic.envelope.fade_length);
1694 		break;
1695 	}
1696 	case FF_RAMP:
1697 		params[1] = HIDPP_FF_EFFECT_RAMP;
1698 		force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1699 		params[6] = force >> 8;
1700 		params[7] = force & 255;
1701 		force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1702 		params[8] = force >> 8;
1703 		params[9] = force & 255;
1704 		params[10] = effect->u.ramp.envelope.attack_level >> 7;
1705 		params[11] = effect->u.ramp.envelope.attack_length >> 8;
1706 		params[12] = effect->u.ramp.envelope.attack_length & 255;
1707 		params[13] = effect->u.ramp.envelope.fade_level >> 7;
1708 		params[14] = effect->u.ramp.envelope.fade_length >> 8;
1709 		params[15] = effect->u.ramp.envelope.fade_length & 255;
1710 		size = 16;
1711 		dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
1712 				effect->u.ramp.start_level,
1713 				effect->u.ramp.end_level,
1714 				effect->direction, force);
1715 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1716 				effect->u.ramp.envelope.attack_level,
1717 				effect->u.ramp.envelope.attack_length,
1718 				effect->u.ramp.envelope.fade_level,
1719 				effect->u.ramp.envelope.fade_length);
1720 		break;
1721 	case FF_FRICTION:
1722 	case FF_INERTIA:
1723 	case FF_SPRING:
1724 	case FF_DAMPER:
1725 		params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
1726 		params[6] = effect->u.condition[0].left_saturation >> 9;
1727 		params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
1728 		params[8] = effect->u.condition[0].left_coeff >> 8;
1729 		params[9] = effect->u.condition[0].left_coeff & 255;
1730 		params[10] = effect->u.condition[0].deadband >> 9;
1731 		params[11] = (effect->u.condition[0].deadband >> 1) & 255;
1732 		params[12] = effect->u.condition[0].center >> 8;
1733 		params[13] = effect->u.condition[0].center & 255;
1734 		params[14] = effect->u.condition[0].right_coeff >> 8;
1735 		params[15] = effect->u.condition[0].right_coeff & 255;
1736 		params[16] = effect->u.condition[0].right_saturation >> 9;
1737 		params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
1738 		size = 18;
1739 		dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
1740 				HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
1741 				effect->u.condition[0].left_coeff,
1742 				effect->u.condition[0].left_saturation,
1743 				effect->u.condition[0].right_coeff,
1744 				effect->u.condition[0].right_saturation);
1745 		dbg_hid("          deadband=%d, center=%d\n",
1746 				effect->u.condition[0].deadband,
1747 				effect->u.condition[0].center);
1748 		break;
1749 	default:
1750 		hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
1751 		return -EINVAL;
1752 	}
1753 
1754 	return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
1755 }
1756 
1757 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
1758 {
1759 	struct hidpp_ff_private_data *data = dev->ff->private;
1760 	u8 params[2];
1761 
1762 	params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
1763 
1764 	dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
1765 
1766 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
1767 }
1768 
1769 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
1770 {
1771 	struct hidpp_ff_private_data *data = dev->ff->private;
1772 	u8 slot = 0;
1773 
1774 	dbg_hid("Erasing effect %d.\n", effect_id);
1775 
1776 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
1777 }
1778 
1779 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
1780 {
1781 	struct hidpp_ff_private_data *data = dev->ff->private;
1782 	u8 params[18];
1783 
1784 	dbg_hid("Setting autocenter to %d.\n", magnitude);
1785 
1786 	/* start a standard spring effect */
1787 	params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
1788 	/* zero delay and duration */
1789 	params[2] = params[3] = params[4] = params[5] = 0;
1790 	/* set coeff to 25% of saturation */
1791 	params[8] = params[14] = magnitude >> 11;
1792 	params[9] = params[15] = (magnitude >> 3) & 255;
1793 	params[6] = params[16] = magnitude >> 9;
1794 	params[7] = params[17] = (magnitude >> 1) & 255;
1795 	/* zero deadband and center */
1796 	params[10] = params[11] = params[12] = params[13] = 0;
1797 
1798 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
1799 }
1800 
1801 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
1802 {
1803 	struct hidpp_ff_private_data *data = dev->ff->private;
1804 	u8 params[4];
1805 
1806 	dbg_hid("Setting gain to %d.\n", gain);
1807 
1808 	params[0] = gain >> 8;
1809 	params[1] = gain & 255;
1810 	params[2] = 0; /* no boost */
1811 	params[3] = 0;
1812 
1813 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
1814 }
1815 
1816 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
1817 {
1818 	struct hid_device *hid = to_hid_device(dev);
1819 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
1820 	struct input_dev *idev = hidinput->input;
1821 	struct hidpp_ff_private_data *data = idev->ff->private;
1822 
1823 	return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
1824 }
1825 
1826 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
1827 {
1828 	struct hid_device *hid = to_hid_device(dev);
1829 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
1830 	struct input_dev *idev = hidinput->input;
1831 	struct hidpp_ff_private_data *data = idev->ff->private;
1832 	u8 params[2];
1833 	int range = simple_strtoul(buf, NULL, 10);
1834 
1835 	range = clamp(range, 180, 900);
1836 
1837 	params[0] = range >> 8;
1838 	params[1] = range & 0x00FF;
1839 
1840 	hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
1841 
1842 	return count;
1843 }
1844 
1845 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
1846 
1847 static void hidpp_ff_destroy(struct ff_device *ff)
1848 {
1849 	struct hidpp_ff_private_data *data = ff->private;
1850 
1851 	kfree(data->effect_ids);
1852 }
1853 
1854 static int hidpp_ff_init(struct hidpp_device *hidpp, u8 feature_index)
1855 {
1856 	struct hid_device *hid = hidpp->hid_dev;
1857 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
1858 	struct input_dev *dev = hidinput->input;
1859 	const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
1860 	const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
1861 	struct ff_device *ff;
1862 	struct hidpp_report response;
1863 	struct hidpp_ff_private_data *data;
1864 	int error, j, num_slots;
1865 	u8 version;
1866 
1867 	if (!dev) {
1868 		hid_err(hid, "Struct input_dev not set!\n");
1869 		return -EINVAL;
1870 	}
1871 
1872 	/* Get firmware release */
1873 	version = bcdDevice & 255;
1874 
1875 	/* Set supported force feedback capabilities */
1876 	for (j = 0; hiddpp_ff_effects[j] >= 0; j++)
1877 		set_bit(hiddpp_ff_effects[j], dev->ffbit);
1878 	if (version > 1)
1879 		for (j = 0; hiddpp_ff_effects_v2[j] >= 0; j++)
1880 			set_bit(hiddpp_ff_effects_v2[j], dev->ffbit);
1881 
1882 	/* Read number of slots available in device */
1883 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
1884 		HIDPP_FF_GET_INFO, NULL, 0, &response);
1885 	if (error) {
1886 		if (error < 0)
1887 			return error;
1888 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1889 			__func__, error);
1890 		return -EPROTO;
1891 	}
1892 
1893 	num_slots = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
1894 
1895 	error = input_ff_create(dev, num_slots);
1896 
1897 	if (error) {
1898 		hid_err(dev, "Failed to create FF device!\n");
1899 		return error;
1900 	}
1901 
1902 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1903 	if (!data)
1904 		return -ENOMEM;
1905 	data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
1906 	if (!data->effect_ids) {
1907 		kfree(data);
1908 		return -ENOMEM;
1909 	}
1910 	data->hidpp = hidpp;
1911 	data->feature_index = feature_index;
1912 	data->version = version;
1913 	data->slot_autocenter = 0;
1914 	data->num_effects = num_slots;
1915 	for (j = 0; j < num_slots; j++)
1916 		data->effect_ids[j] = -1;
1917 
1918 	ff = dev->ff;
1919 	ff->private = data;
1920 
1921 	ff->upload = hidpp_ff_upload_effect;
1922 	ff->erase = hidpp_ff_erase_effect;
1923 	ff->playback = hidpp_ff_playback;
1924 	ff->set_gain = hidpp_ff_set_gain;
1925 	ff->set_autocenter = hidpp_ff_set_autocenter;
1926 	ff->destroy = hidpp_ff_destroy;
1927 
1928 
1929 	/* reset all forces */
1930 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
1931 		HIDPP_FF_RESET_ALL, NULL, 0, &response);
1932 
1933 	/* Read current Range */
1934 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
1935 		HIDPP_FF_GET_APERTURE, NULL, 0, &response);
1936 	if (error)
1937 		hid_warn(hidpp->hid_dev, "Failed to read range from device!\n");
1938 	data->range = error ? 900 : get_unaligned_be16(&response.fap.params[0]);
1939 
1940 	/* Create sysfs interface */
1941 	error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
1942 	if (error)
1943 		hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
1944 
1945 	/* Read the current gain values */
1946 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
1947 		HIDPP_FF_GET_GLOBAL_GAINS, NULL, 0, &response);
1948 	if (error)
1949 		hid_warn(hidpp->hid_dev, "Failed to read gain values from device!\n");
1950 	data->gain = error ? 0xffff : get_unaligned_be16(&response.fap.params[0]);
1951 	/* ignore boost value at response.fap.params[2] */
1952 
1953 	/* init the hardware command queue */
1954 	data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
1955 	atomic_set(&data->workqueue_size, 0);
1956 
1957 	/* initialize with zero autocenter to get wheel in usable state */
1958 	hidpp_ff_set_autocenter(dev, 0);
1959 
1960 	hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
1961 		 version);
1962 
1963 	return 0;
1964 }
1965 
1966 static int hidpp_ff_deinit(struct hid_device *hid)
1967 {
1968 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
1969 	struct input_dev *dev = hidinput->input;
1970 	struct hidpp_ff_private_data *data;
1971 
1972 	if (!dev) {
1973 		hid_err(hid, "Struct input_dev not found!\n");
1974 		return -EINVAL;
1975 	}
1976 
1977 	hid_info(hid, "Unloading HID++ force feedback.\n");
1978 	data = dev->ff->private;
1979 	if (!data) {
1980 		hid_err(hid, "Private data not found!\n");
1981 		return -EINVAL;
1982 	}
1983 
1984 	destroy_workqueue(data->wq);
1985 	device_remove_file(&hid->dev, &dev_attr_range);
1986 
1987 	return 0;
1988 }
1989 
1990 
1991 /* ************************************************************************** */
1992 /*                                                                            */
1993 /* Device Support                                                             */
1994 /*                                                                            */
1995 /* ************************************************************************** */
1996 
1997 /* -------------------------------------------------------------------------- */
1998 /* Touchpad HID++ devices                                                     */
1999 /* -------------------------------------------------------------------------- */
2000 
2001 #define WTP_MANUAL_RESOLUTION				39
2002 
2003 struct wtp_data {
2004 	struct input_dev *input;
2005 	u16 x_size, y_size;
2006 	u8 finger_count;
2007 	u8 mt_feature_index;
2008 	u8 button_feature_index;
2009 	u8 maxcontacts;
2010 	bool flip_y;
2011 	unsigned int resolution;
2012 };
2013 
2014 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2015 		struct hid_field *field, struct hid_usage *usage,
2016 		unsigned long **bit, int *max)
2017 {
2018 	return -1;
2019 }
2020 
2021 static void wtp_populate_input(struct hidpp_device *hidpp,
2022 		struct input_dev *input_dev, bool origin_is_hid_core)
2023 {
2024 	struct wtp_data *wd = hidpp->private_data;
2025 
2026 	__set_bit(EV_ABS, input_dev->evbit);
2027 	__set_bit(EV_KEY, input_dev->evbit);
2028 	__clear_bit(EV_REL, input_dev->evbit);
2029 	__clear_bit(EV_LED, input_dev->evbit);
2030 
2031 	input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2032 	input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2033 	input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2034 	input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2035 
2036 	/* Max pressure is not given by the devices, pick one */
2037 	input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2038 
2039 	input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2040 
2041 	if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2042 		input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2043 	else
2044 		__set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2045 
2046 	input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2047 		INPUT_MT_DROP_UNUSED);
2048 
2049 	wd->input = input_dev;
2050 }
2051 
2052 static void wtp_touch_event(struct wtp_data *wd,
2053 	struct hidpp_touchpad_raw_xy_finger *touch_report)
2054 {
2055 	int slot;
2056 
2057 	if (!touch_report->finger_id || touch_report->contact_type)
2058 		/* no actual data */
2059 		return;
2060 
2061 	slot = input_mt_get_slot_by_key(wd->input, touch_report->finger_id);
2062 
2063 	input_mt_slot(wd->input, slot);
2064 	input_mt_report_slot_state(wd->input, MT_TOOL_FINGER,
2065 					touch_report->contact_status);
2066 	if (touch_report->contact_status) {
2067 		input_event(wd->input, EV_ABS, ABS_MT_POSITION_X,
2068 				touch_report->x);
2069 		input_event(wd->input, EV_ABS, ABS_MT_POSITION_Y,
2070 				wd->flip_y ? wd->y_size - touch_report->y :
2071 					     touch_report->y);
2072 		input_event(wd->input, EV_ABS, ABS_MT_PRESSURE,
2073 				touch_report->area);
2074 	}
2075 }
2076 
2077 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2078 		struct hidpp_touchpad_raw_xy *raw)
2079 {
2080 	struct wtp_data *wd = hidpp->private_data;
2081 	int i;
2082 
2083 	for (i = 0; i < 2; i++)
2084 		wtp_touch_event(wd, &(raw->fingers[i]));
2085 
2086 	if (raw->end_of_frame &&
2087 	    !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2088 		input_event(wd->input, EV_KEY, BTN_LEFT, raw->button);
2089 
2090 	if (raw->end_of_frame || raw->finger_count <= 2) {
2091 		input_mt_sync_frame(wd->input);
2092 		input_sync(wd->input);
2093 	}
2094 }
2095 
2096 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2097 {
2098 	struct wtp_data *wd = hidpp->private_data;
2099 	u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2100 		      (data[7] >> 4) * (data[7] >> 4)) / 2;
2101 	u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2102 		      (data[13] >> 4) * (data[13] >> 4)) / 2;
2103 	struct hidpp_touchpad_raw_xy raw = {
2104 		.timestamp = data[1],
2105 		.fingers = {
2106 			{
2107 				.contact_type = 0,
2108 				.contact_status = !!data[7],
2109 				.x = get_unaligned_le16(&data[3]),
2110 				.y = get_unaligned_le16(&data[5]),
2111 				.z = c1_area,
2112 				.area = c1_area,
2113 				.finger_id = data[2],
2114 			}, {
2115 				.contact_type = 0,
2116 				.contact_status = !!data[13],
2117 				.x = get_unaligned_le16(&data[9]),
2118 				.y = get_unaligned_le16(&data[11]),
2119 				.z = c2_area,
2120 				.area = c2_area,
2121 				.finger_id = data[8],
2122 			}
2123 		},
2124 		.finger_count = wd->maxcontacts,
2125 		.spurious_flag = 0,
2126 		.end_of_frame = (data[0] >> 7) == 0,
2127 		.button = data[0] & 0x01,
2128 	};
2129 
2130 	wtp_send_raw_xy_event(hidpp, &raw);
2131 
2132 	return 1;
2133 }
2134 
2135 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2136 {
2137 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2138 	struct wtp_data *wd = hidpp->private_data;
2139 	struct hidpp_report *report = (struct hidpp_report *)data;
2140 	struct hidpp_touchpad_raw_xy raw;
2141 
2142 	if (!wd || !wd->input)
2143 		return 1;
2144 
2145 	switch (data[0]) {
2146 	case 0x02:
2147 		if (size < 2) {
2148 			hid_err(hdev, "Received HID report of bad size (%d)",
2149 				size);
2150 			return 1;
2151 		}
2152 		if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2153 			input_event(wd->input, EV_KEY, BTN_LEFT,
2154 					!!(data[1] & 0x01));
2155 			input_event(wd->input, EV_KEY, BTN_RIGHT,
2156 					!!(data[1] & 0x02));
2157 			input_sync(wd->input);
2158 			return 0;
2159 		} else {
2160 			if (size < 21)
2161 				return 1;
2162 			return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2163 		}
2164 	case REPORT_ID_HIDPP_LONG:
2165 		/* size is already checked in hidpp_raw_event. */
2166 		if ((report->fap.feature_index != wd->mt_feature_index) ||
2167 		    (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2168 			return 1;
2169 		hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2170 
2171 		wtp_send_raw_xy_event(hidpp, &raw);
2172 		return 0;
2173 	}
2174 
2175 	return 0;
2176 }
2177 
2178 static int wtp_get_config(struct hidpp_device *hidpp)
2179 {
2180 	struct wtp_data *wd = hidpp->private_data;
2181 	struct hidpp_touchpad_raw_info raw_info = {0};
2182 	u8 feature_type;
2183 	int ret;
2184 
2185 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2186 		&wd->mt_feature_index, &feature_type);
2187 	if (ret)
2188 		/* means that the device is not powered up */
2189 		return ret;
2190 
2191 	ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2192 		&raw_info);
2193 	if (ret)
2194 		return ret;
2195 
2196 	wd->x_size = raw_info.x_size;
2197 	wd->y_size = raw_info.y_size;
2198 	wd->maxcontacts = raw_info.maxcontacts;
2199 	wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2200 	wd->resolution = raw_info.res;
2201 	if (!wd->resolution)
2202 		wd->resolution = WTP_MANUAL_RESOLUTION;
2203 
2204 	return 0;
2205 }
2206 
2207 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2208 {
2209 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2210 	struct wtp_data *wd;
2211 
2212 	wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2213 			GFP_KERNEL);
2214 	if (!wd)
2215 		return -ENOMEM;
2216 
2217 	hidpp->private_data = wd;
2218 
2219 	return 0;
2220 };
2221 
2222 static int wtp_connect(struct hid_device *hdev, bool connected)
2223 {
2224 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2225 	struct wtp_data *wd = hidpp->private_data;
2226 	int ret;
2227 
2228 	if (!wd->x_size) {
2229 		ret = wtp_get_config(hidpp);
2230 		if (ret) {
2231 			hid_err(hdev, "Can not get wtp config: %d\n", ret);
2232 			return ret;
2233 		}
2234 	}
2235 
2236 	return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2237 			true, true);
2238 }
2239 
2240 /* ------------------------------------------------------------------------- */
2241 /* Logitech M560 devices                                                     */
2242 /* ------------------------------------------------------------------------- */
2243 
2244 /*
2245  * Logitech M560 protocol overview
2246  *
2247  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2248  * the sides buttons are pressed, it sends some keyboard keys events
2249  * instead of buttons ones.
2250  * To complicate things further, the middle button keys sequence
2251  * is different from the odd press and the even press.
2252  *
2253  * forward button -> Super_R
2254  * backward button -> Super_L+'d' (press only)
2255  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2256  *                  2nd time: left-click (press only)
2257  * NB: press-only means that when the button is pressed, the
2258  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2259  * together sequentially; instead when the button is released, no event is
2260  * generated !
2261  *
2262  * With the command
2263  *	10<xx>0a 3500af03 (where <xx> is the mouse id),
2264  * the mouse reacts differently:
2265  * - it never sends a keyboard key event
2266  * - for the three mouse button it sends:
2267  *	middle button               press   11<xx>0a 3500af00...
2268  *	side 1 button (forward)     press   11<xx>0a 3500b000...
2269  *	side 2 button (backward)    press   11<xx>0a 3500ae00...
2270  *	middle/side1/side2 button   release 11<xx>0a 35000000...
2271  */
2272 
2273 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2274 
2275 struct m560_private_data {
2276 	struct input_dev *input;
2277 };
2278 
2279 /* how buttons are mapped in the report */
2280 #define M560_MOUSE_BTN_LEFT		0x01
2281 #define M560_MOUSE_BTN_RIGHT		0x02
2282 #define M560_MOUSE_BTN_WHEEL_LEFT	0x08
2283 #define M560_MOUSE_BTN_WHEEL_RIGHT	0x10
2284 
2285 #define M560_SUB_ID			0x0a
2286 #define M560_BUTTON_MODE_REGISTER	0x35
2287 
2288 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2289 {
2290 	struct hidpp_report response;
2291 	struct hidpp_device *hidpp_dev;
2292 
2293 	hidpp_dev = hid_get_drvdata(hdev);
2294 
2295 	return hidpp_send_rap_command_sync(
2296 		hidpp_dev,
2297 		REPORT_ID_HIDPP_SHORT,
2298 		M560_SUB_ID,
2299 		M560_BUTTON_MODE_REGISTER,
2300 		(u8 *)m560_config_parameter,
2301 		sizeof(m560_config_parameter),
2302 		&response
2303 	);
2304 }
2305 
2306 static int m560_allocate(struct hid_device *hdev)
2307 {
2308 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2309 	struct m560_private_data *d;
2310 
2311 	d = devm_kzalloc(&hdev->dev, sizeof(struct m560_private_data),
2312 			GFP_KERNEL);
2313 	if (!d)
2314 		return -ENOMEM;
2315 
2316 	hidpp->private_data = d;
2317 
2318 	return 0;
2319 };
2320 
2321 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2322 {
2323 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2324 	struct m560_private_data *mydata = hidpp->private_data;
2325 
2326 	/* sanity check */
2327 	if (!mydata || !mydata->input) {
2328 		hid_err(hdev, "error in parameter\n");
2329 		return -EINVAL;
2330 	}
2331 
2332 	if (size < 7) {
2333 		hid_err(hdev, "error in report\n");
2334 		return 0;
2335 	}
2336 
2337 	if (data[0] == REPORT_ID_HIDPP_LONG &&
2338 	    data[2] == M560_SUB_ID && data[6] == 0x00) {
2339 		/*
2340 		 * m560 mouse report for middle, forward and backward button
2341 		 *
2342 		 * data[0] = 0x11
2343 		 * data[1] = device-id
2344 		 * data[2] = 0x0a
2345 		 * data[5] = 0xaf -> middle
2346 		 *	     0xb0 -> forward
2347 		 *	     0xae -> backward
2348 		 *	     0x00 -> release all
2349 		 * data[6] = 0x00
2350 		 */
2351 
2352 		switch (data[5]) {
2353 		case 0xaf:
2354 			input_report_key(mydata->input, BTN_MIDDLE, 1);
2355 			break;
2356 		case 0xb0:
2357 			input_report_key(mydata->input, BTN_FORWARD, 1);
2358 			break;
2359 		case 0xae:
2360 			input_report_key(mydata->input, BTN_BACK, 1);
2361 			break;
2362 		case 0x00:
2363 			input_report_key(mydata->input, BTN_BACK, 0);
2364 			input_report_key(mydata->input, BTN_FORWARD, 0);
2365 			input_report_key(mydata->input, BTN_MIDDLE, 0);
2366 			break;
2367 		default:
2368 			hid_err(hdev, "error in report\n");
2369 			return 0;
2370 		}
2371 		input_sync(mydata->input);
2372 
2373 	} else if (data[0] == 0x02) {
2374 		/*
2375 		 * Logitech M560 mouse report
2376 		 *
2377 		 * data[0] = type (0x02)
2378 		 * data[1..2] = buttons
2379 		 * data[3..5] = xy
2380 		 * data[6] = wheel
2381 		 */
2382 
2383 		int v;
2384 
2385 		input_report_key(mydata->input, BTN_LEFT,
2386 			!!(data[1] & M560_MOUSE_BTN_LEFT));
2387 		input_report_key(mydata->input, BTN_RIGHT,
2388 			!!(data[1] & M560_MOUSE_BTN_RIGHT));
2389 
2390 		if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT)
2391 			input_report_rel(mydata->input, REL_HWHEEL, -1);
2392 		else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT)
2393 			input_report_rel(mydata->input, REL_HWHEEL, 1);
2394 
2395 		v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2396 		input_report_rel(mydata->input, REL_X, v);
2397 
2398 		v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2399 		input_report_rel(mydata->input, REL_Y, v);
2400 
2401 		v = hid_snto32(data[6], 8);
2402 		input_report_rel(mydata->input, REL_WHEEL, v);
2403 
2404 		input_sync(mydata->input);
2405 	}
2406 
2407 	return 1;
2408 }
2409 
2410 static void m560_populate_input(struct hidpp_device *hidpp,
2411 		struct input_dev *input_dev, bool origin_is_hid_core)
2412 {
2413 	struct m560_private_data *mydata = hidpp->private_data;
2414 
2415 	mydata->input = input_dev;
2416 
2417 	__set_bit(EV_KEY, mydata->input->evbit);
2418 	__set_bit(BTN_MIDDLE, mydata->input->keybit);
2419 	__set_bit(BTN_RIGHT, mydata->input->keybit);
2420 	__set_bit(BTN_LEFT, mydata->input->keybit);
2421 	__set_bit(BTN_BACK, mydata->input->keybit);
2422 	__set_bit(BTN_FORWARD, mydata->input->keybit);
2423 
2424 	__set_bit(EV_REL, mydata->input->evbit);
2425 	__set_bit(REL_X, mydata->input->relbit);
2426 	__set_bit(REL_Y, mydata->input->relbit);
2427 	__set_bit(REL_WHEEL, mydata->input->relbit);
2428 	__set_bit(REL_HWHEEL, mydata->input->relbit);
2429 }
2430 
2431 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2432 		struct hid_field *field, struct hid_usage *usage,
2433 		unsigned long **bit, int *max)
2434 {
2435 	return -1;
2436 }
2437 
2438 /* ------------------------------------------------------------------------- */
2439 /* Logitech K400 devices                                                     */
2440 /* ------------------------------------------------------------------------- */
2441 
2442 /*
2443  * The Logitech K400 keyboard has an embedded touchpad which is seen
2444  * as a mouse from the OS point of view. There is a hardware shortcut to disable
2445  * tap-to-click but the setting is not remembered accross reset, annoying some
2446  * users.
2447  *
2448  * We can toggle this feature from the host by using the feature 0x6010:
2449  * Touchpad FW items
2450  */
2451 
2452 struct k400_private_data {
2453 	u8 feature_index;
2454 };
2455 
2456 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
2457 {
2458 	struct k400_private_data *k400 = hidpp->private_data;
2459 	struct hidpp_touchpad_fw_items items = {};
2460 	int ret;
2461 	u8 feature_type;
2462 
2463 	if (!k400->feature_index) {
2464 		ret = hidpp_root_get_feature(hidpp,
2465 			HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
2466 			&k400->feature_index, &feature_type);
2467 		if (ret)
2468 			/* means that the device is not powered up */
2469 			return ret;
2470 	}
2471 
2472 	ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
2473 	if (ret)
2474 		return ret;
2475 
2476 	return 0;
2477 }
2478 
2479 static int k400_allocate(struct hid_device *hdev)
2480 {
2481 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2482 	struct k400_private_data *k400;
2483 
2484 	k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
2485 			    GFP_KERNEL);
2486 	if (!k400)
2487 		return -ENOMEM;
2488 
2489 	hidpp->private_data = k400;
2490 
2491 	return 0;
2492 };
2493 
2494 static int k400_connect(struct hid_device *hdev, bool connected)
2495 {
2496 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2497 
2498 	if (!disable_tap_to_click)
2499 		return 0;
2500 
2501 	return k400_disable_tap_to_click(hidpp);
2502 }
2503 
2504 /* ------------------------------------------------------------------------- */
2505 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
2506 /* ------------------------------------------------------------------------- */
2507 
2508 #define HIDPP_PAGE_G920_FORCE_FEEDBACK			0x8123
2509 
2510 static int g920_get_config(struct hidpp_device *hidpp)
2511 {
2512 	u8 feature_type;
2513 	u8 feature_index;
2514 	int ret;
2515 
2516 	/* Find feature and store for later use */
2517 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
2518 		&feature_index, &feature_type);
2519 	if (ret)
2520 		return ret;
2521 
2522 	ret = hidpp_ff_init(hidpp, feature_index);
2523 	if (ret)
2524 		hid_warn(hidpp->hid_dev, "Unable to initialize force feedback support, errno %d\n",
2525 				ret);
2526 
2527 	return 0;
2528 }
2529 
2530 /* -------------------------------------------------------------------------- */
2531 /* Generic HID++ devices                                                      */
2532 /* -------------------------------------------------------------------------- */
2533 
2534 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2535 		struct hid_field *field, struct hid_usage *usage,
2536 		unsigned long **bit, int *max)
2537 {
2538 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2539 
2540 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2541 		return wtp_input_mapping(hdev, hi, field, usage, bit, max);
2542 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
2543 			field->application != HID_GD_MOUSE)
2544 		return m560_input_mapping(hdev, hi, field, usage, bit, max);
2545 
2546 	return 0;
2547 }
2548 
2549 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
2550 		struct hid_field *field, struct hid_usage *usage,
2551 		unsigned long **bit, int *max)
2552 {
2553 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2554 
2555 	/* Ensure that Logitech G920 is not given a default fuzz/flat value */
2556 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
2557 		if (usage->type == EV_ABS && (usage->code == ABS_X ||
2558 				usage->code == ABS_Y || usage->code == ABS_Z ||
2559 				usage->code == ABS_RZ)) {
2560 			field->application = HID_GD_MULTIAXIS;
2561 		}
2562 	}
2563 
2564 	return 0;
2565 }
2566 
2567 
2568 static void hidpp_populate_input(struct hidpp_device *hidpp,
2569 		struct input_dev *input, bool origin_is_hid_core)
2570 {
2571 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2572 		wtp_populate_input(hidpp, input, origin_is_hid_core);
2573 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
2574 		m560_populate_input(hidpp, input, origin_is_hid_core);
2575 }
2576 
2577 static int hidpp_input_configured(struct hid_device *hdev,
2578 				struct hid_input *hidinput)
2579 {
2580 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2581 	struct input_dev *input = hidinput->input;
2582 
2583 	hidpp_populate_input(hidpp, input, true);
2584 
2585 	return 0;
2586 }
2587 
2588 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
2589 		int size)
2590 {
2591 	struct hidpp_report *question = hidpp->send_receive_buf;
2592 	struct hidpp_report *answer = hidpp->send_receive_buf;
2593 	struct hidpp_report *report = (struct hidpp_report *)data;
2594 	int ret;
2595 
2596 	/*
2597 	 * If the mutex is locked then we have a pending answer from a
2598 	 * previously sent command.
2599 	 */
2600 	if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
2601 		/*
2602 		 * Check for a correct hidpp20 answer or the corresponding
2603 		 * error
2604 		 */
2605 		if (hidpp_match_answer(question, report) ||
2606 				hidpp_match_error(question, report)) {
2607 			*answer = *report;
2608 			hidpp->answer_available = true;
2609 			wake_up(&hidpp->wait);
2610 			/*
2611 			 * This was an answer to a command that this driver sent
2612 			 * We return 1 to hid-core to avoid forwarding the
2613 			 * command upstream as it has been treated by the driver
2614 			 */
2615 
2616 			return 1;
2617 		}
2618 	}
2619 
2620 	if (unlikely(hidpp_report_is_connect_event(report))) {
2621 		atomic_set(&hidpp->connected,
2622 				!(report->rap.params[0] & (1 << 6)));
2623 		if (schedule_work(&hidpp->work) == 0)
2624 			dbg_hid("%s: connect event already queued\n", __func__);
2625 		return 1;
2626 	}
2627 
2628 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
2629 		ret = hidpp20_battery_event(hidpp, data, size);
2630 		if (ret != 0)
2631 			return ret;
2632 		ret = hidpp_solar_battery_event(hidpp, data, size);
2633 		if (ret != 0)
2634 			return ret;
2635 	}
2636 
2637 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
2638 		ret = hidpp10_battery_event(hidpp, data, size);
2639 		if (ret != 0)
2640 			return ret;
2641 	}
2642 
2643 	return 0;
2644 }
2645 
2646 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
2647 		u8 *data, int size)
2648 {
2649 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2650 	int ret = 0;
2651 
2652 	/* Generic HID++ processing. */
2653 	switch (data[0]) {
2654 	case REPORT_ID_HIDPP_VERY_LONG:
2655 		if (size != HIDPP_REPORT_VERY_LONG_LENGTH) {
2656 			hid_err(hdev, "received hid++ report of bad size (%d)",
2657 				size);
2658 			return 1;
2659 		}
2660 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
2661 		break;
2662 	case REPORT_ID_HIDPP_LONG:
2663 		if (size != HIDPP_REPORT_LONG_LENGTH) {
2664 			hid_err(hdev, "received hid++ report of bad size (%d)",
2665 				size);
2666 			return 1;
2667 		}
2668 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
2669 		break;
2670 	case REPORT_ID_HIDPP_SHORT:
2671 		if (size != HIDPP_REPORT_SHORT_LENGTH) {
2672 			hid_err(hdev, "received hid++ report of bad size (%d)",
2673 				size);
2674 			return 1;
2675 		}
2676 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
2677 		break;
2678 	}
2679 
2680 	/* If no report is available for further processing, skip calling
2681 	 * raw_event of subclasses. */
2682 	if (ret != 0)
2683 		return ret;
2684 
2685 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2686 		return wtp_raw_event(hdev, data, size);
2687 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
2688 		return m560_raw_event(hdev, data, size);
2689 
2690 	return 0;
2691 }
2692 
2693 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
2694 {
2695 	static atomic_t battery_no = ATOMIC_INIT(0);
2696 	struct power_supply_config cfg = { .drv_data = hidpp };
2697 	struct power_supply_desc *desc = &hidpp->battery.desc;
2698 	enum power_supply_property *battery_props;
2699 	struct hidpp_battery *battery;
2700 	unsigned int num_battery_props;
2701 	unsigned long n;
2702 	int ret;
2703 
2704 	if (hidpp->battery.ps)
2705 		return 0;
2706 
2707 	hidpp->battery.feature_index = 0xff;
2708 	hidpp->battery.solar_feature_index = 0xff;
2709 
2710 	if (hidpp->protocol_major >= 2) {
2711 		if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
2712 			ret = hidpp_solar_request_battery_event(hidpp);
2713 		else
2714 			ret = hidpp20_query_battery_info(hidpp);
2715 
2716 		if (ret)
2717 			return ret;
2718 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
2719 	} else {
2720 		ret = hidpp10_query_battery_status(hidpp);
2721 		if (ret) {
2722 			ret = hidpp10_query_battery_mileage(hidpp);
2723 			if (ret)
2724 				return -ENOENT;
2725 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
2726 		} else {
2727 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
2728 		}
2729 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
2730 	}
2731 
2732 	battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
2733 				     hidpp_battery_props,
2734 				     sizeof(hidpp_battery_props),
2735 				     GFP_KERNEL);
2736 	if (!battery_props)
2737 		return -ENOMEM;
2738 
2739 	num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 2;
2740 
2741 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
2742 		battery_props[num_battery_props++] =
2743 				POWER_SUPPLY_PROP_CAPACITY;
2744 
2745 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
2746 		battery_props[num_battery_props++] =
2747 				POWER_SUPPLY_PROP_CAPACITY_LEVEL;
2748 
2749 	battery = &hidpp->battery;
2750 
2751 	n = atomic_inc_return(&battery_no) - 1;
2752 	desc->properties = battery_props;
2753 	desc->num_properties = num_battery_props;
2754 	desc->get_property = hidpp_battery_get_property;
2755 	sprintf(battery->name, "hidpp_battery_%ld", n);
2756 	desc->name = battery->name;
2757 	desc->type = POWER_SUPPLY_TYPE_BATTERY;
2758 	desc->use_for_apm = 0;
2759 
2760 	battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
2761 						 &battery->desc,
2762 						 &cfg);
2763 	if (IS_ERR(battery->ps))
2764 		return PTR_ERR(battery->ps);
2765 
2766 	power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
2767 
2768 	return ret;
2769 }
2770 
2771 static void hidpp_overwrite_name(struct hid_device *hdev)
2772 {
2773 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2774 	char *name;
2775 
2776 	if (hidpp->protocol_major < 2)
2777 		return;
2778 
2779 	name = hidpp_get_device_name(hidpp);
2780 
2781 	if (!name) {
2782 		hid_err(hdev, "unable to retrieve the name of the device");
2783 	} else {
2784 		dbg_hid("HID++: Got name: %s\n", name);
2785 		snprintf(hdev->name, sizeof(hdev->name), "%s", name);
2786 	}
2787 
2788 	kfree(name);
2789 }
2790 
2791 static int hidpp_input_open(struct input_dev *dev)
2792 {
2793 	struct hid_device *hid = input_get_drvdata(dev);
2794 
2795 	return hid_hw_open(hid);
2796 }
2797 
2798 static void hidpp_input_close(struct input_dev *dev)
2799 {
2800 	struct hid_device *hid = input_get_drvdata(dev);
2801 
2802 	hid_hw_close(hid);
2803 }
2804 
2805 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
2806 {
2807 	struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
2808 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2809 
2810 	if (!input_dev)
2811 		return NULL;
2812 
2813 	input_set_drvdata(input_dev, hdev);
2814 	input_dev->open = hidpp_input_open;
2815 	input_dev->close = hidpp_input_close;
2816 
2817 	input_dev->name = hidpp->name;
2818 	input_dev->phys = hdev->phys;
2819 	input_dev->uniq = hdev->uniq;
2820 	input_dev->id.bustype = hdev->bus;
2821 	input_dev->id.vendor  = hdev->vendor;
2822 	input_dev->id.product = hdev->product;
2823 	input_dev->id.version = hdev->version;
2824 	input_dev->dev.parent = &hdev->dev;
2825 
2826 	return input_dev;
2827 }
2828 
2829 static void hidpp_connect_event(struct hidpp_device *hidpp)
2830 {
2831 	struct hid_device *hdev = hidpp->hid_dev;
2832 	int ret = 0;
2833 	bool connected = atomic_read(&hidpp->connected);
2834 	struct input_dev *input;
2835 	char *name, *devm_name;
2836 
2837 	if (!connected) {
2838 		if (hidpp->battery.ps) {
2839 			hidpp->battery.online = false;
2840 			hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
2841 			hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2842 			power_supply_changed(hidpp->battery.ps);
2843 		}
2844 		return;
2845 	}
2846 
2847 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
2848 		ret = wtp_connect(hdev, connected);
2849 		if (ret)
2850 			return;
2851 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
2852 		ret = m560_send_config_command(hdev, connected);
2853 		if (ret)
2854 			return;
2855 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
2856 		ret = k400_connect(hdev, connected);
2857 		if (ret)
2858 			return;
2859 	}
2860 
2861 	/* the device is already connected, we can ask for its name and
2862 	 * protocol */
2863 	if (!hidpp->protocol_major) {
2864 		ret = !hidpp_is_connected(hidpp);
2865 		if (ret) {
2866 			hid_err(hdev, "Can not get the protocol version.\n");
2867 			return;
2868 		}
2869 		hid_info(hdev, "HID++ %u.%u device connected.\n",
2870 			 hidpp->protocol_major, hidpp->protocol_minor);
2871 	}
2872 
2873 	if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
2874 		name = hidpp_get_device_name(hidpp);
2875 		if (!name) {
2876 			hid_err(hdev,
2877 				"unable to retrieve the name of the device");
2878 			return;
2879 		}
2880 
2881 		devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s", name);
2882 		kfree(name);
2883 		if (!devm_name)
2884 			return;
2885 
2886 		hidpp->name = devm_name;
2887 	}
2888 
2889 	hidpp_initialize_battery(hidpp);
2890 
2891 	/* forward current battery state */
2892 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
2893 		hidpp10_enable_battery_reporting(hidpp);
2894 		if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
2895 			hidpp10_query_battery_mileage(hidpp);
2896 		else
2897 			hidpp10_query_battery_status(hidpp);
2898 	} else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
2899 		hidpp20_query_battery_info(hidpp);
2900 	}
2901 	if (hidpp->battery.ps)
2902 		power_supply_changed(hidpp->battery.ps);
2903 
2904 	if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
2905 		/* if the input nodes are already created, we can stop now */
2906 		return;
2907 
2908 	input = hidpp_allocate_input(hdev);
2909 	if (!input) {
2910 		hid_err(hdev, "cannot allocate new input device: %d\n", ret);
2911 		return;
2912 	}
2913 
2914 	hidpp_populate_input(hidpp, input, false);
2915 
2916 	ret = input_register_device(input);
2917 	if (ret)
2918 		input_free_device(input);
2919 
2920 	hidpp->delayed_input = input;
2921 }
2922 
2923 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
2924 
2925 static struct attribute *sysfs_attrs[] = {
2926 	&dev_attr_builtin_power_supply.attr,
2927 	NULL
2928 };
2929 
2930 static const struct attribute_group ps_attribute_group = {
2931 	.attrs = sysfs_attrs
2932 };
2933 
2934 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
2935 {
2936 	struct hidpp_device *hidpp;
2937 	int ret;
2938 	bool connected;
2939 	unsigned int connect_mask = HID_CONNECT_DEFAULT;
2940 
2941 	hidpp = devm_kzalloc(&hdev->dev, sizeof(struct hidpp_device),
2942 			GFP_KERNEL);
2943 	if (!hidpp)
2944 		return -ENOMEM;
2945 
2946 	hidpp->hid_dev = hdev;
2947 	hidpp->name = hdev->name;
2948 	hid_set_drvdata(hdev, hidpp);
2949 
2950 	hidpp->quirks = id->driver_data;
2951 
2952 	if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
2953 		hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
2954 
2955 	if (disable_raw_mode) {
2956 		hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
2957 		hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
2958 	}
2959 
2960 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
2961 		ret = wtp_allocate(hdev, id);
2962 		if (ret)
2963 			goto allocate_fail;
2964 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
2965 		ret = m560_allocate(hdev);
2966 		if (ret)
2967 			goto allocate_fail;
2968 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
2969 		ret = k400_allocate(hdev);
2970 		if (ret)
2971 			goto allocate_fail;
2972 	}
2973 
2974 	INIT_WORK(&hidpp->work, delayed_work_cb);
2975 	mutex_init(&hidpp->send_mutex);
2976 	init_waitqueue_head(&hidpp->wait);
2977 
2978 	/* indicates we are handling the battery properties in the kernel */
2979 	ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
2980 	if (ret)
2981 		hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
2982 			 hdev->name);
2983 
2984 	ret = hid_parse(hdev);
2985 	if (ret) {
2986 		hid_err(hdev, "%s:parse failed\n", __func__);
2987 		goto hid_parse_fail;
2988 	}
2989 
2990 	if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
2991 		connect_mask &= ~HID_CONNECT_HIDINPUT;
2992 
2993 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
2994 		ret = hid_hw_start(hdev, connect_mask);
2995 		if (ret) {
2996 			hid_err(hdev, "hw start failed\n");
2997 			goto hid_hw_start_fail;
2998 		}
2999 		ret = hid_hw_open(hdev);
3000 		if (ret < 0) {
3001 			dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
3002 				__func__, ret);
3003 			hid_hw_stop(hdev);
3004 			goto hid_hw_start_fail;
3005 		}
3006 	}
3007 
3008 
3009 	/* Allow incoming packets */
3010 	hid_device_io_start(hdev);
3011 
3012 	if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
3013 		hidpp_unifying_init(hidpp);
3014 
3015 	connected = hidpp_is_connected(hidpp);
3016 	atomic_set(&hidpp->connected, connected);
3017 	if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
3018 		if (!connected) {
3019 			ret = -ENODEV;
3020 			hid_err(hdev, "Device not connected");
3021 			goto hid_hw_open_failed;
3022 		}
3023 
3024 		hid_info(hdev, "HID++ %u.%u device connected.\n",
3025 			 hidpp->protocol_major, hidpp->protocol_minor);
3026 
3027 		hidpp_overwrite_name(hdev);
3028 	}
3029 
3030 	if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
3031 		ret = wtp_get_config(hidpp);
3032 		if (ret)
3033 			goto hid_hw_open_failed;
3034 	} else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3035 		ret = g920_get_config(hidpp);
3036 		if (ret)
3037 			goto hid_hw_open_failed;
3038 	}
3039 
3040 	/* Block incoming packets */
3041 	hid_device_io_stop(hdev);
3042 
3043 	if (!(hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3044 		ret = hid_hw_start(hdev, connect_mask);
3045 		if (ret) {
3046 			hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
3047 			goto hid_hw_start_fail;
3048 		}
3049 	}
3050 
3051 	/* Allow incoming packets */
3052 	hid_device_io_start(hdev);
3053 
3054 	hidpp_connect_event(hidpp);
3055 
3056 	return ret;
3057 
3058 hid_hw_open_failed:
3059 	hid_device_io_stop(hdev);
3060 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3061 		hid_hw_close(hdev);
3062 		hid_hw_stop(hdev);
3063 	}
3064 hid_hw_start_fail:
3065 hid_parse_fail:
3066 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3067 	cancel_work_sync(&hidpp->work);
3068 	mutex_destroy(&hidpp->send_mutex);
3069 allocate_fail:
3070 	hid_set_drvdata(hdev, NULL);
3071 	return ret;
3072 }
3073 
3074 static void hidpp_remove(struct hid_device *hdev)
3075 {
3076 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3077 
3078 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3079 
3080 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3081 		hidpp_ff_deinit(hdev);
3082 		hid_hw_close(hdev);
3083 	}
3084 	hid_hw_stop(hdev);
3085 	cancel_work_sync(&hidpp->work);
3086 	mutex_destroy(&hidpp->send_mutex);
3087 }
3088 
3089 static const struct hid_device_id hidpp_devices[] = {
3090 	{ /* wireless touchpad */
3091 	  HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE,
3092 		USB_VENDOR_ID_LOGITECH, 0x4011),
3093 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
3094 			 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
3095 	{ /* wireless touchpad T650 */
3096 	  HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE,
3097 		USB_VENDOR_ID_LOGITECH, 0x4101),
3098 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
3099 	{ /* wireless touchpad T651 */
3100 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
3101 		USB_DEVICE_ID_LOGITECH_T651),
3102 	  .driver_data = HIDPP_QUIRK_CLASS_WTP },
3103 	{ /* Mouse logitech M560 */
3104 	  HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE,
3105 		USB_VENDOR_ID_LOGITECH, 0x402d),
3106 	  .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560 },
3107 	{ /* Keyboard logitech K400 */
3108 	  HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE,
3109 		USB_VENDOR_ID_LOGITECH, 0x4024),
3110 	  .driver_data = HIDPP_QUIRK_CLASS_K400 },
3111 	{ /* Solar Keyboard Logitech K750 */
3112 	  HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE,
3113 		USB_VENDOR_ID_LOGITECH, 0x4002),
3114 	  .driver_data = HIDPP_QUIRK_CLASS_K750 },
3115 
3116 	{ HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE,
3117 		USB_VENDOR_ID_LOGITECH, HID_ANY_ID)},
3118 
3119 	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
3120 		.driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
3121 	{}
3122 };
3123 
3124 MODULE_DEVICE_TABLE(hid, hidpp_devices);
3125 
3126 static struct hid_driver hidpp_driver = {
3127 	.name = "logitech-hidpp-device",
3128 	.id_table = hidpp_devices,
3129 	.probe = hidpp_probe,
3130 	.remove = hidpp_remove,
3131 	.raw_event = hidpp_raw_event,
3132 	.input_configured = hidpp_input_configured,
3133 	.input_mapping = hidpp_input_mapping,
3134 	.input_mapped = hidpp_input_mapped,
3135 };
3136 
3137 module_hid_driver(hidpp_driver);
3138