1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * HIDPP protocol for Logitech receivers 4 * 5 * Copyright (c) 2011 Logitech (c) 6 * Copyright (c) 2012-2013 Google (c) 7 * Copyright (c) 2013-2014 Red Hat Inc. 8 */ 9 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/device.h> 14 #include <linux/input.h> 15 #include <linux/usb.h> 16 #include <linux/hid.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/sched/clock.h> 21 #include <linux/kfifo.h> 22 #include <linux/input/mt.h> 23 #include <linux/workqueue.h> 24 #include <linux/atomic.h> 25 #include <linux/fixp-arith.h> 26 #include <asm/unaligned.h> 27 #include "usbhid/usbhid.h" 28 #include "hid-ids.h" 29 30 MODULE_LICENSE("GPL"); 31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>"); 32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>"); 33 34 static bool disable_raw_mode; 35 module_param(disable_raw_mode, bool, 0644); 36 MODULE_PARM_DESC(disable_raw_mode, 37 "Disable Raw mode reporting for touchpads and keep firmware gestures."); 38 39 static bool disable_tap_to_click; 40 module_param(disable_tap_to_click, bool, 0644); 41 MODULE_PARM_DESC(disable_tap_to_click, 42 "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently)."); 43 44 #define REPORT_ID_HIDPP_SHORT 0x10 45 #define REPORT_ID_HIDPP_LONG 0x11 46 #define REPORT_ID_HIDPP_VERY_LONG 0x12 47 48 #define HIDPP_REPORT_SHORT_LENGTH 7 49 #define HIDPP_REPORT_LONG_LENGTH 20 50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH 64 51 52 #define HIDPP_REPORT_SHORT_SUPPORTED BIT(0) 53 #define HIDPP_REPORT_LONG_SUPPORTED BIT(1) 54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED BIT(2) 55 56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS 0x03 57 #define HIDPP_SUB_ID_ROLLER 0x05 58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS 0x06 59 60 #define HIDPP_QUIRK_CLASS_WTP BIT(0) 61 #define HIDPP_QUIRK_CLASS_M560 BIT(1) 62 #define HIDPP_QUIRK_CLASS_K400 BIT(2) 63 #define HIDPP_QUIRK_CLASS_G920 BIT(3) 64 #define HIDPP_QUIRK_CLASS_K750 BIT(4) 65 66 /* bits 2..20 are reserved for classes */ 67 /* #define HIDPP_QUIRK_CONNECT_EVENTS BIT(21) disabled */ 68 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS BIT(22) 69 #define HIDPP_QUIRK_NO_HIDINPUT BIT(23) 70 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS BIT(24) 71 #define HIDPP_QUIRK_UNIFYING BIT(25) 72 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0 BIT(26) 73 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120 BIT(27) 74 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121 BIT(28) 75 #define HIDPP_QUIRK_HIDPP_WHEELS BIT(29) 76 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS BIT(30) 77 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS BIT(31) 78 79 /* These are just aliases for now */ 80 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS 81 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL HIDPP_QUIRK_HIDPP_WHEELS 82 83 /* Convenience constant to check for any high-res support. */ 84 #define HIDPP_QUIRK_HI_RES_SCROLL (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \ 85 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \ 86 HIDPP_QUIRK_HI_RES_SCROLL_X2121) 87 88 #define HIDPP_QUIRK_DELAYED_INIT HIDPP_QUIRK_NO_HIDINPUT 89 90 #define HIDPP_CAPABILITY_HIDPP10_BATTERY BIT(0) 91 #define HIDPP_CAPABILITY_HIDPP20_BATTERY BIT(1) 92 #define HIDPP_CAPABILITY_BATTERY_MILEAGE BIT(2) 93 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS BIT(3) 94 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE BIT(4) 95 #define HIDPP_CAPABILITY_BATTERY_PERCENTAGE BIT(5) 96 #define HIDPP_CAPABILITY_UNIFIED_BATTERY BIT(6) 97 98 #define lg_map_key_clear(c) hid_map_usage_clear(hi, usage, bit, max, EV_KEY, (c)) 99 100 /* 101 * There are two hidpp protocols in use, the first version hidpp10 is known 102 * as register access protocol or RAP, the second version hidpp20 is known as 103 * feature access protocol or FAP 104 * 105 * Most older devices (including the Unifying usb receiver) use the RAP protocol 106 * where as most newer devices use the FAP protocol. Both protocols are 107 * compatible with the underlying transport, which could be usb, Unifiying, or 108 * bluetooth. The message lengths are defined by the hid vendor specific report 109 * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and 110 * the HIDPP_LONG report type (total message length 20 bytes) 111 * 112 * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG 113 * messages. The Unifying receiver itself responds to RAP messages (device index 114 * is 0xFF for the receiver), and all messages (short or long) with a device 115 * index between 1 and 6 are passed untouched to the corresponding paired 116 * Unifying device. 117 * 118 * The paired device can be RAP or FAP, it will receive the message untouched 119 * from the Unifiying receiver. 120 */ 121 122 struct fap { 123 u8 feature_index; 124 u8 funcindex_clientid; 125 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U]; 126 }; 127 128 struct rap { 129 u8 sub_id; 130 u8 reg_address; 131 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U]; 132 }; 133 134 struct hidpp_report { 135 u8 report_id; 136 u8 device_index; 137 union { 138 struct fap fap; 139 struct rap rap; 140 u8 rawbytes[sizeof(struct fap)]; 141 }; 142 } __packed; 143 144 struct hidpp_battery { 145 u8 feature_index; 146 u8 solar_feature_index; 147 u8 voltage_feature_index; 148 struct power_supply_desc desc; 149 struct power_supply *ps; 150 char name[64]; 151 int status; 152 int capacity; 153 int level; 154 int voltage; 155 int charge_type; 156 bool online; 157 u8 supported_levels_1004; 158 }; 159 160 /** 161 * struct hidpp_scroll_counter - Utility class for processing high-resolution 162 * scroll events. 163 * @dev: the input device for which events should be reported. 164 * @wheel_multiplier: the scalar multiplier to be applied to each wheel event 165 * @remainder: counts the number of high-resolution units moved since the last 166 * low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should 167 * only be used by class methods. 168 * @direction: direction of last movement (1 or -1) 169 * @last_time: last event time, used to reset remainder after inactivity 170 */ 171 struct hidpp_scroll_counter { 172 int wheel_multiplier; 173 int remainder; 174 int direction; 175 unsigned long long last_time; 176 }; 177 178 struct hidpp_device { 179 struct hid_device *hid_dev; 180 struct input_dev *input; 181 struct mutex send_mutex; 182 void *send_receive_buf; 183 char *name; /* will never be NULL and should not be freed */ 184 wait_queue_head_t wait; 185 int very_long_report_length; 186 bool answer_available; 187 u8 protocol_major; 188 u8 protocol_minor; 189 190 void *private_data; 191 192 struct work_struct work; 193 struct kfifo delayed_work_fifo; 194 atomic_t connected; 195 struct input_dev *delayed_input; 196 197 unsigned long quirks; 198 unsigned long capabilities; 199 u8 supported_reports; 200 201 struct hidpp_battery battery; 202 struct hidpp_scroll_counter vertical_wheel_counter; 203 204 u8 wireless_feature_index; 205 }; 206 207 /* HID++ 1.0 error codes */ 208 #define HIDPP_ERROR 0x8f 209 #define HIDPP_ERROR_SUCCESS 0x00 210 #define HIDPP_ERROR_INVALID_SUBID 0x01 211 #define HIDPP_ERROR_INVALID_ADRESS 0x02 212 #define HIDPP_ERROR_INVALID_VALUE 0x03 213 #define HIDPP_ERROR_CONNECT_FAIL 0x04 214 #define HIDPP_ERROR_TOO_MANY_DEVICES 0x05 215 #define HIDPP_ERROR_ALREADY_EXISTS 0x06 216 #define HIDPP_ERROR_BUSY 0x07 217 #define HIDPP_ERROR_UNKNOWN_DEVICE 0x08 218 #define HIDPP_ERROR_RESOURCE_ERROR 0x09 219 #define HIDPP_ERROR_REQUEST_UNAVAILABLE 0x0a 220 #define HIDPP_ERROR_INVALID_PARAM_VALUE 0x0b 221 #define HIDPP_ERROR_WRONG_PIN_CODE 0x0c 222 /* HID++ 2.0 error codes */ 223 #define HIDPP20_ERROR 0xff 224 225 static void hidpp_connect_event(struct hidpp_device *hidpp_dev); 226 227 static int __hidpp_send_report(struct hid_device *hdev, 228 struct hidpp_report *hidpp_report) 229 { 230 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 231 int fields_count, ret; 232 233 switch (hidpp_report->report_id) { 234 case REPORT_ID_HIDPP_SHORT: 235 fields_count = HIDPP_REPORT_SHORT_LENGTH; 236 break; 237 case REPORT_ID_HIDPP_LONG: 238 fields_count = HIDPP_REPORT_LONG_LENGTH; 239 break; 240 case REPORT_ID_HIDPP_VERY_LONG: 241 fields_count = hidpp->very_long_report_length; 242 break; 243 default: 244 return -ENODEV; 245 } 246 247 /* 248 * set the device_index as the receiver, it will be overwritten by 249 * hid_hw_request if needed 250 */ 251 hidpp_report->device_index = 0xff; 252 253 if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) { 254 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count); 255 } else { 256 ret = hid_hw_raw_request(hdev, hidpp_report->report_id, 257 (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT, 258 HID_REQ_SET_REPORT); 259 } 260 261 return ret == fields_count ? 0 : -1; 262 } 263 264 /* 265 * hidpp_send_message_sync() returns 0 in case of success, and something else 266 * in case of a failure. 267 * - If ' something else' is positive, that means that an error has been raised 268 * by the protocol itself. 269 * - If ' something else' is negative, that means that we had a classic error 270 * (-ENOMEM, -EPIPE, etc...) 271 */ 272 static int hidpp_send_message_sync(struct hidpp_device *hidpp, 273 struct hidpp_report *message, 274 struct hidpp_report *response) 275 { 276 int ret; 277 278 mutex_lock(&hidpp->send_mutex); 279 280 hidpp->send_receive_buf = response; 281 hidpp->answer_available = false; 282 283 /* 284 * So that we can later validate the answer when it arrives 285 * in hidpp_raw_event 286 */ 287 *response = *message; 288 289 ret = __hidpp_send_report(hidpp->hid_dev, message); 290 291 if (ret) { 292 dbg_hid("__hidpp_send_report returned err: %d\n", ret); 293 memset(response, 0, sizeof(struct hidpp_report)); 294 goto exit; 295 } 296 297 if (!wait_event_timeout(hidpp->wait, hidpp->answer_available, 298 5*HZ)) { 299 dbg_hid("%s:timeout waiting for response\n", __func__); 300 memset(response, 0, sizeof(struct hidpp_report)); 301 ret = -ETIMEDOUT; 302 } 303 304 if (response->report_id == REPORT_ID_HIDPP_SHORT && 305 response->rap.sub_id == HIDPP_ERROR) { 306 ret = response->rap.params[1]; 307 dbg_hid("%s:got hidpp error %02X\n", __func__, ret); 308 goto exit; 309 } 310 311 if ((response->report_id == REPORT_ID_HIDPP_LONG || 312 response->report_id == REPORT_ID_HIDPP_VERY_LONG) && 313 response->fap.feature_index == HIDPP20_ERROR) { 314 ret = response->fap.params[1]; 315 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret); 316 goto exit; 317 } 318 319 exit: 320 mutex_unlock(&hidpp->send_mutex); 321 return ret; 322 323 } 324 325 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp, 326 u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count, 327 struct hidpp_report *response) 328 { 329 struct hidpp_report *message; 330 int ret; 331 332 if (param_count > sizeof(message->fap.params)) 333 return -EINVAL; 334 335 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 336 if (!message) 337 return -ENOMEM; 338 339 if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4)) 340 message->report_id = REPORT_ID_HIDPP_VERY_LONG; 341 else 342 message->report_id = REPORT_ID_HIDPP_LONG; 343 message->fap.feature_index = feat_index; 344 message->fap.funcindex_clientid = funcindex_clientid; 345 memcpy(&message->fap.params, params, param_count); 346 347 ret = hidpp_send_message_sync(hidpp, message, response); 348 kfree(message); 349 return ret; 350 } 351 352 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev, 353 u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count, 354 struct hidpp_report *response) 355 { 356 struct hidpp_report *message; 357 int ret, max_count; 358 359 /* Send as long report if short reports are not supported. */ 360 if (report_id == REPORT_ID_HIDPP_SHORT && 361 !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED)) 362 report_id = REPORT_ID_HIDPP_LONG; 363 364 switch (report_id) { 365 case REPORT_ID_HIDPP_SHORT: 366 max_count = HIDPP_REPORT_SHORT_LENGTH - 4; 367 break; 368 case REPORT_ID_HIDPP_LONG: 369 max_count = HIDPP_REPORT_LONG_LENGTH - 4; 370 break; 371 case REPORT_ID_HIDPP_VERY_LONG: 372 max_count = hidpp_dev->very_long_report_length - 4; 373 break; 374 default: 375 return -EINVAL; 376 } 377 378 if (param_count > max_count) 379 return -EINVAL; 380 381 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 382 if (!message) 383 return -ENOMEM; 384 message->report_id = report_id; 385 message->rap.sub_id = sub_id; 386 message->rap.reg_address = reg_address; 387 memcpy(&message->rap.params, params, param_count); 388 389 ret = hidpp_send_message_sync(hidpp_dev, message, response); 390 kfree(message); 391 return ret; 392 } 393 394 static void delayed_work_cb(struct work_struct *work) 395 { 396 struct hidpp_device *hidpp = container_of(work, struct hidpp_device, 397 work); 398 hidpp_connect_event(hidpp); 399 } 400 401 static inline bool hidpp_match_answer(struct hidpp_report *question, 402 struct hidpp_report *answer) 403 { 404 return (answer->fap.feature_index == question->fap.feature_index) && 405 (answer->fap.funcindex_clientid == question->fap.funcindex_clientid); 406 } 407 408 static inline bool hidpp_match_error(struct hidpp_report *question, 409 struct hidpp_report *answer) 410 { 411 return ((answer->rap.sub_id == HIDPP_ERROR) || 412 (answer->fap.feature_index == HIDPP20_ERROR)) && 413 (answer->fap.funcindex_clientid == question->fap.feature_index) && 414 (answer->fap.params[0] == question->fap.funcindex_clientid); 415 } 416 417 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp, 418 struct hidpp_report *report) 419 { 420 return (hidpp->wireless_feature_index && 421 (report->fap.feature_index == hidpp->wireless_feature_index)) || 422 ((report->report_id == REPORT_ID_HIDPP_SHORT) && 423 (report->rap.sub_id == 0x41)); 424 } 425 426 /* 427 * hidpp_prefix_name() prefixes the current given name with "Logitech ". 428 */ 429 static void hidpp_prefix_name(char **name, int name_length) 430 { 431 #define PREFIX_LENGTH 9 /* "Logitech " */ 432 433 int new_length; 434 char *new_name; 435 436 if (name_length > PREFIX_LENGTH && 437 strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0) 438 /* The prefix has is already in the name */ 439 return; 440 441 new_length = PREFIX_LENGTH + name_length; 442 new_name = kzalloc(new_length, GFP_KERNEL); 443 if (!new_name) 444 return; 445 446 snprintf(new_name, new_length, "Logitech %s", *name); 447 448 kfree(*name); 449 450 *name = new_name; 451 } 452 453 /** 454 * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll 455 * events given a high-resolution wheel 456 * movement. 457 * @input_dev: Pointer to the input device 458 * @counter: a hid_scroll_counter struct describing the wheel. 459 * @hi_res_value: the movement of the wheel, in the mouse's high-resolution 460 * units. 461 * 462 * Given a high-resolution movement, this function converts the movement into 463 * fractions of 120 and emits high-resolution scroll events for the input 464 * device. It also uses the multiplier from &struct hid_scroll_counter to 465 * emit low-resolution scroll events when appropriate for 466 * backwards-compatibility with userspace input libraries. 467 */ 468 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev, 469 struct hidpp_scroll_counter *counter, 470 int hi_res_value) 471 { 472 int low_res_value, remainder, direction; 473 unsigned long long now, previous; 474 475 hi_res_value = hi_res_value * 120/counter->wheel_multiplier; 476 input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value); 477 478 remainder = counter->remainder; 479 direction = hi_res_value > 0 ? 1 : -1; 480 481 now = sched_clock(); 482 previous = counter->last_time; 483 counter->last_time = now; 484 /* 485 * Reset the remainder after a period of inactivity or when the 486 * direction changes. This prevents the REL_WHEEL emulation point 487 * from sliding for devices that don't always provide the same 488 * number of movements per detent. 489 */ 490 if (now - previous > 1000000000 || direction != counter->direction) 491 remainder = 0; 492 493 counter->direction = direction; 494 remainder += hi_res_value; 495 496 /* Some wheels will rest 7/8ths of a detent from the previous detent 497 * after slow movement, so we want the threshold for low-res events to 498 * be in the middle between two detents (e.g. after 4/8ths) as 499 * opposed to on the detents themselves (8/8ths). 500 */ 501 if (abs(remainder) >= 60) { 502 /* Add (or subtract) 1 because we want to trigger when the wheel 503 * is half-way to the next detent (i.e. scroll 1 detent after a 504 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement, 505 * etc.). 506 */ 507 low_res_value = remainder / 120; 508 if (low_res_value == 0) 509 low_res_value = (hi_res_value > 0 ? 1 : -1); 510 input_report_rel(input_dev, REL_WHEEL, low_res_value); 511 remainder -= low_res_value * 120; 512 } 513 counter->remainder = remainder; 514 } 515 516 /* -------------------------------------------------------------------------- */ 517 /* HIDP++ 1.0 commands */ 518 /* -------------------------------------------------------------------------- */ 519 520 #define HIDPP_SET_REGISTER 0x80 521 #define HIDPP_GET_REGISTER 0x81 522 #define HIDPP_SET_LONG_REGISTER 0x82 523 #define HIDPP_GET_LONG_REGISTER 0x83 524 525 /** 526 * hidpp10_set_register - Modify a HID++ 1.0 register. 527 * @hidpp_dev: the device to set the register on. 528 * @register_address: the address of the register to modify. 529 * @byte: the byte of the register to modify. Should be less than 3. 530 * @mask: mask of the bits to modify 531 * @value: new values for the bits in mask 532 * Return: 0 if successful, otherwise a negative error code. 533 */ 534 static int hidpp10_set_register(struct hidpp_device *hidpp_dev, 535 u8 register_address, u8 byte, u8 mask, u8 value) 536 { 537 struct hidpp_report response; 538 int ret; 539 u8 params[3] = { 0 }; 540 541 ret = hidpp_send_rap_command_sync(hidpp_dev, 542 REPORT_ID_HIDPP_SHORT, 543 HIDPP_GET_REGISTER, 544 register_address, 545 NULL, 0, &response); 546 if (ret) 547 return ret; 548 549 memcpy(params, response.rap.params, 3); 550 551 params[byte] &= ~mask; 552 params[byte] |= value & mask; 553 554 return hidpp_send_rap_command_sync(hidpp_dev, 555 REPORT_ID_HIDPP_SHORT, 556 HIDPP_SET_REGISTER, 557 register_address, 558 params, 3, &response); 559 } 560 561 #define HIDPP_REG_ENABLE_REPORTS 0x00 562 #define HIDPP_ENABLE_CONSUMER_REPORT BIT(0) 563 #define HIDPP_ENABLE_WHEEL_REPORT BIT(2) 564 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT BIT(3) 565 #define HIDPP_ENABLE_BAT_REPORT BIT(4) 566 #define HIDPP_ENABLE_HWHEEL_REPORT BIT(5) 567 568 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev) 569 { 570 return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0, 571 HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT); 572 } 573 574 #define HIDPP_REG_FEATURES 0x01 575 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC BIT(1) 576 #define HIDPP_ENABLE_FAST_SCROLL BIT(6) 577 578 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */ 579 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev) 580 { 581 return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0, 582 HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL); 583 } 584 585 #define HIDPP_REG_BATTERY_STATUS 0x07 586 587 static int hidpp10_battery_status_map_level(u8 param) 588 { 589 int level; 590 591 switch (param) { 592 case 1 ... 2: 593 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 594 break; 595 case 3 ... 4: 596 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; 597 break; 598 case 5 ... 6: 599 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 600 break; 601 case 7: 602 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; 603 break; 604 default: 605 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 606 } 607 608 return level; 609 } 610 611 static int hidpp10_battery_status_map_status(u8 param) 612 { 613 int status; 614 615 switch (param) { 616 case 0x00: 617 /* discharging (in use) */ 618 status = POWER_SUPPLY_STATUS_DISCHARGING; 619 break; 620 case 0x21: /* (standard) charging */ 621 case 0x24: /* fast charging */ 622 case 0x25: /* slow charging */ 623 status = POWER_SUPPLY_STATUS_CHARGING; 624 break; 625 case 0x26: /* topping charge */ 626 case 0x22: /* charge complete */ 627 status = POWER_SUPPLY_STATUS_FULL; 628 break; 629 case 0x20: /* unknown */ 630 status = POWER_SUPPLY_STATUS_UNKNOWN; 631 break; 632 /* 633 * 0x01...0x1F = reserved (not charging) 634 * 0x23 = charging error 635 * 0x27..0xff = reserved 636 */ 637 default: 638 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 639 break; 640 } 641 642 return status; 643 } 644 645 static int hidpp10_query_battery_status(struct hidpp_device *hidpp) 646 { 647 struct hidpp_report response; 648 int ret, status; 649 650 ret = hidpp_send_rap_command_sync(hidpp, 651 REPORT_ID_HIDPP_SHORT, 652 HIDPP_GET_REGISTER, 653 HIDPP_REG_BATTERY_STATUS, 654 NULL, 0, &response); 655 if (ret) 656 return ret; 657 658 hidpp->battery.level = 659 hidpp10_battery_status_map_level(response.rap.params[0]); 660 status = hidpp10_battery_status_map_status(response.rap.params[1]); 661 hidpp->battery.status = status; 662 /* the capacity is only available when discharging or full */ 663 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 664 status == POWER_SUPPLY_STATUS_FULL; 665 666 return 0; 667 } 668 669 #define HIDPP_REG_BATTERY_MILEAGE 0x0D 670 671 static int hidpp10_battery_mileage_map_status(u8 param) 672 { 673 int status; 674 675 switch (param >> 6) { 676 case 0x00: 677 /* discharging (in use) */ 678 status = POWER_SUPPLY_STATUS_DISCHARGING; 679 break; 680 case 0x01: /* charging */ 681 status = POWER_SUPPLY_STATUS_CHARGING; 682 break; 683 case 0x02: /* charge complete */ 684 status = POWER_SUPPLY_STATUS_FULL; 685 break; 686 /* 687 * 0x03 = charging error 688 */ 689 default: 690 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 691 break; 692 } 693 694 return status; 695 } 696 697 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp) 698 { 699 struct hidpp_report response; 700 int ret, status; 701 702 ret = hidpp_send_rap_command_sync(hidpp, 703 REPORT_ID_HIDPP_SHORT, 704 HIDPP_GET_REGISTER, 705 HIDPP_REG_BATTERY_MILEAGE, 706 NULL, 0, &response); 707 if (ret) 708 return ret; 709 710 hidpp->battery.capacity = response.rap.params[0]; 711 status = hidpp10_battery_mileage_map_status(response.rap.params[2]); 712 hidpp->battery.status = status; 713 /* the capacity is only available when discharging or full */ 714 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 715 status == POWER_SUPPLY_STATUS_FULL; 716 717 return 0; 718 } 719 720 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size) 721 { 722 struct hidpp_report *report = (struct hidpp_report *)data; 723 int status, capacity, level; 724 bool changed; 725 726 if (report->report_id != REPORT_ID_HIDPP_SHORT) 727 return 0; 728 729 switch (report->rap.sub_id) { 730 case HIDPP_REG_BATTERY_STATUS: 731 capacity = hidpp->battery.capacity; 732 level = hidpp10_battery_status_map_level(report->rawbytes[1]); 733 status = hidpp10_battery_status_map_status(report->rawbytes[2]); 734 break; 735 case HIDPP_REG_BATTERY_MILEAGE: 736 capacity = report->rap.params[0]; 737 level = hidpp->battery.level; 738 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]); 739 break; 740 default: 741 return 0; 742 } 743 744 changed = capacity != hidpp->battery.capacity || 745 level != hidpp->battery.level || 746 status != hidpp->battery.status; 747 748 /* the capacity is only available when discharging or full */ 749 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 750 status == POWER_SUPPLY_STATUS_FULL; 751 752 if (changed) { 753 hidpp->battery.level = level; 754 hidpp->battery.status = status; 755 if (hidpp->battery.ps) 756 power_supply_changed(hidpp->battery.ps); 757 } 758 759 return 0; 760 } 761 762 #define HIDPP_REG_PAIRING_INFORMATION 0xB5 763 #define HIDPP_EXTENDED_PAIRING 0x30 764 #define HIDPP_DEVICE_NAME 0x40 765 766 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev) 767 { 768 struct hidpp_report response; 769 int ret; 770 u8 params[1] = { HIDPP_DEVICE_NAME }; 771 char *name; 772 int len; 773 774 ret = hidpp_send_rap_command_sync(hidpp_dev, 775 REPORT_ID_HIDPP_SHORT, 776 HIDPP_GET_LONG_REGISTER, 777 HIDPP_REG_PAIRING_INFORMATION, 778 params, 1, &response); 779 if (ret) 780 return NULL; 781 782 len = response.rap.params[1]; 783 784 if (2 + len > sizeof(response.rap.params)) 785 return NULL; 786 787 if (len < 4) /* logitech devices are usually at least Xddd */ 788 return NULL; 789 790 name = kzalloc(len + 1, GFP_KERNEL); 791 if (!name) 792 return NULL; 793 794 memcpy(name, &response.rap.params[2], len); 795 796 /* include the terminating '\0' */ 797 hidpp_prefix_name(&name, len + 1); 798 799 return name; 800 } 801 802 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial) 803 { 804 struct hidpp_report response; 805 int ret; 806 u8 params[1] = { HIDPP_EXTENDED_PAIRING }; 807 808 ret = hidpp_send_rap_command_sync(hidpp, 809 REPORT_ID_HIDPP_SHORT, 810 HIDPP_GET_LONG_REGISTER, 811 HIDPP_REG_PAIRING_INFORMATION, 812 params, 1, &response); 813 if (ret) 814 return ret; 815 816 /* 817 * We don't care about LE or BE, we will output it as a string 818 * with %4phD, so we need to keep the order. 819 */ 820 *serial = *((u32 *)&response.rap.params[1]); 821 return 0; 822 } 823 824 static int hidpp_unifying_init(struct hidpp_device *hidpp) 825 { 826 struct hid_device *hdev = hidpp->hid_dev; 827 const char *name; 828 u32 serial; 829 int ret; 830 831 ret = hidpp_unifying_get_serial(hidpp, &serial); 832 if (ret) 833 return ret; 834 835 snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD", 836 hdev->product, &serial); 837 dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq); 838 839 name = hidpp_unifying_get_name(hidpp); 840 if (!name) 841 return -EIO; 842 843 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 844 dbg_hid("HID++ Unifying: Got name: %s\n", name); 845 846 kfree(name); 847 return 0; 848 } 849 850 /* -------------------------------------------------------------------------- */ 851 /* 0x0000: Root */ 852 /* -------------------------------------------------------------------------- */ 853 854 #define HIDPP_PAGE_ROOT 0x0000 855 #define HIDPP_PAGE_ROOT_IDX 0x00 856 857 #define CMD_ROOT_GET_FEATURE 0x01 858 #define CMD_ROOT_GET_PROTOCOL_VERSION 0x11 859 860 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature, 861 u8 *feature_index, u8 *feature_type) 862 { 863 struct hidpp_report response; 864 int ret; 865 u8 params[2] = { feature >> 8, feature & 0x00FF }; 866 867 ret = hidpp_send_fap_command_sync(hidpp, 868 HIDPP_PAGE_ROOT_IDX, 869 CMD_ROOT_GET_FEATURE, 870 params, 2, &response); 871 if (ret) 872 return ret; 873 874 if (response.fap.params[0] == 0) 875 return -ENOENT; 876 877 *feature_index = response.fap.params[0]; 878 *feature_type = response.fap.params[1]; 879 880 return ret; 881 } 882 883 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp) 884 { 885 const u8 ping_byte = 0x5a; 886 u8 ping_data[3] = { 0, 0, ping_byte }; 887 struct hidpp_report response; 888 int ret; 889 890 ret = hidpp_send_rap_command_sync(hidpp, 891 REPORT_ID_HIDPP_SHORT, 892 HIDPP_PAGE_ROOT_IDX, 893 CMD_ROOT_GET_PROTOCOL_VERSION, 894 ping_data, sizeof(ping_data), &response); 895 896 if (ret == HIDPP_ERROR_INVALID_SUBID) { 897 hidpp->protocol_major = 1; 898 hidpp->protocol_minor = 0; 899 goto print_version; 900 } 901 902 /* the device might not be connected */ 903 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 904 return -EIO; 905 906 if (ret > 0) { 907 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 908 __func__, ret); 909 return -EPROTO; 910 } 911 if (ret) 912 return ret; 913 914 if (response.rap.params[2] != ping_byte) { 915 hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n", 916 __func__, response.rap.params[2], ping_byte); 917 return -EPROTO; 918 } 919 920 hidpp->protocol_major = response.rap.params[0]; 921 hidpp->protocol_minor = response.rap.params[1]; 922 923 print_version: 924 hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n", 925 hidpp->protocol_major, hidpp->protocol_minor); 926 return 0; 927 } 928 929 /* -------------------------------------------------------------------------- */ 930 /* 0x0005: GetDeviceNameType */ 931 /* -------------------------------------------------------------------------- */ 932 933 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE 0x0005 934 935 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT 0x01 936 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME 0x11 937 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE 0x21 938 939 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp, 940 u8 feature_index, u8 *nameLength) 941 { 942 struct hidpp_report response; 943 int ret; 944 945 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 946 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response); 947 948 if (ret > 0) { 949 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 950 __func__, ret); 951 return -EPROTO; 952 } 953 if (ret) 954 return ret; 955 956 *nameLength = response.fap.params[0]; 957 958 return ret; 959 } 960 961 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp, 962 u8 feature_index, u8 char_index, char *device_name, int len_buf) 963 { 964 struct hidpp_report response; 965 int ret, i; 966 int count; 967 968 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 969 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1, 970 &response); 971 972 if (ret > 0) { 973 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 974 __func__, ret); 975 return -EPROTO; 976 } 977 if (ret) 978 return ret; 979 980 switch (response.report_id) { 981 case REPORT_ID_HIDPP_VERY_LONG: 982 count = hidpp->very_long_report_length - 4; 983 break; 984 case REPORT_ID_HIDPP_LONG: 985 count = HIDPP_REPORT_LONG_LENGTH - 4; 986 break; 987 case REPORT_ID_HIDPP_SHORT: 988 count = HIDPP_REPORT_SHORT_LENGTH - 4; 989 break; 990 default: 991 return -EPROTO; 992 } 993 994 if (len_buf < count) 995 count = len_buf; 996 997 for (i = 0; i < count; i++) 998 device_name[i] = response.fap.params[i]; 999 1000 return count; 1001 } 1002 1003 static char *hidpp_get_device_name(struct hidpp_device *hidpp) 1004 { 1005 u8 feature_type; 1006 u8 feature_index; 1007 u8 __name_length; 1008 char *name; 1009 unsigned index = 0; 1010 int ret; 1011 1012 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE, 1013 &feature_index, &feature_type); 1014 if (ret) 1015 return NULL; 1016 1017 ret = hidpp_devicenametype_get_count(hidpp, feature_index, 1018 &__name_length); 1019 if (ret) 1020 return NULL; 1021 1022 name = kzalloc(__name_length + 1, GFP_KERNEL); 1023 if (!name) 1024 return NULL; 1025 1026 while (index < __name_length) { 1027 ret = hidpp_devicenametype_get_device_name(hidpp, 1028 feature_index, index, name + index, 1029 __name_length - index); 1030 if (ret <= 0) { 1031 kfree(name); 1032 return NULL; 1033 } 1034 index += ret; 1035 } 1036 1037 /* include the terminating '\0' */ 1038 hidpp_prefix_name(&name, __name_length + 1); 1039 1040 return name; 1041 } 1042 1043 /* -------------------------------------------------------------------------- */ 1044 /* 0x1000: Battery level status */ 1045 /* -------------------------------------------------------------------------- */ 1046 1047 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS 0x1000 1048 1049 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS 0x00 1050 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY 0x10 1051 1052 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST 0x00 1053 1054 #define FLAG_BATTERY_LEVEL_DISABLE_OSD BIT(0) 1055 #define FLAG_BATTERY_LEVEL_MILEAGE BIT(1) 1056 #define FLAG_BATTERY_LEVEL_RECHARGEABLE BIT(2) 1057 1058 static int hidpp_map_battery_level(int capacity) 1059 { 1060 if (capacity < 11) 1061 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1062 /* 1063 * The spec says this should be < 31 but some devices report 30 1064 * with brand new batteries and Windows reports 30 as "Good". 1065 */ 1066 else if (capacity < 30) 1067 return POWER_SUPPLY_CAPACITY_LEVEL_LOW; 1068 else if (capacity < 81) 1069 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 1070 return POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1071 } 1072 1073 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity, 1074 int *next_capacity, 1075 int *level) 1076 { 1077 int status; 1078 1079 *capacity = data[0]; 1080 *next_capacity = data[1]; 1081 *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 1082 1083 /* When discharging, we can rely on the device reported capacity. 1084 * For all other states the device reports 0 (unknown). 1085 */ 1086 switch (data[2]) { 1087 case 0: /* discharging (in use) */ 1088 status = POWER_SUPPLY_STATUS_DISCHARGING; 1089 *level = hidpp_map_battery_level(*capacity); 1090 break; 1091 case 1: /* recharging */ 1092 status = POWER_SUPPLY_STATUS_CHARGING; 1093 break; 1094 case 2: /* charge in final stage */ 1095 status = POWER_SUPPLY_STATUS_CHARGING; 1096 break; 1097 case 3: /* charge complete */ 1098 status = POWER_SUPPLY_STATUS_FULL; 1099 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1100 *capacity = 100; 1101 break; 1102 case 4: /* recharging below optimal speed */ 1103 status = POWER_SUPPLY_STATUS_CHARGING; 1104 break; 1105 /* 5 = invalid battery type 1106 6 = thermal error 1107 7 = other charging error */ 1108 default: 1109 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1110 break; 1111 } 1112 1113 return status; 1114 } 1115 1116 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp, 1117 u8 feature_index, 1118 int *status, 1119 int *capacity, 1120 int *next_capacity, 1121 int *level) 1122 { 1123 struct hidpp_report response; 1124 int ret; 1125 u8 *params = (u8 *)response.fap.params; 1126 1127 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1128 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS, 1129 NULL, 0, &response); 1130 /* Ignore these intermittent errors */ 1131 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 1132 return -EIO; 1133 if (ret > 0) { 1134 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1135 __func__, ret); 1136 return -EPROTO; 1137 } 1138 if (ret) 1139 return ret; 1140 1141 *status = hidpp20_batterylevel_map_status_capacity(params, capacity, 1142 next_capacity, 1143 level); 1144 1145 return 0; 1146 } 1147 1148 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp, 1149 u8 feature_index) 1150 { 1151 struct hidpp_report response; 1152 int ret; 1153 u8 *params = (u8 *)response.fap.params; 1154 unsigned int level_count, flags; 1155 1156 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1157 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY, 1158 NULL, 0, &response); 1159 if (ret > 0) { 1160 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1161 __func__, ret); 1162 return -EPROTO; 1163 } 1164 if (ret) 1165 return ret; 1166 1167 level_count = params[0]; 1168 flags = params[1]; 1169 1170 if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE)) 1171 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 1172 else 1173 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1174 1175 return 0; 1176 } 1177 1178 static int hidpp20_query_battery_info_1000(struct hidpp_device *hidpp) 1179 { 1180 u8 feature_type; 1181 int ret; 1182 int status, capacity, next_capacity, level; 1183 1184 if (hidpp->battery.feature_index == 0xff) { 1185 ret = hidpp_root_get_feature(hidpp, 1186 HIDPP_PAGE_BATTERY_LEVEL_STATUS, 1187 &hidpp->battery.feature_index, 1188 &feature_type); 1189 if (ret) 1190 return ret; 1191 } 1192 1193 ret = hidpp20_batterylevel_get_battery_capacity(hidpp, 1194 hidpp->battery.feature_index, 1195 &status, &capacity, 1196 &next_capacity, &level); 1197 if (ret) 1198 return ret; 1199 1200 ret = hidpp20_batterylevel_get_battery_info(hidpp, 1201 hidpp->battery.feature_index); 1202 if (ret) 1203 return ret; 1204 1205 hidpp->battery.status = status; 1206 hidpp->battery.capacity = capacity; 1207 hidpp->battery.level = level; 1208 /* the capacity is only available when discharging or full */ 1209 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1210 status == POWER_SUPPLY_STATUS_FULL; 1211 1212 return 0; 1213 } 1214 1215 static int hidpp20_battery_event_1000(struct hidpp_device *hidpp, 1216 u8 *data, int size) 1217 { 1218 struct hidpp_report *report = (struct hidpp_report *)data; 1219 int status, capacity, next_capacity, level; 1220 bool changed; 1221 1222 if (report->fap.feature_index != hidpp->battery.feature_index || 1223 report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST) 1224 return 0; 1225 1226 status = hidpp20_batterylevel_map_status_capacity(report->fap.params, 1227 &capacity, 1228 &next_capacity, 1229 &level); 1230 1231 /* the capacity is only available when discharging or full */ 1232 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1233 status == POWER_SUPPLY_STATUS_FULL; 1234 1235 changed = capacity != hidpp->battery.capacity || 1236 level != hidpp->battery.level || 1237 status != hidpp->battery.status; 1238 1239 if (changed) { 1240 hidpp->battery.level = level; 1241 hidpp->battery.capacity = capacity; 1242 hidpp->battery.status = status; 1243 if (hidpp->battery.ps) 1244 power_supply_changed(hidpp->battery.ps); 1245 } 1246 1247 return 0; 1248 } 1249 1250 /* -------------------------------------------------------------------------- */ 1251 /* 0x1001: Battery voltage */ 1252 /* -------------------------------------------------------------------------- */ 1253 1254 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001 1255 1256 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00 1257 1258 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00 1259 1260 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage, 1261 int *level, int *charge_type) 1262 { 1263 int status; 1264 1265 long flags = (long) data[2]; 1266 1267 if (flags & 0x80) 1268 switch (flags & 0x07) { 1269 case 0: 1270 status = POWER_SUPPLY_STATUS_CHARGING; 1271 break; 1272 case 1: 1273 status = POWER_SUPPLY_STATUS_FULL; 1274 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1275 break; 1276 case 2: 1277 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1278 break; 1279 default: 1280 status = POWER_SUPPLY_STATUS_UNKNOWN; 1281 break; 1282 } 1283 else 1284 status = POWER_SUPPLY_STATUS_DISCHARGING; 1285 1286 *charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD; 1287 if (test_bit(3, &flags)) { 1288 *charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST; 1289 } 1290 if (test_bit(4, &flags)) { 1291 *charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; 1292 } 1293 if (test_bit(5, &flags)) { 1294 *level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1295 } 1296 1297 *voltage = get_unaligned_be16(data); 1298 1299 return status; 1300 } 1301 1302 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp, 1303 u8 feature_index, 1304 int *status, int *voltage, 1305 int *level, int *charge_type) 1306 { 1307 struct hidpp_report response; 1308 int ret; 1309 u8 *params = (u8 *)response.fap.params; 1310 1311 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1312 CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE, 1313 NULL, 0, &response); 1314 1315 if (ret > 0) { 1316 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1317 __func__, ret); 1318 return -EPROTO; 1319 } 1320 if (ret) 1321 return ret; 1322 1323 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE; 1324 1325 *status = hidpp20_battery_map_status_voltage(params, voltage, 1326 level, charge_type); 1327 1328 return 0; 1329 } 1330 1331 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp) 1332 { 1333 u8 feature_type; 1334 int ret; 1335 int status, voltage, level, charge_type; 1336 1337 if (hidpp->battery.voltage_feature_index == 0xff) { 1338 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE, 1339 &hidpp->battery.voltage_feature_index, 1340 &feature_type); 1341 if (ret) 1342 return ret; 1343 } 1344 1345 ret = hidpp20_battery_get_battery_voltage(hidpp, 1346 hidpp->battery.voltage_feature_index, 1347 &status, &voltage, &level, &charge_type); 1348 1349 if (ret) 1350 return ret; 1351 1352 hidpp->battery.status = status; 1353 hidpp->battery.voltage = voltage; 1354 hidpp->battery.level = level; 1355 hidpp->battery.charge_type = charge_type; 1356 hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING; 1357 1358 return 0; 1359 } 1360 1361 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp, 1362 u8 *data, int size) 1363 { 1364 struct hidpp_report *report = (struct hidpp_report *)data; 1365 int status, voltage, level, charge_type; 1366 1367 if (report->fap.feature_index != hidpp->battery.voltage_feature_index || 1368 report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST) 1369 return 0; 1370 1371 status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage, 1372 &level, &charge_type); 1373 1374 hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING; 1375 1376 if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) { 1377 hidpp->battery.voltage = voltage; 1378 hidpp->battery.status = status; 1379 hidpp->battery.level = level; 1380 hidpp->battery.charge_type = charge_type; 1381 if (hidpp->battery.ps) 1382 power_supply_changed(hidpp->battery.ps); 1383 } 1384 return 0; 1385 } 1386 1387 /* -------------------------------------------------------------------------- */ 1388 /* 0x1004: Unified battery */ 1389 /* -------------------------------------------------------------------------- */ 1390 1391 #define HIDPP_PAGE_UNIFIED_BATTERY 0x1004 1392 1393 #define CMD_UNIFIED_BATTERY_GET_CAPABILITIES 0x00 1394 #define CMD_UNIFIED_BATTERY_GET_STATUS 0x10 1395 1396 #define EVENT_UNIFIED_BATTERY_STATUS_EVENT 0x00 1397 1398 #define FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL BIT(0) 1399 #define FLAG_UNIFIED_BATTERY_LEVEL_LOW BIT(1) 1400 #define FLAG_UNIFIED_BATTERY_LEVEL_GOOD BIT(2) 1401 #define FLAG_UNIFIED_BATTERY_LEVEL_FULL BIT(3) 1402 1403 #define FLAG_UNIFIED_BATTERY_FLAGS_RECHARGEABLE BIT(0) 1404 #define FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE BIT(1) 1405 1406 static int hidpp20_unifiedbattery_get_capabilities(struct hidpp_device *hidpp, 1407 u8 feature_index) 1408 { 1409 struct hidpp_report response; 1410 int ret; 1411 u8 *params = (u8 *)response.fap.params; 1412 1413 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS || 1414 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) { 1415 /* we have already set the device capabilities, so let's skip */ 1416 return 0; 1417 } 1418 1419 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1420 CMD_UNIFIED_BATTERY_GET_CAPABILITIES, 1421 NULL, 0, &response); 1422 /* Ignore these intermittent errors */ 1423 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 1424 return -EIO; 1425 if (ret > 0) { 1426 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1427 __func__, ret); 1428 return -EPROTO; 1429 } 1430 if (ret) 1431 return ret; 1432 1433 /* 1434 * If the device supports state of charge (battery percentage) we won't 1435 * export the battery level information. there are 4 possible battery 1436 * levels and they all are optional, this means that the device might 1437 * not support any of them, we are just better off with the battery 1438 * percentage. 1439 */ 1440 if (params[1] & FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE) { 1441 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_PERCENTAGE; 1442 hidpp->battery.supported_levels_1004 = 0; 1443 } else { 1444 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 1445 hidpp->battery.supported_levels_1004 = params[0]; 1446 } 1447 1448 return 0; 1449 } 1450 1451 static int hidpp20_unifiedbattery_map_status(struct hidpp_device *hidpp, 1452 u8 charging_status, 1453 u8 external_power_status) 1454 { 1455 int status; 1456 1457 switch (charging_status) { 1458 case 0: /* discharging */ 1459 status = POWER_SUPPLY_STATUS_DISCHARGING; 1460 break; 1461 case 1: /* charging */ 1462 case 2: /* charging slow */ 1463 status = POWER_SUPPLY_STATUS_CHARGING; 1464 break; 1465 case 3: /* complete */ 1466 status = POWER_SUPPLY_STATUS_FULL; 1467 break; 1468 case 4: /* error */ 1469 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1470 hid_info(hidpp->hid_dev, "%s: charging error", 1471 hidpp->name); 1472 break; 1473 default: 1474 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1475 break; 1476 } 1477 1478 return status; 1479 } 1480 1481 static int hidpp20_unifiedbattery_map_level(struct hidpp_device *hidpp, 1482 u8 battery_level) 1483 { 1484 /* cler unsupported level bits */ 1485 battery_level &= hidpp->battery.supported_levels_1004; 1486 1487 if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_FULL) 1488 return POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1489 else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_GOOD) 1490 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 1491 else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_LOW) 1492 return POWER_SUPPLY_CAPACITY_LEVEL_LOW; 1493 else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL) 1494 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1495 1496 return POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 1497 } 1498 1499 static int hidpp20_unifiedbattery_get_status(struct hidpp_device *hidpp, 1500 u8 feature_index, 1501 u8 *state_of_charge, 1502 int *status, 1503 int *level) 1504 { 1505 struct hidpp_report response; 1506 int ret; 1507 u8 *params = (u8 *)response.fap.params; 1508 1509 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1510 CMD_UNIFIED_BATTERY_GET_STATUS, 1511 NULL, 0, &response); 1512 /* Ignore these intermittent errors */ 1513 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 1514 return -EIO; 1515 if (ret > 0) { 1516 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1517 __func__, ret); 1518 return -EPROTO; 1519 } 1520 if (ret) 1521 return ret; 1522 1523 *state_of_charge = params[0]; 1524 *status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]); 1525 *level = hidpp20_unifiedbattery_map_level(hidpp, params[1]); 1526 1527 return 0; 1528 } 1529 1530 static int hidpp20_query_battery_info_1004(struct hidpp_device *hidpp) 1531 { 1532 u8 feature_type; 1533 int ret; 1534 u8 state_of_charge; 1535 int status, level; 1536 1537 if (hidpp->battery.feature_index == 0xff) { 1538 ret = hidpp_root_get_feature(hidpp, 1539 HIDPP_PAGE_UNIFIED_BATTERY, 1540 &hidpp->battery.feature_index, 1541 &feature_type); 1542 if (ret) 1543 return ret; 1544 } 1545 1546 ret = hidpp20_unifiedbattery_get_capabilities(hidpp, 1547 hidpp->battery.feature_index); 1548 if (ret) 1549 return ret; 1550 1551 ret = hidpp20_unifiedbattery_get_status(hidpp, 1552 hidpp->battery.feature_index, 1553 &state_of_charge, 1554 &status, 1555 &level); 1556 if (ret) 1557 return ret; 1558 1559 hidpp->capabilities |= HIDPP_CAPABILITY_UNIFIED_BATTERY; 1560 hidpp->battery.capacity = state_of_charge; 1561 hidpp->battery.status = status; 1562 hidpp->battery.level = level; 1563 hidpp->battery.online = true; 1564 1565 return 0; 1566 } 1567 1568 static int hidpp20_battery_event_1004(struct hidpp_device *hidpp, 1569 u8 *data, int size) 1570 { 1571 struct hidpp_report *report = (struct hidpp_report *)data; 1572 u8 *params = (u8 *)report->fap.params; 1573 int state_of_charge, status, level; 1574 bool changed; 1575 1576 if (report->fap.feature_index != hidpp->battery.feature_index || 1577 report->fap.funcindex_clientid != EVENT_UNIFIED_BATTERY_STATUS_EVENT) 1578 return 0; 1579 1580 state_of_charge = params[0]; 1581 status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]); 1582 level = hidpp20_unifiedbattery_map_level(hidpp, params[1]); 1583 1584 changed = status != hidpp->battery.status || 1585 (state_of_charge != hidpp->battery.capacity && 1586 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) || 1587 (level != hidpp->battery.level && 1588 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS); 1589 1590 if (changed) { 1591 hidpp->battery.capacity = state_of_charge; 1592 hidpp->battery.status = status; 1593 hidpp->battery.level = level; 1594 if (hidpp->battery.ps) 1595 power_supply_changed(hidpp->battery.ps); 1596 } 1597 1598 return 0; 1599 } 1600 1601 /* -------------------------------------------------------------------------- */ 1602 /* Battery feature helpers */ 1603 /* -------------------------------------------------------------------------- */ 1604 1605 static enum power_supply_property hidpp_battery_props[] = { 1606 POWER_SUPPLY_PROP_ONLINE, 1607 POWER_SUPPLY_PROP_STATUS, 1608 POWER_SUPPLY_PROP_SCOPE, 1609 POWER_SUPPLY_PROP_MODEL_NAME, 1610 POWER_SUPPLY_PROP_MANUFACTURER, 1611 POWER_SUPPLY_PROP_SERIAL_NUMBER, 1612 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */ 1613 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */ 1614 0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */ 1615 }; 1616 1617 static int hidpp_battery_get_property(struct power_supply *psy, 1618 enum power_supply_property psp, 1619 union power_supply_propval *val) 1620 { 1621 struct hidpp_device *hidpp = power_supply_get_drvdata(psy); 1622 int ret = 0; 1623 1624 switch(psp) { 1625 case POWER_SUPPLY_PROP_STATUS: 1626 val->intval = hidpp->battery.status; 1627 break; 1628 case POWER_SUPPLY_PROP_CAPACITY: 1629 val->intval = hidpp->battery.capacity; 1630 break; 1631 case POWER_SUPPLY_PROP_CAPACITY_LEVEL: 1632 val->intval = hidpp->battery.level; 1633 break; 1634 case POWER_SUPPLY_PROP_SCOPE: 1635 val->intval = POWER_SUPPLY_SCOPE_DEVICE; 1636 break; 1637 case POWER_SUPPLY_PROP_ONLINE: 1638 val->intval = hidpp->battery.online; 1639 break; 1640 case POWER_SUPPLY_PROP_MODEL_NAME: 1641 if (!strncmp(hidpp->name, "Logitech ", 9)) 1642 val->strval = hidpp->name + 9; 1643 else 1644 val->strval = hidpp->name; 1645 break; 1646 case POWER_SUPPLY_PROP_MANUFACTURER: 1647 val->strval = "Logitech"; 1648 break; 1649 case POWER_SUPPLY_PROP_SERIAL_NUMBER: 1650 val->strval = hidpp->hid_dev->uniq; 1651 break; 1652 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 1653 /* hardware reports voltage in in mV. sysfs expects uV */ 1654 val->intval = hidpp->battery.voltage * 1000; 1655 break; 1656 case POWER_SUPPLY_PROP_CHARGE_TYPE: 1657 val->intval = hidpp->battery.charge_type; 1658 break; 1659 default: 1660 ret = -EINVAL; 1661 break; 1662 } 1663 1664 return ret; 1665 } 1666 1667 /* -------------------------------------------------------------------------- */ 1668 /* 0x1d4b: Wireless device status */ 1669 /* -------------------------------------------------------------------------- */ 1670 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS 0x1d4b 1671 1672 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp) 1673 { 1674 u8 feature_type; 1675 int ret; 1676 1677 ret = hidpp_root_get_feature(hidpp, 1678 HIDPP_PAGE_WIRELESS_DEVICE_STATUS, 1679 &hidpp->wireless_feature_index, 1680 &feature_type); 1681 1682 return ret; 1683 } 1684 1685 /* -------------------------------------------------------------------------- */ 1686 /* 0x2120: Hi-resolution scrolling */ 1687 /* -------------------------------------------------------------------------- */ 1688 1689 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING 0x2120 1690 1691 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE 0x10 1692 1693 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp, 1694 bool enabled, u8 *multiplier) 1695 { 1696 u8 feature_index; 1697 u8 feature_type; 1698 int ret; 1699 u8 params[1]; 1700 struct hidpp_report response; 1701 1702 ret = hidpp_root_get_feature(hidpp, 1703 HIDPP_PAGE_HI_RESOLUTION_SCROLLING, 1704 &feature_index, 1705 &feature_type); 1706 if (ret) 1707 return ret; 1708 1709 params[0] = enabled ? BIT(0) : 0; 1710 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1711 CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE, 1712 params, sizeof(params), &response); 1713 if (ret) 1714 return ret; 1715 *multiplier = response.fap.params[1]; 1716 return 0; 1717 } 1718 1719 /* -------------------------------------------------------------------------- */ 1720 /* 0x2121: HiRes Wheel */ 1721 /* -------------------------------------------------------------------------- */ 1722 1723 #define HIDPP_PAGE_HIRES_WHEEL 0x2121 1724 1725 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY 0x00 1726 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE 0x20 1727 1728 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp, 1729 u8 *multiplier) 1730 { 1731 u8 feature_index; 1732 u8 feature_type; 1733 int ret; 1734 struct hidpp_report response; 1735 1736 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1737 &feature_index, &feature_type); 1738 if (ret) 1739 goto return_default; 1740 1741 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1742 CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY, 1743 NULL, 0, &response); 1744 if (ret) 1745 goto return_default; 1746 1747 *multiplier = response.fap.params[0]; 1748 return 0; 1749 return_default: 1750 hid_warn(hidpp->hid_dev, 1751 "Couldn't get wheel multiplier (error %d)\n", ret); 1752 return ret; 1753 } 1754 1755 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert, 1756 bool high_resolution, bool use_hidpp) 1757 { 1758 u8 feature_index; 1759 u8 feature_type; 1760 int ret; 1761 u8 params[1]; 1762 struct hidpp_report response; 1763 1764 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1765 &feature_index, &feature_type); 1766 if (ret) 1767 return ret; 1768 1769 params[0] = (invert ? BIT(2) : 0) | 1770 (high_resolution ? BIT(1) : 0) | 1771 (use_hidpp ? BIT(0) : 0); 1772 1773 return hidpp_send_fap_command_sync(hidpp, feature_index, 1774 CMD_HIRES_WHEEL_SET_WHEEL_MODE, 1775 params, sizeof(params), &response); 1776 } 1777 1778 /* -------------------------------------------------------------------------- */ 1779 /* 0x4301: Solar Keyboard */ 1780 /* -------------------------------------------------------------------------- */ 1781 1782 #define HIDPP_PAGE_SOLAR_KEYBOARD 0x4301 1783 1784 #define CMD_SOLAR_SET_LIGHT_MEASURE 0x00 1785 1786 #define EVENT_SOLAR_BATTERY_BROADCAST 0x00 1787 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE 0x10 1788 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON 0x20 1789 1790 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp) 1791 { 1792 struct hidpp_report response; 1793 u8 params[2] = { 1, 1 }; 1794 u8 feature_type; 1795 int ret; 1796 1797 if (hidpp->battery.feature_index == 0xff) { 1798 ret = hidpp_root_get_feature(hidpp, 1799 HIDPP_PAGE_SOLAR_KEYBOARD, 1800 &hidpp->battery.solar_feature_index, 1801 &feature_type); 1802 if (ret) 1803 return ret; 1804 } 1805 1806 ret = hidpp_send_fap_command_sync(hidpp, 1807 hidpp->battery.solar_feature_index, 1808 CMD_SOLAR_SET_LIGHT_MEASURE, 1809 params, 2, &response); 1810 if (ret > 0) { 1811 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1812 __func__, ret); 1813 return -EPROTO; 1814 } 1815 if (ret) 1816 return ret; 1817 1818 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1819 1820 return 0; 1821 } 1822 1823 static int hidpp_solar_battery_event(struct hidpp_device *hidpp, 1824 u8 *data, int size) 1825 { 1826 struct hidpp_report *report = (struct hidpp_report *)data; 1827 int capacity, lux, status; 1828 u8 function; 1829 1830 function = report->fap.funcindex_clientid; 1831 1832 1833 if (report->fap.feature_index != hidpp->battery.solar_feature_index || 1834 !(function == EVENT_SOLAR_BATTERY_BROADCAST || 1835 function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE || 1836 function == EVENT_SOLAR_CHECK_LIGHT_BUTTON)) 1837 return 0; 1838 1839 capacity = report->fap.params[0]; 1840 1841 switch (function) { 1842 case EVENT_SOLAR_BATTERY_LIGHT_MEASURE: 1843 lux = (report->fap.params[1] << 8) | report->fap.params[2]; 1844 if (lux > 200) 1845 status = POWER_SUPPLY_STATUS_CHARGING; 1846 else 1847 status = POWER_SUPPLY_STATUS_DISCHARGING; 1848 break; 1849 case EVENT_SOLAR_CHECK_LIGHT_BUTTON: 1850 default: 1851 if (capacity < hidpp->battery.capacity) 1852 status = POWER_SUPPLY_STATUS_DISCHARGING; 1853 else 1854 status = POWER_SUPPLY_STATUS_CHARGING; 1855 1856 } 1857 1858 if (capacity == 100) 1859 status = POWER_SUPPLY_STATUS_FULL; 1860 1861 hidpp->battery.online = true; 1862 if (capacity != hidpp->battery.capacity || 1863 status != hidpp->battery.status) { 1864 hidpp->battery.capacity = capacity; 1865 hidpp->battery.status = status; 1866 if (hidpp->battery.ps) 1867 power_supply_changed(hidpp->battery.ps); 1868 } 1869 1870 return 0; 1871 } 1872 1873 /* -------------------------------------------------------------------------- */ 1874 /* 0x6010: Touchpad FW items */ 1875 /* -------------------------------------------------------------------------- */ 1876 1877 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS 0x6010 1878 1879 #define CMD_TOUCHPAD_FW_ITEMS_SET 0x10 1880 1881 struct hidpp_touchpad_fw_items { 1882 uint8_t presence; 1883 uint8_t desired_state; 1884 uint8_t state; 1885 uint8_t persistent; 1886 }; 1887 1888 /* 1889 * send a set state command to the device by reading the current items->state 1890 * field. items is then filled with the current state. 1891 */ 1892 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp, 1893 u8 feature_index, 1894 struct hidpp_touchpad_fw_items *items) 1895 { 1896 struct hidpp_report response; 1897 int ret; 1898 u8 *params = (u8 *)response.fap.params; 1899 1900 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1901 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response); 1902 1903 if (ret > 0) { 1904 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1905 __func__, ret); 1906 return -EPROTO; 1907 } 1908 if (ret) 1909 return ret; 1910 1911 items->presence = params[0]; 1912 items->desired_state = params[1]; 1913 items->state = params[2]; 1914 items->persistent = params[3]; 1915 1916 return 0; 1917 } 1918 1919 /* -------------------------------------------------------------------------- */ 1920 /* 0x6100: TouchPadRawXY */ 1921 /* -------------------------------------------------------------------------- */ 1922 1923 #define HIDPP_PAGE_TOUCHPAD_RAW_XY 0x6100 1924 1925 #define CMD_TOUCHPAD_GET_RAW_INFO 0x01 1926 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE 0x21 1927 1928 #define EVENT_TOUCHPAD_RAW_XY 0x00 1929 1930 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT 0x01 1931 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT 0x03 1932 1933 struct hidpp_touchpad_raw_info { 1934 u16 x_size; 1935 u16 y_size; 1936 u8 z_range; 1937 u8 area_range; 1938 u8 timestamp_unit; 1939 u8 maxcontacts; 1940 u8 origin; 1941 u16 res; 1942 }; 1943 1944 struct hidpp_touchpad_raw_xy_finger { 1945 u8 contact_type; 1946 u8 contact_status; 1947 u16 x; 1948 u16 y; 1949 u8 z; 1950 u8 area; 1951 u8 finger_id; 1952 }; 1953 1954 struct hidpp_touchpad_raw_xy { 1955 u16 timestamp; 1956 struct hidpp_touchpad_raw_xy_finger fingers[2]; 1957 u8 spurious_flag; 1958 u8 end_of_frame; 1959 u8 finger_count; 1960 u8 button; 1961 }; 1962 1963 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp, 1964 u8 feature_index, struct hidpp_touchpad_raw_info *raw_info) 1965 { 1966 struct hidpp_report response; 1967 int ret; 1968 u8 *params = (u8 *)response.fap.params; 1969 1970 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1971 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response); 1972 1973 if (ret > 0) { 1974 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1975 __func__, ret); 1976 return -EPROTO; 1977 } 1978 if (ret) 1979 return ret; 1980 1981 raw_info->x_size = get_unaligned_be16(¶ms[0]); 1982 raw_info->y_size = get_unaligned_be16(¶ms[2]); 1983 raw_info->z_range = params[4]; 1984 raw_info->area_range = params[5]; 1985 raw_info->maxcontacts = params[7]; 1986 raw_info->origin = params[8]; 1987 /* res is given in unit per inch */ 1988 raw_info->res = get_unaligned_be16(¶ms[13]) * 2 / 51; 1989 1990 return ret; 1991 } 1992 1993 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev, 1994 u8 feature_index, bool send_raw_reports, 1995 bool sensor_enhanced_settings) 1996 { 1997 struct hidpp_report response; 1998 1999 /* 2000 * Params: 2001 * bit 0 - enable raw 2002 * bit 1 - 16bit Z, no area 2003 * bit 2 - enhanced sensitivity 2004 * bit 3 - width, height (4 bits each) instead of area 2005 * bit 4 - send raw + gestures (degrades smoothness) 2006 * remaining bits - reserved 2007 */ 2008 u8 params = send_raw_reports | (sensor_enhanced_settings << 2); 2009 2010 return hidpp_send_fap_command_sync(hidpp_dev, feature_index, 2011 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, ¶ms, 1, &response); 2012 } 2013 2014 static void hidpp_touchpad_touch_event(u8 *data, 2015 struct hidpp_touchpad_raw_xy_finger *finger) 2016 { 2017 u8 x_m = data[0] << 2; 2018 u8 y_m = data[2] << 2; 2019 2020 finger->x = x_m << 6 | data[1]; 2021 finger->y = y_m << 6 | data[3]; 2022 2023 finger->contact_type = data[0] >> 6; 2024 finger->contact_status = data[2] >> 6; 2025 2026 finger->z = data[4]; 2027 finger->area = data[5]; 2028 finger->finger_id = data[6] >> 4; 2029 } 2030 2031 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev, 2032 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy) 2033 { 2034 memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy)); 2035 raw_xy->end_of_frame = data[8] & 0x01; 2036 raw_xy->spurious_flag = (data[8] >> 1) & 0x01; 2037 raw_xy->finger_count = data[15] & 0x0f; 2038 raw_xy->button = (data[8] >> 2) & 0x01; 2039 2040 if (raw_xy->finger_count) { 2041 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]); 2042 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]); 2043 } 2044 } 2045 2046 /* -------------------------------------------------------------------------- */ 2047 /* 0x8123: Force feedback support */ 2048 /* -------------------------------------------------------------------------- */ 2049 2050 #define HIDPP_FF_GET_INFO 0x01 2051 #define HIDPP_FF_RESET_ALL 0x11 2052 #define HIDPP_FF_DOWNLOAD_EFFECT 0x21 2053 #define HIDPP_FF_SET_EFFECT_STATE 0x31 2054 #define HIDPP_FF_DESTROY_EFFECT 0x41 2055 #define HIDPP_FF_GET_APERTURE 0x51 2056 #define HIDPP_FF_SET_APERTURE 0x61 2057 #define HIDPP_FF_GET_GLOBAL_GAINS 0x71 2058 #define HIDPP_FF_SET_GLOBAL_GAINS 0x81 2059 2060 #define HIDPP_FF_EFFECT_STATE_GET 0x00 2061 #define HIDPP_FF_EFFECT_STATE_STOP 0x01 2062 #define HIDPP_FF_EFFECT_STATE_PLAY 0x02 2063 #define HIDPP_FF_EFFECT_STATE_PAUSE 0x03 2064 2065 #define HIDPP_FF_EFFECT_CONSTANT 0x00 2066 #define HIDPP_FF_EFFECT_PERIODIC_SINE 0x01 2067 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE 0x02 2068 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE 0x03 2069 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP 0x04 2070 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN 0x05 2071 #define HIDPP_FF_EFFECT_SPRING 0x06 2072 #define HIDPP_FF_EFFECT_DAMPER 0x07 2073 #define HIDPP_FF_EFFECT_FRICTION 0x08 2074 #define HIDPP_FF_EFFECT_INERTIA 0x09 2075 #define HIDPP_FF_EFFECT_RAMP 0x0A 2076 2077 #define HIDPP_FF_EFFECT_AUTOSTART 0x80 2078 2079 #define HIDPP_FF_EFFECTID_NONE -1 2080 #define HIDPP_FF_EFFECTID_AUTOCENTER -2 2081 #define HIDPP_AUTOCENTER_PARAMS_LENGTH 18 2082 2083 #define HIDPP_FF_MAX_PARAMS 20 2084 #define HIDPP_FF_RESERVED_SLOTS 1 2085 2086 struct hidpp_ff_private_data { 2087 struct hidpp_device *hidpp; 2088 u8 feature_index; 2089 u8 version; 2090 u16 gain; 2091 s16 range; 2092 u8 slot_autocenter; 2093 u8 num_effects; 2094 int *effect_ids; 2095 struct workqueue_struct *wq; 2096 atomic_t workqueue_size; 2097 }; 2098 2099 struct hidpp_ff_work_data { 2100 struct work_struct work; 2101 struct hidpp_ff_private_data *data; 2102 int effect_id; 2103 u8 command; 2104 u8 params[HIDPP_FF_MAX_PARAMS]; 2105 u8 size; 2106 }; 2107 2108 static const signed short hidpp_ff_effects[] = { 2109 FF_CONSTANT, 2110 FF_PERIODIC, 2111 FF_SINE, 2112 FF_SQUARE, 2113 FF_SAW_UP, 2114 FF_SAW_DOWN, 2115 FF_TRIANGLE, 2116 FF_SPRING, 2117 FF_DAMPER, 2118 FF_AUTOCENTER, 2119 FF_GAIN, 2120 -1 2121 }; 2122 2123 static const signed short hidpp_ff_effects_v2[] = { 2124 FF_RAMP, 2125 FF_FRICTION, 2126 FF_INERTIA, 2127 -1 2128 }; 2129 2130 static const u8 HIDPP_FF_CONDITION_CMDS[] = { 2131 HIDPP_FF_EFFECT_SPRING, 2132 HIDPP_FF_EFFECT_FRICTION, 2133 HIDPP_FF_EFFECT_DAMPER, 2134 HIDPP_FF_EFFECT_INERTIA 2135 }; 2136 2137 static const char *HIDPP_FF_CONDITION_NAMES[] = { 2138 "spring", 2139 "friction", 2140 "damper", 2141 "inertia" 2142 }; 2143 2144 2145 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id) 2146 { 2147 int i; 2148 2149 for (i = 0; i < data->num_effects; i++) 2150 if (data->effect_ids[i] == effect_id) 2151 return i+1; 2152 2153 return 0; 2154 } 2155 2156 static void hidpp_ff_work_handler(struct work_struct *w) 2157 { 2158 struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work); 2159 struct hidpp_ff_private_data *data = wd->data; 2160 struct hidpp_report response; 2161 u8 slot; 2162 int ret; 2163 2164 /* add slot number if needed */ 2165 switch (wd->effect_id) { 2166 case HIDPP_FF_EFFECTID_AUTOCENTER: 2167 wd->params[0] = data->slot_autocenter; 2168 break; 2169 case HIDPP_FF_EFFECTID_NONE: 2170 /* leave slot as zero */ 2171 break; 2172 default: 2173 /* find current slot for effect */ 2174 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id); 2175 break; 2176 } 2177 2178 /* send command and wait for reply */ 2179 ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index, 2180 wd->command, wd->params, wd->size, &response); 2181 2182 if (ret) { 2183 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n"); 2184 goto out; 2185 } 2186 2187 /* parse return data */ 2188 switch (wd->command) { 2189 case HIDPP_FF_DOWNLOAD_EFFECT: 2190 slot = response.fap.params[0]; 2191 if (slot > 0 && slot <= data->num_effects) { 2192 if (wd->effect_id >= 0) 2193 /* regular effect uploaded */ 2194 data->effect_ids[slot-1] = wd->effect_id; 2195 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 2196 /* autocenter spring uploaded */ 2197 data->slot_autocenter = slot; 2198 } 2199 break; 2200 case HIDPP_FF_DESTROY_EFFECT: 2201 if (wd->effect_id >= 0) 2202 /* regular effect destroyed */ 2203 data->effect_ids[wd->params[0]-1] = -1; 2204 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 2205 /* autocenter spring destoyed */ 2206 data->slot_autocenter = 0; 2207 break; 2208 case HIDPP_FF_SET_GLOBAL_GAINS: 2209 data->gain = (wd->params[0] << 8) + wd->params[1]; 2210 break; 2211 case HIDPP_FF_SET_APERTURE: 2212 data->range = (wd->params[0] << 8) + wd->params[1]; 2213 break; 2214 default: 2215 /* no action needed */ 2216 break; 2217 } 2218 2219 out: 2220 atomic_dec(&data->workqueue_size); 2221 kfree(wd); 2222 } 2223 2224 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size) 2225 { 2226 struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL); 2227 int s; 2228 2229 if (!wd) 2230 return -ENOMEM; 2231 2232 INIT_WORK(&wd->work, hidpp_ff_work_handler); 2233 2234 wd->data = data; 2235 wd->effect_id = effect_id; 2236 wd->command = command; 2237 wd->size = size; 2238 memcpy(wd->params, params, size); 2239 2240 atomic_inc(&data->workqueue_size); 2241 queue_work(data->wq, &wd->work); 2242 2243 /* warn about excessive queue size */ 2244 s = atomic_read(&data->workqueue_size); 2245 if (s >= 20 && s % 20 == 0) 2246 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s); 2247 2248 return 0; 2249 } 2250 2251 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old) 2252 { 2253 struct hidpp_ff_private_data *data = dev->ff->private; 2254 u8 params[20]; 2255 u8 size; 2256 int force; 2257 2258 /* set common parameters */ 2259 params[2] = effect->replay.length >> 8; 2260 params[3] = effect->replay.length & 255; 2261 params[4] = effect->replay.delay >> 8; 2262 params[5] = effect->replay.delay & 255; 2263 2264 switch (effect->type) { 2265 case FF_CONSTANT: 2266 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2267 params[1] = HIDPP_FF_EFFECT_CONSTANT; 2268 params[6] = force >> 8; 2269 params[7] = force & 255; 2270 params[8] = effect->u.constant.envelope.attack_level >> 7; 2271 params[9] = effect->u.constant.envelope.attack_length >> 8; 2272 params[10] = effect->u.constant.envelope.attack_length & 255; 2273 params[11] = effect->u.constant.envelope.fade_level >> 7; 2274 params[12] = effect->u.constant.envelope.fade_length >> 8; 2275 params[13] = effect->u.constant.envelope.fade_length & 255; 2276 size = 14; 2277 dbg_hid("Uploading constant force level=%d in dir %d = %d\n", 2278 effect->u.constant.level, 2279 effect->direction, force); 2280 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2281 effect->u.constant.envelope.attack_level, 2282 effect->u.constant.envelope.attack_length, 2283 effect->u.constant.envelope.fade_level, 2284 effect->u.constant.envelope.fade_length); 2285 break; 2286 case FF_PERIODIC: 2287 { 2288 switch (effect->u.periodic.waveform) { 2289 case FF_SINE: 2290 params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE; 2291 break; 2292 case FF_SQUARE: 2293 params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE; 2294 break; 2295 case FF_SAW_UP: 2296 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP; 2297 break; 2298 case FF_SAW_DOWN: 2299 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN; 2300 break; 2301 case FF_TRIANGLE: 2302 params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE; 2303 break; 2304 default: 2305 hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform); 2306 return -EINVAL; 2307 } 2308 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2309 params[6] = effect->u.periodic.magnitude >> 8; 2310 params[7] = effect->u.periodic.magnitude & 255; 2311 params[8] = effect->u.periodic.offset >> 8; 2312 params[9] = effect->u.periodic.offset & 255; 2313 params[10] = effect->u.periodic.period >> 8; 2314 params[11] = effect->u.periodic.period & 255; 2315 params[12] = effect->u.periodic.phase >> 8; 2316 params[13] = effect->u.periodic.phase & 255; 2317 params[14] = effect->u.periodic.envelope.attack_level >> 7; 2318 params[15] = effect->u.periodic.envelope.attack_length >> 8; 2319 params[16] = effect->u.periodic.envelope.attack_length & 255; 2320 params[17] = effect->u.periodic.envelope.fade_level >> 7; 2321 params[18] = effect->u.periodic.envelope.fade_length >> 8; 2322 params[19] = effect->u.periodic.envelope.fade_length & 255; 2323 size = 20; 2324 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n", 2325 effect->u.periodic.magnitude, effect->direction, 2326 effect->u.periodic.offset, 2327 effect->u.periodic.period, 2328 effect->u.periodic.phase); 2329 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2330 effect->u.periodic.envelope.attack_level, 2331 effect->u.periodic.envelope.attack_length, 2332 effect->u.periodic.envelope.fade_level, 2333 effect->u.periodic.envelope.fade_length); 2334 break; 2335 } 2336 case FF_RAMP: 2337 params[1] = HIDPP_FF_EFFECT_RAMP; 2338 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2339 params[6] = force >> 8; 2340 params[7] = force & 255; 2341 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2342 params[8] = force >> 8; 2343 params[9] = force & 255; 2344 params[10] = effect->u.ramp.envelope.attack_level >> 7; 2345 params[11] = effect->u.ramp.envelope.attack_length >> 8; 2346 params[12] = effect->u.ramp.envelope.attack_length & 255; 2347 params[13] = effect->u.ramp.envelope.fade_level >> 7; 2348 params[14] = effect->u.ramp.envelope.fade_length >> 8; 2349 params[15] = effect->u.ramp.envelope.fade_length & 255; 2350 size = 16; 2351 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n", 2352 effect->u.ramp.start_level, 2353 effect->u.ramp.end_level, 2354 effect->direction, force); 2355 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2356 effect->u.ramp.envelope.attack_level, 2357 effect->u.ramp.envelope.attack_length, 2358 effect->u.ramp.envelope.fade_level, 2359 effect->u.ramp.envelope.fade_length); 2360 break; 2361 case FF_FRICTION: 2362 case FF_INERTIA: 2363 case FF_SPRING: 2364 case FF_DAMPER: 2365 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING]; 2366 params[6] = effect->u.condition[0].left_saturation >> 9; 2367 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255; 2368 params[8] = effect->u.condition[0].left_coeff >> 8; 2369 params[9] = effect->u.condition[0].left_coeff & 255; 2370 params[10] = effect->u.condition[0].deadband >> 9; 2371 params[11] = (effect->u.condition[0].deadband >> 1) & 255; 2372 params[12] = effect->u.condition[0].center >> 8; 2373 params[13] = effect->u.condition[0].center & 255; 2374 params[14] = effect->u.condition[0].right_coeff >> 8; 2375 params[15] = effect->u.condition[0].right_coeff & 255; 2376 params[16] = effect->u.condition[0].right_saturation >> 9; 2377 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255; 2378 size = 18; 2379 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n", 2380 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING], 2381 effect->u.condition[0].left_coeff, 2382 effect->u.condition[0].left_saturation, 2383 effect->u.condition[0].right_coeff, 2384 effect->u.condition[0].right_saturation); 2385 dbg_hid(" deadband=%d, center=%d\n", 2386 effect->u.condition[0].deadband, 2387 effect->u.condition[0].center); 2388 break; 2389 default: 2390 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type); 2391 return -EINVAL; 2392 } 2393 2394 return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size); 2395 } 2396 2397 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value) 2398 { 2399 struct hidpp_ff_private_data *data = dev->ff->private; 2400 u8 params[2]; 2401 2402 params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP; 2403 2404 dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id); 2405 2406 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params)); 2407 } 2408 2409 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id) 2410 { 2411 struct hidpp_ff_private_data *data = dev->ff->private; 2412 u8 slot = 0; 2413 2414 dbg_hid("Erasing effect %d.\n", effect_id); 2415 2416 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1); 2417 } 2418 2419 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude) 2420 { 2421 struct hidpp_ff_private_data *data = dev->ff->private; 2422 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH]; 2423 2424 dbg_hid("Setting autocenter to %d.\n", magnitude); 2425 2426 /* start a standard spring effect */ 2427 params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART; 2428 /* zero delay and duration */ 2429 params[2] = params[3] = params[4] = params[5] = 0; 2430 /* set coeff to 25% of saturation */ 2431 params[8] = params[14] = magnitude >> 11; 2432 params[9] = params[15] = (magnitude >> 3) & 255; 2433 params[6] = params[16] = magnitude >> 9; 2434 params[7] = params[17] = (magnitude >> 1) & 255; 2435 /* zero deadband and center */ 2436 params[10] = params[11] = params[12] = params[13] = 0; 2437 2438 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params)); 2439 } 2440 2441 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain) 2442 { 2443 struct hidpp_ff_private_data *data = dev->ff->private; 2444 u8 params[4]; 2445 2446 dbg_hid("Setting gain to %d.\n", gain); 2447 2448 params[0] = gain >> 8; 2449 params[1] = gain & 255; 2450 params[2] = 0; /* no boost */ 2451 params[3] = 0; 2452 2453 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params)); 2454 } 2455 2456 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf) 2457 { 2458 struct hid_device *hid = to_hid_device(dev); 2459 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2460 struct input_dev *idev = hidinput->input; 2461 struct hidpp_ff_private_data *data = idev->ff->private; 2462 2463 return scnprintf(buf, PAGE_SIZE, "%u\n", data->range); 2464 } 2465 2466 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) 2467 { 2468 struct hid_device *hid = to_hid_device(dev); 2469 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2470 struct input_dev *idev = hidinput->input; 2471 struct hidpp_ff_private_data *data = idev->ff->private; 2472 u8 params[2]; 2473 int range = simple_strtoul(buf, NULL, 10); 2474 2475 range = clamp(range, 180, 900); 2476 2477 params[0] = range >> 8; 2478 params[1] = range & 0x00FF; 2479 2480 hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params)); 2481 2482 return count; 2483 } 2484 2485 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store); 2486 2487 static void hidpp_ff_destroy(struct ff_device *ff) 2488 { 2489 struct hidpp_ff_private_data *data = ff->private; 2490 struct hid_device *hid = data->hidpp->hid_dev; 2491 2492 hid_info(hid, "Unloading HID++ force feedback.\n"); 2493 2494 device_remove_file(&hid->dev, &dev_attr_range); 2495 destroy_workqueue(data->wq); 2496 kfree(data->effect_ids); 2497 } 2498 2499 static int hidpp_ff_init(struct hidpp_device *hidpp, 2500 struct hidpp_ff_private_data *data) 2501 { 2502 struct hid_device *hid = hidpp->hid_dev; 2503 struct hid_input *hidinput; 2504 struct input_dev *dev; 2505 const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor); 2506 const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice); 2507 struct ff_device *ff; 2508 int error, j, num_slots = data->num_effects; 2509 u8 version; 2510 2511 if (list_empty(&hid->inputs)) { 2512 hid_err(hid, "no inputs found\n"); 2513 return -ENODEV; 2514 } 2515 hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2516 dev = hidinput->input; 2517 2518 if (!dev) { 2519 hid_err(hid, "Struct input_dev not set!\n"); 2520 return -EINVAL; 2521 } 2522 2523 /* Get firmware release */ 2524 version = bcdDevice & 255; 2525 2526 /* Set supported force feedback capabilities */ 2527 for (j = 0; hidpp_ff_effects[j] >= 0; j++) 2528 set_bit(hidpp_ff_effects[j], dev->ffbit); 2529 if (version > 1) 2530 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++) 2531 set_bit(hidpp_ff_effects_v2[j], dev->ffbit); 2532 2533 error = input_ff_create(dev, num_slots); 2534 2535 if (error) { 2536 hid_err(dev, "Failed to create FF device!\n"); 2537 return error; 2538 } 2539 /* 2540 * Create a copy of passed data, so we can transfer memory 2541 * ownership to FF core 2542 */ 2543 data = kmemdup(data, sizeof(*data), GFP_KERNEL); 2544 if (!data) 2545 return -ENOMEM; 2546 data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL); 2547 if (!data->effect_ids) { 2548 kfree(data); 2549 return -ENOMEM; 2550 } 2551 data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue"); 2552 if (!data->wq) { 2553 kfree(data->effect_ids); 2554 kfree(data); 2555 return -ENOMEM; 2556 } 2557 2558 data->hidpp = hidpp; 2559 data->version = version; 2560 for (j = 0; j < num_slots; j++) 2561 data->effect_ids[j] = -1; 2562 2563 ff = dev->ff; 2564 ff->private = data; 2565 2566 ff->upload = hidpp_ff_upload_effect; 2567 ff->erase = hidpp_ff_erase_effect; 2568 ff->playback = hidpp_ff_playback; 2569 ff->set_gain = hidpp_ff_set_gain; 2570 ff->set_autocenter = hidpp_ff_set_autocenter; 2571 ff->destroy = hidpp_ff_destroy; 2572 2573 /* Create sysfs interface */ 2574 error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range); 2575 if (error) 2576 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error); 2577 2578 /* init the hardware command queue */ 2579 atomic_set(&data->workqueue_size, 0); 2580 2581 hid_info(hid, "Force feedback support loaded (firmware release %d).\n", 2582 version); 2583 2584 return 0; 2585 } 2586 2587 /* ************************************************************************** */ 2588 /* */ 2589 /* Device Support */ 2590 /* */ 2591 /* ************************************************************************** */ 2592 2593 /* -------------------------------------------------------------------------- */ 2594 /* Touchpad HID++ devices */ 2595 /* -------------------------------------------------------------------------- */ 2596 2597 #define WTP_MANUAL_RESOLUTION 39 2598 2599 struct wtp_data { 2600 u16 x_size, y_size; 2601 u8 finger_count; 2602 u8 mt_feature_index; 2603 u8 button_feature_index; 2604 u8 maxcontacts; 2605 bool flip_y; 2606 unsigned int resolution; 2607 }; 2608 2609 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2610 struct hid_field *field, struct hid_usage *usage, 2611 unsigned long **bit, int *max) 2612 { 2613 return -1; 2614 } 2615 2616 static void wtp_populate_input(struct hidpp_device *hidpp, 2617 struct input_dev *input_dev) 2618 { 2619 struct wtp_data *wd = hidpp->private_data; 2620 2621 __set_bit(EV_ABS, input_dev->evbit); 2622 __set_bit(EV_KEY, input_dev->evbit); 2623 __clear_bit(EV_REL, input_dev->evbit); 2624 __clear_bit(EV_LED, input_dev->evbit); 2625 2626 input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0); 2627 input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution); 2628 input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0); 2629 input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution); 2630 2631 /* Max pressure is not given by the devices, pick one */ 2632 input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0); 2633 2634 input_set_capability(input_dev, EV_KEY, BTN_LEFT); 2635 2636 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) 2637 input_set_capability(input_dev, EV_KEY, BTN_RIGHT); 2638 else 2639 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit); 2640 2641 input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER | 2642 INPUT_MT_DROP_UNUSED); 2643 } 2644 2645 static void wtp_touch_event(struct hidpp_device *hidpp, 2646 struct hidpp_touchpad_raw_xy_finger *touch_report) 2647 { 2648 struct wtp_data *wd = hidpp->private_data; 2649 int slot; 2650 2651 if (!touch_report->finger_id || touch_report->contact_type) 2652 /* no actual data */ 2653 return; 2654 2655 slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id); 2656 2657 input_mt_slot(hidpp->input, slot); 2658 input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER, 2659 touch_report->contact_status); 2660 if (touch_report->contact_status) { 2661 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X, 2662 touch_report->x); 2663 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y, 2664 wd->flip_y ? wd->y_size - touch_report->y : 2665 touch_report->y); 2666 input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE, 2667 touch_report->area); 2668 } 2669 } 2670 2671 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp, 2672 struct hidpp_touchpad_raw_xy *raw) 2673 { 2674 int i; 2675 2676 for (i = 0; i < 2; i++) 2677 wtp_touch_event(hidpp, &(raw->fingers[i])); 2678 2679 if (raw->end_of_frame && 2680 !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)) 2681 input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button); 2682 2683 if (raw->end_of_frame || raw->finger_count <= 2) { 2684 input_mt_sync_frame(hidpp->input); 2685 input_sync(hidpp->input); 2686 } 2687 } 2688 2689 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data) 2690 { 2691 struct wtp_data *wd = hidpp->private_data; 2692 u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) + 2693 (data[7] >> 4) * (data[7] >> 4)) / 2; 2694 u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) + 2695 (data[13] >> 4) * (data[13] >> 4)) / 2; 2696 struct hidpp_touchpad_raw_xy raw = { 2697 .timestamp = data[1], 2698 .fingers = { 2699 { 2700 .contact_type = 0, 2701 .contact_status = !!data[7], 2702 .x = get_unaligned_le16(&data[3]), 2703 .y = get_unaligned_le16(&data[5]), 2704 .z = c1_area, 2705 .area = c1_area, 2706 .finger_id = data[2], 2707 }, { 2708 .contact_type = 0, 2709 .contact_status = !!data[13], 2710 .x = get_unaligned_le16(&data[9]), 2711 .y = get_unaligned_le16(&data[11]), 2712 .z = c2_area, 2713 .area = c2_area, 2714 .finger_id = data[8], 2715 } 2716 }, 2717 .finger_count = wd->maxcontacts, 2718 .spurious_flag = 0, 2719 .end_of_frame = (data[0] >> 7) == 0, 2720 .button = data[0] & 0x01, 2721 }; 2722 2723 wtp_send_raw_xy_event(hidpp, &raw); 2724 2725 return 1; 2726 } 2727 2728 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size) 2729 { 2730 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2731 struct wtp_data *wd = hidpp->private_data; 2732 struct hidpp_report *report = (struct hidpp_report *)data; 2733 struct hidpp_touchpad_raw_xy raw; 2734 2735 if (!wd || !hidpp->input) 2736 return 1; 2737 2738 switch (data[0]) { 2739 case 0x02: 2740 if (size < 2) { 2741 hid_err(hdev, "Received HID report of bad size (%d)", 2742 size); 2743 return 1; 2744 } 2745 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) { 2746 input_event(hidpp->input, EV_KEY, BTN_LEFT, 2747 !!(data[1] & 0x01)); 2748 input_event(hidpp->input, EV_KEY, BTN_RIGHT, 2749 !!(data[1] & 0x02)); 2750 input_sync(hidpp->input); 2751 return 0; 2752 } else { 2753 if (size < 21) 2754 return 1; 2755 return wtp_mouse_raw_xy_event(hidpp, &data[7]); 2756 } 2757 case REPORT_ID_HIDPP_LONG: 2758 /* size is already checked in hidpp_raw_event. */ 2759 if ((report->fap.feature_index != wd->mt_feature_index) || 2760 (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY)) 2761 return 1; 2762 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw); 2763 2764 wtp_send_raw_xy_event(hidpp, &raw); 2765 return 0; 2766 } 2767 2768 return 0; 2769 } 2770 2771 static int wtp_get_config(struct hidpp_device *hidpp) 2772 { 2773 struct wtp_data *wd = hidpp->private_data; 2774 struct hidpp_touchpad_raw_info raw_info = {0}; 2775 u8 feature_type; 2776 int ret; 2777 2778 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY, 2779 &wd->mt_feature_index, &feature_type); 2780 if (ret) 2781 /* means that the device is not powered up */ 2782 return ret; 2783 2784 ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index, 2785 &raw_info); 2786 if (ret) 2787 return ret; 2788 2789 wd->x_size = raw_info.x_size; 2790 wd->y_size = raw_info.y_size; 2791 wd->maxcontacts = raw_info.maxcontacts; 2792 wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT; 2793 wd->resolution = raw_info.res; 2794 if (!wd->resolution) 2795 wd->resolution = WTP_MANUAL_RESOLUTION; 2796 2797 return 0; 2798 } 2799 2800 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id) 2801 { 2802 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2803 struct wtp_data *wd; 2804 2805 wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data), 2806 GFP_KERNEL); 2807 if (!wd) 2808 return -ENOMEM; 2809 2810 hidpp->private_data = wd; 2811 2812 return 0; 2813 }; 2814 2815 static int wtp_connect(struct hid_device *hdev, bool connected) 2816 { 2817 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2818 struct wtp_data *wd = hidpp->private_data; 2819 int ret; 2820 2821 if (!wd->x_size) { 2822 ret = wtp_get_config(hidpp); 2823 if (ret) { 2824 hid_err(hdev, "Can not get wtp config: %d\n", ret); 2825 return ret; 2826 } 2827 } 2828 2829 return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index, 2830 true, true); 2831 } 2832 2833 /* ------------------------------------------------------------------------- */ 2834 /* Logitech M560 devices */ 2835 /* ------------------------------------------------------------------------- */ 2836 2837 /* 2838 * Logitech M560 protocol overview 2839 * 2840 * The Logitech M560 mouse, is designed for windows 8. When the middle and/or 2841 * the sides buttons are pressed, it sends some keyboard keys events 2842 * instead of buttons ones. 2843 * To complicate things further, the middle button keys sequence 2844 * is different from the odd press and the even press. 2845 * 2846 * forward button -> Super_R 2847 * backward button -> Super_L+'d' (press only) 2848 * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only) 2849 * 2nd time: left-click (press only) 2850 * NB: press-only means that when the button is pressed, the 2851 * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated 2852 * together sequentially; instead when the button is released, no event is 2853 * generated ! 2854 * 2855 * With the command 2856 * 10<xx>0a 3500af03 (where <xx> is the mouse id), 2857 * the mouse reacts differently: 2858 * - it never sends a keyboard key event 2859 * - for the three mouse button it sends: 2860 * middle button press 11<xx>0a 3500af00... 2861 * side 1 button (forward) press 11<xx>0a 3500b000... 2862 * side 2 button (backward) press 11<xx>0a 3500ae00... 2863 * middle/side1/side2 button release 11<xx>0a 35000000... 2864 */ 2865 2866 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03}; 2867 2868 /* how buttons are mapped in the report */ 2869 #define M560_MOUSE_BTN_LEFT 0x01 2870 #define M560_MOUSE_BTN_RIGHT 0x02 2871 #define M560_MOUSE_BTN_WHEEL_LEFT 0x08 2872 #define M560_MOUSE_BTN_WHEEL_RIGHT 0x10 2873 2874 #define M560_SUB_ID 0x0a 2875 #define M560_BUTTON_MODE_REGISTER 0x35 2876 2877 static int m560_send_config_command(struct hid_device *hdev, bool connected) 2878 { 2879 struct hidpp_report response; 2880 struct hidpp_device *hidpp_dev; 2881 2882 hidpp_dev = hid_get_drvdata(hdev); 2883 2884 return hidpp_send_rap_command_sync( 2885 hidpp_dev, 2886 REPORT_ID_HIDPP_SHORT, 2887 M560_SUB_ID, 2888 M560_BUTTON_MODE_REGISTER, 2889 (u8 *)m560_config_parameter, 2890 sizeof(m560_config_parameter), 2891 &response 2892 ); 2893 } 2894 2895 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size) 2896 { 2897 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2898 2899 /* sanity check */ 2900 if (!hidpp->input) { 2901 hid_err(hdev, "error in parameter\n"); 2902 return -EINVAL; 2903 } 2904 2905 if (size < 7) { 2906 hid_err(hdev, "error in report\n"); 2907 return 0; 2908 } 2909 2910 if (data[0] == REPORT_ID_HIDPP_LONG && 2911 data[2] == M560_SUB_ID && data[6] == 0x00) { 2912 /* 2913 * m560 mouse report for middle, forward and backward button 2914 * 2915 * data[0] = 0x11 2916 * data[1] = device-id 2917 * data[2] = 0x0a 2918 * data[5] = 0xaf -> middle 2919 * 0xb0 -> forward 2920 * 0xae -> backward 2921 * 0x00 -> release all 2922 * data[6] = 0x00 2923 */ 2924 2925 switch (data[5]) { 2926 case 0xaf: 2927 input_report_key(hidpp->input, BTN_MIDDLE, 1); 2928 break; 2929 case 0xb0: 2930 input_report_key(hidpp->input, BTN_FORWARD, 1); 2931 break; 2932 case 0xae: 2933 input_report_key(hidpp->input, BTN_BACK, 1); 2934 break; 2935 case 0x00: 2936 input_report_key(hidpp->input, BTN_BACK, 0); 2937 input_report_key(hidpp->input, BTN_FORWARD, 0); 2938 input_report_key(hidpp->input, BTN_MIDDLE, 0); 2939 break; 2940 default: 2941 hid_err(hdev, "error in report\n"); 2942 return 0; 2943 } 2944 input_sync(hidpp->input); 2945 2946 } else if (data[0] == 0x02) { 2947 /* 2948 * Logitech M560 mouse report 2949 * 2950 * data[0] = type (0x02) 2951 * data[1..2] = buttons 2952 * data[3..5] = xy 2953 * data[6] = wheel 2954 */ 2955 2956 int v; 2957 2958 input_report_key(hidpp->input, BTN_LEFT, 2959 !!(data[1] & M560_MOUSE_BTN_LEFT)); 2960 input_report_key(hidpp->input, BTN_RIGHT, 2961 !!(data[1] & M560_MOUSE_BTN_RIGHT)); 2962 2963 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) { 2964 input_report_rel(hidpp->input, REL_HWHEEL, -1); 2965 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, 2966 -120); 2967 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) { 2968 input_report_rel(hidpp->input, REL_HWHEEL, 1); 2969 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, 2970 120); 2971 } 2972 2973 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12); 2974 input_report_rel(hidpp->input, REL_X, v); 2975 2976 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12); 2977 input_report_rel(hidpp->input, REL_Y, v); 2978 2979 v = hid_snto32(data[6], 8); 2980 if (v != 0) 2981 hidpp_scroll_counter_handle_scroll(hidpp->input, 2982 &hidpp->vertical_wheel_counter, v); 2983 2984 input_sync(hidpp->input); 2985 } 2986 2987 return 1; 2988 } 2989 2990 static void m560_populate_input(struct hidpp_device *hidpp, 2991 struct input_dev *input_dev) 2992 { 2993 __set_bit(EV_KEY, input_dev->evbit); 2994 __set_bit(BTN_MIDDLE, input_dev->keybit); 2995 __set_bit(BTN_RIGHT, input_dev->keybit); 2996 __set_bit(BTN_LEFT, input_dev->keybit); 2997 __set_bit(BTN_BACK, input_dev->keybit); 2998 __set_bit(BTN_FORWARD, input_dev->keybit); 2999 3000 __set_bit(EV_REL, input_dev->evbit); 3001 __set_bit(REL_X, input_dev->relbit); 3002 __set_bit(REL_Y, input_dev->relbit); 3003 __set_bit(REL_WHEEL, input_dev->relbit); 3004 __set_bit(REL_HWHEEL, input_dev->relbit); 3005 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit); 3006 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit); 3007 } 3008 3009 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi, 3010 struct hid_field *field, struct hid_usage *usage, 3011 unsigned long **bit, int *max) 3012 { 3013 return -1; 3014 } 3015 3016 /* ------------------------------------------------------------------------- */ 3017 /* Logitech K400 devices */ 3018 /* ------------------------------------------------------------------------- */ 3019 3020 /* 3021 * The Logitech K400 keyboard has an embedded touchpad which is seen 3022 * as a mouse from the OS point of view. There is a hardware shortcut to disable 3023 * tap-to-click but the setting is not remembered accross reset, annoying some 3024 * users. 3025 * 3026 * We can toggle this feature from the host by using the feature 0x6010: 3027 * Touchpad FW items 3028 */ 3029 3030 struct k400_private_data { 3031 u8 feature_index; 3032 }; 3033 3034 static int k400_disable_tap_to_click(struct hidpp_device *hidpp) 3035 { 3036 struct k400_private_data *k400 = hidpp->private_data; 3037 struct hidpp_touchpad_fw_items items = {}; 3038 int ret; 3039 u8 feature_type; 3040 3041 if (!k400->feature_index) { 3042 ret = hidpp_root_get_feature(hidpp, 3043 HIDPP_PAGE_TOUCHPAD_FW_ITEMS, 3044 &k400->feature_index, &feature_type); 3045 if (ret) 3046 /* means that the device is not powered up */ 3047 return ret; 3048 } 3049 3050 ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items); 3051 if (ret) 3052 return ret; 3053 3054 return 0; 3055 } 3056 3057 static int k400_allocate(struct hid_device *hdev) 3058 { 3059 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3060 struct k400_private_data *k400; 3061 3062 k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data), 3063 GFP_KERNEL); 3064 if (!k400) 3065 return -ENOMEM; 3066 3067 hidpp->private_data = k400; 3068 3069 return 0; 3070 }; 3071 3072 static int k400_connect(struct hid_device *hdev, bool connected) 3073 { 3074 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3075 3076 if (!disable_tap_to_click) 3077 return 0; 3078 3079 return k400_disable_tap_to_click(hidpp); 3080 } 3081 3082 /* ------------------------------------------------------------------------- */ 3083 /* Logitech G920 Driving Force Racing Wheel for Xbox One */ 3084 /* ------------------------------------------------------------------------- */ 3085 3086 #define HIDPP_PAGE_G920_FORCE_FEEDBACK 0x8123 3087 3088 static int g920_ff_set_autocenter(struct hidpp_device *hidpp, 3089 struct hidpp_ff_private_data *data) 3090 { 3091 struct hidpp_report response; 3092 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = { 3093 [1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART, 3094 }; 3095 int ret; 3096 3097 /* initialize with zero autocenter to get wheel in usable state */ 3098 3099 dbg_hid("Setting autocenter to 0.\n"); 3100 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3101 HIDPP_FF_DOWNLOAD_EFFECT, 3102 params, ARRAY_SIZE(params), 3103 &response); 3104 if (ret) 3105 hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n"); 3106 else 3107 data->slot_autocenter = response.fap.params[0]; 3108 3109 return ret; 3110 } 3111 3112 static int g920_get_config(struct hidpp_device *hidpp, 3113 struct hidpp_ff_private_data *data) 3114 { 3115 struct hidpp_report response; 3116 u8 feature_type; 3117 int ret; 3118 3119 memset(data, 0, sizeof(*data)); 3120 3121 /* Find feature and store for later use */ 3122 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK, 3123 &data->feature_index, &feature_type); 3124 if (ret) 3125 return ret; 3126 3127 /* Read number of slots available in device */ 3128 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3129 HIDPP_FF_GET_INFO, 3130 NULL, 0, 3131 &response); 3132 if (ret) { 3133 if (ret < 0) 3134 return ret; 3135 hid_err(hidpp->hid_dev, 3136 "%s: received protocol error 0x%02x\n", __func__, ret); 3137 return -EPROTO; 3138 } 3139 3140 data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS; 3141 3142 /* reset all forces */ 3143 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3144 HIDPP_FF_RESET_ALL, 3145 NULL, 0, 3146 &response); 3147 if (ret) 3148 hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n"); 3149 3150 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3151 HIDPP_FF_GET_APERTURE, 3152 NULL, 0, 3153 &response); 3154 if (ret) { 3155 hid_warn(hidpp->hid_dev, 3156 "Failed to read range from device!\n"); 3157 } 3158 data->range = ret ? 3159 900 : get_unaligned_be16(&response.fap.params[0]); 3160 3161 /* Read the current gain values */ 3162 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3163 HIDPP_FF_GET_GLOBAL_GAINS, 3164 NULL, 0, 3165 &response); 3166 if (ret) 3167 hid_warn(hidpp->hid_dev, 3168 "Failed to read gain values from device!\n"); 3169 data->gain = ret ? 3170 0xffff : get_unaligned_be16(&response.fap.params[0]); 3171 3172 /* ignore boost value at response.fap.params[2] */ 3173 3174 return g920_ff_set_autocenter(hidpp, data); 3175 } 3176 3177 /* -------------------------------------------------------------------------- */ 3178 /* Logitech Dinovo Mini keyboard with builtin touchpad */ 3179 /* -------------------------------------------------------------------------- */ 3180 #define DINOVO_MINI_PRODUCT_ID 0xb30c 3181 3182 static int lg_dinovo_input_mapping(struct hid_device *hdev, struct hid_input *hi, 3183 struct hid_field *field, struct hid_usage *usage, 3184 unsigned long **bit, int *max) 3185 { 3186 if ((usage->hid & HID_USAGE_PAGE) != HID_UP_LOGIVENDOR) 3187 return 0; 3188 3189 switch (usage->hid & HID_USAGE) { 3190 case 0x00d: lg_map_key_clear(KEY_MEDIA); break; 3191 default: 3192 return 0; 3193 } 3194 return 1; 3195 } 3196 3197 /* -------------------------------------------------------------------------- */ 3198 /* HID++1.0 devices which use HID++ reports for their wheels */ 3199 /* -------------------------------------------------------------------------- */ 3200 static int hidpp10_wheel_connect(struct hidpp_device *hidpp) 3201 { 3202 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 3203 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT, 3204 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT); 3205 } 3206 3207 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp, 3208 u8 *data, int size) 3209 { 3210 s8 value, hvalue; 3211 3212 if (!hidpp->input) 3213 return -EINVAL; 3214 3215 if (size < 7) 3216 return 0; 3217 3218 if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER) 3219 return 0; 3220 3221 value = data[3]; 3222 hvalue = data[4]; 3223 3224 input_report_rel(hidpp->input, REL_WHEEL, value); 3225 input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120); 3226 input_report_rel(hidpp->input, REL_HWHEEL, hvalue); 3227 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120); 3228 input_sync(hidpp->input); 3229 3230 return 1; 3231 } 3232 3233 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp, 3234 struct input_dev *input_dev) 3235 { 3236 __set_bit(EV_REL, input_dev->evbit); 3237 __set_bit(REL_WHEEL, input_dev->relbit); 3238 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit); 3239 __set_bit(REL_HWHEEL, input_dev->relbit); 3240 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit); 3241 } 3242 3243 /* -------------------------------------------------------------------------- */ 3244 /* HID++1.0 mice which use HID++ reports for extra mouse buttons */ 3245 /* -------------------------------------------------------------------------- */ 3246 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp) 3247 { 3248 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 3249 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT, 3250 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT); 3251 } 3252 3253 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp, 3254 u8 *data, int size) 3255 { 3256 int i; 3257 3258 if (!hidpp->input) 3259 return -EINVAL; 3260 3261 if (size < 7) 3262 return 0; 3263 3264 if (data[0] != REPORT_ID_HIDPP_SHORT || 3265 data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS) 3266 return 0; 3267 3268 /* 3269 * Buttons are either delivered through the regular mouse report *or* 3270 * through the extra buttons report. At least for button 6 how it is 3271 * delivered differs per receiver firmware version. Even receivers with 3272 * the same usb-id show different behavior, so we handle both cases. 3273 */ 3274 for (i = 0; i < 8; i++) 3275 input_report_key(hidpp->input, BTN_MOUSE + i, 3276 (data[3] & (1 << i))); 3277 3278 /* Some mice report events on button 9+, use BTN_MISC */ 3279 for (i = 0; i < 8; i++) 3280 input_report_key(hidpp->input, BTN_MISC + i, 3281 (data[4] & (1 << i))); 3282 3283 input_sync(hidpp->input); 3284 return 1; 3285 } 3286 3287 static void hidpp10_extra_mouse_buttons_populate_input( 3288 struct hidpp_device *hidpp, struct input_dev *input_dev) 3289 { 3290 /* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */ 3291 __set_bit(BTN_0, input_dev->keybit); 3292 __set_bit(BTN_1, input_dev->keybit); 3293 __set_bit(BTN_2, input_dev->keybit); 3294 __set_bit(BTN_3, input_dev->keybit); 3295 __set_bit(BTN_4, input_dev->keybit); 3296 __set_bit(BTN_5, input_dev->keybit); 3297 __set_bit(BTN_6, input_dev->keybit); 3298 __set_bit(BTN_7, input_dev->keybit); 3299 } 3300 3301 /* -------------------------------------------------------------------------- */ 3302 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */ 3303 /* -------------------------------------------------------------------------- */ 3304 3305 /* Find the consumer-page input report desc and change Maximums to 0x107f */ 3306 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp, 3307 u8 *_rdesc, unsigned int *rsize) 3308 { 3309 /* Note 0 terminated so we can use strnstr to search for this. */ 3310 static const char consumer_rdesc_start[] = { 3311 0x05, 0x0C, /* USAGE_PAGE (Consumer Devices) */ 3312 0x09, 0x01, /* USAGE (Consumer Control) */ 3313 0xA1, 0x01, /* COLLECTION (Application) */ 3314 0x85, 0x03, /* REPORT_ID = 3 */ 3315 0x75, 0x10, /* REPORT_SIZE (16) */ 3316 0x95, 0x02, /* REPORT_COUNT (2) */ 3317 0x15, 0x01, /* LOGICAL_MIN (1) */ 3318 0x26, 0x00 /* LOGICAL_MAX (... */ 3319 }; 3320 char *consumer_rdesc, *rdesc = (char *)_rdesc; 3321 unsigned int size; 3322 3323 consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize); 3324 size = *rsize - (consumer_rdesc - rdesc); 3325 if (consumer_rdesc && size >= 25) { 3326 consumer_rdesc[15] = 0x7f; 3327 consumer_rdesc[16] = 0x10; 3328 consumer_rdesc[20] = 0x7f; 3329 consumer_rdesc[21] = 0x10; 3330 } 3331 return _rdesc; 3332 } 3333 3334 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp) 3335 { 3336 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 3337 HIDPP_ENABLE_CONSUMER_REPORT, 3338 HIDPP_ENABLE_CONSUMER_REPORT); 3339 } 3340 3341 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp, 3342 u8 *data, int size) 3343 { 3344 u8 consumer_report[5]; 3345 3346 if (size < 7) 3347 return 0; 3348 3349 if (data[0] != REPORT_ID_HIDPP_SHORT || 3350 data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS) 3351 return 0; 3352 3353 /* 3354 * Build a normal consumer report (3) out of the data, this detour 3355 * is necessary to get some keyboards to report their 0x10xx usages. 3356 */ 3357 consumer_report[0] = 0x03; 3358 memcpy(&consumer_report[1], &data[3], 4); 3359 /* We are called from atomic context */ 3360 hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT, 3361 consumer_report, 5, 1); 3362 3363 return 1; 3364 } 3365 3366 /* -------------------------------------------------------------------------- */ 3367 /* High-resolution scroll wheels */ 3368 /* -------------------------------------------------------------------------- */ 3369 3370 static int hi_res_scroll_enable(struct hidpp_device *hidpp) 3371 { 3372 int ret; 3373 u8 multiplier = 1; 3374 3375 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) { 3376 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false); 3377 if (ret == 0) 3378 ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier); 3379 } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) { 3380 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true, 3381 &multiplier); 3382 } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ { 3383 ret = hidpp10_enable_scrolling_acceleration(hidpp); 3384 multiplier = 8; 3385 } 3386 if (ret) 3387 return ret; 3388 3389 if (multiplier == 0) 3390 multiplier = 1; 3391 3392 hidpp->vertical_wheel_counter.wheel_multiplier = multiplier; 3393 hid_dbg(hidpp->hid_dev, "wheel multiplier = %d\n", multiplier); 3394 return 0; 3395 } 3396 3397 /* -------------------------------------------------------------------------- */ 3398 /* Generic HID++ devices */ 3399 /* -------------------------------------------------------------------------- */ 3400 3401 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc, 3402 unsigned int *rsize) 3403 { 3404 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3405 3406 if (!hidpp) 3407 return rdesc; 3408 3409 /* For 27 MHz keyboards the quirk gets set after hid_parse. */ 3410 if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE || 3411 (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS)) 3412 rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize); 3413 3414 return rdesc; 3415 } 3416 3417 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 3418 struct hid_field *field, struct hid_usage *usage, 3419 unsigned long **bit, int *max) 3420 { 3421 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3422 3423 if (!hidpp) 3424 return 0; 3425 3426 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3427 return wtp_input_mapping(hdev, hi, field, usage, bit, max); 3428 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 && 3429 field->application != HID_GD_MOUSE) 3430 return m560_input_mapping(hdev, hi, field, usage, bit, max); 3431 3432 if (hdev->product == DINOVO_MINI_PRODUCT_ID) 3433 return lg_dinovo_input_mapping(hdev, hi, field, usage, bit, max); 3434 3435 return 0; 3436 } 3437 3438 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi, 3439 struct hid_field *field, struct hid_usage *usage, 3440 unsigned long **bit, int *max) 3441 { 3442 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3443 3444 if (!hidpp) 3445 return 0; 3446 3447 /* Ensure that Logitech G920 is not given a default fuzz/flat value */ 3448 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3449 if (usage->type == EV_ABS && (usage->code == ABS_X || 3450 usage->code == ABS_Y || usage->code == ABS_Z || 3451 usage->code == ABS_RZ)) { 3452 field->application = HID_GD_MULTIAXIS; 3453 } 3454 } 3455 3456 return 0; 3457 } 3458 3459 3460 static void hidpp_populate_input(struct hidpp_device *hidpp, 3461 struct input_dev *input) 3462 { 3463 hidpp->input = input; 3464 3465 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3466 wtp_populate_input(hidpp, input); 3467 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 3468 m560_populate_input(hidpp, input); 3469 3470 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) 3471 hidpp10_wheel_populate_input(hidpp, input); 3472 3473 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) 3474 hidpp10_extra_mouse_buttons_populate_input(hidpp, input); 3475 } 3476 3477 static int hidpp_input_configured(struct hid_device *hdev, 3478 struct hid_input *hidinput) 3479 { 3480 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3481 struct input_dev *input = hidinput->input; 3482 3483 if (!hidpp) 3484 return 0; 3485 3486 hidpp_populate_input(hidpp, input); 3487 3488 return 0; 3489 } 3490 3491 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data, 3492 int size) 3493 { 3494 struct hidpp_report *question = hidpp->send_receive_buf; 3495 struct hidpp_report *answer = hidpp->send_receive_buf; 3496 struct hidpp_report *report = (struct hidpp_report *)data; 3497 int ret; 3498 3499 /* 3500 * If the mutex is locked then we have a pending answer from a 3501 * previously sent command. 3502 */ 3503 if (unlikely(mutex_is_locked(&hidpp->send_mutex))) { 3504 /* 3505 * Check for a correct hidpp20 answer or the corresponding 3506 * error 3507 */ 3508 if (hidpp_match_answer(question, report) || 3509 hidpp_match_error(question, report)) { 3510 *answer = *report; 3511 hidpp->answer_available = true; 3512 wake_up(&hidpp->wait); 3513 /* 3514 * This was an answer to a command that this driver sent 3515 * We return 1 to hid-core to avoid forwarding the 3516 * command upstream as it has been treated by the driver 3517 */ 3518 3519 return 1; 3520 } 3521 } 3522 3523 if (unlikely(hidpp_report_is_connect_event(hidpp, report))) { 3524 atomic_set(&hidpp->connected, 3525 !(report->rap.params[0] & (1 << 6))); 3526 if (schedule_work(&hidpp->work) == 0) 3527 dbg_hid("%s: connect event already queued\n", __func__); 3528 return 1; 3529 } 3530 3531 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3532 ret = hidpp20_battery_event_1000(hidpp, data, size); 3533 if (ret != 0) 3534 return ret; 3535 ret = hidpp20_battery_event_1004(hidpp, data, size); 3536 if (ret != 0) 3537 return ret; 3538 ret = hidpp_solar_battery_event(hidpp, data, size); 3539 if (ret != 0) 3540 return ret; 3541 ret = hidpp20_battery_voltage_event(hidpp, data, size); 3542 if (ret != 0) 3543 return ret; 3544 } 3545 3546 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3547 ret = hidpp10_battery_event(hidpp, data, size); 3548 if (ret != 0) 3549 return ret; 3550 } 3551 3552 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) { 3553 ret = hidpp10_wheel_raw_event(hidpp, data, size); 3554 if (ret != 0) 3555 return ret; 3556 } 3557 3558 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) { 3559 ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size); 3560 if (ret != 0) 3561 return ret; 3562 } 3563 3564 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) { 3565 ret = hidpp10_consumer_keys_raw_event(hidpp, data, size); 3566 if (ret != 0) 3567 return ret; 3568 } 3569 3570 return 0; 3571 } 3572 3573 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report, 3574 u8 *data, int size) 3575 { 3576 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3577 int ret = 0; 3578 3579 if (!hidpp) 3580 return 0; 3581 3582 /* Generic HID++ processing. */ 3583 switch (data[0]) { 3584 case REPORT_ID_HIDPP_VERY_LONG: 3585 if (size != hidpp->very_long_report_length) { 3586 hid_err(hdev, "received hid++ report of bad size (%d)", 3587 size); 3588 return 1; 3589 } 3590 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3591 break; 3592 case REPORT_ID_HIDPP_LONG: 3593 if (size != HIDPP_REPORT_LONG_LENGTH) { 3594 hid_err(hdev, "received hid++ report of bad size (%d)", 3595 size); 3596 return 1; 3597 } 3598 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3599 break; 3600 case REPORT_ID_HIDPP_SHORT: 3601 if (size != HIDPP_REPORT_SHORT_LENGTH) { 3602 hid_err(hdev, "received hid++ report of bad size (%d)", 3603 size); 3604 return 1; 3605 } 3606 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3607 break; 3608 } 3609 3610 /* If no report is available for further processing, skip calling 3611 * raw_event of subclasses. */ 3612 if (ret != 0) 3613 return ret; 3614 3615 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3616 return wtp_raw_event(hdev, data, size); 3617 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 3618 return m560_raw_event(hdev, data, size); 3619 3620 return 0; 3621 } 3622 3623 static int hidpp_event(struct hid_device *hdev, struct hid_field *field, 3624 struct hid_usage *usage, __s32 value) 3625 { 3626 /* This function will only be called for scroll events, due to the 3627 * restriction imposed in hidpp_usages. 3628 */ 3629 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3630 struct hidpp_scroll_counter *counter; 3631 3632 if (!hidpp) 3633 return 0; 3634 3635 counter = &hidpp->vertical_wheel_counter; 3636 /* A scroll event may occur before the multiplier has been retrieved or 3637 * the input device set, or high-res scroll enabling may fail. In such 3638 * cases we must return early (falling back to default behaviour) to 3639 * avoid a crash in hidpp_scroll_counter_handle_scroll. 3640 */ 3641 if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0 3642 || hidpp->input == NULL || counter->wheel_multiplier == 0) 3643 return 0; 3644 3645 hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value); 3646 return 1; 3647 } 3648 3649 static int hidpp_initialize_battery(struct hidpp_device *hidpp) 3650 { 3651 static atomic_t battery_no = ATOMIC_INIT(0); 3652 struct power_supply_config cfg = { .drv_data = hidpp }; 3653 struct power_supply_desc *desc = &hidpp->battery.desc; 3654 enum power_supply_property *battery_props; 3655 struct hidpp_battery *battery; 3656 unsigned int num_battery_props; 3657 unsigned long n; 3658 int ret; 3659 3660 if (hidpp->battery.ps) 3661 return 0; 3662 3663 hidpp->battery.feature_index = 0xff; 3664 hidpp->battery.solar_feature_index = 0xff; 3665 hidpp->battery.voltage_feature_index = 0xff; 3666 3667 if (hidpp->protocol_major >= 2) { 3668 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750) 3669 ret = hidpp_solar_request_battery_event(hidpp); 3670 else { 3671 /* we only support one battery feature right now, so let's 3672 first check the ones that support battery level first 3673 and leave voltage for last */ 3674 ret = hidpp20_query_battery_info_1000(hidpp); 3675 if (ret) 3676 ret = hidpp20_query_battery_info_1004(hidpp); 3677 if (ret) 3678 ret = hidpp20_query_battery_voltage_info(hidpp); 3679 } 3680 3681 if (ret) 3682 return ret; 3683 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY; 3684 } else { 3685 ret = hidpp10_query_battery_status(hidpp); 3686 if (ret) { 3687 ret = hidpp10_query_battery_mileage(hidpp); 3688 if (ret) 3689 return -ENOENT; 3690 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 3691 } else { 3692 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 3693 } 3694 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY; 3695 } 3696 3697 battery_props = devm_kmemdup(&hidpp->hid_dev->dev, 3698 hidpp_battery_props, 3699 sizeof(hidpp_battery_props), 3700 GFP_KERNEL); 3701 if (!battery_props) 3702 return -ENOMEM; 3703 3704 num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3; 3705 3706 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE || 3707 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) 3708 battery_props[num_battery_props++] = 3709 POWER_SUPPLY_PROP_CAPACITY; 3710 3711 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS) 3712 battery_props[num_battery_props++] = 3713 POWER_SUPPLY_PROP_CAPACITY_LEVEL; 3714 3715 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE) 3716 battery_props[num_battery_props++] = 3717 POWER_SUPPLY_PROP_VOLTAGE_NOW; 3718 3719 battery = &hidpp->battery; 3720 3721 n = atomic_inc_return(&battery_no) - 1; 3722 desc->properties = battery_props; 3723 desc->num_properties = num_battery_props; 3724 desc->get_property = hidpp_battery_get_property; 3725 sprintf(battery->name, "hidpp_battery_%ld", n); 3726 desc->name = battery->name; 3727 desc->type = POWER_SUPPLY_TYPE_BATTERY; 3728 desc->use_for_apm = 0; 3729 3730 battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev, 3731 &battery->desc, 3732 &cfg); 3733 if (IS_ERR(battery->ps)) 3734 return PTR_ERR(battery->ps); 3735 3736 power_supply_powers(battery->ps, &hidpp->hid_dev->dev); 3737 3738 return ret; 3739 } 3740 3741 static void hidpp_overwrite_name(struct hid_device *hdev) 3742 { 3743 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3744 char *name; 3745 3746 if (hidpp->protocol_major < 2) 3747 return; 3748 3749 name = hidpp_get_device_name(hidpp); 3750 3751 if (!name) { 3752 hid_err(hdev, "unable to retrieve the name of the device"); 3753 } else { 3754 dbg_hid("HID++: Got name: %s\n", name); 3755 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 3756 } 3757 3758 kfree(name); 3759 } 3760 3761 static int hidpp_input_open(struct input_dev *dev) 3762 { 3763 struct hid_device *hid = input_get_drvdata(dev); 3764 3765 return hid_hw_open(hid); 3766 } 3767 3768 static void hidpp_input_close(struct input_dev *dev) 3769 { 3770 struct hid_device *hid = input_get_drvdata(dev); 3771 3772 hid_hw_close(hid); 3773 } 3774 3775 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev) 3776 { 3777 struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev); 3778 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3779 3780 if (!input_dev) 3781 return NULL; 3782 3783 input_set_drvdata(input_dev, hdev); 3784 input_dev->open = hidpp_input_open; 3785 input_dev->close = hidpp_input_close; 3786 3787 input_dev->name = hidpp->name; 3788 input_dev->phys = hdev->phys; 3789 input_dev->uniq = hdev->uniq; 3790 input_dev->id.bustype = hdev->bus; 3791 input_dev->id.vendor = hdev->vendor; 3792 input_dev->id.product = hdev->product; 3793 input_dev->id.version = hdev->version; 3794 input_dev->dev.parent = &hdev->dev; 3795 3796 return input_dev; 3797 } 3798 3799 static void hidpp_connect_event(struct hidpp_device *hidpp) 3800 { 3801 struct hid_device *hdev = hidpp->hid_dev; 3802 int ret = 0; 3803 bool connected = atomic_read(&hidpp->connected); 3804 struct input_dev *input; 3805 char *name, *devm_name; 3806 3807 if (!connected) { 3808 if (hidpp->battery.ps) { 3809 hidpp->battery.online = false; 3810 hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN; 3811 hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 3812 power_supply_changed(hidpp->battery.ps); 3813 } 3814 return; 3815 } 3816 3817 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 3818 ret = wtp_connect(hdev, connected); 3819 if (ret) 3820 return; 3821 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) { 3822 ret = m560_send_config_command(hdev, connected); 3823 if (ret) 3824 return; 3825 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 3826 ret = k400_connect(hdev, connected); 3827 if (ret) 3828 return; 3829 } 3830 3831 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) { 3832 ret = hidpp10_wheel_connect(hidpp); 3833 if (ret) 3834 return; 3835 } 3836 3837 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) { 3838 ret = hidpp10_extra_mouse_buttons_connect(hidpp); 3839 if (ret) 3840 return; 3841 } 3842 3843 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) { 3844 ret = hidpp10_consumer_keys_connect(hidpp); 3845 if (ret) 3846 return; 3847 } 3848 3849 /* the device is already connected, we can ask for its name and 3850 * protocol */ 3851 if (!hidpp->protocol_major) { 3852 ret = hidpp_root_get_protocol_version(hidpp); 3853 if (ret) { 3854 hid_err(hdev, "Can not get the protocol version.\n"); 3855 return; 3856 } 3857 } 3858 3859 if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) { 3860 name = hidpp_get_device_name(hidpp); 3861 if (name) { 3862 devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL, 3863 "%s", name); 3864 kfree(name); 3865 if (!devm_name) 3866 return; 3867 3868 hidpp->name = devm_name; 3869 } 3870 } 3871 3872 hidpp_initialize_battery(hidpp); 3873 3874 /* forward current battery state */ 3875 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3876 hidpp10_enable_battery_reporting(hidpp); 3877 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 3878 hidpp10_query_battery_mileage(hidpp); 3879 else 3880 hidpp10_query_battery_status(hidpp); 3881 } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3882 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE) 3883 hidpp20_query_battery_voltage_info(hidpp); 3884 else if (hidpp->capabilities & HIDPP_CAPABILITY_UNIFIED_BATTERY) 3885 hidpp20_query_battery_info_1004(hidpp); 3886 else 3887 hidpp20_query_battery_info_1000(hidpp); 3888 } 3889 if (hidpp->battery.ps) 3890 power_supply_changed(hidpp->battery.ps); 3891 3892 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) 3893 hi_res_scroll_enable(hidpp); 3894 3895 if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input) 3896 /* if the input nodes are already created, we can stop now */ 3897 return; 3898 3899 input = hidpp_allocate_input(hdev); 3900 if (!input) { 3901 hid_err(hdev, "cannot allocate new input device: %d\n", ret); 3902 return; 3903 } 3904 3905 hidpp_populate_input(hidpp, input); 3906 3907 ret = input_register_device(input); 3908 if (ret) 3909 input_free_device(input); 3910 3911 hidpp->delayed_input = input; 3912 } 3913 3914 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL); 3915 3916 static struct attribute *sysfs_attrs[] = { 3917 &dev_attr_builtin_power_supply.attr, 3918 NULL 3919 }; 3920 3921 static const struct attribute_group ps_attribute_group = { 3922 .attrs = sysfs_attrs 3923 }; 3924 3925 static int hidpp_get_report_length(struct hid_device *hdev, int id) 3926 { 3927 struct hid_report_enum *re; 3928 struct hid_report *report; 3929 3930 re = &(hdev->report_enum[HID_OUTPUT_REPORT]); 3931 report = re->report_id_hash[id]; 3932 if (!report) 3933 return 0; 3934 3935 return report->field[0]->report_count + 1; 3936 } 3937 3938 static u8 hidpp_validate_device(struct hid_device *hdev) 3939 { 3940 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3941 int id, report_length; 3942 u8 supported_reports = 0; 3943 3944 id = REPORT_ID_HIDPP_SHORT; 3945 report_length = hidpp_get_report_length(hdev, id); 3946 if (report_length) { 3947 if (report_length < HIDPP_REPORT_SHORT_LENGTH) 3948 goto bad_device; 3949 3950 supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED; 3951 } 3952 3953 id = REPORT_ID_HIDPP_LONG; 3954 report_length = hidpp_get_report_length(hdev, id); 3955 if (report_length) { 3956 if (report_length < HIDPP_REPORT_LONG_LENGTH) 3957 goto bad_device; 3958 3959 supported_reports |= HIDPP_REPORT_LONG_SUPPORTED; 3960 } 3961 3962 id = REPORT_ID_HIDPP_VERY_LONG; 3963 report_length = hidpp_get_report_length(hdev, id); 3964 if (report_length) { 3965 if (report_length < HIDPP_REPORT_LONG_LENGTH || 3966 report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH) 3967 goto bad_device; 3968 3969 supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED; 3970 hidpp->very_long_report_length = report_length; 3971 } 3972 3973 return supported_reports; 3974 3975 bad_device: 3976 hid_warn(hdev, "not enough values in hidpp report %d\n", id); 3977 return false; 3978 } 3979 3980 static bool hidpp_application_equals(struct hid_device *hdev, 3981 unsigned int application) 3982 { 3983 struct list_head *report_list; 3984 struct hid_report *report; 3985 3986 report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list; 3987 report = list_first_entry_or_null(report_list, struct hid_report, list); 3988 return report && report->application == application; 3989 } 3990 3991 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id) 3992 { 3993 struct hidpp_device *hidpp; 3994 int ret; 3995 bool connected; 3996 unsigned int connect_mask = HID_CONNECT_DEFAULT; 3997 struct hidpp_ff_private_data data; 3998 3999 /* report_fixup needs drvdata to be set before we call hid_parse */ 4000 hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL); 4001 if (!hidpp) 4002 return -ENOMEM; 4003 4004 hidpp->hid_dev = hdev; 4005 hidpp->name = hdev->name; 4006 hidpp->quirks = id->driver_data; 4007 hid_set_drvdata(hdev, hidpp); 4008 4009 ret = hid_parse(hdev); 4010 if (ret) { 4011 hid_err(hdev, "%s:parse failed\n", __func__); 4012 return ret; 4013 } 4014 4015 /* 4016 * Make sure the device is HID++ capable, otherwise treat as generic HID 4017 */ 4018 hidpp->supported_reports = hidpp_validate_device(hdev); 4019 4020 if (!hidpp->supported_reports) { 4021 hid_set_drvdata(hdev, NULL); 4022 devm_kfree(&hdev->dev, hidpp); 4023 return hid_hw_start(hdev, HID_CONNECT_DEFAULT); 4024 } 4025 4026 if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE) 4027 hidpp->quirks |= HIDPP_QUIRK_UNIFYING; 4028 4029 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 4030 hidpp_application_equals(hdev, HID_GD_MOUSE)) 4031 hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS | 4032 HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS; 4033 4034 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 4035 hidpp_application_equals(hdev, HID_GD_KEYBOARD)) 4036 hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS; 4037 4038 if (disable_raw_mode) { 4039 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP; 4040 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT; 4041 } 4042 4043 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 4044 ret = wtp_allocate(hdev, id); 4045 if (ret) 4046 return ret; 4047 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 4048 ret = k400_allocate(hdev); 4049 if (ret) 4050 return ret; 4051 } 4052 4053 INIT_WORK(&hidpp->work, delayed_work_cb); 4054 mutex_init(&hidpp->send_mutex); 4055 init_waitqueue_head(&hidpp->wait); 4056 4057 /* indicates we are handling the battery properties in the kernel */ 4058 ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group); 4059 if (ret) 4060 hid_warn(hdev, "Cannot allocate sysfs group for %s\n", 4061 hdev->name); 4062 4063 /* 4064 * Plain USB connections need to actually call start and open 4065 * on the transport driver to allow incoming data. 4066 */ 4067 ret = hid_hw_start(hdev, 0); 4068 if (ret) { 4069 hid_err(hdev, "hw start failed\n"); 4070 goto hid_hw_start_fail; 4071 } 4072 4073 ret = hid_hw_open(hdev); 4074 if (ret < 0) { 4075 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n", 4076 __func__, ret); 4077 goto hid_hw_open_fail; 4078 } 4079 4080 /* Allow incoming packets */ 4081 hid_device_io_start(hdev); 4082 4083 if (hidpp->quirks & HIDPP_QUIRK_UNIFYING) 4084 hidpp_unifying_init(hidpp); 4085 4086 connected = hidpp_root_get_protocol_version(hidpp) == 0; 4087 atomic_set(&hidpp->connected, connected); 4088 if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) { 4089 if (!connected) { 4090 ret = -ENODEV; 4091 hid_err(hdev, "Device not connected"); 4092 goto hid_hw_init_fail; 4093 } 4094 4095 hidpp_overwrite_name(hdev); 4096 } 4097 4098 if (connected && hidpp->protocol_major >= 2) { 4099 ret = hidpp_set_wireless_feature_index(hidpp); 4100 if (ret == -ENOENT) 4101 hidpp->wireless_feature_index = 0; 4102 else if (ret) 4103 goto hid_hw_init_fail; 4104 } 4105 4106 if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) { 4107 ret = wtp_get_config(hidpp); 4108 if (ret) 4109 goto hid_hw_init_fail; 4110 } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) { 4111 ret = g920_get_config(hidpp, &data); 4112 if (ret) 4113 goto hid_hw_init_fail; 4114 } 4115 4116 hidpp_connect_event(hidpp); 4117 4118 /* Reset the HID node state */ 4119 hid_device_io_stop(hdev); 4120 hid_hw_close(hdev); 4121 hid_hw_stop(hdev); 4122 4123 if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) 4124 connect_mask &= ~HID_CONNECT_HIDINPUT; 4125 4126 /* Now export the actual inputs and hidraw nodes to the world */ 4127 ret = hid_hw_start(hdev, connect_mask); 4128 if (ret) { 4129 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__); 4130 goto hid_hw_start_fail; 4131 } 4132 4133 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 4134 ret = hidpp_ff_init(hidpp, &data); 4135 if (ret) 4136 hid_warn(hidpp->hid_dev, 4137 "Unable to initialize force feedback support, errno %d\n", 4138 ret); 4139 } 4140 4141 return ret; 4142 4143 hid_hw_init_fail: 4144 hid_hw_close(hdev); 4145 hid_hw_open_fail: 4146 hid_hw_stop(hdev); 4147 hid_hw_start_fail: 4148 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 4149 cancel_work_sync(&hidpp->work); 4150 mutex_destroy(&hidpp->send_mutex); 4151 return ret; 4152 } 4153 4154 static void hidpp_remove(struct hid_device *hdev) 4155 { 4156 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 4157 4158 if (!hidpp) 4159 return hid_hw_stop(hdev); 4160 4161 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 4162 4163 hid_hw_stop(hdev); 4164 cancel_work_sync(&hidpp->work); 4165 mutex_destroy(&hidpp->send_mutex); 4166 } 4167 4168 #define LDJ_DEVICE(product) \ 4169 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \ 4170 USB_VENDOR_ID_LOGITECH, (product)) 4171 4172 #define L27MHZ_DEVICE(product) \ 4173 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \ 4174 USB_VENDOR_ID_LOGITECH, (product)) 4175 4176 static const struct hid_device_id hidpp_devices[] = { 4177 { /* wireless touchpad */ 4178 LDJ_DEVICE(0x4011), 4179 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT | 4180 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS }, 4181 { /* wireless touchpad T650 */ 4182 LDJ_DEVICE(0x4101), 4183 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT }, 4184 { /* wireless touchpad T651 */ 4185 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 4186 USB_DEVICE_ID_LOGITECH_T651), 4187 .driver_data = HIDPP_QUIRK_CLASS_WTP }, 4188 { /* Mouse Logitech Anywhere MX */ 4189 LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 4190 { /* Mouse Logitech Cube */ 4191 LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 4192 { /* Mouse Logitech M335 */ 4193 LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4194 { /* Mouse Logitech M515 */ 4195 LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 4196 { /* Mouse logitech M560 */ 4197 LDJ_DEVICE(0x402d), 4198 .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560 4199 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 4200 { /* Mouse Logitech M705 (firmware RQM17) */ 4201 LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 4202 { /* Mouse Logitech M705 (firmware RQM67) */ 4203 LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4204 { /* Mouse Logitech M720 */ 4205 LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4206 { /* Mouse Logitech MX Anywhere 2 */ 4207 LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4208 { LDJ_DEVICE(0x4072), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4209 { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4210 { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4211 { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4212 { /* Mouse Logitech MX Anywhere 2S */ 4213 LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4214 { /* Mouse Logitech MX Master */ 4215 LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4216 { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4217 { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4218 { /* Mouse Logitech MX Master 2S */ 4219 LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4220 { /* Mouse Logitech MX Master 3 */ 4221 LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4222 { /* Mouse Logitech Performance MX */ 4223 LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 4224 { /* Keyboard logitech K400 */ 4225 LDJ_DEVICE(0x4024), 4226 .driver_data = HIDPP_QUIRK_CLASS_K400 }, 4227 { /* Solar Keyboard Logitech K750 */ 4228 LDJ_DEVICE(0x4002), 4229 .driver_data = HIDPP_QUIRK_CLASS_K750 }, 4230 { /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */ 4231 LDJ_DEVICE(0xb305), 4232 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4233 { /* Dinovo Edge (Bluetooth-receiver in HID proxy mode) */ 4234 LDJ_DEVICE(0xb309), 4235 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4236 { /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */ 4237 LDJ_DEVICE(0xb30b), 4238 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4239 4240 { LDJ_DEVICE(HID_ANY_ID) }, 4241 4242 { /* Keyboard LX501 (Y-RR53) */ 4243 L27MHZ_DEVICE(0x0049), 4244 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL }, 4245 { /* Keyboard MX3000 (Y-RAM74) */ 4246 L27MHZ_DEVICE(0x0057), 4247 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL }, 4248 { /* Keyboard MX3200 (Y-RAV80) */ 4249 L27MHZ_DEVICE(0x005c), 4250 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL }, 4251 { /* S510 Media Remote */ 4252 L27MHZ_DEVICE(0x00fe), 4253 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL }, 4254 4255 { L27MHZ_DEVICE(HID_ANY_ID) }, 4256 4257 { /* Logitech G403 Wireless Gaming Mouse over USB */ 4258 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) }, 4259 { /* Logitech G703 Gaming Mouse over USB */ 4260 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) }, 4261 { /* Logitech G703 Hero Gaming Mouse over USB */ 4262 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) }, 4263 { /* Logitech G900 Gaming Mouse over USB */ 4264 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) }, 4265 { /* Logitech G903 Gaming Mouse over USB */ 4266 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) }, 4267 { /* Logitech G903 Hero Gaming Mouse over USB */ 4268 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) }, 4269 { /* Logitech G920 Wheel over USB */ 4270 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL), 4271 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS}, 4272 { /* Logitech G Pro Gaming Mouse over USB */ 4273 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) }, 4274 4275 { /* MX5000 keyboard over Bluetooth */ 4276 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305), 4277 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4278 { /* Dinovo Edge keyboard over Bluetooth */ 4279 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb309), 4280 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4281 { /* MX5500 keyboard over Bluetooth */ 4282 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b), 4283 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4284 { /* M-RCQ142 V470 Cordless Laser Mouse over Bluetooth */ 4285 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb008) }, 4286 { /* MX Master mouse over Bluetooth */ 4287 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012), 4288 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4289 { /* MX Ergo trackball over Bluetooth */ 4290 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01d) }, 4291 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e), 4292 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4293 { /* MX Master 3 mouse over Bluetooth */ 4294 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023), 4295 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4296 {} 4297 }; 4298 4299 MODULE_DEVICE_TABLE(hid, hidpp_devices); 4300 4301 static const struct hid_usage_id hidpp_usages[] = { 4302 { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES }, 4303 { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1} 4304 }; 4305 4306 static struct hid_driver hidpp_driver = { 4307 .name = "logitech-hidpp-device", 4308 .id_table = hidpp_devices, 4309 .report_fixup = hidpp_report_fixup, 4310 .probe = hidpp_probe, 4311 .remove = hidpp_remove, 4312 .raw_event = hidpp_raw_event, 4313 .usage_table = hidpp_usages, 4314 .event = hidpp_event, 4315 .input_configured = hidpp_input_configured, 4316 .input_mapping = hidpp_input_mapping, 4317 .input_mapped = hidpp_input_mapped, 4318 }; 4319 4320 module_hid_driver(hidpp_driver); 4321