1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * HIDPP protocol for Logitech receivers 4 * 5 * Copyright (c) 2011 Logitech (c) 6 * Copyright (c) 2012-2013 Google (c) 7 * Copyright (c) 2013-2014 Red Hat Inc. 8 */ 9 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/device.h> 14 #include <linux/input.h> 15 #include <linux/usb.h> 16 #include <linux/hid.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/sched/clock.h> 21 #include <linux/kfifo.h> 22 #include <linux/input/mt.h> 23 #include <linux/workqueue.h> 24 #include <linux/atomic.h> 25 #include <linux/fixp-arith.h> 26 #include <asm/unaligned.h> 27 #include "usbhid/usbhid.h" 28 #include "hid-ids.h" 29 30 MODULE_LICENSE("GPL"); 31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>"); 32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>"); 33 34 static bool disable_raw_mode; 35 module_param(disable_raw_mode, bool, 0644); 36 MODULE_PARM_DESC(disable_raw_mode, 37 "Disable Raw mode reporting for touchpads and keep firmware gestures."); 38 39 static bool disable_tap_to_click; 40 module_param(disable_tap_to_click, bool, 0644); 41 MODULE_PARM_DESC(disable_tap_to_click, 42 "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently)."); 43 44 #define REPORT_ID_HIDPP_SHORT 0x10 45 #define REPORT_ID_HIDPP_LONG 0x11 46 #define REPORT_ID_HIDPP_VERY_LONG 0x12 47 48 #define HIDPP_REPORT_SHORT_LENGTH 7 49 #define HIDPP_REPORT_LONG_LENGTH 20 50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH 64 51 52 #define HIDPP_REPORT_SHORT_SUPPORTED BIT(0) 53 #define HIDPP_REPORT_LONG_SUPPORTED BIT(1) 54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED BIT(2) 55 56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS 0x03 57 #define HIDPP_SUB_ID_ROLLER 0x05 58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS 0x06 59 60 #define HIDPP_QUIRK_CLASS_WTP BIT(0) 61 #define HIDPP_QUIRK_CLASS_M560 BIT(1) 62 #define HIDPP_QUIRK_CLASS_K400 BIT(2) 63 #define HIDPP_QUIRK_CLASS_G920 BIT(3) 64 #define HIDPP_QUIRK_CLASS_K750 BIT(4) 65 66 /* bits 2..20 are reserved for classes */ 67 /* #define HIDPP_QUIRK_CONNECT_EVENTS BIT(21) disabled */ 68 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS BIT(22) 69 #define HIDPP_QUIRK_NO_HIDINPUT BIT(23) 70 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS BIT(24) 71 #define HIDPP_QUIRK_UNIFYING BIT(25) 72 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0 BIT(26) 73 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120 BIT(27) 74 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121 BIT(28) 75 #define HIDPP_QUIRK_HIDPP_WHEELS BIT(29) 76 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS BIT(30) 77 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS BIT(31) 78 79 /* These are just aliases for now */ 80 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS 81 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL HIDPP_QUIRK_HIDPP_WHEELS 82 83 /* Convenience constant to check for any high-res support. */ 84 #define HIDPP_QUIRK_HI_RES_SCROLL (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \ 85 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \ 86 HIDPP_QUIRK_HI_RES_SCROLL_X2121) 87 88 #define HIDPP_QUIRK_DELAYED_INIT HIDPP_QUIRK_NO_HIDINPUT 89 90 #define HIDPP_CAPABILITY_HIDPP10_BATTERY BIT(0) 91 #define HIDPP_CAPABILITY_HIDPP20_BATTERY BIT(1) 92 #define HIDPP_CAPABILITY_BATTERY_MILEAGE BIT(2) 93 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS BIT(3) 94 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE BIT(4) 95 #define HIDPP_CAPABILITY_BATTERY_PERCENTAGE BIT(5) 96 #define HIDPP_CAPABILITY_UNIFIED_BATTERY BIT(6) 97 98 #define lg_map_key_clear(c) hid_map_usage_clear(hi, usage, bit, max, EV_KEY, (c)) 99 100 /* 101 * There are two hidpp protocols in use, the first version hidpp10 is known 102 * as register access protocol or RAP, the second version hidpp20 is known as 103 * feature access protocol or FAP 104 * 105 * Most older devices (including the Unifying usb receiver) use the RAP protocol 106 * where as most newer devices use the FAP protocol. Both protocols are 107 * compatible with the underlying transport, which could be usb, Unifiying, or 108 * bluetooth. The message lengths are defined by the hid vendor specific report 109 * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and 110 * the HIDPP_LONG report type (total message length 20 bytes) 111 * 112 * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG 113 * messages. The Unifying receiver itself responds to RAP messages (device index 114 * is 0xFF for the receiver), and all messages (short or long) with a device 115 * index between 1 and 6 are passed untouched to the corresponding paired 116 * Unifying device. 117 * 118 * The paired device can be RAP or FAP, it will receive the message untouched 119 * from the Unifiying receiver. 120 */ 121 122 struct fap { 123 u8 feature_index; 124 u8 funcindex_clientid; 125 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U]; 126 }; 127 128 struct rap { 129 u8 sub_id; 130 u8 reg_address; 131 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U]; 132 }; 133 134 struct hidpp_report { 135 u8 report_id; 136 u8 device_index; 137 union { 138 struct fap fap; 139 struct rap rap; 140 u8 rawbytes[sizeof(struct fap)]; 141 }; 142 } __packed; 143 144 struct hidpp_battery { 145 u8 feature_index; 146 u8 solar_feature_index; 147 u8 voltage_feature_index; 148 struct power_supply_desc desc; 149 struct power_supply *ps; 150 char name[64]; 151 int status; 152 int capacity; 153 int level; 154 int voltage; 155 int charge_type; 156 bool online; 157 u8 supported_levels_1004; 158 }; 159 160 /** 161 * struct hidpp_scroll_counter - Utility class for processing high-resolution 162 * scroll events. 163 * @dev: the input device for which events should be reported. 164 * @wheel_multiplier: the scalar multiplier to be applied to each wheel event 165 * @remainder: counts the number of high-resolution units moved since the last 166 * low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should 167 * only be used by class methods. 168 * @direction: direction of last movement (1 or -1) 169 * @last_time: last event time, used to reset remainder after inactivity 170 */ 171 struct hidpp_scroll_counter { 172 int wheel_multiplier; 173 int remainder; 174 int direction; 175 unsigned long long last_time; 176 }; 177 178 struct hidpp_device { 179 struct hid_device *hid_dev; 180 struct input_dev *input; 181 struct mutex send_mutex; 182 void *send_receive_buf; 183 char *name; /* will never be NULL and should not be freed */ 184 wait_queue_head_t wait; 185 int very_long_report_length; 186 bool answer_available; 187 u8 protocol_major; 188 u8 protocol_minor; 189 190 void *private_data; 191 192 struct work_struct work; 193 struct kfifo delayed_work_fifo; 194 atomic_t connected; 195 struct input_dev *delayed_input; 196 197 unsigned long quirks; 198 unsigned long capabilities; 199 u8 supported_reports; 200 201 struct hidpp_battery battery; 202 struct hidpp_scroll_counter vertical_wheel_counter; 203 204 u8 wireless_feature_index; 205 }; 206 207 /* HID++ 1.0 error codes */ 208 #define HIDPP_ERROR 0x8f 209 #define HIDPP_ERROR_SUCCESS 0x00 210 #define HIDPP_ERROR_INVALID_SUBID 0x01 211 #define HIDPP_ERROR_INVALID_ADRESS 0x02 212 #define HIDPP_ERROR_INVALID_VALUE 0x03 213 #define HIDPP_ERROR_CONNECT_FAIL 0x04 214 #define HIDPP_ERROR_TOO_MANY_DEVICES 0x05 215 #define HIDPP_ERROR_ALREADY_EXISTS 0x06 216 #define HIDPP_ERROR_BUSY 0x07 217 #define HIDPP_ERROR_UNKNOWN_DEVICE 0x08 218 #define HIDPP_ERROR_RESOURCE_ERROR 0x09 219 #define HIDPP_ERROR_REQUEST_UNAVAILABLE 0x0a 220 #define HIDPP_ERROR_INVALID_PARAM_VALUE 0x0b 221 #define HIDPP_ERROR_WRONG_PIN_CODE 0x0c 222 /* HID++ 2.0 error codes */ 223 #define HIDPP20_ERROR 0xff 224 225 static void hidpp_connect_event(struct hidpp_device *hidpp_dev); 226 227 static int __hidpp_send_report(struct hid_device *hdev, 228 struct hidpp_report *hidpp_report) 229 { 230 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 231 int fields_count, ret; 232 233 switch (hidpp_report->report_id) { 234 case REPORT_ID_HIDPP_SHORT: 235 fields_count = HIDPP_REPORT_SHORT_LENGTH; 236 break; 237 case REPORT_ID_HIDPP_LONG: 238 fields_count = HIDPP_REPORT_LONG_LENGTH; 239 break; 240 case REPORT_ID_HIDPP_VERY_LONG: 241 fields_count = hidpp->very_long_report_length; 242 break; 243 default: 244 return -ENODEV; 245 } 246 247 /* 248 * set the device_index as the receiver, it will be overwritten by 249 * hid_hw_request if needed 250 */ 251 hidpp_report->device_index = 0xff; 252 253 if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) { 254 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count); 255 } else { 256 ret = hid_hw_raw_request(hdev, hidpp_report->report_id, 257 (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT, 258 HID_REQ_SET_REPORT); 259 } 260 261 return ret == fields_count ? 0 : -1; 262 } 263 264 /** 265 * hidpp_send_message_sync() returns 0 in case of success, and something else 266 * in case of a failure. 267 * - If ' something else' is positive, that means that an error has been raised 268 * by the protocol itself. 269 * - If ' something else' is negative, that means that we had a classic error 270 * (-ENOMEM, -EPIPE, etc...) 271 */ 272 static int hidpp_send_message_sync(struct hidpp_device *hidpp, 273 struct hidpp_report *message, 274 struct hidpp_report *response) 275 { 276 int ret; 277 278 mutex_lock(&hidpp->send_mutex); 279 280 hidpp->send_receive_buf = response; 281 hidpp->answer_available = false; 282 283 /* 284 * So that we can later validate the answer when it arrives 285 * in hidpp_raw_event 286 */ 287 *response = *message; 288 289 ret = __hidpp_send_report(hidpp->hid_dev, message); 290 291 if (ret) { 292 dbg_hid("__hidpp_send_report returned err: %d\n", ret); 293 memset(response, 0, sizeof(struct hidpp_report)); 294 goto exit; 295 } 296 297 if (!wait_event_timeout(hidpp->wait, hidpp->answer_available, 298 5*HZ)) { 299 dbg_hid("%s:timeout waiting for response\n", __func__); 300 memset(response, 0, sizeof(struct hidpp_report)); 301 ret = -ETIMEDOUT; 302 } 303 304 if (response->report_id == REPORT_ID_HIDPP_SHORT && 305 response->rap.sub_id == HIDPP_ERROR) { 306 ret = response->rap.params[1]; 307 dbg_hid("%s:got hidpp error %02X\n", __func__, ret); 308 goto exit; 309 } 310 311 if ((response->report_id == REPORT_ID_HIDPP_LONG || 312 response->report_id == REPORT_ID_HIDPP_VERY_LONG) && 313 response->fap.feature_index == HIDPP20_ERROR) { 314 ret = response->fap.params[1]; 315 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret); 316 goto exit; 317 } 318 319 exit: 320 mutex_unlock(&hidpp->send_mutex); 321 return ret; 322 323 } 324 325 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp, 326 u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count, 327 struct hidpp_report *response) 328 { 329 struct hidpp_report *message; 330 int ret; 331 332 if (param_count > sizeof(message->fap.params)) 333 return -EINVAL; 334 335 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 336 if (!message) 337 return -ENOMEM; 338 339 if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4)) 340 message->report_id = REPORT_ID_HIDPP_VERY_LONG; 341 else 342 message->report_id = REPORT_ID_HIDPP_LONG; 343 message->fap.feature_index = feat_index; 344 message->fap.funcindex_clientid = funcindex_clientid; 345 memcpy(&message->fap.params, params, param_count); 346 347 ret = hidpp_send_message_sync(hidpp, message, response); 348 kfree(message); 349 return ret; 350 } 351 352 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev, 353 u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count, 354 struct hidpp_report *response) 355 { 356 struct hidpp_report *message; 357 int ret, max_count; 358 359 /* Send as long report if short reports are not supported. */ 360 if (report_id == REPORT_ID_HIDPP_SHORT && 361 !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED)) 362 report_id = REPORT_ID_HIDPP_LONG; 363 364 switch (report_id) { 365 case REPORT_ID_HIDPP_SHORT: 366 max_count = HIDPP_REPORT_SHORT_LENGTH - 4; 367 break; 368 case REPORT_ID_HIDPP_LONG: 369 max_count = HIDPP_REPORT_LONG_LENGTH - 4; 370 break; 371 case REPORT_ID_HIDPP_VERY_LONG: 372 max_count = hidpp_dev->very_long_report_length - 4; 373 break; 374 default: 375 return -EINVAL; 376 } 377 378 if (param_count > max_count) 379 return -EINVAL; 380 381 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 382 if (!message) 383 return -ENOMEM; 384 message->report_id = report_id; 385 message->rap.sub_id = sub_id; 386 message->rap.reg_address = reg_address; 387 memcpy(&message->rap.params, params, param_count); 388 389 ret = hidpp_send_message_sync(hidpp_dev, message, response); 390 kfree(message); 391 return ret; 392 } 393 394 static void delayed_work_cb(struct work_struct *work) 395 { 396 struct hidpp_device *hidpp = container_of(work, struct hidpp_device, 397 work); 398 hidpp_connect_event(hidpp); 399 } 400 401 static inline bool hidpp_match_answer(struct hidpp_report *question, 402 struct hidpp_report *answer) 403 { 404 return (answer->fap.feature_index == question->fap.feature_index) && 405 (answer->fap.funcindex_clientid == question->fap.funcindex_clientid); 406 } 407 408 static inline bool hidpp_match_error(struct hidpp_report *question, 409 struct hidpp_report *answer) 410 { 411 return ((answer->rap.sub_id == HIDPP_ERROR) || 412 (answer->fap.feature_index == HIDPP20_ERROR)) && 413 (answer->fap.funcindex_clientid == question->fap.feature_index) && 414 (answer->fap.params[0] == question->fap.funcindex_clientid); 415 } 416 417 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp, 418 struct hidpp_report *report) 419 { 420 return (hidpp->wireless_feature_index && 421 (report->fap.feature_index == hidpp->wireless_feature_index)) || 422 ((report->report_id == REPORT_ID_HIDPP_SHORT) && 423 (report->rap.sub_id == 0x41)); 424 } 425 426 /** 427 * hidpp_prefix_name() prefixes the current given name with "Logitech ". 428 */ 429 static void hidpp_prefix_name(char **name, int name_length) 430 { 431 #define PREFIX_LENGTH 9 /* "Logitech " */ 432 433 int new_length; 434 char *new_name; 435 436 if (name_length > PREFIX_LENGTH && 437 strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0) 438 /* The prefix has is already in the name */ 439 return; 440 441 new_length = PREFIX_LENGTH + name_length; 442 new_name = kzalloc(new_length, GFP_KERNEL); 443 if (!new_name) 444 return; 445 446 snprintf(new_name, new_length, "Logitech %s", *name); 447 448 kfree(*name); 449 450 *name = new_name; 451 } 452 453 /** 454 * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll 455 * events given a high-resolution wheel 456 * movement. 457 * @counter: a hid_scroll_counter struct describing the wheel. 458 * @hi_res_value: the movement of the wheel, in the mouse's high-resolution 459 * units. 460 * 461 * Given a high-resolution movement, this function converts the movement into 462 * fractions of 120 and emits high-resolution scroll events for the input 463 * device. It also uses the multiplier from &struct hid_scroll_counter to 464 * emit low-resolution scroll events when appropriate for 465 * backwards-compatibility with userspace input libraries. 466 */ 467 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev, 468 struct hidpp_scroll_counter *counter, 469 int hi_res_value) 470 { 471 int low_res_value, remainder, direction; 472 unsigned long long now, previous; 473 474 hi_res_value = hi_res_value * 120/counter->wheel_multiplier; 475 input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value); 476 477 remainder = counter->remainder; 478 direction = hi_res_value > 0 ? 1 : -1; 479 480 now = sched_clock(); 481 previous = counter->last_time; 482 counter->last_time = now; 483 /* 484 * Reset the remainder after a period of inactivity or when the 485 * direction changes. This prevents the REL_WHEEL emulation point 486 * from sliding for devices that don't always provide the same 487 * number of movements per detent. 488 */ 489 if (now - previous > 1000000000 || direction != counter->direction) 490 remainder = 0; 491 492 counter->direction = direction; 493 remainder += hi_res_value; 494 495 /* Some wheels will rest 7/8ths of a detent from the previous detent 496 * after slow movement, so we want the threshold for low-res events to 497 * be in the middle between two detents (e.g. after 4/8ths) as 498 * opposed to on the detents themselves (8/8ths). 499 */ 500 if (abs(remainder) >= 60) { 501 /* Add (or subtract) 1 because we want to trigger when the wheel 502 * is half-way to the next detent (i.e. scroll 1 detent after a 503 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement, 504 * etc.). 505 */ 506 low_res_value = remainder / 120; 507 if (low_res_value == 0) 508 low_res_value = (hi_res_value > 0 ? 1 : -1); 509 input_report_rel(input_dev, REL_WHEEL, low_res_value); 510 remainder -= low_res_value * 120; 511 } 512 counter->remainder = remainder; 513 } 514 515 /* -------------------------------------------------------------------------- */ 516 /* HIDP++ 1.0 commands */ 517 /* -------------------------------------------------------------------------- */ 518 519 #define HIDPP_SET_REGISTER 0x80 520 #define HIDPP_GET_REGISTER 0x81 521 #define HIDPP_SET_LONG_REGISTER 0x82 522 #define HIDPP_GET_LONG_REGISTER 0x83 523 524 /** 525 * hidpp10_set_register - Modify a HID++ 1.0 register. 526 * @hidpp_dev: the device to set the register on. 527 * @register_address: the address of the register to modify. 528 * @byte: the byte of the register to modify. Should be less than 3. 529 * @mask: mask of the bits to modify 530 * @value: new values for the bits in mask 531 * Return: 0 if successful, otherwise a negative error code. 532 */ 533 static int hidpp10_set_register(struct hidpp_device *hidpp_dev, 534 u8 register_address, u8 byte, u8 mask, u8 value) 535 { 536 struct hidpp_report response; 537 int ret; 538 u8 params[3] = { 0 }; 539 540 ret = hidpp_send_rap_command_sync(hidpp_dev, 541 REPORT_ID_HIDPP_SHORT, 542 HIDPP_GET_REGISTER, 543 register_address, 544 NULL, 0, &response); 545 if (ret) 546 return ret; 547 548 memcpy(params, response.rap.params, 3); 549 550 params[byte] &= ~mask; 551 params[byte] |= value & mask; 552 553 return hidpp_send_rap_command_sync(hidpp_dev, 554 REPORT_ID_HIDPP_SHORT, 555 HIDPP_SET_REGISTER, 556 register_address, 557 params, 3, &response); 558 } 559 560 #define HIDPP_REG_ENABLE_REPORTS 0x00 561 #define HIDPP_ENABLE_CONSUMER_REPORT BIT(0) 562 #define HIDPP_ENABLE_WHEEL_REPORT BIT(2) 563 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT BIT(3) 564 #define HIDPP_ENABLE_BAT_REPORT BIT(4) 565 #define HIDPP_ENABLE_HWHEEL_REPORT BIT(5) 566 567 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev) 568 { 569 return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0, 570 HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT); 571 } 572 573 #define HIDPP_REG_FEATURES 0x01 574 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC BIT(1) 575 #define HIDPP_ENABLE_FAST_SCROLL BIT(6) 576 577 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */ 578 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev) 579 { 580 return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0, 581 HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL); 582 } 583 584 #define HIDPP_REG_BATTERY_STATUS 0x07 585 586 static int hidpp10_battery_status_map_level(u8 param) 587 { 588 int level; 589 590 switch (param) { 591 case 1 ... 2: 592 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 593 break; 594 case 3 ... 4: 595 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; 596 break; 597 case 5 ... 6: 598 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 599 break; 600 case 7: 601 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; 602 break; 603 default: 604 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 605 } 606 607 return level; 608 } 609 610 static int hidpp10_battery_status_map_status(u8 param) 611 { 612 int status; 613 614 switch (param) { 615 case 0x00: 616 /* discharging (in use) */ 617 status = POWER_SUPPLY_STATUS_DISCHARGING; 618 break; 619 case 0x21: /* (standard) charging */ 620 case 0x24: /* fast charging */ 621 case 0x25: /* slow charging */ 622 status = POWER_SUPPLY_STATUS_CHARGING; 623 break; 624 case 0x26: /* topping charge */ 625 case 0x22: /* charge complete */ 626 status = POWER_SUPPLY_STATUS_FULL; 627 break; 628 case 0x20: /* unknown */ 629 status = POWER_SUPPLY_STATUS_UNKNOWN; 630 break; 631 /* 632 * 0x01...0x1F = reserved (not charging) 633 * 0x23 = charging error 634 * 0x27..0xff = reserved 635 */ 636 default: 637 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 638 break; 639 } 640 641 return status; 642 } 643 644 static int hidpp10_query_battery_status(struct hidpp_device *hidpp) 645 { 646 struct hidpp_report response; 647 int ret, status; 648 649 ret = hidpp_send_rap_command_sync(hidpp, 650 REPORT_ID_HIDPP_SHORT, 651 HIDPP_GET_REGISTER, 652 HIDPP_REG_BATTERY_STATUS, 653 NULL, 0, &response); 654 if (ret) 655 return ret; 656 657 hidpp->battery.level = 658 hidpp10_battery_status_map_level(response.rap.params[0]); 659 status = hidpp10_battery_status_map_status(response.rap.params[1]); 660 hidpp->battery.status = status; 661 /* the capacity is only available when discharging or full */ 662 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 663 status == POWER_SUPPLY_STATUS_FULL; 664 665 return 0; 666 } 667 668 #define HIDPP_REG_BATTERY_MILEAGE 0x0D 669 670 static int hidpp10_battery_mileage_map_status(u8 param) 671 { 672 int status; 673 674 switch (param >> 6) { 675 case 0x00: 676 /* discharging (in use) */ 677 status = POWER_SUPPLY_STATUS_DISCHARGING; 678 break; 679 case 0x01: /* charging */ 680 status = POWER_SUPPLY_STATUS_CHARGING; 681 break; 682 case 0x02: /* charge complete */ 683 status = POWER_SUPPLY_STATUS_FULL; 684 break; 685 /* 686 * 0x03 = charging error 687 */ 688 default: 689 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 690 break; 691 } 692 693 return status; 694 } 695 696 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp) 697 { 698 struct hidpp_report response; 699 int ret, status; 700 701 ret = hidpp_send_rap_command_sync(hidpp, 702 REPORT_ID_HIDPP_SHORT, 703 HIDPP_GET_REGISTER, 704 HIDPP_REG_BATTERY_MILEAGE, 705 NULL, 0, &response); 706 if (ret) 707 return ret; 708 709 hidpp->battery.capacity = response.rap.params[0]; 710 status = hidpp10_battery_mileage_map_status(response.rap.params[2]); 711 hidpp->battery.status = status; 712 /* the capacity is only available when discharging or full */ 713 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 714 status == POWER_SUPPLY_STATUS_FULL; 715 716 return 0; 717 } 718 719 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size) 720 { 721 struct hidpp_report *report = (struct hidpp_report *)data; 722 int status, capacity, level; 723 bool changed; 724 725 if (report->report_id != REPORT_ID_HIDPP_SHORT) 726 return 0; 727 728 switch (report->rap.sub_id) { 729 case HIDPP_REG_BATTERY_STATUS: 730 capacity = hidpp->battery.capacity; 731 level = hidpp10_battery_status_map_level(report->rawbytes[1]); 732 status = hidpp10_battery_status_map_status(report->rawbytes[2]); 733 break; 734 case HIDPP_REG_BATTERY_MILEAGE: 735 capacity = report->rap.params[0]; 736 level = hidpp->battery.level; 737 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]); 738 break; 739 default: 740 return 0; 741 } 742 743 changed = capacity != hidpp->battery.capacity || 744 level != hidpp->battery.level || 745 status != hidpp->battery.status; 746 747 /* the capacity is only available when discharging or full */ 748 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 749 status == POWER_SUPPLY_STATUS_FULL; 750 751 if (changed) { 752 hidpp->battery.level = level; 753 hidpp->battery.status = status; 754 if (hidpp->battery.ps) 755 power_supply_changed(hidpp->battery.ps); 756 } 757 758 return 0; 759 } 760 761 #define HIDPP_REG_PAIRING_INFORMATION 0xB5 762 #define HIDPP_EXTENDED_PAIRING 0x30 763 #define HIDPP_DEVICE_NAME 0x40 764 765 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev) 766 { 767 struct hidpp_report response; 768 int ret; 769 u8 params[1] = { HIDPP_DEVICE_NAME }; 770 char *name; 771 int len; 772 773 ret = hidpp_send_rap_command_sync(hidpp_dev, 774 REPORT_ID_HIDPP_SHORT, 775 HIDPP_GET_LONG_REGISTER, 776 HIDPP_REG_PAIRING_INFORMATION, 777 params, 1, &response); 778 if (ret) 779 return NULL; 780 781 len = response.rap.params[1]; 782 783 if (2 + len > sizeof(response.rap.params)) 784 return NULL; 785 786 if (len < 4) /* logitech devices are usually at least Xddd */ 787 return NULL; 788 789 name = kzalloc(len + 1, GFP_KERNEL); 790 if (!name) 791 return NULL; 792 793 memcpy(name, &response.rap.params[2], len); 794 795 /* include the terminating '\0' */ 796 hidpp_prefix_name(&name, len + 1); 797 798 return name; 799 } 800 801 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial) 802 { 803 struct hidpp_report response; 804 int ret; 805 u8 params[1] = { HIDPP_EXTENDED_PAIRING }; 806 807 ret = hidpp_send_rap_command_sync(hidpp, 808 REPORT_ID_HIDPP_SHORT, 809 HIDPP_GET_LONG_REGISTER, 810 HIDPP_REG_PAIRING_INFORMATION, 811 params, 1, &response); 812 if (ret) 813 return ret; 814 815 /* 816 * We don't care about LE or BE, we will output it as a string 817 * with %4phD, so we need to keep the order. 818 */ 819 *serial = *((u32 *)&response.rap.params[1]); 820 return 0; 821 } 822 823 static int hidpp_unifying_init(struct hidpp_device *hidpp) 824 { 825 struct hid_device *hdev = hidpp->hid_dev; 826 const char *name; 827 u32 serial; 828 int ret; 829 830 ret = hidpp_unifying_get_serial(hidpp, &serial); 831 if (ret) 832 return ret; 833 834 snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD", 835 hdev->product, &serial); 836 dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq); 837 838 name = hidpp_unifying_get_name(hidpp); 839 if (!name) 840 return -EIO; 841 842 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 843 dbg_hid("HID++ Unifying: Got name: %s\n", name); 844 845 kfree(name); 846 return 0; 847 } 848 849 /* -------------------------------------------------------------------------- */ 850 /* 0x0000: Root */ 851 /* -------------------------------------------------------------------------- */ 852 853 #define HIDPP_PAGE_ROOT 0x0000 854 #define HIDPP_PAGE_ROOT_IDX 0x00 855 856 #define CMD_ROOT_GET_FEATURE 0x01 857 #define CMD_ROOT_GET_PROTOCOL_VERSION 0x11 858 859 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature, 860 u8 *feature_index, u8 *feature_type) 861 { 862 struct hidpp_report response; 863 int ret; 864 u8 params[2] = { feature >> 8, feature & 0x00FF }; 865 866 ret = hidpp_send_fap_command_sync(hidpp, 867 HIDPP_PAGE_ROOT_IDX, 868 CMD_ROOT_GET_FEATURE, 869 params, 2, &response); 870 if (ret) 871 return ret; 872 873 if (response.fap.params[0] == 0) 874 return -ENOENT; 875 876 *feature_index = response.fap.params[0]; 877 *feature_type = response.fap.params[1]; 878 879 return ret; 880 } 881 882 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp) 883 { 884 const u8 ping_byte = 0x5a; 885 u8 ping_data[3] = { 0, 0, ping_byte }; 886 struct hidpp_report response; 887 int ret; 888 889 ret = hidpp_send_rap_command_sync(hidpp, 890 REPORT_ID_HIDPP_SHORT, 891 HIDPP_PAGE_ROOT_IDX, 892 CMD_ROOT_GET_PROTOCOL_VERSION, 893 ping_data, sizeof(ping_data), &response); 894 895 if (ret == HIDPP_ERROR_INVALID_SUBID) { 896 hidpp->protocol_major = 1; 897 hidpp->protocol_minor = 0; 898 goto print_version; 899 } 900 901 /* the device might not be connected */ 902 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 903 return -EIO; 904 905 if (ret > 0) { 906 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 907 __func__, ret); 908 return -EPROTO; 909 } 910 if (ret) 911 return ret; 912 913 if (response.rap.params[2] != ping_byte) { 914 hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n", 915 __func__, response.rap.params[2], ping_byte); 916 return -EPROTO; 917 } 918 919 hidpp->protocol_major = response.rap.params[0]; 920 hidpp->protocol_minor = response.rap.params[1]; 921 922 print_version: 923 hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n", 924 hidpp->protocol_major, hidpp->protocol_minor); 925 return 0; 926 } 927 928 /* -------------------------------------------------------------------------- */ 929 /* 0x0005: GetDeviceNameType */ 930 /* -------------------------------------------------------------------------- */ 931 932 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE 0x0005 933 934 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT 0x01 935 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME 0x11 936 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE 0x21 937 938 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp, 939 u8 feature_index, u8 *nameLength) 940 { 941 struct hidpp_report response; 942 int ret; 943 944 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 945 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response); 946 947 if (ret > 0) { 948 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 949 __func__, ret); 950 return -EPROTO; 951 } 952 if (ret) 953 return ret; 954 955 *nameLength = response.fap.params[0]; 956 957 return ret; 958 } 959 960 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp, 961 u8 feature_index, u8 char_index, char *device_name, int len_buf) 962 { 963 struct hidpp_report response; 964 int ret, i; 965 int count; 966 967 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 968 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1, 969 &response); 970 971 if (ret > 0) { 972 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 973 __func__, ret); 974 return -EPROTO; 975 } 976 if (ret) 977 return ret; 978 979 switch (response.report_id) { 980 case REPORT_ID_HIDPP_VERY_LONG: 981 count = hidpp->very_long_report_length - 4; 982 break; 983 case REPORT_ID_HIDPP_LONG: 984 count = HIDPP_REPORT_LONG_LENGTH - 4; 985 break; 986 case REPORT_ID_HIDPP_SHORT: 987 count = HIDPP_REPORT_SHORT_LENGTH - 4; 988 break; 989 default: 990 return -EPROTO; 991 } 992 993 if (len_buf < count) 994 count = len_buf; 995 996 for (i = 0; i < count; i++) 997 device_name[i] = response.fap.params[i]; 998 999 return count; 1000 } 1001 1002 static char *hidpp_get_device_name(struct hidpp_device *hidpp) 1003 { 1004 u8 feature_type; 1005 u8 feature_index; 1006 u8 __name_length; 1007 char *name; 1008 unsigned index = 0; 1009 int ret; 1010 1011 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE, 1012 &feature_index, &feature_type); 1013 if (ret) 1014 return NULL; 1015 1016 ret = hidpp_devicenametype_get_count(hidpp, feature_index, 1017 &__name_length); 1018 if (ret) 1019 return NULL; 1020 1021 name = kzalloc(__name_length + 1, GFP_KERNEL); 1022 if (!name) 1023 return NULL; 1024 1025 while (index < __name_length) { 1026 ret = hidpp_devicenametype_get_device_name(hidpp, 1027 feature_index, index, name + index, 1028 __name_length - index); 1029 if (ret <= 0) { 1030 kfree(name); 1031 return NULL; 1032 } 1033 index += ret; 1034 } 1035 1036 /* include the terminating '\0' */ 1037 hidpp_prefix_name(&name, __name_length + 1); 1038 1039 return name; 1040 } 1041 1042 /* -------------------------------------------------------------------------- */ 1043 /* 0x1000: Battery level status */ 1044 /* -------------------------------------------------------------------------- */ 1045 1046 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS 0x1000 1047 1048 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS 0x00 1049 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY 0x10 1050 1051 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST 0x00 1052 1053 #define FLAG_BATTERY_LEVEL_DISABLE_OSD BIT(0) 1054 #define FLAG_BATTERY_LEVEL_MILEAGE BIT(1) 1055 #define FLAG_BATTERY_LEVEL_RECHARGEABLE BIT(2) 1056 1057 static int hidpp_map_battery_level(int capacity) 1058 { 1059 if (capacity < 11) 1060 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1061 /* 1062 * The spec says this should be < 31 but some devices report 30 1063 * with brand new batteries and Windows reports 30 as "Good". 1064 */ 1065 else if (capacity < 30) 1066 return POWER_SUPPLY_CAPACITY_LEVEL_LOW; 1067 else if (capacity < 81) 1068 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 1069 return POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1070 } 1071 1072 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity, 1073 int *next_capacity, 1074 int *level) 1075 { 1076 int status; 1077 1078 *capacity = data[0]; 1079 *next_capacity = data[1]; 1080 *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 1081 1082 /* When discharging, we can rely on the device reported capacity. 1083 * For all other states the device reports 0 (unknown). 1084 */ 1085 switch (data[2]) { 1086 case 0: /* discharging (in use) */ 1087 status = POWER_SUPPLY_STATUS_DISCHARGING; 1088 *level = hidpp_map_battery_level(*capacity); 1089 break; 1090 case 1: /* recharging */ 1091 status = POWER_SUPPLY_STATUS_CHARGING; 1092 break; 1093 case 2: /* charge in final stage */ 1094 status = POWER_SUPPLY_STATUS_CHARGING; 1095 break; 1096 case 3: /* charge complete */ 1097 status = POWER_SUPPLY_STATUS_FULL; 1098 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1099 *capacity = 100; 1100 break; 1101 case 4: /* recharging below optimal speed */ 1102 status = POWER_SUPPLY_STATUS_CHARGING; 1103 break; 1104 /* 5 = invalid battery type 1105 6 = thermal error 1106 7 = other charging error */ 1107 default: 1108 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1109 break; 1110 } 1111 1112 return status; 1113 } 1114 1115 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp, 1116 u8 feature_index, 1117 int *status, 1118 int *capacity, 1119 int *next_capacity, 1120 int *level) 1121 { 1122 struct hidpp_report response; 1123 int ret; 1124 u8 *params = (u8 *)response.fap.params; 1125 1126 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1127 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS, 1128 NULL, 0, &response); 1129 /* Ignore these intermittent errors */ 1130 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 1131 return -EIO; 1132 if (ret > 0) { 1133 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1134 __func__, ret); 1135 return -EPROTO; 1136 } 1137 if (ret) 1138 return ret; 1139 1140 *status = hidpp20_batterylevel_map_status_capacity(params, capacity, 1141 next_capacity, 1142 level); 1143 1144 return 0; 1145 } 1146 1147 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp, 1148 u8 feature_index) 1149 { 1150 struct hidpp_report response; 1151 int ret; 1152 u8 *params = (u8 *)response.fap.params; 1153 unsigned int level_count, flags; 1154 1155 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1156 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY, 1157 NULL, 0, &response); 1158 if (ret > 0) { 1159 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1160 __func__, ret); 1161 return -EPROTO; 1162 } 1163 if (ret) 1164 return ret; 1165 1166 level_count = params[0]; 1167 flags = params[1]; 1168 1169 if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE)) 1170 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 1171 else 1172 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1173 1174 return 0; 1175 } 1176 1177 static int hidpp20_query_battery_info_1000(struct hidpp_device *hidpp) 1178 { 1179 u8 feature_type; 1180 int ret; 1181 int status, capacity, next_capacity, level; 1182 1183 if (hidpp->battery.feature_index == 0xff) { 1184 ret = hidpp_root_get_feature(hidpp, 1185 HIDPP_PAGE_BATTERY_LEVEL_STATUS, 1186 &hidpp->battery.feature_index, 1187 &feature_type); 1188 if (ret) 1189 return ret; 1190 } 1191 1192 ret = hidpp20_batterylevel_get_battery_capacity(hidpp, 1193 hidpp->battery.feature_index, 1194 &status, &capacity, 1195 &next_capacity, &level); 1196 if (ret) 1197 return ret; 1198 1199 ret = hidpp20_batterylevel_get_battery_info(hidpp, 1200 hidpp->battery.feature_index); 1201 if (ret) 1202 return ret; 1203 1204 hidpp->battery.status = status; 1205 hidpp->battery.capacity = capacity; 1206 hidpp->battery.level = level; 1207 /* the capacity is only available when discharging or full */ 1208 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1209 status == POWER_SUPPLY_STATUS_FULL; 1210 1211 return 0; 1212 } 1213 1214 static int hidpp20_battery_event_1000(struct hidpp_device *hidpp, 1215 u8 *data, int size) 1216 { 1217 struct hidpp_report *report = (struct hidpp_report *)data; 1218 int status, capacity, next_capacity, level; 1219 bool changed; 1220 1221 if (report->fap.feature_index != hidpp->battery.feature_index || 1222 report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST) 1223 return 0; 1224 1225 status = hidpp20_batterylevel_map_status_capacity(report->fap.params, 1226 &capacity, 1227 &next_capacity, 1228 &level); 1229 1230 /* the capacity is only available when discharging or full */ 1231 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1232 status == POWER_SUPPLY_STATUS_FULL; 1233 1234 changed = capacity != hidpp->battery.capacity || 1235 level != hidpp->battery.level || 1236 status != hidpp->battery.status; 1237 1238 if (changed) { 1239 hidpp->battery.level = level; 1240 hidpp->battery.capacity = capacity; 1241 hidpp->battery.status = status; 1242 if (hidpp->battery.ps) 1243 power_supply_changed(hidpp->battery.ps); 1244 } 1245 1246 return 0; 1247 } 1248 1249 /* -------------------------------------------------------------------------- */ 1250 /* 0x1001: Battery voltage */ 1251 /* -------------------------------------------------------------------------- */ 1252 1253 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001 1254 1255 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00 1256 1257 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00 1258 1259 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage, 1260 int *level, int *charge_type) 1261 { 1262 int status; 1263 1264 long flags = (long) data[2]; 1265 1266 if (flags & 0x80) 1267 switch (flags & 0x07) { 1268 case 0: 1269 status = POWER_SUPPLY_STATUS_CHARGING; 1270 break; 1271 case 1: 1272 status = POWER_SUPPLY_STATUS_FULL; 1273 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1274 break; 1275 case 2: 1276 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1277 break; 1278 default: 1279 status = POWER_SUPPLY_STATUS_UNKNOWN; 1280 break; 1281 } 1282 else 1283 status = POWER_SUPPLY_STATUS_DISCHARGING; 1284 1285 *charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD; 1286 if (test_bit(3, &flags)) { 1287 *charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST; 1288 } 1289 if (test_bit(4, &flags)) { 1290 *charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; 1291 } 1292 if (test_bit(5, &flags)) { 1293 *level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1294 } 1295 1296 *voltage = get_unaligned_be16(data); 1297 1298 return status; 1299 } 1300 1301 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp, 1302 u8 feature_index, 1303 int *status, int *voltage, 1304 int *level, int *charge_type) 1305 { 1306 struct hidpp_report response; 1307 int ret; 1308 u8 *params = (u8 *)response.fap.params; 1309 1310 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1311 CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE, 1312 NULL, 0, &response); 1313 1314 if (ret > 0) { 1315 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1316 __func__, ret); 1317 return -EPROTO; 1318 } 1319 if (ret) 1320 return ret; 1321 1322 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE; 1323 1324 *status = hidpp20_battery_map_status_voltage(params, voltage, 1325 level, charge_type); 1326 1327 return 0; 1328 } 1329 1330 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp) 1331 { 1332 u8 feature_type; 1333 int ret; 1334 int status, voltage, level, charge_type; 1335 1336 if (hidpp->battery.voltage_feature_index == 0xff) { 1337 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE, 1338 &hidpp->battery.voltage_feature_index, 1339 &feature_type); 1340 if (ret) 1341 return ret; 1342 } 1343 1344 ret = hidpp20_battery_get_battery_voltage(hidpp, 1345 hidpp->battery.voltage_feature_index, 1346 &status, &voltage, &level, &charge_type); 1347 1348 if (ret) 1349 return ret; 1350 1351 hidpp->battery.status = status; 1352 hidpp->battery.voltage = voltage; 1353 hidpp->battery.level = level; 1354 hidpp->battery.charge_type = charge_type; 1355 hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING; 1356 1357 return 0; 1358 } 1359 1360 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp, 1361 u8 *data, int size) 1362 { 1363 struct hidpp_report *report = (struct hidpp_report *)data; 1364 int status, voltage, level, charge_type; 1365 1366 if (report->fap.feature_index != hidpp->battery.voltage_feature_index || 1367 report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST) 1368 return 0; 1369 1370 status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage, 1371 &level, &charge_type); 1372 1373 hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING; 1374 1375 if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) { 1376 hidpp->battery.voltage = voltage; 1377 hidpp->battery.status = status; 1378 hidpp->battery.level = level; 1379 hidpp->battery.charge_type = charge_type; 1380 if (hidpp->battery.ps) 1381 power_supply_changed(hidpp->battery.ps); 1382 } 1383 return 0; 1384 } 1385 1386 /* -------------------------------------------------------------------------- */ 1387 /* 0x1004: Unified battery */ 1388 /* -------------------------------------------------------------------------- */ 1389 1390 #define HIDPP_PAGE_UNIFIED_BATTERY 0x1004 1391 1392 #define CMD_UNIFIED_BATTERY_GET_CAPABILITIES 0x00 1393 #define CMD_UNIFIED_BATTERY_GET_STATUS 0x10 1394 1395 #define EVENT_UNIFIED_BATTERY_STATUS_EVENT 0x00 1396 1397 #define FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL BIT(0) 1398 #define FLAG_UNIFIED_BATTERY_LEVEL_LOW BIT(1) 1399 #define FLAG_UNIFIED_BATTERY_LEVEL_GOOD BIT(2) 1400 #define FLAG_UNIFIED_BATTERY_LEVEL_FULL BIT(3) 1401 1402 #define FLAG_UNIFIED_BATTERY_FLAGS_RECHARGEABLE BIT(0) 1403 #define FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE BIT(1) 1404 1405 static int hidpp20_unifiedbattery_get_capabilities(struct hidpp_device *hidpp, 1406 u8 feature_index) 1407 { 1408 struct hidpp_report response; 1409 int ret; 1410 u8 *params = (u8 *)response.fap.params; 1411 1412 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS || 1413 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) { 1414 /* we have already set the device capabilities, so let's skip */ 1415 return 0; 1416 } 1417 1418 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1419 CMD_UNIFIED_BATTERY_GET_CAPABILITIES, 1420 NULL, 0, &response); 1421 /* Ignore these intermittent errors */ 1422 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 1423 return -EIO; 1424 if (ret > 0) { 1425 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1426 __func__, ret); 1427 return -EPROTO; 1428 } 1429 if (ret) 1430 return ret; 1431 1432 /* 1433 * If the device supports state of charge (battery percentage) we won't 1434 * export the battery level information. there are 4 possible battery 1435 * levels and they all are optional, this means that the device might 1436 * not support any of them, we are just better off with the battery 1437 * percentage. 1438 */ 1439 if (params[1] & FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE) { 1440 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_PERCENTAGE; 1441 hidpp->battery.supported_levels_1004 = 0; 1442 } else { 1443 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 1444 hidpp->battery.supported_levels_1004 = params[0]; 1445 } 1446 1447 return 0; 1448 } 1449 1450 static int hidpp20_unifiedbattery_map_status(struct hidpp_device *hidpp, 1451 u8 charging_status, 1452 u8 external_power_status) 1453 { 1454 int status; 1455 1456 switch (charging_status) { 1457 case 0: /* discharging */ 1458 status = POWER_SUPPLY_STATUS_DISCHARGING; 1459 break; 1460 case 1: /* charging */ 1461 case 2: /* charging slow */ 1462 status = POWER_SUPPLY_STATUS_CHARGING; 1463 break; 1464 case 3: /* complete */ 1465 status = POWER_SUPPLY_STATUS_FULL; 1466 break; 1467 case 4: /* error */ 1468 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1469 hid_info(hidpp->hid_dev, "%s: charging error", 1470 hidpp->name); 1471 break; 1472 default: 1473 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1474 break; 1475 } 1476 1477 return status; 1478 } 1479 1480 static int hidpp20_unifiedbattery_map_level(struct hidpp_device *hidpp, 1481 u8 battery_level) 1482 { 1483 /* cler unsupported level bits */ 1484 battery_level &= hidpp->battery.supported_levels_1004; 1485 1486 if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_FULL) 1487 return POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1488 else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_GOOD) 1489 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 1490 else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_LOW) 1491 return POWER_SUPPLY_CAPACITY_LEVEL_LOW; 1492 else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL) 1493 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1494 1495 return POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 1496 } 1497 1498 static int hidpp20_unifiedbattery_get_status(struct hidpp_device *hidpp, 1499 u8 feature_index, 1500 u8 *state_of_charge, 1501 int *status, 1502 int *level) 1503 { 1504 struct hidpp_report response; 1505 int ret; 1506 u8 *params = (u8 *)response.fap.params; 1507 1508 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1509 CMD_UNIFIED_BATTERY_GET_STATUS, 1510 NULL, 0, &response); 1511 /* Ignore these intermittent errors */ 1512 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 1513 return -EIO; 1514 if (ret > 0) { 1515 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1516 __func__, ret); 1517 return -EPROTO; 1518 } 1519 if (ret) 1520 return ret; 1521 1522 *state_of_charge = params[0]; 1523 *status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]); 1524 *level = hidpp20_unifiedbattery_map_level(hidpp, params[1]); 1525 1526 return 0; 1527 } 1528 1529 static int hidpp20_query_battery_info_1004(struct hidpp_device *hidpp) 1530 { 1531 u8 feature_type; 1532 int ret; 1533 u8 state_of_charge; 1534 int status, level; 1535 1536 if (hidpp->battery.feature_index == 0xff) { 1537 ret = hidpp_root_get_feature(hidpp, 1538 HIDPP_PAGE_UNIFIED_BATTERY, 1539 &hidpp->battery.feature_index, 1540 &feature_type); 1541 if (ret) 1542 return ret; 1543 } 1544 1545 ret = hidpp20_unifiedbattery_get_capabilities(hidpp, 1546 hidpp->battery.feature_index); 1547 if (ret) 1548 return ret; 1549 1550 ret = hidpp20_unifiedbattery_get_status(hidpp, 1551 hidpp->battery.feature_index, 1552 &state_of_charge, 1553 &status, 1554 &level); 1555 if (ret) 1556 return ret; 1557 1558 hidpp->capabilities |= HIDPP_CAPABILITY_UNIFIED_BATTERY; 1559 hidpp->battery.capacity = state_of_charge; 1560 hidpp->battery.status = status; 1561 hidpp->battery.level = level; 1562 hidpp->battery.online = true; 1563 1564 return 0; 1565 } 1566 1567 static int hidpp20_battery_event_1004(struct hidpp_device *hidpp, 1568 u8 *data, int size) 1569 { 1570 struct hidpp_report *report = (struct hidpp_report *)data; 1571 u8 *params = (u8 *)report->fap.params; 1572 int state_of_charge, status, level; 1573 bool changed; 1574 1575 if (report->fap.feature_index != hidpp->battery.feature_index || 1576 report->fap.funcindex_clientid != EVENT_UNIFIED_BATTERY_STATUS_EVENT) 1577 return 0; 1578 1579 state_of_charge = params[0]; 1580 status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]); 1581 level = hidpp20_unifiedbattery_map_level(hidpp, params[1]); 1582 1583 changed = status != hidpp->battery.status || 1584 (state_of_charge != hidpp->battery.capacity && 1585 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) || 1586 (level != hidpp->battery.level && 1587 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS); 1588 1589 if (changed) { 1590 hidpp->battery.capacity = state_of_charge; 1591 hidpp->battery.status = status; 1592 hidpp->battery.level = level; 1593 if (hidpp->battery.ps) 1594 power_supply_changed(hidpp->battery.ps); 1595 } 1596 1597 return 0; 1598 } 1599 1600 /* -------------------------------------------------------------------------- */ 1601 /* Battery feature helpers */ 1602 /* -------------------------------------------------------------------------- */ 1603 1604 static enum power_supply_property hidpp_battery_props[] = { 1605 POWER_SUPPLY_PROP_ONLINE, 1606 POWER_SUPPLY_PROP_STATUS, 1607 POWER_SUPPLY_PROP_SCOPE, 1608 POWER_SUPPLY_PROP_MODEL_NAME, 1609 POWER_SUPPLY_PROP_MANUFACTURER, 1610 POWER_SUPPLY_PROP_SERIAL_NUMBER, 1611 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */ 1612 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */ 1613 0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */ 1614 }; 1615 1616 static int hidpp_battery_get_property(struct power_supply *psy, 1617 enum power_supply_property psp, 1618 union power_supply_propval *val) 1619 { 1620 struct hidpp_device *hidpp = power_supply_get_drvdata(psy); 1621 int ret = 0; 1622 1623 switch(psp) { 1624 case POWER_SUPPLY_PROP_STATUS: 1625 val->intval = hidpp->battery.status; 1626 break; 1627 case POWER_SUPPLY_PROP_CAPACITY: 1628 val->intval = hidpp->battery.capacity; 1629 break; 1630 case POWER_SUPPLY_PROP_CAPACITY_LEVEL: 1631 val->intval = hidpp->battery.level; 1632 break; 1633 case POWER_SUPPLY_PROP_SCOPE: 1634 val->intval = POWER_SUPPLY_SCOPE_DEVICE; 1635 break; 1636 case POWER_SUPPLY_PROP_ONLINE: 1637 val->intval = hidpp->battery.online; 1638 break; 1639 case POWER_SUPPLY_PROP_MODEL_NAME: 1640 if (!strncmp(hidpp->name, "Logitech ", 9)) 1641 val->strval = hidpp->name + 9; 1642 else 1643 val->strval = hidpp->name; 1644 break; 1645 case POWER_SUPPLY_PROP_MANUFACTURER: 1646 val->strval = "Logitech"; 1647 break; 1648 case POWER_SUPPLY_PROP_SERIAL_NUMBER: 1649 val->strval = hidpp->hid_dev->uniq; 1650 break; 1651 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 1652 /* hardware reports voltage in in mV. sysfs expects uV */ 1653 val->intval = hidpp->battery.voltage * 1000; 1654 break; 1655 case POWER_SUPPLY_PROP_CHARGE_TYPE: 1656 val->intval = hidpp->battery.charge_type; 1657 break; 1658 default: 1659 ret = -EINVAL; 1660 break; 1661 } 1662 1663 return ret; 1664 } 1665 1666 /* -------------------------------------------------------------------------- */ 1667 /* 0x1d4b: Wireless device status */ 1668 /* -------------------------------------------------------------------------- */ 1669 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS 0x1d4b 1670 1671 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp) 1672 { 1673 u8 feature_type; 1674 int ret; 1675 1676 ret = hidpp_root_get_feature(hidpp, 1677 HIDPP_PAGE_WIRELESS_DEVICE_STATUS, 1678 &hidpp->wireless_feature_index, 1679 &feature_type); 1680 1681 return ret; 1682 } 1683 1684 /* -------------------------------------------------------------------------- */ 1685 /* 0x2120: Hi-resolution scrolling */ 1686 /* -------------------------------------------------------------------------- */ 1687 1688 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING 0x2120 1689 1690 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE 0x10 1691 1692 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp, 1693 bool enabled, u8 *multiplier) 1694 { 1695 u8 feature_index; 1696 u8 feature_type; 1697 int ret; 1698 u8 params[1]; 1699 struct hidpp_report response; 1700 1701 ret = hidpp_root_get_feature(hidpp, 1702 HIDPP_PAGE_HI_RESOLUTION_SCROLLING, 1703 &feature_index, 1704 &feature_type); 1705 if (ret) 1706 return ret; 1707 1708 params[0] = enabled ? BIT(0) : 0; 1709 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1710 CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE, 1711 params, sizeof(params), &response); 1712 if (ret) 1713 return ret; 1714 *multiplier = response.fap.params[1]; 1715 return 0; 1716 } 1717 1718 /* -------------------------------------------------------------------------- */ 1719 /* 0x2121: HiRes Wheel */ 1720 /* -------------------------------------------------------------------------- */ 1721 1722 #define HIDPP_PAGE_HIRES_WHEEL 0x2121 1723 1724 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY 0x00 1725 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE 0x20 1726 1727 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp, 1728 u8 *multiplier) 1729 { 1730 u8 feature_index; 1731 u8 feature_type; 1732 int ret; 1733 struct hidpp_report response; 1734 1735 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1736 &feature_index, &feature_type); 1737 if (ret) 1738 goto return_default; 1739 1740 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1741 CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY, 1742 NULL, 0, &response); 1743 if (ret) 1744 goto return_default; 1745 1746 *multiplier = response.fap.params[0]; 1747 return 0; 1748 return_default: 1749 hid_warn(hidpp->hid_dev, 1750 "Couldn't get wheel multiplier (error %d)\n", ret); 1751 return ret; 1752 } 1753 1754 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert, 1755 bool high_resolution, bool use_hidpp) 1756 { 1757 u8 feature_index; 1758 u8 feature_type; 1759 int ret; 1760 u8 params[1]; 1761 struct hidpp_report response; 1762 1763 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1764 &feature_index, &feature_type); 1765 if (ret) 1766 return ret; 1767 1768 params[0] = (invert ? BIT(2) : 0) | 1769 (high_resolution ? BIT(1) : 0) | 1770 (use_hidpp ? BIT(0) : 0); 1771 1772 return hidpp_send_fap_command_sync(hidpp, feature_index, 1773 CMD_HIRES_WHEEL_SET_WHEEL_MODE, 1774 params, sizeof(params), &response); 1775 } 1776 1777 /* -------------------------------------------------------------------------- */ 1778 /* 0x4301: Solar Keyboard */ 1779 /* -------------------------------------------------------------------------- */ 1780 1781 #define HIDPP_PAGE_SOLAR_KEYBOARD 0x4301 1782 1783 #define CMD_SOLAR_SET_LIGHT_MEASURE 0x00 1784 1785 #define EVENT_SOLAR_BATTERY_BROADCAST 0x00 1786 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE 0x10 1787 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON 0x20 1788 1789 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp) 1790 { 1791 struct hidpp_report response; 1792 u8 params[2] = { 1, 1 }; 1793 u8 feature_type; 1794 int ret; 1795 1796 if (hidpp->battery.feature_index == 0xff) { 1797 ret = hidpp_root_get_feature(hidpp, 1798 HIDPP_PAGE_SOLAR_KEYBOARD, 1799 &hidpp->battery.solar_feature_index, 1800 &feature_type); 1801 if (ret) 1802 return ret; 1803 } 1804 1805 ret = hidpp_send_fap_command_sync(hidpp, 1806 hidpp->battery.solar_feature_index, 1807 CMD_SOLAR_SET_LIGHT_MEASURE, 1808 params, 2, &response); 1809 if (ret > 0) { 1810 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1811 __func__, ret); 1812 return -EPROTO; 1813 } 1814 if (ret) 1815 return ret; 1816 1817 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1818 1819 return 0; 1820 } 1821 1822 static int hidpp_solar_battery_event(struct hidpp_device *hidpp, 1823 u8 *data, int size) 1824 { 1825 struct hidpp_report *report = (struct hidpp_report *)data; 1826 int capacity, lux, status; 1827 u8 function; 1828 1829 function = report->fap.funcindex_clientid; 1830 1831 1832 if (report->fap.feature_index != hidpp->battery.solar_feature_index || 1833 !(function == EVENT_SOLAR_BATTERY_BROADCAST || 1834 function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE || 1835 function == EVENT_SOLAR_CHECK_LIGHT_BUTTON)) 1836 return 0; 1837 1838 capacity = report->fap.params[0]; 1839 1840 switch (function) { 1841 case EVENT_SOLAR_BATTERY_LIGHT_MEASURE: 1842 lux = (report->fap.params[1] << 8) | report->fap.params[2]; 1843 if (lux > 200) 1844 status = POWER_SUPPLY_STATUS_CHARGING; 1845 else 1846 status = POWER_SUPPLY_STATUS_DISCHARGING; 1847 break; 1848 case EVENT_SOLAR_CHECK_LIGHT_BUTTON: 1849 default: 1850 if (capacity < hidpp->battery.capacity) 1851 status = POWER_SUPPLY_STATUS_DISCHARGING; 1852 else 1853 status = POWER_SUPPLY_STATUS_CHARGING; 1854 1855 } 1856 1857 if (capacity == 100) 1858 status = POWER_SUPPLY_STATUS_FULL; 1859 1860 hidpp->battery.online = true; 1861 if (capacity != hidpp->battery.capacity || 1862 status != hidpp->battery.status) { 1863 hidpp->battery.capacity = capacity; 1864 hidpp->battery.status = status; 1865 if (hidpp->battery.ps) 1866 power_supply_changed(hidpp->battery.ps); 1867 } 1868 1869 return 0; 1870 } 1871 1872 /* -------------------------------------------------------------------------- */ 1873 /* 0x6010: Touchpad FW items */ 1874 /* -------------------------------------------------------------------------- */ 1875 1876 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS 0x6010 1877 1878 #define CMD_TOUCHPAD_FW_ITEMS_SET 0x10 1879 1880 struct hidpp_touchpad_fw_items { 1881 uint8_t presence; 1882 uint8_t desired_state; 1883 uint8_t state; 1884 uint8_t persistent; 1885 }; 1886 1887 /** 1888 * send a set state command to the device by reading the current items->state 1889 * field. items is then filled with the current state. 1890 */ 1891 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp, 1892 u8 feature_index, 1893 struct hidpp_touchpad_fw_items *items) 1894 { 1895 struct hidpp_report response; 1896 int ret; 1897 u8 *params = (u8 *)response.fap.params; 1898 1899 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1900 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response); 1901 1902 if (ret > 0) { 1903 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1904 __func__, ret); 1905 return -EPROTO; 1906 } 1907 if (ret) 1908 return ret; 1909 1910 items->presence = params[0]; 1911 items->desired_state = params[1]; 1912 items->state = params[2]; 1913 items->persistent = params[3]; 1914 1915 return 0; 1916 } 1917 1918 /* -------------------------------------------------------------------------- */ 1919 /* 0x6100: TouchPadRawXY */ 1920 /* -------------------------------------------------------------------------- */ 1921 1922 #define HIDPP_PAGE_TOUCHPAD_RAW_XY 0x6100 1923 1924 #define CMD_TOUCHPAD_GET_RAW_INFO 0x01 1925 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE 0x21 1926 1927 #define EVENT_TOUCHPAD_RAW_XY 0x00 1928 1929 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT 0x01 1930 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT 0x03 1931 1932 struct hidpp_touchpad_raw_info { 1933 u16 x_size; 1934 u16 y_size; 1935 u8 z_range; 1936 u8 area_range; 1937 u8 timestamp_unit; 1938 u8 maxcontacts; 1939 u8 origin; 1940 u16 res; 1941 }; 1942 1943 struct hidpp_touchpad_raw_xy_finger { 1944 u8 contact_type; 1945 u8 contact_status; 1946 u16 x; 1947 u16 y; 1948 u8 z; 1949 u8 area; 1950 u8 finger_id; 1951 }; 1952 1953 struct hidpp_touchpad_raw_xy { 1954 u16 timestamp; 1955 struct hidpp_touchpad_raw_xy_finger fingers[2]; 1956 u8 spurious_flag; 1957 u8 end_of_frame; 1958 u8 finger_count; 1959 u8 button; 1960 }; 1961 1962 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp, 1963 u8 feature_index, struct hidpp_touchpad_raw_info *raw_info) 1964 { 1965 struct hidpp_report response; 1966 int ret; 1967 u8 *params = (u8 *)response.fap.params; 1968 1969 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1970 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response); 1971 1972 if (ret > 0) { 1973 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1974 __func__, ret); 1975 return -EPROTO; 1976 } 1977 if (ret) 1978 return ret; 1979 1980 raw_info->x_size = get_unaligned_be16(¶ms[0]); 1981 raw_info->y_size = get_unaligned_be16(¶ms[2]); 1982 raw_info->z_range = params[4]; 1983 raw_info->area_range = params[5]; 1984 raw_info->maxcontacts = params[7]; 1985 raw_info->origin = params[8]; 1986 /* res is given in unit per inch */ 1987 raw_info->res = get_unaligned_be16(¶ms[13]) * 2 / 51; 1988 1989 return ret; 1990 } 1991 1992 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev, 1993 u8 feature_index, bool send_raw_reports, 1994 bool sensor_enhanced_settings) 1995 { 1996 struct hidpp_report response; 1997 1998 /* 1999 * Params: 2000 * bit 0 - enable raw 2001 * bit 1 - 16bit Z, no area 2002 * bit 2 - enhanced sensitivity 2003 * bit 3 - width, height (4 bits each) instead of area 2004 * bit 4 - send raw + gestures (degrades smoothness) 2005 * remaining bits - reserved 2006 */ 2007 u8 params = send_raw_reports | (sensor_enhanced_settings << 2); 2008 2009 return hidpp_send_fap_command_sync(hidpp_dev, feature_index, 2010 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, ¶ms, 1, &response); 2011 } 2012 2013 static void hidpp_touchpad_touch_event(u8 *data, 2014 struct hidpp_touchpad_raw_xy_finger *finger) 2015 { 2016 u8 x_m = data[0] << 2; 2017 u8 y_m = data[2] << 2; 2018 2019 finger->x = x_m << 6 | data[1]; 2020 finger->y = y_m << 6 | data[3]; 2021 2022 finger->contact_type = data[0] >> 6; 2023 finger->contact_status = data[2] >> 6; 2024 2025 finger->z = data[4]; 2026 finger->area = data[5]; 2027 finger->finger_id = data[6] >> 4; 2028 } 2029 2030 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev, 2031 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy) 2032 { 2033 memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy)); 2034 raw_xy->end_of_frame = data[8] & 0x01; 2035 raw_xy->spurious_flag = (data[8] >> 1) & 0x01; 2036 raw_xy->finger_count = data[15] & 0x0f; 2037 raw_xy->button = (data[8] >> 2) & 0x01; 2038 2039 if (raw_xy->finger_count) { 2040 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]); 2041 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]); 2042 } 2043 } 2044 2045 /* -------------------------------------------------------------------------- */ 2046 /* 0x8123: Force feedback support */ 2047 /* -------------------------------------------------------------------------- */ 2048 2049 #define HIDPP_FF_GET_INFO 0x01 2050 #define HIDPP_FF_RESET_ALL 0x11 2051 #define HIDPP_FF_DOWNLOAD_EFFECT 0x21 2052 #define HIDPP_FF_SET_EFFECT_STATE 0x31 2053 #define HIDPP_FF_DESTROY_EFFECT 0x41 2054 #define HIDPP_FF_GET_APERTURE 0x51 2055 #define HIDPP_FF_SET_APERTURE 0x61 2056 #define HIDPP_FF_GET_GLOBAL_GAINS 0x71 2057 #define HIDPP_FF_SET_GLOBAL_GAINS 0x81 2058 2059 #define HIDPP_FF_EFFECT_STATE_GET 0x00 2060 #define HIDPP_FF_EFFECT_STATE_STOP 0x01 2061 #define HIDPP_FF_EFFECT_STATE_PLAY 0x02 2062 #define HIDPP_FF_EFFECT_STATE_PAUSE 0x03 2063 2064 #define HIDPP_FF_EFFECT_CONSTANT 0x00 2065 #define HIDPP_FF_EFFECT_PERIODIC_SINE 0x01 2066 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE 0x02 2067 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE 0x03 2068 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP 0x04 2069 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN 0x05 2070 #define HIDPP_FF_EFFECT_SPRING 0x06 2071 #define HIDPP_FF_EFFECT_DAMPER 0x07 2072 #define HIDPP_FF_EFFECT_FRICTION 0x08 2073 #define HIDPP_FF_EFFECT_INERTIA 0x09 2074 #define HIDPP_FF_EFFECT_RAMP 0x0A 2075 2076 #define HIDPP_FF_EFFECT_AUTOSTART 0x80 2077 2078 #define HIDPP_FF_EFFECTID_NONE -1 2079 #define HIDPP_FF_EFFECTID_AUTOCENTER -2 2080 #define HIDPP_AUTOCENTER_PARAMS_LENGTH 18 2081 2082 #define HIDPP_FF_MAX_PARAMS 20 2083 #define HIDPP_FF_RESERVED_SLOTS 1 2084 2085 struct hidpp_ff_private_data { 2086 struct hidpp_device *hidpp; 2087 u8 feature_index; 2088 u8 version; 2089 u16 gain; 2090 s16 range; 2091 u8 slot_autocenter; 2092 u8 num_effects; 2093 int *effect_ids; 2094 struct workqueue_struct *wq; 2095 atomic_t workqueue_size; 2096 }; 2097 2098 struct hidpp_ff_work_data { 2099 struct work_struct work; 2100 struct hidpp_ff_private_data *data; 2101 int effect_id; 2102 u8 command; 2103 u8 params[HIDPP_FF_MAX_PARAMS]; 2104 u8 size; 2105 }; 2106 2107 static const signed short hidpp_ff_effects[] = { 2108 FF_CONSTANT, 2109 FF_PERIODIC, 2110 FF_SINE, 2111 FF_SQUARE, 2112 FF_SAW_UP, 2113 FF_SAW_DOWN, 2114 FF_TRIANGLE, 2115 FF_SPRING, 2116 FF_DAMPER, 2117 FF_AUTOCENTER, 2118 FF_GAIN, 2119 -1 2120 }; 2121 2122 static const signed short hidpp_ff_effects_v2[] = { 2123 FF_RAMP, 2124 FF_FRICTION, 2125 FF_INERTIA, 2126 -1 2127 }; 2128 2129 static const u8 HIDPP_FF_CONDITION_CMDS[] = { 2130 HIDPP_FF_EFFECT_SPRING, 2131 HIDPP_FF_EFFECT_FRICTION, 2132 HIDPP_FF_EFFECT_DAMPER, 2133 HIDPP_FF_EFFECT_INERTIA 2134 }; 2135 2136 static const char *HIDPP_FF_CONDITION_NAMES[] = { 2137 "spring", 2138 "friction", 2139 "damper", 2140 "inertia" 2141 }; 2142 2143 2144 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id) 2145 { 2146 int i; 2147 2148 for (i = 0; i < data->num_effects; i++) 2149 if (data->effect_ids[i] == effect_id) 2150 return i+1; 2151 2152 return 0; 2153 } 2154 2155 static void hidpp_ff_work_handler(struct work_struct *w) 2156 { 2157 struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work); 2158 struct hidpp_ff_private_data *data = wd->data; 2159 struct hidpp_report response; 2160 u8 slot; 2161 int ret; 2162 2163 /* add slot number if needed */ 2164 switch (wd->effect_id) { 2165 case HIDPP_FF_EFFECTID_AUTOCENTER: 2166 wd->params[0] = data->slot_autocenter; 2167 break; 2168 case HIDPP_FF_EFFECTID_NONE: 2169 /* leave slot as zero */ 2170 break; 2171 default: 2172 /* find current slot for effect */ 2173 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id); 2174 break; 2175 } 2176 2177 /* send command and wait for reply */ 2178 ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index, 2179 wd->command, wd->params, wd->size, &response); 2180 2181 if (ret) { 2182 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n"); 2183 goto out; 2184 } 2185 2186 /* parse return data */ 2187 switch (wd->command) { 2188 case HIDPP_FF_DOWNLOAD_EFFECT: 2189 slot = response.fap.params[0]; 2190 if (slot > 0 && slot <= data->num_effects) { 2191 if (wd->effect_id >= 0) 2192 /* regular effect uploaded */ 2193 data->effect_ids[slot-1] = wd->effect_id; 2194 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 2195 /* autocenter spring uploaded */ 2196 data->slot_autocenter = slot; 2197 } 2198 break; 2199 case HIDPP_FF_DESTROY_EFFECT: 2200 if (wd->effect_id >= 0) 2201 /* regular effect destroyed */ 2202 data->effect_ids[wd->params[0]-1] = -1; 2203 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 2204 /* autocenter spring destoyed */ 2205 data->slot_autocenter = 0; 2206 break; 2207 case HIDPP_FF_SET_GLOBAL_GAINS: 2208 data->gain = (wd->params[0] << 8) + wd->params[1]; 2209 break; 2210 case HIDPP_FF_SET_APERTURE: 2211 data->range = (wd->params[0] << 8) + wd->params[1]; 2212 break; 2213 default: 2214 /* no action needed */ 2215 break; 2216 } 2217 2218 out: 2219 atomic_dec(&data->workqueue_size); 2220 kfree(wd); 2221 } 2222 2223 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size) 2224 { 2225 struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL); 2226 int s; 2227 2228 if (!wd) 2229 return -ENOMEM; 2230 2231 INIT_WORK(&wd->work, hidpp_ff_work_handler); 2232 2233 wd->data = data; 2234 wd->effect_id = effect_id; 2235 wd->command = command; 2236 wd->size = size; 2237 memcpy(wd->params, params, size); 2238 2239 atomic_inc(&data->workqueue_size); 2240 queue_work(data->wq, &wd->work); 2241 2242 /* warn about excessive queue size */ 2243 s = atomic_read(&data->workqueue_size); 2244 if (s >= 20 && s % 20 == 0) 2245 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s); 2246 2247 return 0; 2248 } 2249 2250 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old) 2251 { 2252 struct hidpp_ff_private_data *data = dev->ff->private; 2253 u8 params[20]; 2254 u8 size; 2255 int force; 2256 2257 /* set common parameters */ 2258 params[2] = effect->replay.length >> 8; 2259 params[3] = effect->replay.length & 255; 2260 params[4] = effect->replay.delay >> 8; 2261 params[5] = effect->replay.delay & 255; 2262 2263 switch (effect->type) { 2264 case FF_CONSTANT: 2265 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2266 params[1] = HIDPP_FF_EFFECT_CONSTANT; 2267 params[6] = force >> 8; 2268 params[7] = force & 255; 2269 params[8] = effect->u.constant.envelope.attack_level >> 7; 2270 params[9] = effect->u.constant.envelope.attack_length >> 8; 2271 params[10] = effect->u.constant.envelope.attack_length & 255; 2272 params[11] = effect->u.constant.envelope.fade_level >> 7; 2273 params[12] = effect->u.constant.envelope.fade_length >> 8; 2274 params[13] = effect->u.constant.envelope.fade_length & 255; 2275 size = 14; 2276 dbg_hid("Uploading constant force level=%d in dir %d = %d\n", 2277 effect->u.constant.level, 2278 effect->direction, force); 2279 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2280 effect->u.constant.envelope.attack_level, 2281 effect->u.constant.envelope.attack_length, 2282 effect->u.constant.envelope.fade_level, 2283 effect->u.constant.envelope.fade_length); 2284 break; 2285 case FF_PERIODIC: 2286 { 2287 switch (effect->u.periodic.waveform) { 2288 case FF_SINE: 2289 params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE; 2290 break; 2291 case FF_SQUARE: 2292 params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE; 2293 break; 2294 case FF_SAW_UP: 2295 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP; 2296 break; 2297 case FF_SAW_DOWN: 2298 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN; 2299 break; 2300 case FF_TRIANGLE: 2301 params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE; 2302 break; 2303 default: 2304 hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform); 2305 return -EINVAL; 2306 } 2307 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2308 params[6] = effect->u.periodic.magnitude >> 8; 2309 params[7] = effect->u.periodic.magnitude & 255; 2310 params[8] = effect->u.periodic.offset >> 8; 2311 params[9] = effect->u.periodic.offset & 255; 2312 params[10] = effect->u.periodic.period >> 8; 2313 params[11] = effect->u.periodic.period & 255; 2314 params[12] = effect->u.periodic.phase >> 8; 2315 params[13] = effect->u.periodic.phase & 255; 2316 params[14] = effect->u.periodic.envelope.attack_level >> 7; 2317 params[15] = effect->u.periodic.envelope.attack_length >> 8; 2318 params[16] = effect->u.periodic.envelope.attack_length & 255; 2319 params[17] = effect->u.periodic.envelope.fade_level >> 7; 2320 params[18] = effect->u.periodic.envelope.fade_length >> 8; 2321 params[19] = effect->u.periodic.envelope.fade_length & 255; 2322 size = 20; 2323 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n", 2324 effect->u.periodic.magnitude, effect->direction, 2325 effect->u.periodic.offset, 2326 effect->u.periodic.period, 2327 effect->u.periodic.phase); 2328 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2329 effect->u.periodic.envelope.attack_level, 2330 effect->u.periodic.envelope.attack_length, 2331 effect->u.periodic.envelope.fade_level, 2332 effect->u.periodic.envelope.fade_length); 2333 break; 2334 } 2335 case FF_RAMP: 2336 params[1] = HIDPP_FF_EFFECT_RAMP; 2337 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2338 params[6] = force >> 8; 2339 params[7] = force & 255; 2340 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2341 params[8] = force >> 8; 2342 params[9] = force & 255; 2343 params[10] = effect->u.ramp.envelope.attack_level >> 7; 2344 params[11] = effect->u.ramp.envelope.attack_length >> 8; 2345 params[12] = effect->u.ramp.envelope.attack_length & 255; 2346 params[13] = effect->u.ramp.envelope.fade_level >> 7; 2347 params[14] = effect->u.ramp.envelope.fade_length >> 8; 2348 params[15] = effect->u.ramp.envelope.fade_length & 255; 2349 size = 16; 2350 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n", 2351 effect->u.ramp.start_level, 2352 effect->u.ramp.end_level, 2353 effect->direction, force); 2354 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2355 effect->u.ramp.envelope.attack_level, 2356 effect->u.ramp.envelope.attack_length, 2357 effect->u.ramp.envelope.fade_level, 2358 effect->u.ramp.envelope.fade_length); 2359 break; 2360 case FF_FRICTION: 2361 case FF_INERTIA: 2362 case FF_SPRING: 2363 case FF_DAMPER: 2364 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING]; 2365 params[6] = effect->u.condition[0].left_saturation >> 9; 2366 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255; 2367 params[8] = effect->u.condition[0].left_coeff >> 8; 2368 params[9] = effect->u.condition[0].left_coeff & 255; 2369 params[10] = effect->u.condition[0].deadband >> 9; 2370 params[11] = (effect->u.condition[0].deadband >> 1) & 255; 2371 params[12] = effect->u.condition[0].center >> 8; 2372 params[13] = effect->u.condition[0].center & 255; 2373 params[14] = effect->u.condition[0].right_coeff >> 8; 2374 params[15] = effect->u.condition[0].right_coeff & 255; 2375 params[16] = effect->u.condition[0].right_saturation >> 9; 2376 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255; 2377 size = 18; 2378 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n", 2379 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING], 2380 effect->u.condition[0].left_coeff, 2381 effect->u.condition[0].left_saturation, 2382 effect->u.condition[0].right_coeff, 2383 effect->u.condition[0].right_saturation); 2384 dbg_hid(" deadband=%d, center=%d\n", 2385 effect->u.condition[0].deadband, 2386 effect->u.condition[0].center); 2387 break; 2388 default: 2389 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type); 2390 return -EINVAL; 2391 } 2392 2393 return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size); 2394 } 2395 2396 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value) 2397 { 2398 struct hidpp_ff_private_data *data = dev->ff->private; 2399 u8 params[2]; 2400 2401 params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP; 2402 2403 dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id); 2404 2405 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params)); 2406 } 2407 2408 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id) 2409 { 2410 struct hidpp_ff_private_data *data = dev->ff->private; 2411 u8 slot = 0; 2412 2413 dbg_hid("Erasing effect %d.\n", effect_id); 2414 2415 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1); 2416 } 2417 2418 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude) 2419 { 2420 struct hidpp_ff_private_data *data = dev->ff->private; 2421 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH]; 2422 2423 dbg_hid("Setting autocenter to %d.\n", magnitude); 2424 2425 /* start a standard spring effect */ 2426 params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART; 2427 /* zero delay and duration */ 2428 params[2] = params[3] = params[4] = params[5] = 0; 2429 /* set coeff to 25% of saturation */ 2430 params[8] = params[14] = magnitude >> 11; 2431 params[9] = params[15] = (magnitude >> 3) & 255; 2432 params[6] = params[16] = magnitude >> 9; 2433 params[7] = params[17] = (magnitude >> 1) & 255; 2434 /* zero deadband and center */ 2435 params[10] = params[11] = params[12] = params[13] = 0; 2436 2437 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params)); 2438 } 2439 2440 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain) 2441 { 2442 struct hidpp_ff_private_data *data = dev->ff->private; 2443 u8 params[4]; 2444 2445 dbg_hid("Setting gain to %d.\n", gain); 2446 2447 params[0] = gain >> 8; 2448 params[1] = gain & 255; 2449 params[2] = 0; /* no boost */ 2450 params[3] = 0; 2451 2452 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params)); 2453 } 2454 2455 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf) 2456 { 2457 struct hid_device *hid = to_hid_device(dev); 2458 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2459 struct input_dev *idev = hidinput->input; 2460 struct hidpp_ff_private_data *data = idev->ff->private; 2461 2462 return scnprintf(buf, PAGE_SIZE, "%u\n", data->range); 2463 } 2464 2465 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) 2466 { 2467 struct hid_device *hid = to_hid_device(dev); 2468 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2469 struct input_dev *idev = hidinput->input; 2470 struct hidpp_ff_private_data *data = idev->ff->private; 2471 u8 params[2]; 2472 int range = simple_strtoul(buf, NULL, 10); 2473 2474 range = clamp(range, 180, 900); 2475 2476 params[0] = range >> 8; 2477 params[1] = range & 0x00FF; 2478 2479 hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params)); 2480 2481 return count; 2482 } 2483 2484 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store); 2485 2486 static void hidpp_ff_destroy(struct ff_device *ff) 2487 { 2488 struct hidpp_ff_private_data *data = ff->private; 2489 struct hid_device *hid = data->hidpp->hid_dev; 2490 2491 hid_info(hid, "Unloading HID++ force feedback.\n"); 2492 2493 device_remove_file(&hid->dev, &dev_attr_range); 2494 destroy_workqueue(data->wq); 2495 kfree(data->effect_ids); 2496 } 2497 2498 static int hidpp_ff_init(struct hidpp_device *hidpp, 2499 struct hidpp_ff_private_data *data) 2500 { 2501 struct hid_device *hid = hidpp->hid_dev; 2502 struct hid_input *hidinput; 2503 struct input_dev *dev; 2504 const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor); 2505 const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice); 2506 struct ff_device *ff; 2507 int error, j, num_slots = data->num_effects; 2508 u8 version; 2509 2510 if (list_empty(&hid->inputs)) { 2511 hid_err(hid, "no inputs found\n"); 2512 return -ENODEV; 2513 } 2514 hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2515 dev = hidinput->input; 2516 2517 if (!dev) { 2518 hid_err(hid, "Struct input_dev not set!\n"); 2519 return -EINVAL; 2520 } 2521 2522 /* Get firmware release */ 2523 version = bcdDevice & 255; 2524 2525 /* Set supported force feedback capabilities */ 2526 for (j = 0; hidpp_ff_effects[j] >= 0; j++) 2527 set_bit(hidpp_ff_effects[j], dev->ffbit); 2528 if (version > 1) 2529 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++) 2530 set_bit(hidpp_ff_effects_v2[j], dev->ffbit); 2531 2532 error = input_ff_create(dev, num_slots); 2533 2534 if (error) { 2535 hid_err(dev, "Failed to create FF device!\n"); 2536 return error; 2537 } 2538 /* 2539 * Create a copy of passed data, so we can transfer memory 2540 * ownership to FF core 2541 */ 2542 data = kmemdup(data, sizeof(*data), GFP_KERNEL); 2543 if (!data) 2544 return -ENOMEM; 2545 data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL); 2546 if (!data->effect_ids) { 2547 kfree(data); 2548 return -ENOMEM; 2549 } 2550 data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue"); 2551 if (!data->wq) { 2552 kfree(data->effect_ids); 2553 kfree(data); 2554 return -ENOMEM; 2555 } 2556 2557 data->hidpp = hidpp; 2558 data->version = version; 2559 for (j = 0; j < num_slots; j++) 2560 data->effect_ids[j] = -1; 2561 2562 ff = dev->ff; 2563 ff->private = data; 2564 2565 ff->upload = hidpp_ff_upload_effect; 2566 ff->erase = hidpp_ff_erase_effect; 2567 ff->playback = hidpp_ff_playback; 2568 ff->set_gain = hidpp_ff_set_gain; 2569 ff->set_autocenter = hidpp_ff_set_autocenter; 2570 ff->destroy = hidpp_ff_destroy; 2571 2572 /* Create sysfs interface */ 2573 error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range); 2574 if (error) 2575 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error); 2576 2577 /* init the hardware command queue */ 2578 atomic_set(&data->workqueue_size, 0); 2579 2580 hid_info(hid, "Force feedback support loaded (firmware release %d).\n", 2581 version); 2582 2583 return 0; 2584 } 2585 2586 /* ************************************************************************** */ 2587 /* */ 2588 /* Device Support */ 2589 /* */ 2590 /* ************************************************************************** */ 2591 2592 /* -------------------------------------------------------------------------- */ 2593 /* Touchpad HID++ devices */ 2594 /* -------------------------------------------------------------------------- */ 2595 2596 #define WTP_MANUAL_RESOLUTION 39 2597 2598 struct wtp_data { 2599 u16 x_size, y_size; 2600 u8 finger_count; 2601 u8 mt_feature_index; 2602 u8 button_feature_index; 2603 u8 maxcontacts; 2604 bool flip_y; 2605 unsigned int resolution; 2606 }; 2607 2608 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2609 struct hid_field *field, struct hid_usage *usage, 2610 unsigned long **bit, int *max) 2611 { 2612 return -1; 2613 } 2614 2615 static void wtp_populate_input(struct hidpp_device *hidpp, 2616 struct input_dev *input_dev) 2617 { 2618 struct wtp_data *wd = hidpp->private_data; 2619 2620 __set_bit(EV_ABS, input_dev->evbit); 2621 __set_bit(EV_KEY, input_dev->evbit); 2622 __clear_bit(EV_REL, input_dev->evbit); 2623 __clear_bit(EV_LED, input_dev->evbit); 2624 2625 input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0); 2626 input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution); 2627 input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0); 2628 input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution); 2629 2630 /* Max pressure is not given by the devices, pick one */ 2631 input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0); 2632 2633 input_set_capability(input_dev, EV_KEY, BTN_LEFT); 2634 2635 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) 2636 input_set_capability(input_dev, EV_KEY, BTN_RIGHT); 2637 else 2638 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit); 2639 2640 input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER | 2641 INPUT_MT_DROP_UNUSED); 2642 } 2643 2644 static void wtp_touch_event(struct hidpp_device *hidpp, 2645 struct hidpp_touchpad_raw_xy_finger *touch_report) 2646 { 2647 struct wtp_data *wd = hidpp->private_data; 2648 int slot; 2649 2650 if (!touch_report->finger_id || touch_report->contact_type) 2651 /* no actual data */ 2652 return; 2653 2654 slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id); 2655 2656 input_mt_slot(hidpp->input, slot); 2657 input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER, 2658 touch_report->contact_status); 2659 if (touch_report->contact_status) { 2660 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X, 2661 touch_report->x); 2662 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y, 2663 wd->flip_y ? wd->y_size - touch_report->y : 2664 touch_report->y); 2665 input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE, 2666 touch_report->area); 2667 } 2668 } 2669 2670 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp, 2671 struct hidpp_touchpad_raw_xy *raw) 2672 { 2673 int i; 2674 2675 for (i = 0; i < 2; i++) 2676 wtp_touch_event(hidpp, &(raw->fingers[i])); 2677 2678 if (raw->end_of_frame && 2679 !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)) 2680 input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button); 2681 2682 if (raw->end_of_frame || raw->finger_count <= 2) { 2683 input_mt_sync_frame(hidpp->input); 2684 input_sync(hidpp->input); 2685 } 2686 } 2687 2688 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data) 2689 { 2690 struct wtp_data *wd = hidpp->private_data; 2691 u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) + 2692 (data[7] >> 4) * (data[7] >> 4)) / 2; 2693 u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) + 2694 (data[13] >> 4) * (data[13] >> 4)) / 2; 2695 struct hidpp_touchpad_raw_xy raw = { 2696 .timestamp = data[1], 2697 .fingers = { 2698 { 2699 .contact_type = 0, 2700 .contact_status = !!data[7], 2701 .x = get_unaligned_le16(&data[3]), 2702 .y = get_unaligned_le16(&data[5]), 2703 .z = c1_area, 2704 .area = c1_area, 2705 .finger_id = data[2], 2706 }, { 2707 .contact_type = 0, 2708 .contact_status = !!data[13], 2709 .x = get_unaligned_le16(&data[9]), 2710 .y = get_unaligned_le16(&data[11]), 2711 .z = c2_area, 2712 .area = c2_area, 2713 .finger_id = data[8], 2714 } 2715 }, 2716 .finger_count = wd->maxcontacts, 2717 .spurious_flag = 0, 2718 .end_of_frame = (data[0] >> 7) == 0, 2719 .button = data[0] & 0x01, 2720 }; 2721 2722 wtp_send_raw_xy_event(hidpp, &raw); 2723 2724 return 1; 2725 } 2726 2727 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size) 2728 { 2729 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2730 struct wtp_data *wd = hidpp->private_data; 2731 struct hidpp_report *report = (struct hidpp_report *)data; 2732 struct hidpp_touchpad_raw_xy raw; 2733 2734 if (!wd || !hidpp->input) 2735 return 1; 2736 2737 switch (data[0]) { 2738 case 0x02: 2739 if (size < 2) { 2740 hid_err(hdev, "Received HID report of bad size (%d)", 2741 size); 2742 return 1; 2743 } 2744 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) { 2745 input_event(hidpp->input, EV_KEY, BTN_LEFT, 2746 !!(data[1] & 0x01)); 2747 input_event(hidpp->input, EV_KEY, BTN_RIGHT, 2748 !!(data[1] & 0x02)); 2749 input_sync(hidpp->input); 2750 return 0; 2751 } else { 2752 if (size < 21) 2753 return 1; 2754 return wtp_mouse_raw_xy_event(hidpp, &data[7]); 2755 } 2756 case REPORT_ID_HIDPP_LONG: 2757 /* size is already checked in hidpp_raw_event. */ 2758 if ((report->fap.feature_index != wd->mt_feature_index) || 2759 (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY)) 2760 return 1; 2761 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw); 2762 2763 wtp_send_raw_xy_event(hidpp, &raw); 2764 return 0; 2765 } 2766 2767 return 0; 2768 } 2769 2770 static int wtp_get_config(struct hidpp_device *hidpp) 2771 { 2772 struct wtp_data *wd = hidpp->private_data; 2773 struct hidpp_touchpad_raw_info raw_info = {0}; 2774 u8 feature_type; 2775 int ret; 2776 2777 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY, 2778 &wd->mt_feature_index, &feature_type); 2779 if (ret) 2780 /* means that the device is not powered up */ 2781 return ret; 2782 2783 ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index, 2784 &raw_info); 2785 if (ret) 2786 return ret; 2787 2788 wd->x_size = raw_info.x_size; 2789 wd->y_size = raw_info.y_size; 2790 wd->maxcontacts = raw_info.maxcontacts; 2791 wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT; 2792 wd->resolution = raw_info.res; 2793 if (!wd->resolution) 2794 wd->resolution = WTP_MANUAL_RESOLUTION; 2795 2796 return 0; 2797 } 2798 2799 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id) 2800 { 2801 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2802 struct wtp_data *wd; 2803 2804 wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data), 2805 GFP_KERNEL); 2806 if (!wd) 2807 return -ENOMEM; 2808 2809 hidpp->private_data = wd; 2810 2811 return 0; 2812 }; 2813 2814 static int wtp_connect(struct hid_device *hdev, bool connected) 2815 { 2816 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2817 struct wtp_data *wd = hidpp->private_data; 2818 int ret; 2819 2820 if (!wd->x_size) { 2821 ret = wtp_get_config(hidpp); 2822 if (ret) { 2823 hid_err(hdev, "Can not get wtp config: %d\n", ret); 2824 return ret; 2825 } 2826 } 2827 2828 return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index, 2829 true, true); 2830 } 2831 2832 /* ------------------------------------------------------------------------- */ 2833 /* Logitech M560 devices */ 2834 /* ------------------------------------------------------------------------- */ 2835 2836 /* 2837 * Logitech M560 protocol overview 2838 * 2839 * The Logitech M560 mouse, is designed for windows 8. When the middle and/or 2840 * the sides buttons are pressed, it sends some keyboard keys events 2841 * instead of buttons ones. 2842 * To complicate things further, the middle button keys sequence 2843 * is different from the odd press and the even press. 2844 * 2845 * forward button -> Super_R 2846 * backward button -> Super_L+'d' (press only) 2847 * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only) 2848 * 2nd time: left-click (press only) 2849 * NB: press-only means that when the button is pressed, the 2850 * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated 2851 * together sequentially; instead when the button is released, no event is 2852 * generated ! 2853 * 2854 * With the command 2855 * 10<xx>0a 3500af03 (where <xx> is the mouse id), 2856 * the mouse reacts differently: 2857 * - it never sends a keyboard key event 2858 * - for the three mouse button it sends: 2859 * middle button press 11<xx>0a 3500af00... 2860 * side 1 button (forward) press 11<xx>0a 3500b000... 2861 * side 2 button (backward) press 11<xx>0a 3500ae00... 2862 * middle/side1/side2 button release 11<xx>0a 35000000... 2863 */ 2864 2865 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03}; 2866 2867 /* how buttons are mapped in the report */ 2868 #define M560_MOUSE_BTN_LEFT 0x01 2869 #define M560_MOUSE_BTN_RIGHT 0x02 2870 #define M560_MOUSE_BTN_WHEEL_LEFT 0x08 2871 #define M560_MOUSE_BTN_WHEEL_RIGHT 0x10 2872 2873 #define M560_SUB_ID 0x0a 2874 #define M560_BUTTON_MODE_REGISTER 0x35 2875 2876 static int m560_send_config_command(struct hid_device *hdev, bool connected) 2877 { 2878 struct hidpp_report response; 2879 struct hidpp_device *hidpp_dev; 2880 2881 hidpp_dev = hid_get_drvdata(hdev); 2882 2883 return hidpp_send_rap_command_sync( 2884 hidpp_dev, 2885 REPORT_ID_HIDPP_SHORT, 2886 M560_SUB_ID, 2887 M560_BUTTON_MODE_REGISTER, 2888 (u8 *)m560_config_parameter, 2889 sizeof(m560_config_parameter), 2890 &response 2891 ); 2892 } 2893 2894 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size) 2895 { 2896 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2897 2898 /* sanity check */ 2899 if (!hidpp->input) { 2900 hid_err(hdev, "error in parameter\n"); 2901 return -EINVAL; 2902 } 2903 2904 if (size < 7) { 2905 hid_err(hdev, "error in report\n"); 2906 return 0; 2907 } 2908 2909 if (data[0] == REPORT_ID_HIDPP_LONG && 2910 data[2] == M560_SUB_ID && data[6] == 0x00) { 2911 /* 2912 * m560 mouse report for middle, forward and backward button 2913 * 2914 * data[0] = 0x11 2915 * data[1] = device-id 2916 * data[2] = 0x0a 2917 * data[5] = 0xaf -> middle 2918 * 0xb0 -> forward 2919 * 0xae -> backward 2920 * 0x00 -> release all 2921 * data[6] = 0x00 2922 */ 2923 2924 switch (data[5]) { 2925 case 0xaf: 2926 input_report_key(hidpp->input, BTN_MIDDLE, 1); 2927 break; 2928 case 0xb0: 2929 input_report_key(hidpp->input, BTN_FORWARD, 1); 2930 break; 2931 case 0xae: 2932 input_report_key(hidpp->input, BTN_BACK, 1); 2933 break; 2934 case 0x00: 2935 input_report_key(hidpp->input, BTN_BACK, 0); 2936 input_report_key(hidpp->input, BTN_FORWARD, 0); 2937 input_report_key(hidpp->input, BTN_MIDDLE, 0); 2938 break; 2939 default: 2940 hid_err(hdev, "error in report\n"); 2941 return 0; 2942 } 2943 input_sync(hidpp->input); 2944 2945 } else if (data[0] == 0x02) { 2946 /* 2947 * Logitech M560 mouse report 2948 * 2949 * data[0] = type (0x02) 2950 * data[1..2] = buttons 2951 * data[3..5] = xy 2952 * data[6] = wheel 2953 */ 2954 2955 int v; 2956 2957 input_report_key(hidpp->input, BTN_LEFT, 2958 !!(data[1] & M560_MOUSE_BTN_LEFT)); 2959 input_report_key(hidpp->input, BTN_RIGHT, 2960 !!(data[1] & M560_MOUSE_BTN_RIGHT)); 2961 2962 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) { 2963 input_report_rel(hidpp->input, REL_HWHEEL, -1); 2964 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, 2965 -120); 2966 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) { 2967 input_report_rel(hidpp->input, REL_HWHEEL, 1); 2968 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, 2969 120); 2970 } 2971 2972 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12); 2973 input_report_rel(hidpp->input, REL_X, v); 2974 2975 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12); 2976 input_report_rel(hidpp->input, REL_Y, v); 2977 2978 v = hid_snto32(data[6], 8); 2979 if (v != 0) 2980 hidpp_scroll_counter_handle_scroll(hidpp->input, 2981 &hidpp->vertical_wheel_counter, v); 2982 2983 input_sync(hidpp->input); 2984 } 2985 2986 return 1; 2987 } 2988 2989 static void m560_populate_input(struct hidpp_device *hidpp, 2990 struct input_dev *input_dev) 2991 { 2992 __set_bit(EV_KEY, input_dev->evbit); 2993 __set_bit(BTN_MIDDLE, input_dev->keybit); 2994 __set_bit(BTN_RIGHT, input_dev->keybit); 2995 __set_bit(BTN_LEFT, input_dev->keybit); 2996 __set_bit(BTN_BACK, input_dev->keybit); 2997 __set_bit(BTN_FORWARD, input_dev->keybit); 2998 2999 __set_bit(EV_REL, input_dev->evbit); 3000 __set_bit(REL_X, input_dev->relbit); 3001 __set_bit(REL_Y, input_dev->relbit); 3002 __set_bit(REL_WHEEL, input_dev->relbit); 3003 __set_bit(REL_HWHEEL, input_dev->relbit); 3004 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit); 3005 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit); 3006 } 3007 3008 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi, 3009 struct hid_field *field, struct hid_usage *usage, 3010 unsigned long **bit, int *max) 3011 { 3012 return -1; 3013 } 3014 3015 /* ------------------------------------------------------------------------- */ 3016 /* Logitech K400 devices */ 3017 /* ------------------------------------------------------------------------- */ 3018 3019 /* 3020 * The Logitech K400 keyboard has an embedded touchpad which is seen 3021 * as a mouse from the OS point of view. There is a hardware shortcut to disable 3022 * tap-to-click but the setting is not remembered accross reset, annoying some 3023 * users. 3024 * 3025 * We can toggle this feature from the host by using the feature 0x6010: 3026 * Touchpad FW items 3027 */ 3028 3029 struct k400_private_data { 3030 u8 feature_index; 3031 }; 3032 3033 static int k400_disable_tap_to_click(struct hidpp_device *hidpp) 3034 { 3035 struct k400_private_data *k400 = hidpp->private_data; 3036 struct hidpp_touchpad_fw_items items = {}; 3037 int ret; 3038 u8 feature_type; 3039 3040 if (!k400->feature_index) { 3041 ret = hidpp_root_get_feature(hidpp, 3042 HIDPP_PAGE_TOUCHPAD_FW_ITEMS, 3043 &k400->feature_index, &feature_type); 3044 if (ret) 3045 /* means that the device is not powered up */ 3046 return ret; 3047 } 3048 3049 ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items); 3050 if (ret) 3051 return ret; 3052 3053 return 0; 3054 } 3055 3056 static int k400_allocate(struct hid_device *hdev) 3057 { 3058 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3059 struct k400_private_data *k400; 3060 3061 k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data), 3062 GFP_KERNEL); 3063 if (!k400) 3064 return -ENOMEM; 3065 3066 hidpp->private_data = k400; 3067 3068 return 0; 3069 }; 3070 3071 static int k400_connect(struct hid_device *hdev, bool connected) 3072 { 3073 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3074 3075 if (!disable_tap_to_click) 3076 return 0; 3077 3078 return k400_disable_tap_to_click(hidpp); 3079 } 3080 3081 /* ------------------------------------------------------------------------- */ 3082 /* Logitech G920 Driving Force Racing Wheel for Xbox One */ 3083 /* ------------------------------------------------------------------------- */ 3084 3085 #define HIDPP_PAGE_G920_FORCE_FEEDBACK 0x8123 3086 3087 static int g920_ff_set_autocenter(struct hidpp_device *hidpp, 3088 struct hidpp_ff_private_data *data) 3089 { 3090 struct hidpp_report response; 3091 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = { 3092 [1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART, 3093 }; 3094 int ret; 3095 3096 /* initialize with zero autocenter to get wheel in usable state */ 3097 3098 dbg_hid("Setting autocenter to 0.\n"); 3099 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3100 HIDPP_FF_DOWNLOAD_EFFECT, 3101 params, ARRAY_SIZE(params), 3102 &response); 3103 if (ret) 3104 hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n"); 3105 else 3106 data->slot_autocenter = response.fap.params[0]; 3107 3108 return ret; 3109 } 3110 3111 static int g920_get_config(struct hidpp_device *hidpp, 3112 struct hidpp_ff_private_data *data) 3113 { 3114 struct hidpp_report response; 3115 u8 feature_type; 3116 int ret; 3117 3118 memset(data, 0, sizeof(*data)); 3119 3120 /* Find feature and store for later use */ 3121 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK, 3122 &data->feature_index, &feature_type); 3123 if (ret) 3124 return ret; 3125 3126 /* Read number of slots available in device */ 3127 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3128 HIDPP_FF_GET_INFO, 3129 NULL, 0, 3130 &response); 3131 if (ret) { 3132 if (ret < 0) 3133 return ret; 3134 hid_err(hidpp->hid_dev, 3135 "%s: received protocol error 0x%02x\n", __func__, ret); 3136 return -EPROTO; 3137 } 3138 3139 data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS; 3140 3141 /* reset all forces */ 3142 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3143 HIDPP_FF_RESET_ALL, 3144 NULL, 0, 3145 &response); 3146 if (ret) 3147 hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n"); 3148 3149 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3150 HIDPP_FF_GET_APERTURE, 3151 NULL, 0, 3152 &response); 3153 if (ret) { 3154 hid_warn(hidpp->hid_dev, 3155 "Failed to read range from device!\n"); 3156 } 3157 data->range = ret ? 3158 900 : get_unaligned_be16(&response.fap.params[0]); 3159 3160 /* Read the current gain values */ 3161 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3162 HIDPP_FF_GET_GLOBAL_GAINS, 3163 NULL, 0, 3164 &response); 3165 if (ret) 3166 hid_warn(hidpp->hid_dev, 3167 "Failed to read gain values from device!\n"); 3168 data->gain = ret ? 3169 0xffff : get_unaligned_be16(&response.fap.params[0]); 3170 3171 /* ignore boost value at response.fap.params[2] */ 3172 3173 return g920_ff_set_autocenter(hidpp, data); 3174 } 3175 3176 /* -------------------------------------------------------------------------- */ 3177 /* Logitech Dinovo Mini keyboard with builtin touchpad */ 3178 /* -------------------------------------------------------------------------- */ 3179 #define DINOVO_MINI_PRODUCT_ID 0xb30c 3180 3181 static int lg_dinovo_input_mapping(struct hid_device *hdev, struct hid_input *hi, 3182 struct hid_field *field, struct hid_usage *usage, 3183 unsigned long **bit, int *max) 3184 { 3185 if ((usage->hid & HID_USAGE_PAGE) != HID_UP_LOGIVENDOR) 3186 return 0; 3187 3188 switch (usage->hid & HID_USAGE) { 3189 case 0x00d: lg_map_key_clear(KEY_MEDIA); break; 3190 default: 3191 return 0; 3192 } 3193 return 1; 3194 } 3195 3196 /* -------------------------------------------------------------------------- */ 3197 /* HID++1.0 devices which use HID++ reports for their wheels */ 3198 /* -------------------------------------------------------------------------- */ 3199 static int hidpp10_wheel_connect(struct hidpp_device *hidpp) 3200 { 3201 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 3202 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT, 3203 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT); 3204 } 3205 3206 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp, 3207 u8 *data, int size) 3208 { 3209 s8 value, hvalue; 3210 3211 if (!hidpp->input) 3212 return -EINVAL; 3213 3214 if (size < 7) 3215 return 0; 3216 3217 if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER) 3218 return 0; 3219 3220 value = data[3]; 3221 hvalue = data[4]; 3222 3223 input_report_rel(hidpp->input, REL_WHEEL, value); 3224 input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120); 3225 input_report_rel(hidpp->input, REL_HWHEEL, hvalue); 3226 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120); 3227 input_sync(hidpp->input); 3228 3229 return 1; 3230 } 3231 3232 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp, 3233 struct input_dev *input_dev) 3234 { 3235 __set_bit(EV_REL, input_dev->evbit); 3236 __set_bit(REL_WHEEL, input_dev->relbit); 3237 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit); 3238 __set_bit(REL_HWHEEL, input_dev->relbit); 3239 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit); 3240 } 3241 3242 /* -------------------------------------------------------------------------- */ 3243 /* HID++1.0 mice which use HID++ reports for extra mouse buttons */ 3244 /* -------------------------------------------------------------------------- */ 3245 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp) 3246 { 3247 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 3248 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT, 3249 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT); 3250 } 3251 3252 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp, 3253 u8 *data, int size) 3254 { 3255 int i; 3256 3257 if (!hidpp->input) 3258 return -EINVAL; 3259 3260 if (size < 7) 3261 return 0; 3262 3263 if (data[0] != REPORT_ID_HIDPP_SHORT || 3264 data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS) 3265 return 0; 3266 3267 /* 3268 * Buttons are either delivered through the regular mouse report *or* 3269 * through the extra buttons report. At least for button 6 how it is 3270 * delivered differs per receiver firmware version. Even receivers with 3271 * the same usb-id show different behavior, so we handle both cases. 3272 */ 3273 for (i = 0; i < 8; i++) 3274 input_report_key(hidpp->input, BTN_MOUSE + i, 3275 (data[3] & (1 << i))); 3276 3277 /* Some mice report events on button 9+, use BTN_MISC */ 3278 for (i = 0; i < 8; i++) 3279 input_report_key(hidpp->input, BTN_MISC + i, 3280 (data[4] & (1 << i))); 3281 3282 input_sync(hidpp->input); 3283 return 1; 3284 } 3285 3286 static void hidpp10_extra_mouse_buttons_populate_input( 3287 struct hidpp_device *hidpp, struct input_dev *input_dev) 3288 { 3289 /* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */ 3290 __set_bit(BTN_0, input_dev->keybit); 3291 __set_bit(BTN_1, input_dev->keybit); 3292 __set_bit(BTN_2, input_dev->keybit); 3293 __set_bit(BTN_3, input_dev->keybit); 3294 __set_bit(BTN_4, input_dev->keybit); 3295 __set_bit(BTN_5, input_dev->keybit); 3296 __set_bit(BTN_6, input_dev->keybit); 3297 __set_bit(BTN_7, input_dev->keybit); 3298 } 3299 3300 /* -------------------------------------------------------------------------- */ 3301 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */ 3302 /* -------------------------------------------------------------------------- */ 3303 3304 /* Find the consumer-page input report desc and change Maximums to 0x107f */ 3305 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp, 3306 u8 *_rdesc, unsigned int *rsize) 3307 { 3308 /* Note 0 terminated so we can use strnstr to search for this. */ 3309 static const char consumer_rdesc_start[] = { 3310 0x05, 0x0C, /* USAGE_PAGE (Consumer Devices) */ 3311 0x09, 0x01, /* USAGE (Consumer Control) */ 3312 0xA1, 0x01, /* COLLECTION (Application) */ 3313 0x85, 0x03, /* REPORT_ID = 3 */ 3314 0x75, 0x10, /* REPORT_SIZE (16) */ 3315 0x95, 0x02, /* REPORT_COUNT (2) */ 3316 0x15, 0x01, /* LOGICAL_MIN (1) */ 3317 0x26, 0x00 /* LOGICAL_MAX (... */ 3318 }; 3319 char *consumer_rdesc, *rdesc = (char *)_rdesc; 3320 unsigned int size; 3321 3322 consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize); 3323 size = *rsize - (consumer_rdesc - rdesc); 3324 if (consumer_rdesc && size >= 25) { 3325 consumer_rdesc[15] = 0x7f; 3326 consumer_rdesc[16] = 0x10; 3327 consumer_rdesc[20] = 0x7f; 3328 consumer_rdesc[21] = 0x10; 3329 } 3330 return _rdesc; 3331 } 3332 3333 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp) 3334 { 3335 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 3336 HIDPP_ENABLE_CONSUMER_REPORT, 3337 HIDPP_ENABLE_CONSUMER_REPORT); 3338 } 3339 3340 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp, 3341 u8 *data, int size) 3342 { 3343 u8 consumer_report[5]; 3344 3345 if (size < 7) 3346 return 0; 3347 3348 if (data[0] != REPORT_ID_HIDPP_SHORT || 3349 data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS) 3350 return 0; 3351 3352 /* 3353 * Build a normal consumer report (3) out of the data, this detour 3354 * is necessary to get some keyboards to report their 0x10xx usages. 3355 */ 3356 consumer_report[0] = 0x03; 3357 memcpy(&consumer_report[1], &data[3], 4); 3358 /* We are called from atomic context */ 3359 hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT, 3360 consumer_report, 5, 1); 3361 3362 return 1; 3363 } 3364 3365 /* -------------------------------------------------------------------------- */ 3366 /* High-resolution scroll wheels */ 3367 /* -------------------------------------------------------------------------- */ 3368 3369 static int hi_res_scroll_enable(struct hidpp_device *hidpp) 3370 { 3371 int ret; 3372 u8 multiplier = 1; 3373 3374 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) { 3375 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false); 3376 if (ret == 0) 3377 ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier); 3378 } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) { 3379 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true, 3380 &multiplier); 3381 } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ { 3382 ret = hidpp10_enable_scrolling_acceleration(hidpp); 3383 multiplier = 8; 3384 } 3385 if (ret) 3386 return ret; 3387 3388 if (multiplier == 0) 3389 multiplier = 1; 3390 3391 hidpp->vertical_wheel_counter.wheel_multiplier = multiplier; 3392 hid_dbg(hidpp->hid_dev, "wheel multiplier = %d\n", multiplier); 3393 return 0; 3394 } 3395 3396 /* -------------------------------------------------------------------------- */ 3397 /* Generic HID++ devices */ 3398 /* -------------------------------------------------------------------------- */ 3399 3400 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc, 3401 unsigned int *rsize) 3402 { 3403 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3404 3405 if (!hidpp) 3406 return rdesc; 3407 3408 /* For 27 MHz keyboards the quirk gets set after hid_parse. */ 3409 if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE || 3410 (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS)) 3411 rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize); 3412 3413 return rdesc; 3414 } 3415 3416 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 3417 struct hid_field *field, struct hid_usage *usage, 3418 unsigned long **bit, int *max) 3419 { 3420 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3421 3422 if (!hidpp) 3423 return 0; 3424 3425 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3426 return wtp_input_mapping(hdev, hi, field, usage, bit, max); 3427 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 && 3428 field->application != HID_GD_MOUSE) 3429 return m560_input_mapping(hdev, hi, field, usage, bit, max); 3430 3431 if (hdev->product == DINOVO_MINI_PRODUCT_ID) 3432 return lg_dinovo_input_mapping(hdev, hi, field, usage, bit, max); 3433 3434 return 0; 3435 } 3436 3437 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi, 3438 struct hid_field *field, struct hid_usage *usage, 3439 unsigned long **bit, int *max) 3440 { 3441 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3442 3443 if (!hidpp) 3444 return 0; 3445 3446 /* Ensure that Logitech G920 is not given a default fuzz/flat value */ 3447 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3448 if (usage->type == EV_ABS && (usage->code == ABS_X || 3449 usage->code == ABS_Y || usage->code == ABS_Z || 3450 usage->code == ABS_RZ)) { 3451 field->application = HID_GD_MULTIAXIS; 3452 } 3453 } 3454 3455 return 0; 3456 } 3457 3458 3459 static void hidpp_populate_input(struct hidpp_device *hidpp, 3460 struct input_dev *input) 3461 { 3462 hidpp->input = input; 3463 3464 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3465 wtp_populate_input(hidpp, input); 3466 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 3467 m560_populate_input(hidpp, input); 3468 3469 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) 3470 hidpp10_wheel_populate_input(hidpp, input); 3471 3472 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) 3473 hidpp10_extra_mouse_buttons_populate_input(hidpp, input); 3474 } 3475 3476 static int hidpp_input_configured(struct hid_device *hdev, 3477 struct hid_input *hidinput) 3478 { 3479 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3480 struct input_dev *input = hidinput->input; 3481 3482 if (!hidpp) 3483 return 0; 3484 3485 hidpp_populate_input(hidpp, input); 3486 3487 return 0; 3488 } 3489 3490 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data, 3491 int size) 3492 { 3493 struct hidpp_report *question = hidpp->send_receive_buf; 3494 struct hidpp_report *answer = hidpp->send_receive_buf; 3495 struct hidpp_report *report = (struct hidpp_report *)data; 3496 int ret; 3497 3498 /* 3499 * If the mutex is locked then we have a pending answer from a 3500 * previously sent command. 3501 */ 3502 if (unlikely(mutex_is_locked(&hidpp->send_mutex))) { 3503 /* 3504 * Check for a correct hidpp20 answer or the corresponding 3505 * error 3506 */ 3507 if (hidpp_match_answer(question, report) || 3508 hidpp_match_error(question, report)) { 3509 *answer = *report; 3510 hidpp->answer_available = true; 3511 wake_up(&hidpp->wait); 3512 /* 3513 * This was an answer to a command that this driver sent 3514 * We return 1 to hid-core to avoid forwarding the 3515 * command upstream as it has been treated by the driver 3516 */ 3517 3518 return 1; 3519 } 3520 } 3521 3522 if (unlikely(hidpp_report_is_connect_event(hidpp, report))) { 3523 atomic_set(&hidpp->connected, 3524 !(report->rap.params[0] & (1 << 6))); 3525 if (schedule_work(&hidpp->work) == 0) 3526 dbg_hid("%s: connect event already queued\n", __func__); 3527 return 1; 3528 } 3529 3530 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3531 ret = hidpp20_battery_event_1000(hidpp, data, size); 3532 if (ret != 0) 3533 return ret; 3534 ret = hidpp20_battery_event_1004(hidpp, data, size); 3535 if (ret != 0) 3536 return ret; 3537 ret = hidpp_solar_battery_event(hidpp, data, size); 3538 if (ret != 0) 3539 return ret; 3540 ret = hidpp20_battery_voltage_event(hidpp, data, size); 3541 if (ret != 0) 3542 return ret; 3543 } 3544 3545 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3546 ret = hidpp10_battery_event(hidpp, data, size); 3547 if (ret != 0) 3548 return ret; 3549 } 3550 3551 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) { 3552 ret = hidpp10_wheel_raw_event(hidpp, data, size); 3553 if (ret != 0) 3554 return ret; 3555 } 3556 3557 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) { 3558 ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size); 3559 if (ret != 0) 3560 return ret; 3561 } 3562 3563 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) { 3564 ret = hidpp10_consumer_keys_raw_event(hidpp, data, size); 3565 if (ret != 0) 3566 return ret; 3567 } 3568 3569 return 0; 3570 } 3571 3572 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report, 3573 u8 *data, int size) 3574 { 3575 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3576 int ret = 0; 3577 3578 if (!hidpp) 3579 return 0; 3580 3581 /* Generic HID++ processing. */ 3582 switch (data[0]) { 3583 case REPORT_ID_HIDPP_VERY_LONG: 3584 if (size != hidpp->very_long_report_length) { 3585 hid_err(hdev, "received hid++ report of bad size (%d)", 3586 size); 3587 return 1; 3588 } 3589 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3590 break; 3591 case REPORT_ID_HIDPP_LONG: 3592 if (size != HIDPP_REPORT_LONG_LENGTH) { 3593 hid_err(hdev, "received hid++ report of bad size (%d)", 3594 size); 3595 return 1; 3596 } 3597 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3598 break; 3599 case REPORT_ID_HIDPP_SHORT: 3600 if (size != HIDPP_REPORT_SHORT_LENGTH) { 3601 hid_err(hdev, "received hid++ report of bad size (%d)", 3602 size); 3603 return 1; 3604 } 3605 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3606 break; 3607 } 3608 3609 /* If no report is available for further processing, skip calling 3610 * raw_event of subclasses. */ 3611 if (ret != 0) 3612 return ret; 3613 3614 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3615 return wtp_raw_event(hdev, data, size); 3616 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 3617 return m560_raw_event(hdev, data, size); 3618 3619 return 0; 3620 } 3621 3622 static int hidpp_event(struct hid_device *hdev, struct hid_field *field, 3623 struct hid_usage *usage, __s32 value) 3624 { 3625 /* This function will only be called for scroll events, due to the 3626 * restriction imposed in hidpp_usages. 3627 */ 3628 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3629 struct hidpp_scroll_counter *counter; 3630 3631 if (!hidpp) 3632 return 0; 3633 3634 counter = &hidpp->vertical_wheel_counter; 3635 /* A scroll event may occur before the multiplier has been retrieved or 3636 * the input device set, or high-res scroll enabling may fail. In such 3637 * cases we must return early (falling back to default behaviour) to 3638 * avoid a crash in hidpp_scroll_counter_handle_scroll. 3639 */ 3640 if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0 3641 || hidpp->input == NULL || counter->wheel_multiplier == 0) 3642 return 0; 3643 3644 hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value); 3645 return 1; 3646 } 3647 3648 static int hidpp_initialize_battery(struct hidpp_device *hidpp) 3649 { 3650 static atomic_t battery_no = ATOMIC_INIT(0); 3651 struct power_supply_config cfg = { .drv_data = hidpp }; 3652 struct power_supply_desc *desc = &hidpp->battery.desc; 3653 enum power_supply_property *battery_props; 3654 struct hidpp_battery *battery; 3655 unsigned int num_battery_props; 3656 unsigned long n; 3657 int ret; 3658 3659 if (hidpp->battery.ps) 3660 return 0; 3661 3662 hidpp->battery.feature_index = 0xff; 3663 hidpp->battery.solar_feature_index = 0xff; 3664 hidpp->battery.voltage_feature_index = 0xff; 3665 3666 if (hidpp->protocol_major >= 2) { 3667 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750) 3668 ret = hidpp_solar_request_battery_event(hidpp); 3669 else { 3670 /* we only support one battery feature right now, so let's 3671 first check the ones that support battery level first 3672 and leave voltage for last */ 3673 ret = hidpp20_query_battery_info_1000(hidpp); 3674 if (ret) 3675 ret = hidpp20_query_battery_info_1004(hidpp); 3676 if (ret) 3677 ret = hidpp20_query_battery_voltage_info(hidpp); 3678 } 3679 3680 if (ret) 3681 return ret; 3682 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY; 3683 } else { 3684 ret = hidpp10_query_battery_status(hidpp); 3685 if (ret) { 3686 ret = hidpp10_query_battery_mileage(hidpp); 3687 if (ret) 3688 return -ENOENT; 3689 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 3690 } else { 3691 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 3692 } 3693 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY; 3694 } 3695 3696 battery_props = devm_kmemdup(&hidpp->hid_dev->dev, 3697 hidpp_battery_props, 3698 sizeof(hidpp_battery_props), 3699 GFP_KERNEL); 3700 if (!battery_props) 3701 return -ENOMEM; 3702 3703 num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3; 3704 3705 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE || 3706 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) 3707 battery_props[num_battery_props++] = 3708 POWER_SUPPLY_PROP_CAPACITY; 3709 3710 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS) 3711 battery_props[num_battery_props++] = 3712 POWER_SUPPLY_PROP_CAPACITY_LEVEL; 3713 3714 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE) 3715 battery_props[num_battery_props++] = 3716 POWER_SUPPLY_PROP_VOLTAGE_NOW; 3717 3718 battery = &hidpp->battery; 3719 3720 n = atomic_inc_return(&battery_no) - 1; 3721 desc->properties = battery_props; 3722 desc->num_properties = num_battery_props; 3723 desc->get_property = hidpp_battery_get_property; 3724 sprintf(battery->name, "hidpp_battery_%ld", n); 3725 desc->name = battery->name; 3726 desc->type = POWER_SUPPLY_TYPE_BATTERY; 3727 desc->use_for_apm = 0; 3728 3729 battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev, 3730 &battery->desc, 3731 &cfg); 3732 if (IS_ERR(battery->ps)) 3733 return PTR_ERR(battery->ps); 3734 3735 power_supply_powers(battery->ps, &hidpp->hid_dev->dev); 3736 3737 return ret; 3738 } 3739 3740 static void hidpp_overwrite_name(struct hid_device *hdev) 3741 { 3742 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3743 char *name; 3744 3745 if (hidpp->protocol_major < 2) 3746 return; 3747 3748 name = hidpp_get_device_name(hidpp); 3749 3750 if (!name) { 3751 hid_err(hdev, "unable to retrieve the name of the device"); 3752 } else { 3753 dbg_hid("HID++: Got name: %s\n", name); 3754 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 3755 } 3756 3757 kfree(name); 3758 } 3759 3760 static int hidpp_input_open(struct input_dev *dev) 3761 { 3762 struct hid_device *hid = input_get_drvdata(dev); 3763 3764 return hid_hw_open(hid); 3765 } 3766 3767 static void hidpp_input_close(struct input_dev *dev) 3768 { 3769 struct hid_device *hid = input_get_drvdata(dev); 3770 3771 hid_hw_close(hid); 3772 } 3773 3774 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev) 3775 { 3776 struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev); 3777 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3778 3779 if (!input_dev) 3780 return NULL; 3781 3782 input_set_drvdata(input_dev, hdev); 3783 input_dev->open = hidpp_input_open; 3784 input_dev->close = hidpp_input_close; 3785 3786 input_dev->name = hidpp->name; 3787 input_dev->phys = hdev->phys; 3788 input_dev->uniq = hdev->uniq; 3789 input_dev->id.bustype = hdev->bus; 3790 input_dev->id.vendor = hdev->vendor; 3791 input_dev->id.product = hdev->product; 3792 input_dev->id.version = hdev->version; 3793 input_dev->dev.parent = &hdev->dev; 3794 3795 return input_dev; 3796 } 3797 3798 static void hidpp_connect_event(struct hidpp_device *hidpp) 3799 { 3800 struct hid_device *hdev = hidpp->hid_dev; 3801 int ret = 0; 3802 bool connected = atomic_read(&hidpp->connected); 3803 struct input_dev *input; 3804 char *name, *devm_name; 3805 3806 if (!connected) { 3807 if (hidpp->battery.ps) { 3808 hidpp->battery.online = false; 3809 hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN; 3810 hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 3811 power_supply_changed(hidpp->battery.ps); 3812 } 3813 return; 3814 } 3815 3816 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 3817 ret = wtp_connect(hdev, connected); 3818 if (ret) 3819 return; 3820 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) { 3821 ret = m560_send_config_command(hdev, connected); 3822 if (ret) 3823 return; 3824 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 3825 ret = k400_connect(hdev, connected); 3826 if (ret) 3827 return; 3828 } 3829 3830 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) { 3831 ret = hidpp10_wheel_connect(hidpp); 3832 if (ret) 3833 return; 3834 } 3835 3836 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) { 3837 ret = hidpp10_extra_mouse_buttons_connect(hidpp); 3838 if (ret) 3839 return; 3840 } 3841 3842 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) { 3843 ret = hidpp10_consumer_keys_connect(hidpp); 3844 if (ret) 3845 return; 3846 } 3847 3848 /* the device is already connected, we can ask for its name and 3849 * protocol */ 3850 if (!hidpp->protocol_major) { 3851 ret = hidpp_root_get_protocol_version(hidpp); 3852 if (ret) { 3853 hid_err(hdev, "Can not get the protocol version.\n"); 3854 return; 3855 } 3856 } 3857 3858 if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) { 3859 name = hidpp_get_device_name(hidpp); 3860 if (name) { 3861 devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL, 3862 "%s", name); 3863 kfree(name); 3864 if (!devm_name) 3865 return; 3866 3867 hidpp->name = devm_name; 3868 } 3869 } 3870 3871 hidpp_initialize_battery(hidpp); 3872 3873 /* forward current battery state */ 3874 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3875 hidpp10_enable_battery_reporting(hidpp); 3876 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 3877 hidpp10_query_battery_mileage(hidpp); 3878 else 3879 hidpp10_query_battery_status(hidpp); 3880 } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3881 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE) 3882 hidpp20_query_battery_voltage_info(hidpp); 3883 else if (hidpp->capabilities & HIDPP_CAPABILITY_UNIFIED_BATTERY) 3884 hidpp20_query_battery_info_1004(hidpp); 3885 else 3886 hidpp20_query_battery_info_1000(hidpp); 3887 } 3888 if (hidpp->battery.ps) 3889 power_supply_changed(hidpp->battery.ps); 3890 3891 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) 3892 hi_res_scroll_enable(hidpp); 3893 3894 if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input) 3895 /* if the input nodes are already created, we can stop now */ 3896 return; 3897 3898 input = hidpp_allocate_input(hdev); 3899 if (!input) { 3900 hid_err(hdev, "cannot allocate new input device: %d\n", ret); 3901 return; 3902 } 3903 3904 hidpp_populate_input(hidpp, input); 3905 3906 ret = input_register_device(input); 3907 if (ret) 3908 input_free_device(input); 3909 3910 hidpp->delayed_input = input; 3911 } 3912 3913 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL); 3914 3915 static struct attribute *sysfs_attrs[] = { 3916 &dev_attr_builtin_power_supply.attr, 3917 NULL 3918 }; 3919 3920 static const struct attribute_group ps_attribute_group = { 3921 .attrs = sysfs_attrs 3922 }; 3923 3924 static int hidpp_get_report_length(struct hid_device *hdev, int id) 3925 { 3926 struct hid_report_enum *re; 3927 struct hid_report *report; 3928 3929 re = &(hdev->report_enum[HID_OUTPUT_REPORT]); 3930 report = re->report_id_hash[id]; 3931 if (!report) 3932 return 0; 3933 3934 return report->field[0]->report_count + 1; 3935 } 3936 3937 static u8 hidpp_validate_device(struct hid_device *hdev) 3938 { 3939 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3940 int id, report_length; 3941 u8 supported_reports = 0; 3942 3943 id = REPORT_ID_HIDPP_SHORT; 3944 report_length = hidpp_get_report_length(hdev, id); 3945 if (report_length) { 3946 if (report_length < HIDPP_REPORT_SHORT_LENGTH) 3947 goto bad_device; 3948 3949 supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED; 3950 } 3951 3952 id = REPORT_ID_HIDPP_LONG; 3953 report_length = hidpp_get_report_length(hdev, id); 3954 if (report_length) { 3955 if (report_length < HIDPP_REPORT_LONG_LENGTH) 3956 goto bad_device; 3957 3958 supported_reports |= HIDPP_REPORT_LONG_SUPPORTED; 3959 } 3960 3961 id = REPORT_ID_HIDPP_VERY_LONG; 3962 report_length = hidpp_get_report_length(hdev, id); 3963 if (report_length) { 3964 if (report_length < HIDPP_REPORT_LONG_LENGTH || 3965 report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH) 3966 goto bad_device; 3967 3968 supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED; 3969 hidpp->very_long_report_length = report_length; 3970 } 3971 3972 return supported_reports; 3973 3974 bad_device: 3975 hid_warn(hdev, "not enough values in hidpp report %d\n", id); 3976 return false; 3977 } 3978 3979 static bool hidpp_application_equals(struct hid_device *hdev, 3980 unsigned int application) 3981 { 3982 struct list_head *report_list; 3983 struct hid_report *report; 3984 3985 report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list; 3986 report = list_first_entry_or_null(report_list, struct hid_report, list); 3987 return report && report->application == application; 3988 } 3989 3990 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id) 3991 { 3992 struct hidpp_device *hidpp; 3993 int ret; 3994 bool connected; 3995 unsigned int connect_mask = HID_CONNECT_DEFAULT; 3996 struct hidpp_ff_private_data data; 3997 3998 /* report_fixup needs drvdata to be set before we call hid_parse */ 3999 hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL); 4000 if (!hidpp) 4001 return -ENOMEM; 4002 4003 hidpp->hid_dev = hdev; 4004 hidpp->name = hdev->name; 4005 hidpp->quirks = id->driver_data; 4006 hid_set_drvdata(hdev, hidpp); 4007 4008 ret = hid_parse(hdev); 4009 if (ret) { 4010 hid_err(hdev, "%s:parse failed\n", __func__); 4011 return ret; 4012 } 4013 4014 /* 4015 * Make sure the device is HID++ capable, otherwise treat as generic HID 4016 */ 4017 hidpp->supported_reports = hidpp_validate_device(hdev); 4018 4019 if (!hidpp->supported_reports) { 4020 hid_set_drvdata(hdev, NULL); 4021 devm_kfree(&hdev->dev, hidpp); 4022 return hid_hw_start(hdev, HID_CONNECT_DEFAULT); 4023 } 4024 4025 if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE) 4026 hidpp->quirks |= HIDPP_QUIRK_UNIFYING; 4027 4028 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 4029 hidpp_application_equals(hdev, HID_GD_MOUSE)) 4030 hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS | 4031 HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS; 4032 4033 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 4034 hidpp_application_equals(hdev, HID_GD_KEYBOARD)) 4035 hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS; 4036 4037 if (disable_raw_mode) { 4038 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP; 4039 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT; 4040 } 4041 4042 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 4043 ret = wtp_allocate(hdev, id); 4044 if (ret) 4045 return ret; 4046 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 4047 ret = k400_allocate(hdev); 4048 if (ret) 4049 return ret; 4050 } 4051 4052 INIT_WORK(&hidpp->work, delayed_work_cb); 4053 mutex_init(&hidpp->send_mutex); 4054 init_waitqueue_head(&hidpp->wait); 4055 4056 /* indicates we are handling the battery properties in the kernel */ 4057 ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group); 4058 if (ret) 4059 hid_warn(hdev, "Cannot allocate sysfs group for %s\n", 4060 hdev->name); 4061 4062 /* 4063 * Plain USB connections need to actually call start and open 4064 * on the transport driver to allow incoming data. 4065 */ 4066 ret = hid_hw_start(hdev, 0); 4067 if (ret) { 4068 hid_err(hdev, "hw start failed\n"); 4069 goto hid_hw_start_fail; 4070 } 4071 4072 ret = hid_hw_open(hdev); 4073 if (ret < 0) { 4074 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n", 4075 __func__, ret); 4076 goto hid_hw_open_fail; 4077 } 4078 4079 /* Allow incoming packets */ 4080 hid_device_io_start(hdev); 4081 4082 if (hidpp->quirks & HIDPP_QUIRK_UNIFYING) 4083 hidpp_unifying_init(hidpp); 4084 4085 connected = hidpp_root_get_protocol_version(hidpp) == 0; 4086 atomic_set(&hidpp->connected, connected); 4087 if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) { 4088 if (!connected) { 4089 ret = -ENODEV; 4090 hid_err(hdev, "Device not connected"); 4091 goto hid_hw_init_fail; 4092 } 4093 4094 hidpp_overwrite_name(hdev); 4095 } 4096 4097 if (connected && hidpp->protocol_major >= 2) { 4098 ret = hidpp_set_wireless_feature_index(hidpp); 4099 if (ret == -ENOENT) 4100 hidpp->wireless_feature_index = 0; 4101 else if (ret) 4102 goto hid_hw_init_fail; 4103 } 4104 4105 if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) { 4106 ret = wtp_get_config(hidpp); 4107 if (ret) 4108 goto hid_hw_init_fail; 4109 } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) { 4110 ret = g920_get_config(hidpp, &data); 4111 if (ret) 4112 goto hid_hw_init_fail; 4113 } 4114 4115 hidpp_connect_event(hidpp); 4116 4117 /* Reset the HID node state */ 4118 hid_device_io_stop(hdev); 4119 hid_hw_close(hdev); 4120 hid_hw_stop(hdev); 4121 4122 if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) 4123 connect_mask &= ~HID_CONNECT_HIDINPUT; 4124 4125 /* Now export the actual inputs and hidraw nodes to the world */ 4126 ret = hid_hw_start(hdev, connect_mask); 4127 if (ret) { 4128 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__); 4129 goto hid_hw_start_fail; 4130 } 4131 4132 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 4133 ret = hidpp_ff_init(hidpp, &data); 4134 if (ret) 4135 hid_warn(hidpp->hid_dev, 4136 "Unable to initialize force feedback support, errno %d\n", 4137 ret); 4138 } 4139 4140 return ret; 4141 4142 hid_hw_init_fail: 4143 hid_hw_close(hdev); 4144 hid_hw_open_fail: 4145 hid_hw_stop(hdev); 4146 hid_hw_start_fail: 4147 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 4148 cancel_work_sync(&hidpp->work); 4149 mutex_destroy(&hidpp->send_mutex); 4150 return ret; 4151 } 4152 4153 static void hidpp_remove(struct hid_device *hdev) 4154 { 4155 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 4156 4157 if (!hidpp) 4158 return hid_hw_stop(hdev); 4159 4160 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 4161 4162 hid_hw_stop(hdev); 4163 cancel_work_sync(&hidpp->work); 4164 mutex_destroy(&hidpp->send_mutex); 4165 } 4166 4167 #define LDJ_DEVICE(product) \ 4168 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \ 4169 USB_VENDOR_ID_LOGITECH, (product)) 4170 4171 #define L27MHZ_DEVICE(product) \ 4172 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \ 4173 USB_VENDOR_ID_LOGITECH, (product)) 4174 4175 static const struct hid_device_id hidpp_devices[] = { 4176 { /* wireless touchpad */ 4177 LDJ_DEVICE(0x4011), 4178 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT | 4179 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS }, 4180 { /* wireless touchpad T650 */ 4181 LDJ_DEVICE(0x4101), 4182 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT }, 4183 { /* wireless touchpad T651 */ 4184 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 4185 USB_DEVICE_ID_LOGITECH_T651), 4186 .driver_data = HIDPP_QUIRK_CLASS_WTP }, 4187 { /* Mouse Logitech Anywhere MX */ 4188 LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 4189 { /* Mouse Logitech Cube */ 4190 LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 4191 { /* Mouse Logitech M335 */ 4192 LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4193 { /* Mouse Logitech M515 */ 4194 LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 4195 { /* Mouse logitech M560 */ 4196 LDJ_DEVICE(0x402d), 4197 .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560 4198 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 4199 { /* Mouse Logitech M705 (firmware RQM17) */ 4200 LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 4201 { /* Mouse Logitech M705 (firmware RQM67) */ 4202 LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4203 { /* Mouse Logitech M720 */ 4204 LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4205 { /* Mouse Logitech MX Anywhere 2 */ 4206 LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4207 { LDJ_DEVICE(0x4072), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4208 { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4209 { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4210 { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4211 { /* Mouse Logitech MX Anywhere 2S */ 4212 LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4213 { /* Mouse Logitech MX Master */ 4214 LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4215 { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4216 { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4217 { /* Mouse Logitech MX Master 2S */ 4218 LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4219 { /* Mouse Logitech MX Master 3 */ 4220 LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4221 { /* Mouse Logitech Performance MX */ 4222 LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 4223 { /* Keyboard logitech K400 */ 4224 LDJ_DEVICE(0x4024), 4225 .driver_data = HIDPP_QUIRK_CLASS_K400 }, 4226 { /* Solar Keyboard Logitech K750 */ 4227 LDJ_DEVICE(0x4002), 4228 .driver_data = HIDPP_QUIRK_CLASS_K750 }, 4229 { /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */ 4230 LDJ_DEVICE(0xb305), 4231 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4232 { /* Dinovo Edge (Bluetooth-receiver in HID proxy mode) */ 4233 LDJ_DEVICE(0xb309), 4234 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4235 { /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */ 4236 LDJ_DEVICE(0xb30b), 4237 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4238 4239 { LDJ_DEVICE(HID_ANY_ID) }, 4240 4241 { /* Keyboard LX501 (Y-RR53) */ 4242 L27MHZ_DEVICE(0x0049), 4243 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL }, 4244 { /* Keyboard MX3000 (Y-RAM74) */ 4245 L27MHZ_DEVICE(0x0057), 4246 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL }, 4247 { /* Keyboard MX3200 (Y-RAV80) */ 4248 L27MHZ_DEVICE(0x005c), 4249 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL }, 4250 { /* S510 Media Remote */ 4251 L27MHZ_DEVICE(0x00fe), 4252 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL }, 4253 4254 { L27MHZ_DEVICE(HID_ANY_ID) }, 4255 4256 { /* Logitech G403 Wireless Gaming Mouse over USB */ 4257 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) }, 4258 { /* Logitech G703 Gaming Mouse over USB */ 4259 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) }, 4260 { /* Logitech G703 Hero Gaming Mouse over USB */ 4261 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) }, 4262 { /* Logitech G900 Gaming Mouse over USB */ 4263 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) }, 4264 { /* Logitech G903 Gaming Mouse over USB */ 4265 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) }, 4266 { /* Logitech G903 Hero Gaming Mouse over USB */ 4267 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) }, 4268 { /* Logitech G920 Wheel over USB */ 4269 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL), 4270 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS}, 4271 { /* Logitech G Pro Gaming Mouse over USB */ 4272 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) }, 4273 4274 { /* MX5000 keyboard over Bluetooth */ 4275 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305), 4276 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4277 { /* Dinovo Edge keyboard over Bluetooth */ 4278 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb309), 4279 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4280 { /* MX5500 keyboard over Bluetooth */ 4281 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b), 4282 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4283 { /* M-RCQ142 V470 Cordless Laser Mouse over Bluetooth */ 4284 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb008) }, 4285 { /* MX Master mouse over Bluetooth */ 4286 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012), 4287 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4288 { /* MX Ergo trackball over Bluetooth */ 4289 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01d) }, 4290 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e), 4291 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4292 { /* MX Master 3 mouse over Bluetooth */ 4293 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023), 4294 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4295 {} 4296 }; 4297 4298 MODULE_DEVICE_TABLE(hid, hidpp_devices); 4299 4300 static const struct hid_usage_id hidpp_usages[] = { 4301 { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES }, 4302 { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1} 4303 }; 4304 4305 static struct hid_driver hidpp_driver = { 4306 .name = "logitech-hidpp-device", 4307 .id_table = hidpp_devices, 4308 .report_fixup = hidpp_report_fixup, 4309 .probe = hidpp_probe, 4310 .remove = hidpp_remove, 4311 .raw_event = hidpp_raw_event, 4312 .usage_table = hidpp_usages, 4313 .event = hidpp_event, 4314 .input_configured = hidpp_input_configured, 4315 .input_mapping = hidpp_input_mapping, 4316 .input_mapped = hidpp_input_mapped, 4317 }; 4318 4319 module_hid_driver(hidpp_driver); 4320